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Abstract: In this work, we study the problem of inferring a discrete probability distribution using
both expert knowledge and empirical data. This is an important issue for many applications where
the scarcity of data prevents a purely empirical approach. In this context, it is common to rely first on
an a priori from initial domain knowledge before proceeding to an online data acquisition. We are
particularly interested in the intermediate regime, where we do not have enough data to do without
the initial a priori of the experts, but enough to correct it if necessary. We present here a novel way
to tackle this issue, with a method providing an objective way to choose the weight to be given to
experts compared to data. We show, both empirically and theoretically, that our proposed estimator
is always more efficient than the best of the two models (expert or data) within a constant.
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1. Introduction

In this work, we present a novel way to estimate a discrete probability distribution, denoted
p?, using both expert knowledge and data. This is a crucial aspect for many applications. Indeed,
when deploying a decision support tool, we often rely entirely on expert/domain knowledge at
the beginning; the data only comes with the use of the algorithm in real life. However, we need a
good model of the environment to directly train the decision support tool with a planning algorithm.
This model of the environment is to be refined and corrected as the data flow increases.

We assume here to have some expert knowledge in the form of an initial a priori on the marginals,
the moments, and/or the support of p? or any other relevant information. We also assume that we
sequentially receive data. We denote x(1),. . . , x(n) an independent and identically distributed (i.i.d)
sample following a given unknown discrete probability distribution p? in P .

One example of application may come from the objective of building a symptom checker for
rare diseases [1]. In this case, p? represents the probabilities of the different possible combinations of
symptoms, given the event that the disease of the patient is D. More precisely, we denote:

p? = (p?1 , ..., p?K)
T =


P[B̄1, ..., B̄J−1, B̄J | D]

P[B̄1, ..., B̄J−1, BJ | D]
...

P[B1, ..., BJ−1, BJ | D]

 . (1)

We aim to estimate the distribution where D is the random variable disease. B1,. . . , BJ are the
typical symptoms of the disease D; all are binary random variables, i.e., the symptom can be present
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or absent. We aim to estimate the 2J = K different combinations (as P[B1, . . . , BL | D], for example)
when we only have an expert a priori on the marginals P[Bi | D], for all i ∈ [1, J].

Of course, a first idea would be to assume that the symptoms are conditionally independent given
the disease. However, we expect complex correlations between the typical symptoms of a given disease.
Indeed, we can imagine two symptoms that are very plausible individually, but which rarely occur
together (or even never, in the case of incompatible symptoms like microcephaly and macrocephaly).

Note also that the assumption of conditional independence would make it possible to present a
disease without having any of the symptoms related to this disease in the database (when there is no
Bi such that P[Bi | D] = 1), which should be impossible.

Generally speaking, if we had enough empirical data, we would no longer need the experts.
Conversely, without empirical data, our model must be based entirely on experts. We detail here two
different approaches to dealing with the intermediate regime where we do not have enough data to do
without the a priori given by the experts, but where we have enough data to correct and specify this
initial a priori. These approaches are meaningful as long as we do not know how much data have been
used to build the initial a priori, and as long as we really try to combine two heterogeneous forms of
information: Experts and empirical data.

In Section 2.1, we first recall the principle of maximum entropy, which is the basic brick we use to
build an expert model. We then briefly introduce the proposed approach to mixing experts and data
in Section 2.2. We underline the extent to which this approach is superior to the one we previously
proposed in [1]. The Barycenter approach that we propose here provides an objective way to choose
the weight to be given to experts compared to data. On the contrary, the maximum likelihood with
entropic penalization approach of [1] was shown to be sensitive to the choice of the regularization
parameter. In Section 3, we outline a review of the literature. Finally, in Section 4, we show both
empirically and theoretically that our barycenter estimator is always more efficient than the best of the
two models (expert or data) within a constant.

It should be noted that even though we will refer throughout the paper to our particular
application in medicine, our framework is relevant for any inference problem involving an initial a
priori with a particular form (marginals, moments, support, etc.) combined with data. Biology, ecology,
and physics, to name a few, are areas where ideas of maximum entropy have been used for a long
time and where the ideas developed in this work could be interesting. See [2] for an overview of the
maximum entropy applications for inference in biology.

2. Mixing Expert and Empirical Data

2.1. Building an Expert Model: The Maximum Entropy Principle

Of course, the aim of benefiting simultaneously from expert data and empirical data has a very
old history. This is the very essence of Bayesian statistics [3], which aims to integrate expert data in the
form of an a priori, which is updated with empirical data using the Bayes’ theorem to obtain what will
be called the posterior.

Note that in our case, we do not have a classical a priori modeling the model parameters with
probability distributions. We have an a priori on the marginals, such as a number of constraints
on the distribution to be estimated. The absence of an obvious a priori to model the distribution of
the parameters naturally leads us to the idea of maximum entropy, theorized by [4]. Indeed, if no
model seems more plausible to us than another, then we will choose the least informative. This is a
generalization of the principle of indifference often attributed to Laplace:

“We consider two events as equally probable, when we see no reason that makes one more
probable than the other, because, even if there is an unequal possibility between them, since we don’t
know which is the biggest, this uncertainty makes us look at one as as likely as the other” [5].

This principle therefore takes the form of an axiom that allows us to construct a method to choose
an a priori: The least informative possible a priori that is consistent with what we know.
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We then define the distribution of maximum entropy as follows:

pmaxent = arg max
p/p∈C̃

H(p) (2)

where C̃ = C ⋂ Cexpert. Cexpert is the set of constraints fixed by experts and CK is the probability simplex
of the discrete probability distributions of dimension K:

CK =

{
p = (p1, . . . , pK)/

K

∑
i=1

pi = 1, pi ≥ 0

}
. (3)

Note that pmaxent is well-defined; namely, it exists and is unique, as long as Cexpert is a convex set.
Indeed, the function p 7→ H(p) is strictly concave; it is a classic result that a strictly concave function
under convex constraints admits a unique maximum.

It is well known that if Cexpert only contains the constraints for the marginals, then pmaxent is
nothing more than the independent distribution.

However, in our case, we can add some information about the structure of the desired distribution
as constraints integrated into Cexpert. We judge that it is impossible to have a disease without having at
least a certain number of its associated symptoms: One, two, or more depending on the disease. Indeed,
the diseases we are interested in manifest themselves in combinations of symptoms. The combinations
which allow the presence of two simultaneous but exclusive symptoms should also have constraints
that are equal to 0. All combinations of constraints are conceivable, as long as C̃ remains a convex
closed space, in order to ensure the existence and uniqueness of pmaxent.

We therefore construct our a priori by taking the maximum entropy distribution, checking the
constraints imposed by the experts. Thus, among the infinite distributions that verify the constraints
imposed by the experts, we choose the least informative distribution pmaxent; in other words, the one
closest to the conditional independence distribution.

We need to add information to move from the information provided by the experts to the final
distribution, and we want to add as little as possible to what we do not know. This approach is referred
to as maxent (maximum entropy) and has been widely studied in the literature [4,6,7].

2.2. Barycenters between Experts and Data

Our target probability distribution is denoted p? = (p?1 , . . . , p?K) and is defined on the probability
simplex CK of Equation (3).

The i.i.d. sample of p? is denoted x(1),. . . , x(n), where x(i) ∈ RK. The empirical distribution
pemp

n = (pemp
n,i )K

i=1 is given by:

pemp
n,i =

1
n

n

∑
j=1

1{x(j)=i}. (4)

Following the ideas of Section 2.1, we define the expert distribution as the distribution which
maximizes entropy while satisfying the constraints fixed by experts:

pexpert = arg max
p/p∈C̃

H(p) (5)

where C̃ is the intersection of the simplex probabilities with the set of constraints fixed by experts.
In our medical context, the set of constraints is composed of a list of censured combinations and a list
of marginals coming from the literature. Censured combinations are combinations of symptoms that
are set to zero because they involve the simultaneous presence of two incompatible symptoms and/or
combinations that do not involve enough of a presence of typical symptoms.



Entropy 2019, 21, 1208 4 of 19

Note that it is possible to give more or less credit to the marginals given by experts by formulating
the constraint as an interval (wider or narrower) rather than as a strict equality. The distribution of
experts is then defined as the least informative distribution consistent with what we know.

Let L be any dissimilarity measured between two probability distributions. Our barycenter
estimator mixing expert and empirical data is then defined as:

p̂Lεn = arg min
p∈C/L(pemp

n ,p)≤εn

L(pexpert, p) (6)

where
εn := εδ

n = arg min
l

P[L(pemp
n , p?) ≤ l] ≥ 1− δ (7)

and P is the probability measure defined on the product space {(x(1),. . . , x(n)) ∼ ⊗n
i=1 p?; n ≥ 1}.

p̂Ln is then defined as the closest distribution from the experts, in the sense of the dissimilarity
measure L, which is consistent with the observed data.

For such a construction to be possible, we will therefore have to choose a measure of dissimilarity
L so that we have a concentration of the empirical distribution around the true distribution for L.

Such a formulation has several advantages over the maximum likelihood with entropic
penalization approach previously proposed in [1]. First, we do not have to choose a regularization
parameter, which seems to have a strong impact on the results of the estimator (see [1]). This parameter
is replaced by the parameter δ, for which it is reasonable not to take more than 0.1 and which appears
to have low impact on the result of p̂Ln (see Section 5). Secondly, the solution of (6) can be (depending
on the choice of the dissimilarity measure L) easier to compute than that of the optimization problem
associated with the penalization approach, for which a closed form of the solution could not be
derived [1]. Mathematically, p̂Ln is the projection of the experts on the confidence interval centered
on the empirical distribution and radius εn. Figures 1 and 2 give a visual interpretation of such a
construction. These representations should not be taken literally. The objects we work on live in
the simplex of probabilities, and their geometry is very different from the Euclidean interpretation
of Figures 1 and 2. These figures are mainly here to illustrate the two different cases we can have.
In Figure 1, we do not have much data and the confidence interval is wide. In this case, the projection of
the experts on the confidence interval centered on the empirical distribution is the expert distribution
itself. We do not have enough elements to modify our initial a priori. This case can also occur when
the initial a priori of the experts is very close to the true distribution. On the contrary, in Figure 2, we
modify the initial a priori because the experts do not belong to the confidence interval anymore.

Figure 1. Barycenter between expert and data when the expert belongs to the confidence interval
centered in the empirical distribution. In this case, there is no sufficient empirical evidence that the
expert is wrong.
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Figure 2. Barycenter between expert and data when the expert does not belong to the confidence
interval centered in the empirical distribution. There is a high probability that the expert is outside the
set where the target is located and therefore needs to be corrected.

2.3. A Baseline: Mixture Model with Bayesian Weights

We present here an alternative approach that will be our baseline in the numerical experiments of
Section 5. We still aim to mix the empirical distribution, pemp

n , built with an i.i.d. sample of p?: x(1),. . . ,
x(n), with the distribution of the experts pexpert.

The idea is to make a linear combination of these two models:

p̂Bayes
n ∝ γ1 pemp

n + γ2 pexpert

where the mixture parameters are proportional to the log-likelihood of the data according to the model
considered, namely:

γ1 = `(x(1), . . . , x(n) | pemp
n )

and
γ2 = `(x(1), . . . , x(n) | pexpert)

where ` stands for the log-likelihood.
This is a parametric Bayesian approach, since we apply the Bayes theorem, stating that the

posterior is proportional to the product of the prior with the likelihood function.

3. Related Works

3.1. Expert System with Probabilistic Reasoning

The creation of a decision support tool for medical diagnosis has been an objective since the
beginning of the computer age. Most of the early work proposed a rule-based expert system, but in
the 1980s, a significant part of the community studied the possibility of building an expert system
using probabilistic reasoning [8]. Bayesian probabilities and methods were therefore considered as
good ways to model the uncertainty inherent in medical diagnosis relatively early.

The assumption of conditional independence of symptoms given the disease has been intensively
discussed, as it is of crucial importance for computational complexity. Some researchers considered
this hypothesis harmless [9], while others already proposed a maximum entropy approach to face this
issue [10–12].

However, it seems that none of the work of that time considered the expert vs. empirical data
trade-off that we face. In the review article [13] presenting the state-of-the-art of the research of
that time (1990) about this issue, it is clearly mentioned that these methods only deal with data of
probabilistic forms. More precisely, they assume that they have an a priori on the marginal but also on
some of the combinations of symptoms (in our case, we would assume that we have an a priori on
P[B1, B2 | D], for example), and propose a maximum entropy approach where these expert data are
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treated as constraints in the optimization process. Once again, this is not the case for us, since we have
only an a priori on the marginal (and a certain number of constraints), as well as experimental data.
This field of research was very active in the 1980s and then gradually disappeared, probably due to the
computational intractability of the algorithms proposed for the computer resources of the time.

3.2. Bayesian Networks

Bayesian networks [14] were then quickly considered as a promising alternative for modeling
probabilistic dependency relationships between symptoms and diseases [8]. These are now used in
most expert systems, particularly in medicine [15].

A Bayesian network is generally defined as an acyclically oriented graph. The nodes in this graph
correspond to the random variables: Symptoms or diseases in our case. The edges link two correlated
random variables by integrating the information of the conditional law of the son node with respect
to the father node. The main advantage of such a model is that it can factorize the joint distribution
using the so-called global Markov property. The joint law can indeed be expressed as the product of
the conditional distributions of each node given its direct parents in the graph [16].

First of all, the construction of a Bayesian network implies the inference of its structure, i.e., to
determine the nodes that must be linked by an edge to those that can be considered conditionally
independent of the rest of the graph (structure learning). Then, learning the network implies learning
the parameters, i.e., the probabilities linking the nodes (parameter learning).

It is therefore natural to also find works that aimed at mixing expert and empirical data in this
area of the literature. In [17], the experts’ indications take a particular form since they indicate by
hand correlations, positive or negative, between variables. The approach of [18] is also quite distant,
because it is prefers being based on data. [18] only uses expert indications for additional variables for
which there are no data, typically rare events never observed in the database. A work closer to ours
is [19], where the authors assume that they have a first Bayesian network built entirely by the experts,
to which they associate a degree of trust. The authors then use the available data to correct this expert
network. We distinguish ourselves from this work in our effort to find an objective procedure for the
weight to be given to experts in relation to the data (and for this weight not to be set by the experts
themselves).

Note also that the main interest of Bayesian networks is to take advantage of conditional
independence relationships known in advance, as they are pre-filled by experts or inferred from
a sufficient amount of data. However, in our case, we do not have such an a priori knowledge about
the dependency relationships between symptoms and or enough data to infer them.

3.3. From the Marginals to the Joint Distribution

Estimating the joint distribution from the marginal is an old problem, which is obviously not
necessarily related to expert systems. This problem is sometimes referred to in the literature as the
“cell probabilities estimation problem in contingency tables with fixed marginals”. The book [20] gives
a good overview of this field. We can trace back to the work of [21], which assumes knowing the
marginal and having access to a sample of empirical data, and aims to estimate the joint distribution.
In this article, they proposed the “iterative proportional fitting procedure” (IPFP) algorithm, which is
still very popular for solving this problem.

An important assumption of [21] is that each cell of the contingency table receives data. In [22],
the authors prove that the asymptotic estimator obtained by an IPFP algorithm is the distribution that
minimizes the Kullback–Leibler divergence from the empirical distribution under the constraint to
respect the marginal experts.

However, an IPFP algorithm is not suitable for our problem for two main reasons: First, we do
not have absolute confidence in the marginals given by experts (we want to allow ourselves to modify
them as we collect more data) and second, because we are interested in rare diseases, we do not expect
to have a sufficient amount of data. In fact, many of the cells in the contingency table we are trying to
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estimate will not receive data, but it would be disastrous in our application to assign a zero probability
to the corresponding symptom combination.

In a sense, an IPFP algorithm does exactly the opposite of what we are aiming for: It modifies
empirical data (as little as possible) to adapt them to experts, while we aim to modify experts (as little
as possible) to make them consistent, in a less restrictive sense, with empirical data.

We should also mention the work related to our problem in applications of statistics in the social
sciences, where researchers aim to construct a synthetic population from the marginal, coming from
several inconsistent sources [23]. Their proposed approach also uses ideas of maximum entropy,
but it is still different from our trade-off of expert vs. empirical data, since they built their model
without samples.

3.4. The Kullback Centroid

Our optimization problem in Equation (6) in the particular case where the dissimilarity measure
L is the Kullback–Leibler divergence is called moment-projection (M-projection) in the literature.
The properties of these projections have been intensely studied [24].

Note that the Lagrangian associated with such an optimization problem is then nothing more
than a Kullback–Leibler centroid. These objects or variations/generalizations of them (with Jeffrey’s,
Bregman’s divergences, etc.) have been the subject of research since the paper of [25]. For example,
articles [26,27] study cases where an exact formula can be obtained, and propose algorithms when this
is not the case.

However, we have not found any use of these centroids to find a good trade-off of expert vs.
empirical data as we propose in this paper. Bregman’s divergence centroids have been used to
mix several potentially contradictory experts; the interested reader may refer to the work of [28,29].
We could certainly consider that the empirical distribution pemp

n is a second expert, and that our
problem is the same as mixing two experts: Literature and data. However, the question of the weight
to be given to each expert, which is the question that interests us here, will not be resolved. In [28], the
aim is rather to synthesize contradictory opinions of different experts by fixing the weight to be given
to each expert in advance. We propose, for our part, an objective procedure to determine the weight to
be given to experts compared to empirical data.

4. Theoretical Properties of the Barycenter Estimator

4.1. Barycenter in Lp Space

In this section we work in the Lp space. Let us recall that the classic norm on the space Lp is given

by: ‖x‖p =

(
∑

i
|xi|p

) 1
p

.

Following the ideas presented in Section 2.2, we define our estimator, ∀i ≥ 1 as follows:

p̂i
n = arg min

p∈C/‖p−pemp
n ‖i≤εn

‖p− pexpert‖i (8)

where
εn := εδ

n = arg min
l

P[‖pemp
n − p?‖i ≤ l] ≥ 1− δ. (9)

To control εn, we use the concentration inequality obtained in the recent work of [30]. In the
literature, most of the concentration inequalities for the empirical distribution use the L1 norm. This
is why, even though we will present the following results by trying to generalize to spaces Lp for all
p, in practice, only p̂1

n interests us. The proofs for the different theoretical results of this section are
relegated to the Appendix A.
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Proposition 1 (Existence and uniqueness). The estimator p̂i
n defined by (8) exists for all i ≥ 1.

p̂i
n is unique if and only if i 6= 1.

In the following, p̂1
n therefore refers to a set of probability measures.

Proof. See Appendix A.1.

The next proposition shows that one of the solutions of (8) can always be written as a barycenter
between pemp

n and pexpert. This property therefore provides us with an explicit expression of a solution
of (8), which was not otherwise trivial to obtain by a direct calculation looking for the saddle points of
the Lagrangian (for example, in the case i = 1).

Proposition 2. Let p̂i
n be defined by (8); then for all i, it exists p̃ ∈ p̂i

n such that ∃αn ∈ [0, 1]:

p̃ = αn pexpert + (1− αn)pemp
n (10)

where αn =
εn

‖pemp
n − pexpert‖i

if εn ≤ ‖pemp
n − pexpert‖i and αn = 1 otherwise.

Proof. See Appendix A.2.

Therefore, one of the elements of p̂1
n can be written under the form of a barycenter. For the sake of

simplicity, in the following, we will designate p̂1
n as the solution of (8) for i = 1, which can be written

under the form of (10) rather than using the whole set of solutions.
It is now a question of deriving a result proving that mixing experts and data, as we do with p̂1

n,
represents an interest rather than a binary choice of one of the two models. For this reason, we show in
the following proposition that, with a high probability, our estimator p̂1,1 is always better than the best
of the models within a constant.

Theorem 1. Let p̂1
n be defined by (8). Then, we have with probability of at least 1− δ:

‖p? − p̂1
n‖1 ≤ 2 min{εn, ‖p? − pexpert‖1}. (11)

Proof. See Appendix A.3.

4.2. Barycenter Using the Kullback–Leibler Divergence

In this section, we study the theoretical properties of the solution of Equation (6) in the particular
case where the dissimilarity measure L is the Kullback–Leibler divergence. The proofs for the different
theoretical results of this section are relegated to the Appendix B.

The Kullback–Leibler divergence between two discrete probability measures p and q is defined as:

KL(p||q) = ∑
i

pi log
(

pi
qi

)
.

Let us recall that the Kullback-Leibler divergence is not a distance, since it is not symmetric and
does not satisfy the triangular inequality; however, it is positively defined [6].

We define our estimator as:

p̂L
n = arg min

p∈C/KL(pemp
n ||p)≤εn

KL(pexpert||p) (12)

where
εn := εδ

n = arg min
l

P[KL(pemp
n ||p?) ≤ l] ≥ 1− δ. (13)

To calibrate εn, we can use the concentration inequality obtained in [30]. More precisely, we have:
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εn =
1
n

− log(δ) + log

3 + 3
K−2

∑
i=1

√ e3n
2πi

i


︸ ︷︷ ︸
=:Gn

 . (14)

In the following proposition, we show the existence and uniqueness of our estimator p̂L
n and the

fact that our estimator is a barycenter. However, unlike in the case of p̂1
n of Equation (8), it does not

seem possible to obtain a closed form for p̂L
n this time.

Proposition 3. Let p̂L
n be defined by (12); then, p̂L

n exists and is unique. Moreover, p̂L
n can be written under the

following form:

p̂L
n =

1
1 + λ̃

pexpert +
λ̃

1 + λ̃
pemp

n (15)

where λ̃ is a non-negative real such that:

λ̃ ≥ KL(pemp
n ||pexpert)

εn
− 1. (16)

Proof. See Appendix B.1.

The following proposition is intended to be the analog of the proposition 1 when L is the
Kullback–Leibler divergence. We prove that the centroid p̂L

n is better than the experts (with high
probability). On the other hand, we obtain that when KL(pemp

n |||p?) > KL(pexpert||p?), the p̂L
n

barycenter is better than the empirical distribution. To obtain guarantees when KL(pemp
n ||p?) ≤

KL(pexpert||p?) seems less obvious and requires control over the quantity KL(pemp
n ||pexpert).

Theorem 2. Let p̂L
n be defined by (12); then, we have with probability at least 1− δ:

KL( p̂L
n ||p?) ≤ min

{
KL(pexpert||p?), εn (Ln + 1)

}
(17)

where

Ln =
KL(pexpert||p?)−KL(pemp

n ||p?)
KL(pemp

n ||pexpert)
.

Proof. See Appendix B.2.

Remark 1. Note that KL( p̂L
n ||p?) is infinite if pexpert does not have the same support as that of p?. Nevertheless,

obtaining a result for KL(p?|| p̂L
n) would require us to have a concentration on KL(p?|| p̂emp

n ), which we do not
have. Note that KL(p?|| p̂emp

n ) is infinite until we have sampled all the elements of the support of p? at least
one time.

5. Numerical Results

For each experiment in this section, we generate a random distribution p? that we try to estimate.
To do this, we simulate some realizations of a uniform distribution and renormalize in order to sum up
to 1.

We also generate four different distributions that will serve as a priori for the inference:
pexpert,i, ∀i ∈ {1, 2, 3, 4}. The first three priors are obtained by a maximum entropy procedure under
constraint to respect marginals of p? having undergone a modification. We added to the marginals
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of p? a Gaussian noise of zero expectation and variance equal to σ2
1 = 0.1, σ2

2 = 0.2 and σ2
3 = 0.4,

respectively. The last prior pexpert,4 is chosen to be equal to the distribution p? (the experts provided us
with the right distribution).

We then sequentially sample data from p?, i.e., we generate patients, and update for each new
datum and each different a priori, the left centroid p̂L

n (using an Uzawa algorithm [31]), the barycenter
p̂1,1

n , and the empirical distribution pemp
n , as well as the divergences KL( p̂L

n ||p?) and KL(pemp
n ||p?)

and the norms ‖ p̂1,1
n − p?‖1 and ‖pemp

n − p?‖1.
The experiments of Figures 3–6 were conducted on the case of a disease with J = 7 typical

symptoms and where there are therefore K = 27 = 128 possible combinations. The experiments of
Figures 7–9 were conducted on the case of a disease with 9 typical symptoms and where there are
therefore K = 29 = 512 possible combinations.

Figure 3. Evolution of the performance of p̂L
n as a function of the available number of empirical data.

εn is defined by Equation (18).

Figure 4. Evolution of the performance of p̂1
n as a function of the available number of empirical data.

εn is defined by Equation (20).
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Figure 5. Evolution of the performance of p̂L
n as a function of the available number of empirical data.

εn is defined by Equation (19). Number of symptoms: 7.

Figure 6. Comparison of the performances of p̂L
n and p̂Bayes

n as a function of the available number
of empirical data with different initial a priori and δ. εn is defined by Equation (18). Number of
symptoms: 7.
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Figure 7. Evolution of the performance of p̂L
n as a function of the available number of empirical data.

εn is defined by Equation (19). Number of symptoms: 9.

Figure 8. Comparison of the performances of p̂L
n and p̂Bayes

n as a function of the available number
of empirical data with different initial a priori and δ. εn is defined by Equation (18). Number of
symptoms: 9.

Figure 9. Comparison of the performances of p̂1
n and p̂Bayes

n as a function of the available number
of empirical data with different initial a priori and δ. εn is defined by Equation (20). Number of
symptoms: 9.
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5.1. General Analysis of the Barycenter Performance and Choice of εn

The only parameter that we can control is the δ used to construct the confidence interval of the
concentration of the empirical distribution around the true distribution. Let us recall that for the case
of the Kullback centroid of Equation (12), we set:

εn =
1
n
(− log(δ) + log(Gn)) (18)

where Gn is defined in Equation (14).
However, our first numerical experiments show that the choice of εn defined by Equation (18) is a

little too conservative (see Figure 3). We need to converge εn faster towards 0 without abandoning our
a priori when it is good.

Our experiments suggest taking an εn consistent with the concentration proposed in a conjecture
of [30] for Kullback–Leibler divergence:

εn =
− log(δ) + n

2 log
(

1 + K−1
n

)
n

. (19)

Note that we added a constant 1
2 to the conjecture of [30]. As for the choice of δ, this appears

important mainly when n is small; taking it when sufficiently low avoids an overfitting situation when
the number of data is still low, without being harmful when n is high. We took it equal to 10−6 in the
experiments of Figures 3–5 and 7, and tried different values in Figure 6.

The Figures 5 and 7 show that such a choice for εn makes a good trade-off between expert and
empirical data, because we are able to take advantage of these two sources of information when the
number of data is small (typically when n < K), but also to quickly abandon our a priori when it is
bad (see the black curves) or to keep it when it is good (the green curves). Eventually, the Figures 5
and 7 were performed on problems of 128 and 512, respectively, and this choice of εn therefore appears
relatively robust with respect to changes in size.

Concerning p̂1.1
n , we took, still following the conjectures of [30]:

εn =

√√√√− log(δ) + n
2 log

(
1 + K−1

n

)
n

. (20)

The Figure 4 shows the error made by our barycenter in norm L1: p̂1
n using such an εn. We are

again able to get rid of a bad a priori relatively quickly to follow the empirical (green curve) while
keeping it if it is good (blue curve).

Moreover, we show with these experiments that there is an intermediate regime when we do
not have much data, where our estimator is strictly better than the two individual models (experts
and data alone). This is particularly visible when we used the εn of the conjecture of [30] (see Figure
7 and 5). It is then empirically evident that mixing these two heterogeneous sources of information,
experts and empirical data, can be useful for statistical inference.

One might nevertheless wonder by looking at the experiments of Figures 3–5 and 7 why we
propose a mixture of expert and data rather than just a binary choice of the best model. Indeed, both
our theoretical and experimental results show that we can lose a constant when making a barycenter
between expert and data instead of just a binary choice of the best of the two models. This is particularly
true when the number of data tends to grow and when the initial expert a priori was misleading.
Nevertheless, this constant is a price that we are willing to pay in order to avoid the undesirable
consequences of a binary choice of model.

First, when making a binary choice of model, it is not that easy to determine when we should
jump from the expert model to the empirical model. Note also that it would produce an undesirable
discontinuity in the function of the data flow. Most importantly, it is crucial in our application that our
estimator has the same support as the real distribution. It would be disastrous indeed to consider that
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a disease is impossible because we never observed a particular combination of symptoms. This remark
is somewhat linked to the well-known coupon collector’s problem: How many samples do we need
on average to observe all the modalities of the support of a given distribution at least one time? In the
equal case (the target distribution is uniform), the average number of samples needed is of the order of
K log(K), but it might be much more in the unequal case [32]. Nevertheless, let us emphasize here once
again that we are particularly interested in the moment where we have little data. Then, the empirical
distribution alone will never be a really good alternative. We could, of course, consider a Laplace
smoothing in order to avoid this difficulty, but this would be nothing more than a less sophisticated
maximum entropy approach.

5.2. Comparison with the Baseline and Choice of δ

In Figures 6, 8 and 9 we compare our approach with the Bayesian mixture of Section 2.3.
We removed the empirical distribution curve for visual reasons, because it is always above the curves
presented and thus distorts the representation by stretching the y-axis.

We tried two different values for our only parameter δ: δ = 10−1 and δ = 10−6. Note that the
advantage of our method is that the parameter that we have to choose, δ, has an intelligible meaning:
It refers to the probability that p? is outside the confidence interval. That is why we do not consider
higher values of δ.

First of all, one can note the influence of the δ parameter on Figures 6, 8 and 9. The light yellow
curve is a clear example of where the δ has been chosen too high, 10−1, giving too much credit to data
in comparison with the expert. There is of course a trade-off; to choose a smaller δ, 10−6 has a cost, as
we can see with the black and the dark blue curves, which are a bit too conservative in comparison
with the dark green and the dark yellow ones.

Nevertheless, despite the variability of the observed performance of our method as a function of
δ, it leads in any case to a better mixture than the baseline in all our experiments. Our barycenter then
outperforms the baseline in this task of finding the right weight to give to data in relation to the expert.
This is particularly true when δ = 10−6 and to a lesser extent when δ = 10−1.

Indeed, we aim at finding a mixture that would keep the expert a priori when it is good and
quickly move away when it is bad. This is not what the baseline exhibits in our experiments, contrary
to our estimator. The light green curve shows clearly that the weight placed on the data in relation to
the expert is too high; the beginning of the purple curve also exhibits this behavior.

Once again, the Figure 8 shows that such observations are robust with respect to changes of
dimension, and the Figure 8 has 29 = 512 symptom combinations; meanwhile, the Figure 6 has
27 = 128.

6. Conclusion and Perspectives

In this work, we have presented a way to combine expert knowledge—in the form of marginal
probabilities and rules—together with empirical data in order to estimate a given discrete probability
distribution. This problem emerged from our application, in which we aimed to learn the probability
distribution of the different combinations of symptoms of a given disease. For this objective, we have
an initial a priori consisting of the marginal distributions coming from the medical literature; clinical
data collected is used as the decision support tool.

The particular form of the prior does not allow us to simply adopt a maximum a posteriori (MAP)
approach. The absence of an obvious a priori to model the parameter’s distribution naturally leads us
to the idea of maximum entropy: If no model seems more plausible to us than another, then we will
choose the least informative.

This idea of maximum entropy brings us back to the works of the 1980s and 1990s, where
researchers also aimed to build symptom checkers using marginals. In our work, we go further by
gradually integrating empirical data as the algorithm is used.
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We are interested in the intermediate regime in which we do not have enough empirical data to
do without experts, but have enough to correct them if necessary. Our proposal is to construct our
estimator as the distribution closest to the experts’ initial a priori, in the sense of a given dissimilarity
measure, that is consistent with the empirical data collected.

We prove, both theoretically and empirically, that our barycenter estimator mixing the two sources
of information is always more efficient than the best of the two models (clinical data or experts alone)
within a constant.

We have empirically illustrated the effectiveness of the proposed approach by giving an a priori
of different quality and incrementally adding empirical data. We have shown that our estimator allows
a bad a priori to be abandoned relatively quickly when the inconsistency of the data collected with the
initial a priori is observed. At the same time, this same mixture makes it possible to keep the initial
a priori if it is good. Moreover, we show with this experiment that, in the intermediate regime, our
estimator can be strictly better than the best of the two models (experts and data alone). It empirically
confirms the idea that mixing these two heterogeneous sources of information can be profitable in
statistical inference.

Future work will concentrate on several refinements, such as the addition of a kernel structure
for the construction of the empirical distribution. Indeed, it is possible that there are omissions of
some symptoms in the data collected. Then, a kernel approach that would consider closer states that
only differ by some presences would capture such a difficulty and make a better use of empirical
data. Other dissimilarity measures could also be investigated. Finally, having a true non-parametric
Bayesian approach would be very interesting. However, closing the gap between classical Dirichlet
priors on the marginal to a single prior on the joint distribution seems to be a real challenge.
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Appendix A. Proof of the Theoretical Results of Our Barycenter Estimator in The Lp Spaces

Appendix A.1. Existence and Uniqueness

Proof of Proposition 1. The existence of a solution of (8) for all i ≥ 1 is a consequence of the fact that
the projection onto a finite dimension set always exists.

The uniqueness of a solution of (8) for all i 6= 1 is due to the fact that we aim to minimize a strictly
convex function under convex constraints. When i = 1, the function that we aim to minimize is no
longer strictly convex and some counterexamples can be exhibited.

For example, if pexpert = ( 1
4 , 1

4 , 1
4 , 1

4 ), pemp
n = ( 1

2 , 0, 1
2 , 0) and εn = 9

10 .
Note that ‖pexpert − pemp

n ‖1 = 1 > 9
10 . Then, using Proposition 2, we know that

εn

‖pemp
n − pexpert‖1

pexpert +

(
1− εn

‖pemp
n − pexpert‖1

)
pemp

n

=

(
11
40

,
9
40

,
11
40

,
9

40

)
=: p̂1

n
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is a solution. However, p̃ = ( 10
40 , 9

40 , 12
40 , 9

40 ) is a solution too. Indeed:

‖ p̃− pexpert‖1 =
1

10
= ‖ p̂1,1

n − pexpert‖1

and:
‖ p̃− pemp

n ‖1 =
36
40

=
9

10
.

Appendix A.2. Linear Combination of Expert and Data: A Barycenter

Proof of Proposition 2. Let p̃ ∈ C be such that there exists α ∈ [0, 1] where p̃ = αpexpert + (1− α)pemp
n

and such that ‖ p̃− pemp
n ‖i = εn. We then have:

‖ p̃− pemp
n ‖i = α‖pemp

n − pexpert‖i = εn

and then

α =
εn

‖pemp
n − pexpert‖i

.

Moreover, note that we have the following equality, since p̃ can be written in the form of a
barycenter:

‖ p̃− pexpert‖i + ‖ p̃− pemp
n ‖i︸ ︷︷ ︸

=εn

= ‖pemp
n − pexpert‖i.

Let us make a reasoning by reductio ad absurdum. Let us assume that there exist p′ ∈ C such that
‖pemp

n − p′‖i ≤ εn and ‖pexpert − p′‖i < ‖pexpert − p̃‖i.
We would then have:

‖pemp
n − pexpert‖i ≤ ‖p′ − pexpert‖i + ‖p′ − pemp

n ‖i

< ‖ p̃− pexpert‖i + ‖p′ − pemp
n ‖i

= ‖pemp
n − pexpert‖i − εn + ‖p′ − pemp

n ‖i

≤ ‖pemp
n − pexpert‖i

which leads to the desired contradiction.

Appendix A.3. Our Barycenter Estimator Is More Efficient than the Best of the Two Models, Expert or Data,
Within a Constant

Proof of Theorem 1. A simple application of the triangular inequality gives us:

‖p? − p̂1
n‖1 ≤ ‖p? − pemp

n ‖1 + ‖pemp
n − p̂1

n‖1.

However, ‖pemp
n − p̂1

n‖1 ≤ εn by construction, and we have ‖p? − pemp
n ‖1 ≤ εn with probability

of at least 1− δ.
In addition to that:

‖p? − p̂1
n‖1 ≤ ‖p? − pexpert‖1 + ‖pexpert − p̂1

n‖1.

However, using the definition of p̂1
n and assuming ‖p? − pemp

n ‖1 ≤ εn, then:

‖pexpert − p̂1
n‖1 ≤ ‖pexpert − p?‖1.
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We can conclude that if ‖p? − pemp
n ‖1 ≤ εn, which happens with probability of at least 1− δ, then:

‖p? − p̂1
n‖1 ≤ 2 min{εn, ‖p? − pexpert‖1}. (A1)

Appendix B. Proof of the Theoretical Results of Our Barycenter Estimator with the KL
Divergence

Appendix B.1. Existence and Uniqueness. Formula as a Linear Combination of Experts and Empirical Data

Proof of Proposition 3. The existence and uniqueness of p̂L
n is a consequence of the fact that T =

{p/p ∈ C and KL(pemp
n ||p) ≤ εn} is a convex set. Indeed, let p, q ∈ T , α ∈ [0, 1]; then, using the

classical log-sum inequality, we have:

KL(pemp
n ||αp + (1− α)q) ≤ αKL(pemp

n ||p) + (1− α)KL(pemp
n ||q) ≤ εn.

The Lagrangian associated to the optimization problem (12) can be written as:

L(p, λ, µ) = ∑
i

pexpert
i log

(
pexpert

i
pi

)

+ λ

(
∑

i
pemp

i log

(
pemp

i
pi

)
− εn

)

+ µ

(
∑

i
pi − 1

)
.

Deriving for all i ∈ [1, K]:

∂L(p, λ, µ)

∂pi
= −

pexpert
i
pi
− λ

pemp
i
pi

+ µ.

Equating this last expression to 0 and using the fact that the probability measure sums to 1, we
find: µ = λ + 1. Then, we have for all i ∈ [1, K]:

pi =
1

1 + λ
pexpert

i +
λ

1 + λ
pemp

i .

We know that p̂L
n exists and is unique, and using the Kuhn–Tucker theorem (whose assumptions

we satisfy since we minimize a convex function under convex inequality constraints), we know that
the minimum of the optimization problem (12) is reached for the saddle-point of the Lagrangian:
(λ̃, p̃) = (λ̃, p̂L

n). We can then write:

p̂L
n =

1
1 + λ̃

pexpert +
λ̃

1 + λ̃
pemp

n . (A2)

We could not obtain a closed form for λ̃, unlike in the case of p̂i,i. However, we know that by
construction, KL(pemp

n || p̂n) ≤ εn.
Moreover, using the log-sum inequality and our interpolation formula (A2), we have:

KL(pemp
n || p̂n) = KL

(
pemp

n || 1
1 + λ̃

pexpert +
λ̃

1 + λ̃
pemp

n

)
≤ 1

1 + λ̃
KL(pemp

n ||pexpert).
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We then have the following condition under λ̃:

1
1 + λ̃

KL(pemp
n ||pexpert) ≤ εn ⇔ λ̃ ≥ KL(pemp

n ||pexpert)

εn
− 1.

Appendix B.2. Our Barycenter Is More Efficient Than the Best of the Two Models, Expert or Data, within
a Constant

Proof of Theorem 2. Using the Proposition 3, we have:

KL( p̂L
n ||p?) = KL

(
1

1 + λ̃
pexpert +

λ̃

1 + λ̃
pemp

n ||p?
)

≤ 1
1 + λ̃

KL(pexpert||p?) + λ̃

1 + λ̃
KL(pemp

n ||p?)

=
1

1 + λ̃

(
KL(pexpert||p?)−KL(pemp

n ||p?)
)

+KL(pemp
n ||p?)

≤ εn

(
KL(pexpert||p?)−KL(pemp

n ||p?)
KL(pemp

n ||pexpert)

)
+KL(pemp

n ||p?)

where we used the available inequality to λ̃ (Proposition 3) in the last inequality, and the desired result
is obtained by assuming that KL(pemp

n ||p?) ≤ εn, which happens with probability of at least 1− δ.
In addition, note that:

εn

(
KL(pexpert||p?)−KL(pemp

n ||p?)
KL(pemp

n ||pexpert)

)
+KL(pemp

n ||p?)

≤ KL(pexpert||p?)
⇔ εn ≤ KL(pemp

n ||pexpert).

However, if εn ≥ KL(pemp
n ||pexpert), we have by construction that p̂L

n = pexpert, and therefore
KL( p̂L

n ||p?) = KL(pexpert||p?).
We can conclude from all of this that:

KL( p̂L
n ||p?) ≤ KL(pexpert||p?).
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