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Abstract: In this paper, a new method for the solution of distribution problem in a fuzzy setting is
presented. It consists of two phases. In the first of them, the problem is formulated as the classical,
fully fuzzy transportation problem. A new, straightforward numerical method for solving this
problem is proposed. This method is implemented using the α-cut approximation of fuzzy values and
the probability approach to interval comparison. The method allows us to provide the straightforward
fuzzy extension of a simplex method. It is important that the results are fuzzy values. To validate
our approach, these results were compared with those obtained using the competing method and
those we got using the Monte–Carlo method. In the second phase, the results obtained in the first one
(the fuzzy profit) are used as the natural constraints on the parameters of multiobjective task. In our
approach to the solution of distribution problem, the fuzzy local criteria based on the overall profit
and contracts breaching risks are used. The particular local criteria are aggregated with the use of
most popular aggregation modes. To obtain a compromise solution, the compromise general criterion
is introduced, which is the aggregation of aggregating modes with the use of level-2 fuzzy sets. As the
result, a new two phase method for solving the fuzzy, nonlinear, multiobjective distribution problem
aggregating the fuzzy local criteria based on the overall profit and contracts breaching risks has been
developed. Based on the comparison of the results obtained using our method with those obtained
by competing one, and on the results of the sensitivity analysis, we can conclude that the method
may be successfully used in applications. Numerical examples illustrate the proposed method.

Keywords: fuzzy extension; simplex method; fuzzy multiobjective distribution problem; aggregation of
aggregating modes

1. Introduction

The problem of optimal distribution and the transportation problem are similar mathematical
formulations and may be considered as the particular cases of the general linear programming
problem. The first effective algorithm for solution of transportation problem was developed in
1979 by Isermann [1]. Since then a lot of papers devoted to this problem in the case of real-valued
parameters were published in the scientific journals.

Nevertheless, in practice, we often meet different kinds of uncertainty when the parameters
of these optimization problems are presented by intervals or fuzzy values. In [2], Zimmermann
first presented the mathematical formulation of fuzzy linear programming problem (FLPP) with its
approximate solution.

Based on the literature analysis, we can say that for the solution of FLPP, two main approaches
seem to be dominating.

In compliance with the first of them, a fuzzy linear programming problem is solved with the
suggestion that decision variables are real values. Therefore, the real-valued solution of fuzzy problem
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is obtained. The real-valued solutions of FLPP were obtained with different simplifications of the form
of fuzzy parameters in [3–5]. In [6,7], the approximate solutions of fuzzy transportation problem were
obtained with the assumption that decision variables are real-values.

In the framework of second approach, the decision variables are assumed to be fuzzy values.
Therefore, a fuzzy solution of FLPP is obtained. The FLPP problem with all fuzzy parameters and
decision variables is named a fully fuzzy linear programming (FLPP) problem. It is clear that such an
approach is more natural because it provides more useful information for decision makers, since a
real-values solution is less informative than a fuzzy one. On the other hand, this approach needs a more
general problem formulation and the solutions of more difficult, additional mathematical problems.

In the relatively few papers devoted to FLPP problems, only approximate solutions have been
presented. Usually some simplifications of fuzzy parameters are used (triangular or trapezoidal fuzzy
numbers, L− R fuzzy numbers, and so on) [8–10].

Of course, it is hard to estimate all possible negative consequences of above-mentioned restrictions
and simplifications. Therefore, the approaches based on the α-cuts representation of fuzzy values seem
to be more promising because they are free of any restrictions on the shape of fuzzy values used for
the solution of real-world problems.

In [11], the solution of fully fuzzy reverse logistics network design (FFRLND) problem is presented.
A new parametric method for the solution of the problem in the form of fuzzy decision variables is
proposed. The method is based on the α-cuts representation of fuzzy numbers. Unfortunately, the
ranking function used for the fuzzy values comparison (FVC) based on the comparing of the mean
values of triangular fuzzy numbers seems to be too simplified, whereas FVC plays an important role in
the solution of the problem considered. In [12], the detailed literature review on fuzzy transportation
problem is presented. Taking into account the restrictions and drawbacks of known methods, the
authors proposed a direct approach to the solution of fully fuzzy transportation problems. The
method is based on the α-cuts representation of fuzzy values and fuzzy decoding procedure based
on constrained fuzzy arithmetic operations and a fuzzy ranking technique. In our opinion, the use of
constrained fuzzy arithmetic and simplified fuzzy ranking technique makes it possible to avoid some
known problems, but generates new ones.

Based on the above literature analysis and especially on the comprehensive literature review
presented recently in [12], we can say that the most informative solutions of fuzzy linear transportation
problem and fuzzy linear distribution problem having similar mathematical formulations that may be
obtained in the framework of fully fuzzy linear transportation problem FFLTP. In this framework, all or
part of parameters are fuzzy values and the decision variables are fuzzy values too. There are many
approximate solutions of fully fuzzy linear programming problem based on different simplifications of
fuzzy parameters proposed in the literature. It is hard to estimate the possible negative consequences
of such simplifications when we deal with real-world problems. Therefore, it seems to be promising to
use approaches based on the α-cut representation of fuzzy numbers with corresponding operations
on them and an adequate method for fuzzy numbers’ comparison. Nevertheless, we found in the
literature, only two papers [11,12] in which this approach was used. Unfortunately, in these papers,
the so-called constrained fuzzy arithmetic, which has many undesirable properties, was applied. The
extremely simplified method for the fuzzy numbers’ comparison based only on the means of triangular
fuzzy numbers was used. So we can say that the methods proposed in these papers should be assumed
to be rather unreliable ones.

It is important to note that in all considered cases the fuzzy distribution problem was treated as
a fuzzy, single-criterion task with fuzzy constraints. On the other hand, oppositely to the classical
transportation problem, the fuzzy constraints in the distribution problem may be naturally treated
as local fuzzy criteria of contracts breaching risks, and therefore, a more specified and correct form
of the fuzzy distribution problem is a non-linear fuzzy multiobjective task. For its formulation,
the corresponding criterion of profit maximization is needed. Such a criterion may be obtained on the
base of solution of the fully fuzzy distribution problem in the form of fuzzy single-criterion task with
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fuzzy constraints, which provides the optimal fuzzy profit. It is worth noting that we did not find
similar approaches in the literature. Therefore, we have two phases of the solution to our problem.

In the fist of them, we obtain the solution of fully fuzzy single-criterion linear distribution
problem (FFDP) with fuzzy constraints. In the second phase, using the results obtained in the first one,
the non-linear fuzzy multiobjective distribution problem FDP is formulated and solved.

In the first phase, to avoid the above-mentioned shortcomings of known approaches, a new
approach to the solution of fully fuzzy linear distribution problem (FFDP) based on the straightforward
fuzzy extension of the simplex method is proposed. The traditional fuzzy arithmetic rules with probabilistic
approach to the interval and fuzzy values comparison are applied in this fuzzy extension. The use of
α-cut representation of fuzzy values allows us to avoid any simplifications of their forms. The proposed
fuzzy extension is implemented using an object-oriented technique.

In the second phase, the multiobjective non-linear fuzzy distribution problem is formulated.
The local criterion of profit maximization is introduced using a fuzzy optimal profit obtained at the
first phase as a range of achievable profits. To obtain a general criterion, all local criteria are aggregated,
taking into account their relative importance. The local criteria are aggregated with the use of most
popular aggregation modes. To obtain a compromise solution, the general compromise criterion is
introduced, which is the aggregation of aggregating modes with the use of level-2 fuzzy sets. Finally
the solution is obtained using a numerical method.

The main advantages of the proposed method in comparison with the existing ones are as follows:

• The straightforward fuzzy extension of simplex method allows us to avoid the use of rather
unreliable meta-heuristic method used for the solution of FFLTP in the competing approach
proposed in [12].

• The treatment of fuzzy constraints as local risk criteria reflects better the specificity of FDP,
and provide the opportunity to formulate the FDP for the first time as the fuzzy nonlinear
multiobjective problem aggregating the fuzzy local criteria based on the overall profit and
contracts breaching risks.

• Since there are many possible methods for aggregating the fuzzy local criteria proposed in the
literature, the problem of finding a compromise solution arises, which in the framework of this
approach, for the first time, is solved on the basis of aggregation of aggregating modes with the
use of level-2 fuzzy sets.

The reminder of paper is set out as follows.
Section 2 is devoted to the first phase: straightforward fuzzy extension of the single-criterion

distribution problem. The mathematical tools used for the fuzzy extension of simplex method are
presented. The selection of the method for fuzzy values comparison is carefully argued since it plays a
pivotal role in the implementation of the fuzzy simplex method. The FFDP is formulated and solved.
It is shown how the initial FDP is transformed to the canonical form of FLPP. The results obtained
with the use of the developed method and their comparison with those obtained using competing
method and Monte–Carlo method are presented using illustrative examples. The sensitivity analysis
of model is provided as well. In Section 3, the results obtained at the firs phase are used to define the
local criteria needed to formulate the multiobjective fuzzy distribution problem. To formulate this
problem, the different aggregating modes and their aggregation on the basis of the level-2 fuzzy sets
are used to aggregate initial local criteria. The solution is obtained using the direct random search
method. The illustrative examples are presented. Conclusions are covered in Section 4.

2. The First Phase: Straightforward Fuzzy Extension of FDP

At this phase of the solution of FDP, the problem is formulated as a linear fully fuzzy
single-criterion distribution problem. Since in this case, the problem has a mathematical structure
similar to the structure of fully fuzzy transportation problem, for its solution a straightforward fuzzy
extension of simplex method is used. The mathematical structure of the usual simplex method is
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extended by replacing all parameters with fuzzy ones and all arithmetic operations with corresponding
operations on fuzzy values including operations of interval and fuzzy values comparisons. It is clear
that in such an approach to the fuzzy extension of the simplex method, the correctness of the fuzzy
arithmetic operations and very important fuzzy values’ comparisons play key roles in obtaining correct
results of the optimization.

2.1. Mathematical Tools

We can say that fuzzy arithmetic is a well studied and formalized part of fuzzy sets theory. On the
other hand, when we deal with the implementation of fuzzy arithmetic rules, we meet some problems.
In the most general form, the fuzzy rules are based on the so-called extension principle proposed by
Zadeh [13]. An arbitrary t-norm is used in the mathematical formalization of this principle. Suppose
X, Y, and Z are fuzzy values with the corresponding membership functions µ(x), µ(y), µ(z) (x ∈ X,
y ∈ Y, and z ∈ Z) and @ ∈ {+,−, ∗, /} being an arithmetical operation. Then,

Z = X@Y = {z = x@y, µ(z) = max
z

t(µ(x), µ(y)), x ∈ X, y ∈ Y}. (1)

According to the studies of Zimmermann and Zysno [14], the choice of an appropriate t-norm is
rather a context dependent problem.

Another, more practical approach to the mathematical representation of fuzzy arithmetic rules is
based on the α-cut presentation of fuzzy numbers [15].

If X is a fuzzy value, then X =
⋃
α

αXα, where αXα is the fuzzy subset: x ∈ U, µX(x) ≥ α, Xα is the

support set of fuzzy subset αXα and U is the universe of discourse. It is very important that for fuzzy
values X and Y, all the mathematical operations on them may be represented as sets of operations on
intervals presenting their α-cuts:

(X@Y)α = Xα@Yα. (2)

At fist glance, the straight α-cut representation of fuzzy arithmetic rules values seems to be a rough
one when comparing with the general expression (1). But in the practical numerical implementation
of (1) the discretization of the supports of considered fuzzy values X, Y, and Z, especially when we
have complicated forms of µ(x) and µ(y), is inevitable. It is shown in [16], that any discretization of (1)
provides unacceptable non-convex results. It seems natural that the results obtained with the use of
the general Definition (1) may be somewhat improved using the more detailed discretization, but in
practice a very dense disretization is usually needed to do that. It is worth noting here that undesirable
results were obtained with the use of different t-norm and arithmetical operations, whereas when
using the α-cut presentation of fuzzy arithmetic rules we have no such problems at all. For more
analysis and details, see for an example, [16]. Therefore, here it is quite enough for our purposes to
state that there are some difficult practical problems when using general expression (1) and that there
are none these problems in the case of an α-cut representation of fuzzy arithmetic rules. So we can
say that the α-cut representation of fuzzy arithmetic rules may be recognized as a reliable basis for
mathematical modeling in the fuzzy setting.

It is seen that fuzzy arithmetic rules presented by α-cuts are based on interval arithmetic rules.
Therefore, the presentation of basic definitions of applied interval analysis should be provided.

There are may internal methodological problems in the framework of interval analysis.
Therefore, several different approaches to the formulation of interval arithmetic rules were proposed in
the literature [17,18]. All of them have own drawbacks and restrictions. Therefore, here we will use the
classical definition of interval arithmetic which seems to be more logically justified and usually used in
the solution of real-world problems. This basic definition may be presented as follows. Let X = [x1, x2]

and Y = [y1, y2] be intervals, @ ∈ {+,−, ∗, /}. Then, the resulting interval Z is calculated using the
following expression:

Z = X@Y = {z = x@y, x ∈ X, y ∈ Y}. (3)
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It is clear that this definition provide the results based only on the bounds of intervals:

X + Y = [x1 + y1, x2 + y2],
ΣX−Y = [x1 − y2, x2 − y1],

XY = [min(x1y1, x2y2, x1y2, x2y1), max(x1y1, x2y2, x1y2, x2y1)],
X/Y = [x1, x2][1/y2, 1/y1], 0 /∈ Y.

(4)

As important role in the solution of fully fuzzy transportation and distribution problems plays
the operation of fuzzy values comparison. Since our approach is based on the α-cut presentation of
fuzzy numbers, an appropriate method for interval comparison should be chosen.

Most methods for interval comparison are based on the real-valued representation of intervals
Ref. [19–21]. Moreover, Wang et al. [22] showed that usually, these methods are based on the comparison
on interval means. Of course, such simplifications of the problem may provide in practice unpredictable
undesirable results. Therefore, in [22] the authors proposed a heuristic method which is not based
on the above-mentioned simplifications. Let Y = [y1, y2] and X = [x1, x2], be crisp intervals; then,
the possibility that Y ≥ X may be, according to [22], calculated as follows:

Po(Y ≥ X) =
max {0, y2 − y1} −max {0, y1 − x2}

x2 − x1 + y2 − y1
. (5)

Unfortunately, this approach does not provide the separated interval equality relation, because for
X = Y, i.e., x1 = y1, x2 = y2 from (5), we get Po(Y ≥ X) = 0.5, P(Y ≤ X) = 0.5. In the literature,
interval equality relation is sometimes treated as identity [18], or only in conjunction with interval
inequality [23] or even as an impossible relation [24]. On the other hand, in accordance with the
classical definition [18], an interval X is entirely represented by its bounds (X = [x1, x2]). Therefore, the
interval X may be considered as a mathematical object completely defined by the pair x1, x2. Then it
is clear that if we have two such objects X and Y defined by equal bounds (x1 = y1, x2 = y2) we can
declare that X and Y are equal intervals.

Let us consider some hypothetical measure me(X@Y) ∈ [0.1] (@ ∈ {>,=,<}) of interval
equality/inequality. The logically justified properties of me(X@Y) may be only such that me(X =

Y) = 1, me(X > Y) = 0, and me(X < Y) = 0 for equal intervals X and Y, and me(X = Y) = 0 for the
completely different X and Y when they have no intersection.

Therefore, to develop a measure of interval equality/inequality with defined above desirable
properties, we employ the so-called probabilistic approach to interval comparison. This idea is not
a new one. The review of methods based on the probabilistic approach to the interval comparison
is made in [19]. However, only in [25] was the consistent set of interval and fuzzy values relations
comprising separated equality and inequality relations first developed with the use of the probability
approach. The attractiveness of this approach is the possibility to obtain a complete set of probabilities
Pr(X > Y), Pr(X < Y), and Pr(X = Y) for the intervals X and Y when compared using the only one
postulation—that the supports of X and Y are uniform distributions of random values x ∈ X, y ∈ Y.
It is worth emphasizing here that only in [19,25] do the developed expressions provide in any case
Pr(X > Y) + Pr(X = Y) + Pr(X < Y) = 1. In [19], two possible propositions related to conditional
probabilities were used to get two sets of interval relations named as “weak” and “strong” relations.
We will use here, only the “strong” relations (the probabilities of X > Y, X < Y, and X = Y) since
they are an asymptotic case of the general approach based on the Dempster–Shafer theory (see [19]).
These expressions are presented as follows.

In the case of overlapping intervals (see Figure 1a):

Pr(Y < X) = 0, Pr(Y = X) =
(x2 − y1)

2

(x2 − x1) (y2 − y1)
, Pr(Y > X) = 1− Pr(Y = X). (6)
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In the case of including the interval (see Figure 1b):

Pr(Y < X) =
x1 − y1

y2 − y1
, Pr(Y = X) =

x2 − x1

y2 − y1
, Pr(Y > X) =

y2 − y1

y2 − y1
. (7)

It is easy to see that in the both cases, Pr(X < Y) + Pr(X = Y) + Pr(X > Y) = 1.

 

       x1                    y1     x2                    y2                                  

X X 

Y                                                                  Y 

  (a)                                                                  (b) 

       y1       x1                     x2       y2                                  

Figure 1. Non trivial interval relations. (a) Overlapping case and (b) inclusion case.

The expressions for the fuzzy values comparison were obtained in [19] with the use of interval
relations (6) and (7), and the α-cut representation of fuzzy values. Suppose X̂ and Ŷ are the fuzzy
numbers on Z with the corresponding membership functions µX(z), µY(z): Z → [0, 1]. Then, X̂ and Ŷ
may be represented by the sets of α-cuts X̂ =

⋃
α

Xα, Ŷ =
⋃
α

Yα, where Xα = {z ∈ Z : µX(z) ≥ α}, Yα =

{z ∈ Z : µY(z) ≥ α} are the crisp intervals. With the use of α-cuts representation, the fuzzy relations X̂
rel Ŷ, rel ∈ {<,=,>}may be presented as follows:

X̂ rel Ŷ =
⋃
α

Xα rel Yα. (8)

Because Xα and Yα are crisp intervals, the probability Prα(Xα > Yα) for all pairs Xα and Yα should
be obtained from (6) and (7). Obviously, the set of the probabilities Prα, (α ∈ (0, 1]) may be considered
as the support of fuzzy subset

Pr(X̂ > Ŷ) =
{

α

Prα(Xα > Yα)

}
, (9)

where the value of α is treated as the degree of membership to the fuzzy value P(X̂ > Ŷ). Similarly, the
fuzzy subset Pr(X̂ = Ŷ) may also be obtained. It is easy to show that in overlapping case Pr(X̂ > Ŷ) +
Pr(X̂ = Ŷ) = “near 1”, and in inclusion case Pr(X̂ > Ŷ) + Pr(X̂ = Ŷ+ Pr(X̂ < Ŷ) = “near 1” (“near 1”
is a symmetrical fuzzy value centered around 1. In applications, often the real-valued representations
of fuzzy numbers are used to compare fuzzy values. Therefore, different characteristic numbers of
fuzzy set may be used. Nevertheless, it seems enough justified to apply the defuzzification, which for
the set of α-cuts used, may be presented as follows:

Pr(X̂ > Ŷ) =
∑
α

α · Prα(Xα > Yα)

∑
α

α
. (10)

That last expression is based on the natural assumption that the α-cut contribution to the final
probability assessment is increasing with the rise of α.

2.2. The Fully Fuzzy Extension of Simplex Method

Oppositely to the transportation task, in the distribution problem we try to maximize the
final profit of distributor taking into account transportation costs, prices of sellers and buyers,
and restrictions concerned with contracts which may be signed by the distributor with sellers and
buyers. Let us assume that the distributor has M possible sellers and N possible buyers (Figure 2).
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Distributor 

Seller 1 

Seller 3 

Seller 2 

Buyer 1 

Buyer 2 

Buyer 3 

Figure 2. The distributing transactions.

Let ai, i = 1 to M, be the maximal quantities of products which may be sold by sellers, and bj, j = 1
to N, be the maximal quantities of products that may be bought by the buyers. The fuzzy profit p̂rij is
the result of supplying of a product unit from ith seller to jth buyer and can be presented as follows:
p̂rij = cj − ci − t̂ij, where cj and ci are the prices of selling and buying, respectively; t̂ij is the fuzzy
cost of supplying of a products unit from ith seller to jth buyer. On the basis of the signed contracts,
the distributor must buy at least pi products units at the price of ci monetary units for unit of product
from each ith seller and to sell at least qj product units at price of cj monetary units for unit of product
to each jth buyer. Such constraints pi and qj restrict only the lower bounds of permissible optimal
quantities of product to be bought and sold. Hence, these quantities can be negotiated, and hereinafter,
we will consider them as the fuzzy constraints p̂i, q̂j. So, the problem is the optimization of product
quantities x̂ij (i = 1, ..., M; j = 1, ..., N) supplying from ith seller to jth buyer consumer which maximize
the summarized fuzzy profit of distributor P̂r taking into account the fuzzy constraints:

P̂r =
M

∑
i=1

N

∑
j=1

(
p̂rij x̂ij

)
→ max, (11)

N

∑
j=1

x̂ij ≤ ai (i = 1..M),
M

∑
i=1

x̂ij ≤ bj (j = 1..N), (12)

N

∑
j=1

x̂ij ≥ p̂i (i = 1..M),
M

∑
i=1

x̂ij ≥ q̂j (j = 1..N). (13)

In this model, the parameters ai and bj are represented by real values since they represent the
maximal possible quantities of product which a seller agrees to sell and the maximal quantities of
product which a buyer is ready to buy. It is clear that in practice, the values of parameters ai and bj are
usually known as strong starting limits and are not negotiated.

It is seen that the above model from mathematical point of view is the same as the fully fuzzy
transportation problem. Hence, for its solution, the fuzzy extension of the simplex method can be
applied. Here, we only briefly describe the most important steps of implementation of this method.

First, of all the parameters of the model are substituted with the corresponding fuzzy values and
all arithmetical rules, including operation of comparison, are substituted with the fuzzy operations
defined in the previous subsection using the α-cut representation of fuzzy values. To transform the
model (11)–(13) into its canonical form, we substitute the two-index representation of this model
for the single-index one. Replacing the inequalities by equalities we transform the model into its
augmented form.

The next step is the presentation of the augmented form in the canonical form. Introducing the
so-called slack variables, these inequalities are transformed to the set of equalities in the canonical
form. What we avoid here is the presentation of routine procedure of transformation of the initial fuzzy
linear programming problem to the canonical form using corresponding mathematical expressions.
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These expressions are far too cumbersome to be appropriate for the scientific paper. Moreover, such a
procedure (in its non-fuzzy form) is thoroughly described in textbooks.

The next steps of the proposed approach are formally the same as in the standard simplex method,
but are implemented in the fuzzy form. For the implementation of developed approach, the technique
of object-oriented programming was used. For this purpose, the special class “Fuzzy value” was
implemented on the base of language C++. This class comprises the overloaded operators which
represent the operations on fuzzy values. In this approach, the fuzzy parameters and variables are
implemented as the objects of class “Fuzzy value”. We can say that the algebraic structure of fuzzy
extended simplex method is formally the same as the algorithm of the usual simplex method.

To validate our approach, we compared it with some other methods for the solution of fully fuzzy
transportation or distribution problems. We found in the literature, only one paper [12] where such a
problem was solved using an α-cut representation of fuzzy values, the constrained interval arithmetic
operations, and a fuzzy ranking technique based on the real-valued means of fuzzy values. Since the
constrained interval arithmetic is in contradiction with the logically justified basic definition (3) which
is successfully used in the solution of real-world problems, and taking into account the extremely
simplified ranking technique which leads to the loss of important information, we can say that the
method proposed in [12] may provide undesirable results.

Therefore, when comparing the method proposed in [12] with our approach, we should obtain
different results, since substantially different mathematical tools were used. To estimate this possible
difference and validate our approach, consider the example from [12]. The fully fuzzy transportation
problem with triangular fuzzy numbers was solved in the case of three sources and four destinations.
It was formulated as follows:

Min Ẑ = ∑3
i=1 ∑4

j=1 ĉij x̂ij s.t.: ∑3
i=1 x̂ij = âj, j = 1, 2, 3, 4; ∑4

j=1 x̂ij = b̂i, i = 1, 2, 3.
The fuzzy parameters of above problem are presented in Table 1.

Table 1. Triangular fuzzy values of the model’s parameters.

Parameters Fuzzy Values Parameters Fuzzy Values

â1 [7.2, 8, 8.8] ĉ11 [8, 10, 10.8]
â2 [12, 14, 16] ĉ12 [20.4, 22, 24]
â3 [10.2, 12, 13.8] ĉ13 [8, 10, 10.6]
b̂1 [6.2, 7, 7.8] ĉ14 [18.8, 20, 22]
b̂2 [8.9, 10, 11.1] ĉ21 [14, 15, 16]
b̂3 [6.5, 8, 9.5] ĉ22 [18.2, 20, 22]
b̂4 [7.8, 9, 10.2] ĉ23 [10, 12, 13]

ĉ24 [6, 8, 8.8]
ĉ31 [18.4, 20, 21]
ĉ32 [9.6, 12, 13]
ĉ33 [7.8, 10, 10.8]
ĉ34 [14, 15, 16]

In [12], the efficient solutions of the problem being consideredd are presented only on the
particular α-cuts (α = 0, α = 0.5, α = 1). Therefore, in Table 2 they are presented in the crisp interval
form. The corresponding results that we have obtained using our approach are shown in Table 3.

Table 2. Fuzzy efficient solutions on α-cuts.

[xij] α = 0 α = 0.5 α = 1

[x11] [6.2, 7.8] [6.6, 7.4] [7, 7]
[x13] [1, 1] [1, 1] [1, 1]
[x23] [4.2, 5.8] [4.6, 5.4] [5, 5]
[x24] [7.8, 10.2] [8.4, 9.6] [9, 9]
[x32] [8.9, 11.1] [9.5, 10.6] [10, 10]
[x33] [1.3, 2.7] [1.7, 2.4] [2, 2]
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Table 3. Fuzzy efficient solutions on α-cuts (our method).

[xij] α = 0 α = 0.5 α = 1

[x11] [6.4, 8.0] [6.5, 7.1] [7, 7]
[x13] [1, 1] [1, 1] [1, 1]
[x23] [4.0, 5.6] [4.4, 5.6] [5, 5]
[x24] [7.4, 10.3] [8.2, 9.8] [9, 9]
[x32] [8.6, 10, 9] [9.6, 10.9] [10, 10]
[x33] [1.1, 2.9] [1.6, 2.6] [2, 2]

Comparing the results presented in Tables 2 and 3, we can conclude that they coincide on the
qualitative level, but our results seem to be a bit more variable. Therefore, what we can say is that our
results are likely more reliable, as they were obtained using more justified mathematical tools.

On the other hand, our problem (11)–(13) may be solved using Monte–Carlo method. Of course
this method is extremely expensive, and therefore can be used only for a few number of sellers and
buyers. It is important that for its implementation, interval and fuzzy arithmetic operations are not
needed. Obviously, the results obtained using this method may serve as in some sense as an empirical
basis for the other methods’ validations.

Therefore, to validate our method, the results of FDP solution based on the straightforward
fuzzy extension of simplex method were compared with those obtained using Monte–Carlo for the
problem (11)–(13). In the framework of Monte–Carlo approach, all uncertain parameters are treated as
random values with normal distributions. The usual Monte–Carlo procedure was applied; i.e., for each
complete set of randomly chosen values according to corresponding normal frequency distributed,
real-value parameters of the problem, the real-valued solution of problem (11)–(13) was obtained.
Repeating this procedure of random choice many times, finally, the results were obtained as frequency
distributions of optimal real-valued xij and Pr.

In order to make comparable the results obtained using the fuzzy and Monte–Carlo approaches,
the special, simple method for the conversion of frequency distributions into fuzzy values with
inevitable but acceptable loss of information was used. This method allows us to guaranty the
comparability of uncertain data in the fuzzy and probabilistic cases. To make our analysis more
transparent, we used the simple, normally distributed frequency functions, completely represented be
their means m and standard deviations σ.

The proposed method is implemented in two steps:
In the first one, with the use of initial normally distributed frequency function f(x), the cumulative

distribution function F(x) is calculated as follows: F(x) =
x∫
−∞

f (x)dx.

In the second step, a trapezoidal fuzzy number is obtained on the basis of F(x). The four values
F(xi), i = 1 to 4, defining the mapping of F(x) on X should be chosen in such a way that they specify
the bottom and upper α-cuts of the trapezoidal fuzzy number.

So, we obtain the quadruple on X: [x1, x2, x3, x4] such that interval [x1, x4] represents the bottom
of trapeze and interval [x2, x3] is the top of trapeze. Because the probability that x is included in the
interval [x1, x4] may be calculated as F(x4)− F(x1) and the probability that x is included in the interval
[x2, x3] is equal to F(x3)− F(x2), in our example the intervals [x2, x3] and [x1, x4] were chosen in such
a way that they corresponded to the 20% (for the top of trapeze) and 80% (for the bottom of trapeze)
values of the confidence interval, respectively. Obviously, we placed these intervals in such a way that
they were centered around the center of the cumulative distribution F(x).

It is clear that the accuracy of the proposed method of transformation was based only on the
subjective opinions of experts concerned with the suitability of upper and lower confidence intervals.
Obviously, this subjectivity provides some uncertainty. Nevertheless, we expected that the choice of
20% and 80% confidence intervals would guaranty at least satisfactory results of transformation.

Consider the example.
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Example 1. Let us consider the fully fuzzy distribution problem (11)–(13) in the case of N = 3 and M = 3. To
collate the fuzzy solution with that obtained by Monte–Carlo method, all the uncertain parameters were first
represented by normal frequency distributions. As it was mentioned above, the parameters ai and bj are real
values and in our example they are presented as follows:

a1 = 500, a2 = 490, a3 = 590, b1 = 405, b2 = 485, b3 = 585.
The uncertain parameters were represented by normal frequency distributions with the means presented in

Table 4.
For the sake of simplicity, all the standard deviations σ were equal to 12. With the use of proposed method

for the transformation of frequency distribution function into a fuzzy value, the trapezoidal fuzzy parameters of
problem (11)–(13) were obtained. They are presented in Table 4.

Table 4. The values of model’s parameters.

The Means The Fuzzy Values

p1 425 p̂1 [402, 420, 439, 444]
p2 452 p̂2 [429, 447, 456, 471]
p3 600 p̂3 [590, 598, 607, 622]
q1 402 q̂1 [379, 397, 406, 421]
q2 477 q̂2 [454, 472, 481, 496]
q3 602 q̂3 [579, 597, 606, 613]

pr11 290 p̂r11 [267, 285, 294, 309]
pr12 510 p̂r12 [487, 505, 514, 529]
pr13 505 p̂r13 [482, 500, 507, 524]
pr21 395 p̂r21 [372, 390, 299, 314]
pr22 565 p̂r22 [546, 564, 573, 585]
pr23 283 p̂r23 [257, 273, 282, 297]
pr31 295 p̂r31 [272, 290, 299, 314]
pr32 401 p̂r32 [380, 398, 407, 422]
pr33 615 p̂r33 [591, 609, 618, 633]

The results obtained from the model (11)–(13) using above parameters are presented in Table 5.

Table 5. The result of solution of fully fuzzy distribution problem (11)–(13).

Solution’s Components Fuzzy Values

P̂ropt [591,000, 612,000, 900,000, 973,000]
x̂11 [205, 290, 445, 540]
x̂12 [37, 42, 53, 62]
x̂13 [5, 6, 8, 9]
x̂21 0
x̂22 [440, 470, 490, 518]
x̂23 [0, 1, 1, 2]
x̂31 0
x̂32 0
x̂33 [432, 500, 662, 727]

Several interesting results obtained using the fuzzy approach and Monte–Carlo method are
presented in Figures 3–6. The frequency distributions in Figures 3–5 were obtained with the use of
Monte–Carlo method on the basis of one million random steps.
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Figure 3. The frequency distribution (a) and the membership function of fuzzy value (b) for the
optimal x11.
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Figure 4. The frequency distribution (a) and the membership function of fuzzy value (b) for the
optimal x22.
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Figure 5. The frequency distribution (a) and the membership function of fuzzy value (b) for the
optimal x33.
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Figure 6. The frequency distribution f and the fuzzy number µ for optimized profit P̂r: (a) Monte–Carlo
method on the basis of 10,000 random steps. (b) Monte–Carlo method on the basis of one million
random steps. (c) Membership function of the fuzzy solution.

We can see that the Monte–Carlo method sometimes may provide resulting frequency distribution
functions with two peaks, and the bigger peaks are in a good qualitative compliance with the results of
fuzzy solution (see Figures 3 and 4). The negative effect of multiple peaks in the results of Monte–Carlo
method may be eliminated using a much bigger number of random steps (see Figure 6), but this is a
very expensive approach. Of course, using the fuzzy optimization, we have no the problem of multiple
peaks, as the results are always trapezoidal fuzzy numbers. The resulting fuzzy solutions sometimes are
substantially wider than those obtained using Monte–Carlo method (Figure 5). This is the consequence
of well known “access width effect” (the results of fuzzy and interval computations are usually wider
than the widths of initial data) [17]. On the other hand, when deal with the fuzzy problem, we take
into account the values that have extremely low probability in the Monte–Carlo method.

Analyzing the results, we can say that the influence of “access width effect” is not so important.
Therefore, the proposed straightforward fuzzy extension of the simplex method may be used for the
solution of fully fuzzy distribution problems.

Since the “access width effect” is one of the most important problems of interval and fuzzy
arithmetic, the sensitivity analysis that investigates the influence of uncertainty of model’s parameters
on the uncertainty of results should to be relevant. To provide such a sensitivity analysis, at least two
substantially different examples of the solution of the problem (11)–(13) are needed. Therefore we
used the Example 1 and the addition one (Example 2) in the case of four sellers and six buyers.

Example 2. Let us consider the solution of the problem (11)–(13) in the case of four sellers (M = 4) and six
buyers (N = 6). The real-valued parameters in our example are presented as follows:

a1 = 270, a2 = 295, a3 = 390, a4 = 400, b1 = 330, b2 = 250, b3 = 260, b4 = 260, b5 = 150, b6 = 160.
The uncertain parameters are presented in Tables 6 and 7.

Table 6. The fuzzy values of model’s parameters.

i p̂i q̂i

1 [290, 295, 305, 320] [320, 340, 360, 365]
2 [200, 220, 270, 290] [200, 240, 260, 280]
3 [380, 390, 405, 430] [200, 240, 260, 280]
4 [420, 440, 460, 470] [200, 240, 260, 280]
5 [120, 140, 160, 160]
6 [120, 140, 160, 160]
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Table 7. The fuzzy values of model’s parameters.

p̂rij

i/j 1 2 3 4 5 6

1 [40, 90, 110, 120] [250, 270, 290, 320] [330, 330, 560, 370] [200, 205, 215, 220] [110, 120, 140, 160] [260, 280, 300, 310]
2 [60, 65, 75, 90] [130, 150, 150, 170] [200, 205, 215, 240] [100, 120, 135, 150] [30, 35, 45, 100] [200, 200, 230, 270]
3 [200, 220, 250, 260] [320, 340, 355, 360] [450, 460, 490, 490] [360, 370, 390, 395] [250, 260, 280, 330] [400, 405, 415, 420]
4 [30, 40, 60, 70] [10, 10, 10, 50] [220, 225, 240, 250] [120, 130, 150, 150] [70, 70, 90, 100] [250, 260, 280, 290]

The solution of this problem obtained using the developed method is presented in Table 8 (only
non-zero values are shown).

Table 8. The result of solution of fully fuzzy distribution problem (11)–(13) in the case of M = 4, N = 6.

Solution’s Components Fuzzy Values

x̂12 [104, 129, 159, 214]
x̂13 [253, 293, 313, 333]
x̂21 [260, 300, 400, 440]
x̂32 [6, 123, 203, 273]
x̂34 [10, 240, 360, 500]
x̂35 [0, 6, 118, 298]
x̂41 [2, 20, 100, 140]
x̂45 [110, 130, 170, 190]
x̂46 [101, 176, 226, 291]

To study the influence of uncertainty of the model’s fuzzy parameters on the uncertainty
of solution, we introduced two uncertainty indexes UIP and UIS, which represent the averaged
uncertainty of model’s parameters and averaged uncertainty of fuzzy solution, respectively. They are
defined as follows:

• UIP = 1
Np ∑

Np
i=1

2(Su
i −Sl

i )

Su
i +Sl

i
, where Np is the number of uncertain parameters of the model; Sl

i and

Su
i are the lower and upper bounds of the support of the i’th uncertain parameter.

• UIS = 1
Ns ∑Ns

j=1
2(Su

j −Sl
j)

Su
j +Sl

j
, where Ns is the number of uncertain components of solution; Sl

j and Su
j

are the lower and upper bounds of the support of the j’th uncertain component of solution.

Of course, different, more complex definitions of UIP and UIS may be proposed; e.g., based on
the averaging on α-cuts. Nevertheless, we prefer to use our simple definitions as they are based on
the supports of fuzzy parameters and variables emphasizing our intention to deal with the maximal
uncertainty.

Let us turn to our examples.
For Example 1, based on the Tables 4 and 5, we obtained: UIP = 0.1 and UIS = 0.4.
For Example 2, based on the Tables 6–8, we obtained: UIP = 0.3 and UIS = 0.5.
Based on the results and comparing dimensionalities of the tasks in the examples considered, we

can conclude that uncertainty of the solution rises along with the increasing of uncertainty and the
number of parameters. Of course, this is not a surprising conclusion, but more important is that the
rising of solution’s uncertainty in the considered examples is relatively small.

Therefore, we can say that in the framework of our approach to the solution of fully fuzzy
distribution problem, the influences of the "access width effect " do not prevent using our approach
in applications.

3. The Formulation of the Multiobjective Fuzzy Distribution Problem

In the first phase of solution of fully fuzzy distribution problem we considered it as a single
criterion problem. The overall fuzzy profit with fuzzy constraints was maximized. On the other hand,
these constraints may serve as local criteria. This corresponds to general approach to the solution of
fuzzy optimization problems developed by Bellman and Zadeh [26].
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3.1. The Formulation of Problem

Consider the fuzzy parameters p̂i and q̂i, in the fuzzy constraints (13). They are the lowest
fuzzy limits for the possible optimal amounts of product to be bought and sold, respectively.
Hence, the real-valued pi and qi are established as a result of negotiations. It is important that
an appropriate selection of the real values pi ∈ p̂i, qi ∈ q̂i strongly affects the overall profit. So we can
say that the fuzzy values p̂i and q̂i may be naturally treated as local criteria.

Let us consider the p̂i (the fuzzy bounds for amount of product which can be obtained from the
seller). For the sake of simplicity, suppose that p̂i is a trapezoidal fuzzy number p̂i= [pi1, pi2, pi3, pi4].

Then the interval [pi1, pi4] can be interpreted as the fuzzy interval of acceptable values of pi with
the corresponding membership function µi(pi).

Consider the interval [pi1, pi2]. In this case, the lessening of µi(pi) along with the decreasing of pi
is clearly understood as follows: the risk that contract signed between buyer and distributor will be
unfulfilled is rising with the decreasing of pi. On the other hand, the rising of pi in the interval [pi3, pi4]

leads to the lowering of µi(pi) and as a consequence, to the rising of the overbuying risk (the risk that
the part of the bought product could not be sold to the buyer). Obviously, in the interval [pi2, pi3] we
have no any risks, since µi(pi) =1. It is worth noting that in such reasoning, the membership function
µi(pi) is the representation of the risk varying in the interval [0, 1] and calculated as 1 – µi(pi).

Similarly, the membership function µj(qj) can be interpreted as the corresponding risk belonging
to the interval [0, 1] and calculated as 1 – µj(qj).

Therefore, the fuzzy distribution problem can be interpreted as the multiobjective optimization
task comprising the local criteria of overall profit maximization and the local risks’ minimization.
In our case, the local criteria of a particular risks’ minimization can be formulated straightforwardly
using the membership functions of fuzzy values p̂i and q̂i. Nevertheless, an explicit mathematical
formalization of the criterion of overall profit maximization can be provided using an additional
analysis. In order to formulate this criterion, we used the solution obtained in the first phase in
Section 2 with the use of straightforward, direct fuzzy extension of simplex method for the solution
of fully fuzzy distribution problem. There are no any additional restrictions on the form of fuzzy
parameters and variables in this approach and it is based on the overall profit maximization with fuzzy
constraints. Therefore, the optimal fuzzy profit P̂r can be interpreted as the fuzzy interval of all the
attainable real-valued profits.

Therefore, to formulate the local criterion Cpr(Pr) representing the distributor’s intention to
maximize the overall profit, it is enough to use the support of P̂r. In the case of trapezoidal fuzzy
solution as in the previous section, we can present it by the quadruple [Pr1, Pr2, Pr3, Pr4]. Then, the local
criterion of overall profit maximization may be presented as follows:

Cpr =
Pr− Pr1

Pr4 − Pr1
. (14)

It is seen that this criterion does not present the “possibility” to obtain the profit that is implicitly
presented by the fuzzy profit P̂r obtained at the first phase using the constraints defined by the fuzzy
parameters p̂i and q̂i, because in the multiobjective distribution problem we consider these parameters
as local criteria of risk minimization. We can see that for the calculation of Cpr(Pr), we need the
real-valued Pr.

Obviously, in practice all the bought and sold product quantities pi, qj and optimal product
quantities xij supplied from ith seller to jth buyer according to the signed contracts should be real
values. Therefore, some simplifications of the initial fuzzy problem seem to be enough justified.
Therefore, we use in (11), the real-valued representations prij instead of fuzzy p̂rij. In real-world
situations, usually, the prices ci, cj and transportation costs of supplying of product unit tij are
well-known real values. Hence, prij = cj – ci – tij are real values too. Therefore, when we deal with the
symmetrical trapezoidal fuzzy p̂rij, the means of such trapezes will be used.
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These simplifications allow us to get from (11)–(13) for the real-valued pi ∈ p̂i, qj ∈ q̂j, i = 1
to N, j = 1 to M, the real-valued optimal product quantities xijopt, and the real-valued profit Pr =

∑M
i=1 ∑N

j=1

(
prijxijopt

)
.

It is clear that xijopt depends only on pi ∈ p̂i, qj ∈ q̂j and Pr depends on pi,qj as well:

Pr({pi}, {qj}). The values of Pr({pi}, {qj}) are needed to calculate the values of local criterion of profit
maximization Cpr(Pr({pi}, {qj})) at the following steps of the proposed algorithm for the solution of
fuzzy multiobjective distribution problem.

As it was shown above, the local risks minimization can be formulated as the maximization of
membership functions µi(pi), and µj(qj), Therefore, the solution of multiobjective distribution problem
are the optimal {pi}opt ∈ { p̂i},{qj}opt ∈ {q̂j} maximizing some generalized criterion aggregating
all the considered local criteria Cpr(Pr({pi}, {qj})), µi(pi), µj(qj) with their relative importance.
Then, the optimal product quantities xij supplied from ith seller to jth buyer are finally obtained as the
solution of problem (11)–(13) for the real-valued prij and optimal {pi}opt ∈ { p̂i}, {qj}opt ∈ {q̂j}, i = 1
to N, j = 1 to M.

3.2. The Solution of Multiobjective Fuzzy Distribution Problem Using the Aggregation of Different
Aggregating Modes

In the formulation of generalized criterion, we aggregate the criteria of local risks to obtain the
aggregated risk minimization criterion and aggregate this risk criterion with the profit maximization
one. Among many approaches to the formulation of the general criterion presented in the literature,
the most popular are the multiplicative aggregation mode, Yager’s [27] aggregation, and the weighted
sum (see [28]). It is known that the choice of the relevant aggregating method is a context dependent
problem [14]. In our case, the most popular aggregating modes may be presented as follows:

E1({pi}, {qj}) = α · Cpr(Pr({pi}, {qj})) + (1− α) · (µ1(p1) + µ2(p2) + ...+
µM(pM) + µ1(q1) + µ2(q2) + ... + µN(qN))/(2 ∗ (N + M)),

E2({pi}, {qj}) = min(Cprα(Pr({pi}, {qj})), min(µ1(p1), µ2(p2), ...,
µM(pM), µ1(q1), µ2(q2), ..., µN(qN))

1−α),

E3({pi}, {qj}) = Cprα(Pr({pi}, {qj})) · (µ1(p1) · µ2(p2) · ...
·µM(pM) · µ1(q1) · µ2(q2) · ... · µN(qN))

1−α,

(15)

where 0 ≤ α ≤ 1 is the relative importance of the profit maximization criterion, E1 is the weighted
sum aggregation, E2 is the Yager’s aggregation, and E3 is the multiplicative aggregation. The relative
importance of each risks’ local minimization criteria in our case were equal, as we had no reasons for
another assumption. Therefore, we used the aggregation of risk criteria with the common relative
importance 1− α. Then, the optimal alternatives ({pi}, {qj})k,opt, k = 1, 2, 3 for the general criteria E1, E2,
E3 may be obtained as the solutions of the following nonlinear multiobjective optimization problems:

max(Ek({pi}, {qj})), k = 1, 2, 3, {pi} ∈ { p̂i}, {qj} ∈ {q̂j}. (16)

Based on the formal mathematical approach with the use of corresponding theorem and
illustrative examples, it was shown in [28] that the most correct aggregation mode is the Yager’s type
aggregation (E2); the multiplicative aggregation (E3) seems to be less reliable; and finally, the weighted
sum (E1) may be treated as rather unreliable one. Nevertheless, it is known that Yager’s aggregation
sometimes provides results which contradict with intuitive conceptions of experts concerned with the
optimality [29].

Thus, when we a difficult multiobjective problem with a great number of local criteria, applying
all feasible aggregating modes is sufficiently justifiable. If the results of optimization obtained using
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different aggregation modes are comparable, we can believe that they are rather optimal ones. In the
case, when the results we get with the use of different aggregating modes are substantially different
ones, the compromise solution based on the appropriate aggregation of aggregating modes may
be recommended.

The different methods for aggregation of aggregating modes were proposed in the literature
References [30–32]. The weighted sum, Yager’s aggregation, multiplicative aggregation, and the different
combinations of them are used in aggregation of aggregating modes. The most important drawback of
these methods is that they do not provide the aggregation of all feasible aggregating modes.

In [28], a simple, but intuitively evident and mathematically justified approach which makes it
possible to avoid the above-mentioned drawback was developed. The proposed method provides
the aggregation of aggregating modes with the use of mathematical tools of the level-2 fuzzy sets.
Therefore, in the current study, we used this method.

The definition of the level-2 fuzzy sets was formulated by Zadeh in [33] as follows: “The level-2
fuzzy set is such a fuzzy set, which membership grades assigned to the elements of the universal set are
ordinary fuzzy sets.” The method developed in [28] was designed to solve decision making problems.
Therefore, here, we will extend it for the solution of the multiobjective optimization problems.

Obviously, the solution of our nonlinear multiobjective optimization task can be provided only by
the use of numerical methods. Therefore, when implementing such a method we will use the discrete
finite set of alternatives alk = ({pi}, {qj})k, k = 1 to L, where L is the number of step of an algorithm
(it is clear that in the optimization tasks we usually deal with the continuous sets of alternatives, but
here we will use the discrete finite set to make our consideration more transparent). Such an algorithm
provides the searching for the optimal alternative alLopt = ({pi}, {qj})Lopt in the area pi ∈ p̂i, qj ∈ q̂j,
i = 1 to N, j = 1 to M.

Then, suppose we deal with K different aggregating modes Fl , l = 1 to K, and L alternatives
alk = ({pi}, {qj})k, k = 1 to L. Let us assume that the membership functions µ(El), l = 1 to K, reflect
the opinion of expert concerning proximity of considering aggregation mode El to the some perfect
(“ideal”) type of aggregation. The values of such membership functions may be assumed to be the
relative reliabilities of aggregating modes. On the other hand, the “ideal” method of aggregation Eideal
can be represented by the fuzzy set using the membership functions µ(El) and the set of considered
aggregating modes El as follows:

Eideal =

{
µ(El)

El

}
, l = 1 to K. (17)

Then, all El can be formally defined on the set of considered alternatives alk = ({pi}, {qj})k,
k = 1 to L, for which the values of El(alk) are factually calculated. In turn, the value of El(alk) may be
naturally interpreted as an extent in which the alternative alk fulfills the aggregated criterion El or as a
degree in which the alternative alk pertains to a set of alternatives fulfilling El .

El =

{
El(alk)

alk

}
, k = 1 to L. (18)

Then, substituting (18) in (17) we get the expression for the Eideal in the form of level-2 fuzzy set;
and with the use of operations defined on these fuzzy sets in [33], we finally obtain:

Eideal =

{
µideal(alk)

alk

}
, k = 1 to L, (19)

where
µideal(alk) = max

l
(µ(El) · El(alk)). (20)
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Finally, the optimal alternative alopt can be obtained as the solution of the following non-linear
fuzzy multiobjective problem:

max
k

µideal(alk). (21)

For the solution of the formulated nonlinear fuzzy multiobjective optimization problem,
we applied the direct random search method [34], which was adopted to take into account the
features of our task. Obviously, there are many other contemporary optimization methods; e.g., genetic
algorithms proposed in the literature. However, using different convincing examples, it is shown
in [35] that if we deal with the nonlinear, non-differentiable, or non-smooth optimization problem the
direct search methods provide the best results.

The developed algorithm of direct random search method has been implemented as follows:

1. In each kth random step, the alternative alk = ({pi}, {qj})k is randomly chosen in the area pi ∈ p̂i,
qj ∈ q̂j.

2. For the chosen ({pi}, {qj})k and the real-valued representations of p̂rij from (11)–(13), the profit
Prk and product quantities {xij}k are computed.

3. This allows us to obtain the value of the local criterion Cpr(Prk) (14) and the values of El(alk),
l = 1 to K (15). Here, we consider only the weighted sum (E1), Yager’s (E2), and multiplicative
(E3) aggregations.

4. Finally, from (20) we obtain the value of µideal(alk).
5. If µideal(alk) > µideal(alk−1), we consider the kth step of algorithm as the successful one.

Then, continuing the procedure of random search, we, step by step, steadily approach the optimal
µideal(alopt).

The enlarged flowchart of the developed two phase method for multiobjective fuzzy distribution
problem is presented in Figure 7.

Consider the numerical example.
Here we will use the Example 1 from Section 2 instead of fuzzy p̂rij and the real-valued

representations prij. Since in our case, we deal with the symmetrical trapezoidal fuzzy profits p̂rij,
the means of the trapezes were used.

In Table 9, the compromise solution of multiobjective fuzzy distribution problem based on the
aggregation of aggregating modes is compared with the results that we got using the weighted sum
(E1), Yager’s (E2), and multiplicative (E3) aggregating modes with the use of the adapted, direct
random search method.

Based on the proposition justified in [28], the following reliability degrees of aggregating modes
were used: µ(E1) = 0.15, µ(E2) = 0.6, µ(E3) = 0.25.

Finally, comparing the results presented in Table 9, we can conclude that solution obtained using
the aggregation of aggregating modes can be considered as a compromise one, because it is located in
the domain of solutions we obtained solely by the comparing aggregating modes.

Table 9. The results of solution.

Propt p1 p2 p3 q1 q2 q3 x11 x12 x13 x21 x22 x23 x31 x32 x33

µideal(alopt) 745868 427 458 613 400 487 597 365 49 7 0 485 1 0 0 662
E1(alopt) 749710 440 450 600 380 473 603 308 48 0 0 499 0 0 0 687
E2(alopt) 743809 421 469 620 410 502 608 408 51 1 0 468 3 2 0 679
E3(alopt) 744460 402 430 618 395 480 580 256 50 0 0 489 0 0 0 630
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Formulation of fully fuzzy single-criterion distribution problem with fuzzy constrains (model (11)-(13)).

First phase

Fuzzy extension of the simplex method: all the parameters of the model (11)-(13) are substituted 
with the corresponding fuzzy values and all arithmetical rules including operation of comparison are substituted 
with the fuzzy operations using the α-cut representation of fuzzy values and the probabilistic approach 
to comparing fuzzy values.

Transformation of fuzzy model into its canonical form  substituting  the two-index representation of model 
with the single-index one.

Transformation of the model into its augmented form replacing the inequalities by equalities.

Presentation of the augmented form in the canonical form introducing the so-called slack variables.

Numerical solution of fully fuzzy single-criterion distribution problem using  the fuzzy extended simplex method.

Formulation of the profit maximization local criterion of based on the support of optimal fuzzy profit obtained
as a part of solution of fully fuzzy single-criterion distribution problem.

Formulation of the multiobjective fuzzy distribution problem based on aggregation of the local criteria of profit 
maximization and risks minimization using relevant aggregating methods.

Numerical solution of multiobjective fuzzy distribution problem using the selected aggregating methods  
and comparison of obtained results.

Second phase

Obtaining the compromise solution of multiobjective fuzzy distribution problem based on the aggregation
of aggregating modes using the mathematical tools of level-2 fuzzy sets.

Figure 7. The enlarged flowchart of the developed method.

4. Conclusions

A two-phase method for the solution of multiojective fuzzy distribution problem was proposed.
In the first stage, the straightforward numerical method for the solution of single-criterion fully fuzzy
distribution problem (FFDP) was developed. The α-cut representation of fuzzy values, fuzzy operation
rules, and the probability approach to the intervals and fuzzy values comparison are used as the main
mathematical tools. These tools allow us to implement the straightforward fuzzy extension of the
ordinary simplex method, which is used for the solution of the single-criterion FFDP. To validate
the method, the fully fuzzy transportation problem with triangular fuzzy numbers was solved in
the case of three sources and four destinations. The results were compared with those obtained by
the competing method. As the base of comparison, the results of the single-criterion FFDP solution
obtained with the use of Monte–Carlo method were also applied. To make the results of Monte–Carlo
method and fuzzy approach we developed comparable, the frequency distributions of uncertain input
parameters were transformed into trapezoidal fuzzy values, which were used in the solution of the
single-criterion FFDP. Taking into account that the used data transformation leads inevitable to the loss
of some information, the results of comparison of two considered approaches (fuzzy and Monte–Carlo
ones) may be recognized as at least satisfactory ones. We can say that the fuzzy approach possesses
some advantages when compared with Monte–Carlo method, mainly from the computing costs point
of view.
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The sensitivity analysis of our optimization model developed for the solution of FFDP was also
carried out using numerical examples.

Finally, based on the provided studies, we can conclude that the method developed for the
solution of FFDP has some advantages in comparison with the competing approach and may be used
in applications.

In the second phase, the support of optimal fuzzy profit obtained at the first phase is treated as the
range of attainable real-valued profits and used in the formulation of particular criterion of the overall
profit maximization. The fuzzy constraints are interpreted as particular criteria of risk minimization.
The generalized criterion was designed in the form of aggregation of relevant aggregating modes with
the use of level-2 fuzzy sets. The aggregating modes represent different methods for aggregations of
local criteria defining the overall profit and contract-violating risks. It was shown based the numerical
example that the solution we obtained on the base of developed method for the aggregation of
aggregating modes can be assumed as the compromise solution because it is located in the domain of
solutions we obtained using solely the comparison of aggregation modes.

The main limitation of the approach developed for the solution of FDP is that in the first phase
we obtain the fuzzy solution, whereas at the second one we get the real-valued solution of fuzzy
multiobjective problem. Obviously, in our case the real-valued solution of fuzzy problem may be
considered only as an approximate one due to possible loss of important information.

Therefore, our future studies will be focused on the finding of fuzzy solution of FDP formulated
as a nonlinear fuzzy multiobjective problem.

Author Contributions: Conceptualization, K.K., L.D., and P.S.; methodology, K.K., L.D., and P.S.; software,
K.K.; formal analysis, L.D. and P.S.; investigation, K.K. and L.D.; resources, K.K. and P.S.; data curation, L.D.;
writing—original draft preparation, K.K., L.D. and P.S.; writing—review and editing, P.S.; visualization, L.D.;
funding acquisition, P.S.

Funding: The project was financed under the program of the Polish Ministry of Science and Higher Education
under the name “Regional Initiative of Excellence” in the years 2019—2022 project number 020/RID/2018/19, the
amount of financing being 12,000,000.00 PLN.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Isermann, H. The enumeration of all efficient solution for a linear multiple-objective transportation problem.
Nav. Res. Logist. Q. 1979, 26, 123–139. [CrossRef]

2. Zimmermann, H.J. Fuzzy programming and linear programming with several objective functions. Fuzzy
Sets Syst. 1978, 1, 45–55. [CrossRef]

3. Jiménez, M.; Arenas, M.; Bilbao, A.; Rodríguez, M.V. Linear programming with fuzzy parameters:
An interactive method resolution. Math. Comput. Model. 2007, 177, 1599–1609. [CrossRef]

4. Galperin, E.A.; Ekel, P.Y. Synthetic Realization Approach to Fuzzy Global optimization via Gamma
Algorithm. Math. Comput. Model. 2005, 41, 1457–1468. [CrossRef]

5. Iskander, M.G. A computational comparison between two evaluation criteria in fuzzy multiobjective linear
programs using possibility programming. Comput. Math. Appl. 2008, 55, 2506–2511. [CrossRef]

6. Ammar, E.E.; Youness, E.A. Study on multiobjective transportation problem with fuzzy numbers. Appl. Math.
Comput. 2005, 166, 241–253. [CrossRef]

7. Islam, S.; Roy, T.K. A new fuzzy multi-objective programming: Entropy based geometric programming and
its application of transportation problems. Eur. J. Oper. Res. 2006, 173, 387–404. [CrossRef]

8. Kaur, J.; Kumar, A. Mehar’s method for solving fully fuzzy linear programming problems with L-R fuzzy
parameters. Appl. Math. Model. 2013, 37, 7142–7153. [CrossRef]

9. Kheirfam, B.; Verdegay, J.-L. The dual simplex method and sensitivity analysis for fuzzy linear programming
with symmetric trapezoidal numbers. Optim. Decis. Mak. 2013, 12, 171–189. [CrossRef]

10. Ozkoka, B.A.; Albayrak, I.; Kocken, H.G.; Ahlatcioglu, M. An approach for finding fuzzy optimal and
approximate fuzzy optimal solution of fully fuzzy linear programming problems with mixed constraints.
J. Intell. Fuzzy Syst. 2016, 31, 623–632. [CrossRef]

http://dx.doi.org/10.1002/nav.3800260112
http://dx.doi.org/10.1016/0165-0114(78)90031-3
http://dx.doi.org/10.1016/j.ejor.2005.10.002
http://dx.doi.org/10.1016/j.mcm.2004.02.039
http://dx.doi.org/10.1016/j.camwa.2007.10.005
http://dx.doi.org/10.1016/j.amc.2004.04.103
http://dx.doi.org/10.1016/j.ejor.2005.01.050
http://dx.doi.org/10.1016/j.apm.2013.01.040
http://dx.doi.org/10.1007/s10700-012-9152-7
http://dx.doi.org/10.3233/IFS-162176


Entropy 2019, 21, 1214 20 of 20

11. Baykasoglu, A.; Subulan, K. An analysis of fully fuzzy linear programming with fuzzy decision variables
through logistics network design problem. Knowl. Based Syst. 2015, 90, 165–184. [CrossRef]

12. Baykasoglu, A.; Subulan, K. A direct solution approach based on constrained fuzzy arithmetic and
metaheuristic for fuzzy transportation problems. Soft Comput. 2019, 23, 1667–1698. [CrossRef]

13. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
14. Zimmermann, H.J.; Zysno, P. Latest connectives in human decision making. Fuzzy Sets Syst. 1980, 4, 37–51.

[CrossRef]
15. Kaufmann, A.; Gupta, M. Introduction to Fuzzy Arithmetic-Theory and Applications; Van Nostrand Reinhold

Company: New York, NY, USA, 1985.
16. Piegat, A. Fuzzy Modeling and Control. In Fuzziness and Soft Computing; Springer: Berlin, Germany, 2001.
17. Jaulin, L.; Kieffer, M.; Didrit, O.; Walter, E. Applied Interval Analysis; Springer: London, UK, 2001.
18. Moore, R.E. Interval Analysis; Prentice-Hall: Englewood Cliffs, NJ, USA, 1966.
19. Sevastianov, P. Numerical methods for interval and fuzzy number comparison based on the probabilistic

approach and Dempster-Shafer theory. Inf. Sci. 2007, 177, 4645–4661. [CrossRef]
20. Wang, X.; Kerre, E.E. Reasonable properties for the ordering of fuzzy quantities (I). Fuzzy Sets Syst. 2001, 118,

375–385. [CrossRef]
21. Wang, X.; Kerre, E.E. Reasonable properties for the ordering of fuzzy quantities (II). Fuzzy Sets Syst. 2001, 118,

387–405. [CrossRef]
22. Wang, Y.M.; Yang, J.B.; Xu, D.L. A preference aggregation method through the estimation of utility intervals.

Comput. Oper. Res. 2005, 32, 2027–2049. [CrossRef]
23. Yager, R.R.; Detyniecki, M. Ranking fuzzy numbers using α-weighted valuations international journal of

uncertainty. Fuzziness Knowl. Based Syst. 2000, 8, 573–591.
24. Wadman, D.; Schneider, M.; Schnaider, E. On the use of interval mathematics in fuzzy expert system. Int. J.

Intell. Syst. 1994, 9, 241–259.
25. Sevastianov, P.; Róg, P. Two-objective method for crisp and fuzzy interval comparison in optimization.

Comput. Oper. Res. 2006, 33, 115–131. [CrossRef]
26. Bellman, R.; Zadeh, L. Decision-making in fuzzy environment. Manag. Sci. 1970, 17, 141–164. [CrossRef]
27. Yager, R. Multiple objective decision-making using fuzzy sets. Int. J. Man-Mach. Stud. 1979, 9, 375–382.

[CrossRef]
28. Dimova, L.; Sevastjanov, P.; Sevastjanov, D. MCDM in a fuzzy setting: Investment projects assessment

application. Int. J. Prod. Econ. 2006, 100, 10–29. [CrossRef]
29. Dubois, D.; Koenig, J.L. Social choice axioms for fuzzy set aggregation. Fuzzy Sets Syst. 1991, 43, 257–274.

[CrossRef]
30. Mitra, G. Mathematical Models for Decision Support; NATO ASI Series; Springer: Berlin, Germany, 1988;

pp. 17–53.
31. Yager, R. On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans.

Syst. Man Cybern. 1988, 18, 183–190. [CrossRef]
32. Zimmermann, H.J.; Zysno, P. Decision and evaluations by hierarchical aggregation of information.

Fuzzy Sets Syst. 1983, 104, 243–260. [CrossRef]
33. Zadeh, L.A. Fuzzy logic and its application to approximate reasoning. Inf. Process. 1974, 74, 591–594.
34. Törn, A.; Žilinskas, A. Global Optimization; Lecture Notes in Computer Science; Springer: Berlin, Germany, 1989.
35. Ali, M.M.; Törn, A. Population set-based global algorithms: Some modifications and numerical studies.

Comput. Oper. Res. 2004, 31, 1703–1725. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.knosys.2015.09.020
http://dx.doi.org/10.1007/s00500-017-2890-2
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/0165-0114(80)90062-7
http://dx.doi.org/10.1016/j.ins.2007.05.001
http://dx.doi.org/10.1016/S0165-0114(99)00062-7
http://dx.doi.org/10.1016/S0165-0114(99)00063-9
http://dx.doi.org/10.1016/j.cor.2004.01.005
http://dx.doi.org/10.1016/j.cor.2004.07.002
http://dx.doi.org/10.1287/mnsc.17.4.B141
http://dx.doi.org/10.1016/S0020-7373(77)80008-4
http://dx.doi.org/10.1016/j.ijpe.2004.09.014
http://dx.doi.org/10.1016/0165-0114(91)90254-N
http://dx.doi.org/10.1109/21.87068
http://dx.doi.org/10.1016/S0165-0114(83)80118-3
http://dx.doi.org/10.1016/S0305-0548(03)00116-3
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The First Phase: Straightforward Fuzzy Extension of FDP
	Mathematical Tools
	The Fully Fuzzy Extension of Simplex Method

	The Formulation of the Multiobjective Fuzzy Distribution Problem
	The Formulation of Problem 
	The Solution of Multiobjective Fuzzy Distribution Problem Using the Aggregation of Different Aggregating Modes

	Conclusions
	References

