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Abstract: The size of the largest binary single deletion code has been unknown for more than 50 years.
It is known that Varshamov–Tenengolts (VT) code is an optimum single deletion code for block length
n ≤ 10; however, only a few upper bounds of the size of single deletion code are proposed for larger
n. We provide improved upper bounds using Mixed Integer Linear Programming (MILP) relaxation
technique. Especially, we show the size of single deletion code is smaller than or equal to 173 when
the block length n is 11. In the second half of the paper, we propose a conjecture that is equivalent
to the long-lasting conjecture that “VT code is optimum for all n”. This equivalent formulation of
the conjecture contains small sub-problems that can be numerically verified. We provide numerical
results that support the conjecture.

Keywords: deletion channel; maximum independent set; mixed integer programming; Varshamov–
Tenengolts code

1. Introduction

A deletion channel is one of the most important channels in the history of communication.
The channel has a deletion error where the symbol is being removed without knowing the position of
it. Unlike many other channels where the positions of symbols remain the same, the decoder needs to
specify the position of each symbol, which is called a synchronization issue. Mainly due to this issue,
the deletion channel is surprisingly hard to analyze.

There are several different mathematical problem formulations of the deletion channel.
One natural way is the probabilistic approach where the deletion occurs in i.i.d. manner with
probability p. Kanoria and Montanari provided an approximation of the channel capacity of binary
deletion channel when p→ 0 [1]. However, the channel capacity is unknown in this setting even in
binary case.

Alternatively, we can define the problem in algebraic way. We assume that there will be at most
k deletion errors while transmitting n number of symbols. The question is the maximum size of the
deletion code that can correct any k deletion errors. There is a nice survey paper by Sloane [2], and it is
easy to see that the problem is extremely challenging even in single deletion case.

Although the problem is still open, there has been some progress in this algebraic setting. In binary
case, Varshamov and Tenengolts proposed a simple code (VT-code) construction that corrects any
single deletion error [3]. It is asymptotically optimum when n grows while the number of deletions
k = 1 is fixed. VT-code is known to be optimum when n ≤ 10 and conjectured that it is optimum
for all n. Tenengolts generalized VT-code to a non-binary version [4]. Gabrys and Sala proposed a
code that can correct two deletions [5]. Sima and Bruck also generalized VT-code that can correct k
deletions [6]. Both results [5,6] show n− log |C| = O(k log n) where C is the deletion code. This implies
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that they achieved order optimal redundancy where the optimality is shown by Levenshtein [7].
However, their works do not specify the coefficient of k log n term while VT code satisfies n− log |C| =
log n + o(log n) in the single deletion case.

VT-code naturally suggests a lower bound of the size of the optimum single deletion code in
binary case, but the upper bounds are rarely provided. Levenshtein found an analytic formula for
upper bounds [8]. Kulkarni and Kiyavashi proposed better upper bounds for any number of deletions
and any size of alphabet [9]. Cullina and Kiyavashi refined Levenshtein’s upper bound [10].

There are attempts to find nonasymptotic upper bounds numerically for small n. The most popular
approach is using graph theory, which is based on the fact that the optimum single deletion code
problem has an equivalent formulation of maximum independent set problem. In this formulation,
the size of the largest single deletion code is equal to the size of the maximum independent set.
A well-known upper bound of the maximum independent set is Lovász theta number, which can
be obtained by solving Semidefinite Programming (SDP) relaxed problem [11]. Upper bounds from
Lovász theta number are tight for n ≤ 8; in other words, VT-code is optimum when the block
length n is smaller than 8. Butenko et al. provided a numerical approach to bound the size of
maximum independent set [12], and showed that VT-code is optimum when the block length is n = 9.
Kulkarni et al. proposed a bounding technique using Linear Programming (LP) relaxation of the graph
problem [13]. This bound is weaker than that of Lovász’s, but the complexity is lower so that we can
compute the bounds for larger block lengths n. For recent progress, we refer to Sloane’s webpage [14],
which also mentions that VT-code is optimum when the block length is n = 10.

In this paper, we propose a new method that provides an improved nonasymptotic upper bound.
We partially relax the graph problem, and obtain Mixed Integer Linear Program (MILP) where some of
variables are relaxed but some of them are not. MILP has reasonably low complexity and provides
a better bound. For example, when the block length is n = 11, we show the size of optimum single
deletion code is less than or equal to 173, where the SDP provides a bound of 174.

We also find an equivalent formulation of the conjecture that “VT-code is optimum”.
This equivalent form consists of several small sub-conjectures where VT-code is optimum if and
only if all those sub-conjectures are true. The advantage of this equivalent conjecture is that we
can numerically verify the sub-conjectures using (Mixed) Integer Programming. Note that we can
disprove the original conjecture if any of sub-conjectures are not true. We numerically verified some of
sub-conjectures for n ≤ 16. This does not prove or disprove the optimality of VT-code, but it supports
the original conjecture.

The remainder of the paper is organized as follows. In Section 2, we revisit some of the known
results of single deletion codes. Section 3 presents the new bounding technique using Mixed Integer
Linear Programming with improved upper bound. In Section 4, we present an equivalent formula of
the conjecture as well as some numerical supports. Finally, we conclude in Section 5.

Notation

Let X = {0, 1} be a set of binary alphabet. We denote a n-tuple using super script, i.e., xn =

x1x2 · · · xn ∈ X n. In addition, let 0n be an all zero vector. For clarity, we use xn ∈ X n for an
n-dimensional binary vector, and yn+1 ∈ X n+1 for an n + 1-dimensional binary vector. We also use
concatenation of binary vectors. For example, xn0 is an n + 1-dimensional binary vector where the last
bit is 0.

2. Preliminaries

2.1. Single Deletion Code

Define a deletion ball BD(xn) ⊂ X n−1, which is a collection of (n − 1)-dimensional binary
vectors that are one-bit deleted version of xn. We can define an insertion ball BI(xn) ⊂ X n+1 in a
similar manner.
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Definition 1. For a positive integer n, a set of binary vectors C ⊂ X n is a single deletion code if BD(c1) ∩
BD(c2) = ∅ for all c1 6= c2 in C.

The definition implies that the single deletion code can always correct a single deletion error.
The following lemma shows that the single deletion code can also correct a single insertion error.

Lemma 1. ([13] Lemma 2.1) A set of binary vectors C ⊂ X n is a single deletion code if and only if BI(c1) ∩
BI(c2) = ∅ for all c1 6= c2 in C.

The above lemma is simply from the fact that BI(c1) ∩ BI(c2) 6= ∅ if and only if BD(c1) ∩
BD(c2) 6= ∅

2.2. Varshamov–Tenengolts Codes

Let vn : X n → Z be a function that computes the “VT-weights” of an n-dimensional binary vector.

vn(xn) =
n

∑
k=1

k · xk.

Note that we do not take any modulo operations, and therefore vn(xn) can take value from 0 to
n(n+1)

2 .
For 0 ≤ a ≤ n, VT-code [3] is defined by

VTa(n) = {xn ∈ X n : vn(xn) ≡ a (mod n + 1)}

which is a single deletion code [7,15]. Levenshtein showed that VTa(n) is perfect for all 0 ≤ a ≤ n [16].
In other words,

X n−1 =
⋃

xn∈VTa(n)

BD(xn).

For any a, we have |VT0(n)| ≥ |VTa(n)| ≥ |VT1(n)| where the first inequality is from
Varshamov [3] and the second inequality is from Ginzburg [17]. Thus, the size of the optimum
single deletion code is lower bounded by |VT0(n)|. An analytic formula |VT0(n)| is given in [2]:

|VT0(n)| =
1

2(n + 1) ∑
odd d|n+1

φ(d)2(n+1)/d

where φ(d) is Euler’s totient function.
Borchers showed that VT0(n) is optimum single deletion code for n ≤ 10 [14]. The optimality of

VT-code is still open for n ≥ 11. In the case of n = 11, the size of VT-code is |VT0(n)| = 172 but the
best known upper bound of the largest single deletion code is |C| ≤ 174.

2.3. Maximum Independent Set Approach

Consider a graph where all binary vectors are nodes. There exists an edge between two nodes xn

and x̃n if and only if BD(xn)∩BD(x̃n) 6= ∅. Then, the optimum single deletion code corresponds to the
maximum independent set. Note that the Maximum Independent Set (MIS) problem is NP-complete.

There are reduction rules in graph theory that provide an equivalent graph problem while
reducing the size of the graph. Isolated vertex removal technique is useful in our case. An isolated
vertex is a node for which its neighborhood forms a clique. For example, in our case, the neighborhood
set of node 0n is {100 · · · 00, 010 · · · 00, . . . , 00 · · · 01}, and {00 · · · 00, 100 · · · 00, 010 · · · 00, . . . , 00 · · · 01}
forms a clique. This implies that the node 0n is an isolated vertex. Butenko et al. showed that there
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exists a maximum independent set that contains all isolated vertices [12]. Thus, there exists an optimum
single deletion code that contains both 0n and 1n.

Note that it is still infeasible to solve our MIS problem with state of the art algorithms [18,19]
when n ≥ 11. Segundo et al. proposed a variation of BBMC [20] and found the maximum independent
set of the graph induced from two deletion (k = 2) channel [14]. However, the graph induced from
single deletion channel (k = 1) is more challenging to find the maximum independent set.

2.4. LP Relaxation

For simplicity, we define several functions and new notations. Let N = 2n, and [N − 1] =

{0, 1, . . . , N − 1} be the set that contains all nonnegative integers smaller than or equal to N − 1.
We further let bn : [N − 1]→ {0, 1}n be the function that converts the decimal number to the binary
vector (e.g., b4(3) = 0011). Note that we drop n if it is clear from the context, i.e., b ≡ bn.

In the above section, we define a graph where there exists an edge between xn and x̃n if their
deletion balls share an element. Instead, we define an equivalent graph where the set of nodes are
V = [N − 1]. The set of edges E ⊂ V ×V is derived naturally where (i, j) ∈ E if and only if there is an
edge between b(i) and b(j).

Our goal is to find an independent set U ⊂ V that has maximum number of elements. For 0 ≤
i ≤ N − 1, let X = (X0, X1, . . . , XN−1) be binary variables where Xi = 1 if i ∈ U and Xi = 0 if
i 6∈ U . If there exists an edge between i and j, then the independent set U cannot contain both i and j.
Thus, the following Integer Programming (IP) problem is equivalent to the maximum independent
set problem.

max
X

N−1

∑
i=0

Xi

s.t. Xi + Xj ≤ 1, for (i, j) ∈ E

Xi ∈ {0, 1}, i = 0, 1, . . . , N − 1.

Clearly, it is an NP-hard problem, which is extremely challenging to solve. Instead, we can relax
it to an easier problem, and bounding the solution of the IP. One way of doing it is classical Linear
Programming (LP) relaxation, which is given by

max
X

N−1

∑
i=0

Xi

s.t. Xi + Xj ≤ 1, for (i, j) ∈ E

0 ≤ Xi ≤ 1, i = 0, 1, . . . , N − 1.

LP relaxation allows the variable Xi to take a value between 0 and 1, and the solution of relaxed
problem provides an upper bound of the original IP. However, this gives a trivial solution in our case,
which is Xi = 1/2 for all i ∈ {0, 1, . . . N − 1}. The maximum value of the objective function is 2n−1,
and it is much larger than the known upper bound 2n−2

n−1 [9].
Kulkarni et al. proposed another LP relaxation [9]. The idea is that the independent set can

contain at most one node from each clique. For any (n − 1)-dimensional vector yn−1, the set of

nodes QI(yn−1)
∆
= {i : b(i) ∈ BI(yn−1)} forms a clique since yn−1 ∈ BD(b(i)) ∪ BD(b(j)) for all

i, j ∈ QI(yn−1). Thus, the independent set U can take at most one node from QI(yn−1), and we have
clique constraints ∑i∈QI(yn−1) Xi ≤ 1. This implies another LP relaxation which provides a tighter upper
bound of the original IP problem.
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max
X

N−1

∑
i=0

Xi

s.t. ∑
i∈QI(yn−1)

Xi ≤ 1, for yn−1 ∈ X n−1

0 ≤ Xi ≤ 1, i = 0, 1, . . . , N − 1.

On the other hand, Lovász proposed an SDP-relaxation of the Maximum Independent Set (MIS)
problem [11]. The solution of SDP problem is called Lovász theta number, which provides a tighter
bound of MIS problem.

The following table presents the upper bound from the above relaxations as well as |VT0(n)|
which is a lower bound.

n 6 7 8 9 10 11 12
|VT0(n)| 10 16 30 52 94 172 316
Lovász 10.00 16.84 30.00 53.03 95.98 174.73 -

LP 10.25 17.15 30.32 53.56 96.52 175.19 321.27

Note that the complexity of LP relaxed problem is low, and we can get bounds for n ≥ 13 as
well. For example, the size of maximum deletion code is smaller than or equal to 593 when n = 13.
However, due to the complexity issue, we are not able to compute Lovász theta number for n ≥ 12.
For example, it took more than 24 h on our machine when n = 12.

3. Mixed Integer Linear Programming

LP is faster than the original IP problem; however it is hard to parallelize. On the other hand,
IP inherently uses branch-and-bound technique which can be parallelized, but still intractable with
current multi-thread processors. In this section, we propose a Mixed Integer Linear Programming
(MILP) problem, which is in between LP problem and the original IP problem.

3.1. Main Results

In the LP relaxation, all variables are relaxed as described in Section 2.4. Instead, we relax specific
variables only, which provides a semi-relaxed optimization problem. More precisely, we design S ⊂ V
and keep Xi to be binary variable for i ∈ S while other variables are relaxed as in LP relaxation.
This provides a Mixed Integer Programming (MIP) problem where variables are either integer or
real numbers:

max
X

N−1

∑
i=0

Xi

s.t. ∑
i∈QI(yn−1)

Xi ≤ 1, for yn−1 ∈ X n−1

Xi ∈ {0, 1}, for i ∈ S
0 ≤ Xi ≤ 1, for i 6∈ S
X0 = 1

XN−1 = 1.

The last two constraints are because there exists a maximum independent set that contains both
0n and 1n from Section 2.3.
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MIP is generally as computationally demanding as IP problems. However, since all constraints
are linear, the above optimization problem is a Mixed Integer Linear Programming (MILP) problem.
MILP can be solved in reasonable amount of time if we carefully design the set S . Let MILPn(S)
denote the above MILP problem.

If S = ∅, then MILPn(S) is equivalent to LP. On the other extreme, if S = V, then MILPn(S) is
equivalent to the original IP. If S is nontrivial subset of X n, then the solution of MILPn(S) provides a
tighter upper bound of maximum independent set problem while having low complexity.

Clearly, we prefer smaller S because of complexity. Thus, the goal is designing S in smart way.
The main idea is increasing the size of S in greedy manner. We start from fully relaxed LP problem,
i.e., S = ∅, and add elements one by one under certain criterion.

More precisely, we solve MILPn(S) in each iteration and add a node i to S based on the following
rule. Let d : [N − 1]→ {0, 1, . . . , 2n−1} be the function which indicates the number of clique constraints
that contains i. Since i ∈ QI(yn−1) if and only if yn−1 ∈ BD(b(i)), we have d(i) = |BD(b(i))|. Thus,
the variable Xi affects the d(i) number of clique constraints. Furthermore, if Xi is large, it restricts
other variables in clique constraints more. Thus, we measure the amount of “impact” of variable
Xi by d(i) × Xi. Finally, the algorithm finds the node i that maximizes d(i) × Xi and add it to S .
This procedure is described in Algorithm 1.

Algorithm 1 Sequential MILP.
Input: target threshold τ

Output: new bound T

procedure SEQMILP(τ)

Set S = ∅, and T = inf

do
Solve MILPn(S) and let T be the objective function value and X be the solution

i0 = arg maxi 6∈S d(i)× Xi

S ← S ∪ {i0}
while |S| < N and T ≥ τ

return T
end procedure

The above algorithm takes a target threshold τ as an input which can be a previously known upper
bound of the original IP. In each iteration, it computes the objective function value T of MILPn(S).
Whenever T is smaller than the target bound τ, then the algorithm halts and we get a new bound
T of the size of maximum independent set. For example, suppose we let τ = |VT0(n)|+ 1 and the
above program halts with T < τ, then we have a new upper bound that the size of the maximum
single deletion code is strictly smaller than |VT0(n)|+ 1. In such case, we can claim that VT0(n) is the
optimum single deletion code. On the other hand, suppose the program ends with |S| = N which
means S = V. In such case, the return value T is the size of the maximum independent set because it is
the objective function value of the original IP. Note that the size of S is increased by 1 in each iteration,
and therefore there will be at most N iterations.

Note that the way of choosing i0 = arg maxi 6∈S d(i)× Xi is not an optimum way. However, it is
an effective way, as shown in Section 3.2.

3.2. Experiments

We implemented Python code using PULP python package [21] with cbc solver [22]. Note that cbc
solver supports multiple threads. For our experiments, we used a machine with AMD Threadripper
1950X processor and 64 GB of RAM. The operating system was Ubuntu 18.04 LTS.
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In the case of n = 11, for any single deletion code C, we have an upper bound |C| ≤ 174 from
Lovász theta number. LP provides a weaker upper bound |C| ≤ 175. However, the proposed MILP
problem MILPn(S) provides |C| ≤ 174.993 when

S = {216, 1702, 1236, 1140, 1678, 1050, 154, 105, 538,

1701, 1941, 532, 907}.

Note that we convert the binary vectors to decimal numbers for simplicity (e.g., 00011011000→
216). This implies |C| ≤ 174 which is the same upper bound from Lovász number, but obtained more
efficiently.

More interestingly, MILPn(S) provides |C| ≤ 173.988 when

S = {216, 1702, 1236, 1140, 1678, 1050, 154, 105, 538,

1701, 1941, 532, 907, 1335, 1194, 1515, 1942, 1366,

688, 1200, 1365, 682, 854, 778, 340, 576, 847,

1851, 853, 1300, 537, 322, 70, 681, 556, 1359,

1749, 196, 1755, 1707, 1709, 1533, 1371, 1539, 667,

1306, 1750, 514, 1708, 1323, 811, 724, 1706, 756,

603, 1440, 1878, 1370, 938, 1364, 683, 842, 378,

1354, 1509, 1450, 1258, 850, 598, 1373, 1494, 1482,

1362, 553, 554, 1492, 333, 1493, 674, 1498, 1386,

874, 596, 1738, 1690, 426, 1378}.

Note that it took 27,096 s to solve the last (88-th) MILPn(S) with 28 threads. This provides an
improved upper bound |C| ≤ 173. Thus, we have the following Corollary.

Corollary 1. For n = 11, the size of single deletion code is smaller than or equal to 173.

In case of n = 12, for any single deletion code C, an upper bound from LP implies |C| ≤ 321.
However, the proposed method MILPn(S) provides |C| < 320.998 when

S = {3627, 1215, 360, 45, 423, 4050, 2880, 3024, 1071,

1047, 3048, 1625, 1958, 3714, 3906}.

Thus, we have an improved upper bound |C| ≤ 320.

3.3. Connection to Metaheuristics

Although MILP problem has lower complexity than the original IP problem, MILP often
encounter the computational issue as well. This is because the most state-of-the-art MILP solvers
such as CPLEX [23] are based on branch-and-bound techniques, and it often has exponentially large
search space. Thus, the smartly fixing the variable to binary is necessary as we presented in the
previous section.

Similar heuristic algorithms appear in various other computationally challenging (Mixed) Integer
Programming problems, such as lot sizing problem [24,25] and connected facility location problem [26].
This is commonly referred to as hybrid metaheuristics. For example, Wilbaut and Hanafi proposed
iterative idea to solve MIP problems [27]. The authors applied this idea to IP problems such as
knapsack [28]. The idea is iteratively solving the LP relaxed problem to get an upper bound and
reduced problem with fixing variables to get a lower bound until the lower and upper bounds match.
In this paper, we do not fix the value of variable, but remove the relaxed constraints (so that some
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variables remain binary). For other works in metaheuristics, we refer the interested reader to the nice
survey paper by Blum et al. [29].

4. Equivalent Conjecture

The above semi-relaxation provides an improved upper bound; however, the running time is still
an issue. In this section, we provide smaller optimization problems that can provide insights for the
optimality of VT0(n) code.

4.1. VT-Sum Based Partition

For 0 ≤ i ≤ n(n+1)
2 , let Sn,i ⊂ X n be the set of binary vectors whose VT-weights are i.

Sn,i = {xn ∈ X n : vn(xn) = i}.

Clearly, {Sn,i : 0 ≤ i ≤ n(n+1)
2 } is a partition of X n, and {Sn,i : 0 ≤ i ≤ n(n+1)

2 , i ≡ a (mod n + 1)}
is a partition of VTa(n).

The following lemma provides useful properties of Sn,i.

Lemma 2. Suppose n and 0 ≤ i, j ≤ n(n+1)
2 are positive integers. Then,

1. |Sn,i| = |Sn, n(n+1)
2 −i

|.
2. If |i− j| ≥ n + 1, then BD(Sn,i) ∩ BD(Sn,j) = ∅.
3. If |i− j| ≥ n + 1, then BI(Sn,i) ∩ BI(Sn,j) = ∅.

Proof.

1. There exists a one-to-one correspondence between Sn,i and S
n, n(n+1)

2 −i
which is an element-wise

binary complement.
2. For any element zn−1 ∈ BD(Sn,i), it is easy to show that i− n ≤ vn−1(zn−1) ≤ i. If |i− j| ≥ n + 1,

then {i, i− 1, . . . , i− n} ∩ {j, j− 1, . . . , j− n} = ∅, and therefore BD(Sn,i) ∩ BD(Sn,j) = ∅.
3. For any xn, x̃n ∈ X n, it is clear that BD(xn) ∩ BD(x̃n) = ∅ if and only if BI(xn) ∩ BI(x̃n) = ∅.

Thus, the third property is a direct consequence of the second property.

Remark 1. If we view the original problem as a maximum independent set problem, the above partition
Sn,0, . . . , S

n, n(n+1)
2

can be useful since:

• There are no internal edges in Sn,i for all i.
• There are no edges between Sn,i and Sn,j if |i− j| ≥ n + 1.

This is not exactly a “partite” graph but has a similar flavor of it, and there might be an efficient way of
finding a maximum independent set.

4.2. Equivalent Conjecture

For a given single deletion code C, we also define a similar partition of C. For 0 ≤ i ≤ n(n+1)
2 ,

we let Ci = C ∩ Sn,i = {xn ∈ C : vn(xn) = i}. Then, we are ready to state our first lemma which is a
building block of the main conjecture.

Lemma 3. Let n be a positive integer, and C ⊂ X n be a single deletion code. If there exists an integer
0 ≤ k ≤ b n

2 c such that

|C0|+ |C1|+ . . . + |Ck(n+1)| > |Sn,0|+ |Sn,n+1|+ . . . + |Sn,(n+1)k|, (1)

then VT0(n) is not an optimum single deletion code.
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Proof. Suppose there exists k such that |C0| + |C1| + · · · + |C(n+1)k| > |Sn,0| + |Sn,n+1| + · · · +
|Sn,(n+1)k|. Then, we can define a new single deletion code

C̃ =

(n+1)k⋃
i=0

Ci

 ∪
 bn/2c⋃

j=k+1

Sn,(n+1)j

 .

Clearly, C̃ is a single deletion code since Ci ∩ Sn,(n+1)j = ∅ for all i ≤ (n + 1)k and j ≥ k + 1. Then,
the size of the new single deletion code is given by

|C̃| =
(n+1)k

∑
i=0
|Ci|+

bn/2c

∑
j=k+1

|Sn,(n+1)j|

>
k

∑
j=0
|Sn,(n+1)j|+

bn/2c

∑
j=k+1

|Sn,(n+1)j|

=
bn/2c

∑
j=0
|Sn,(n+1)j|

=|VT0(n)|.

This concludes the proof.

By the first property of Lemma 2, we have |VT0(n)| = |VTn+1
2
(n)| for odd n. Thus, we have the

following lemma as well, which is essentially the same as Lemma 3.

Lemma 4. Let n be an odd positive integer, and C ⊂ X n be a single deletion code. If there exists an integer
0 ≤ k ≤ n−1

2 such that

|C0|+ |C1|+ . . . + |Ck(n+1)+ n+1
2
| > |Sn, n+1

2
|+ |Sn,n+1+ n+1

2
|+ . . . + |Sn,(n+1)k+ n+1

2
|, (2)

then VT0(n) is not an optimum single deletion code.

Proof. Suppose n is odd and there exists k such that |C0| + |C1| + · · · + |C(n+1)k+ n+1
2
| > |Sn, n+1

2
| +

|Sn,n+1+ n+1
2
|+ · · ·+ |Sn,(n+1)k+ n+1

2
|. Then, we can define a new single deletion code

C̃ =

(n+1)k+ n+1
2⋃

i=0

Ci

 ∪
 n−1

2⋃
j=k+1

Sn,(n+1)j+ n+1
2

 .

Again, the size of the new code is given by

|C̃| = |C0|+ |C1|+ · · ·+ |C(n+1)k+ n+1
2
|+

n−1
2

∑
j=k+1

|Sn,(n+1)j+ n+1
2
|

> |Sn, n+1
2
|+ |Sn,n+1+ n+1

2
|+ · · ·+ |Sn,(n+1)k+ n+1

2
|

= |S
n, (n+1)(n−1)

2
|+ |S

n, (n+1)(n−3)
2
|+ · · ·+ |Sn,0|

= |VT0(n)|,

This concludes the proof.
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Conjecture 1.

1. For even n, any single deletion code C ⊂ X n satisfies

|C0|+ |C1|+ · · ·+ |C(n+1)k| ≤ |Sn,0|+ |Sn,n+1|+ · · ·+ |Sn,(n+1)k|

for all 0 ≤ k ≤ n
2 .

2. For odd n, any single deletion code C ⊂ X n satisfies

|C0|+ |C1|+ · · ·+ |C(n+1)k+(n+1)/2| ≤ |Sn,(n+1)/2|+ |Sn,n+1+(n+1)/2|+ · · ·+ |Sn,(n+1)k+(n+1)/2|

for all 0 ≤ k ≤ n−1
2 .

The following theorem tells us that the above conjecture is equivalent to the original conjecture
that “VT-code is optimum”.

Theorem 1. VT0(n) code is an optimum single deletion code if and only if Conjecture 1 holds.

Proof. Note that the “only if” part (for both even and odd n) directly comes from Lemmas 3 and 4.
Suppose n is even and |C0|+ |C1|+ · · ·+ |C(n+1)k| ≤ |Sn,0|+ |Sn,n+1|+ · · ·+ |Sn,(n+1)k| for all k.

If we let k be n/2, then we have

|C| =|C0|+ |C1|+ · · ·+ |C(n+1)n/2|

≤|Sn,0|+ |Sn,n+1|+ · · ·+ |Sn,(n+1)n/2|

=|VT0(n)|.

Suppose n is odd and |C0|+ |C1|+ · · ·+ |C(n+1)k+(n+1)/2| ≤ |Sn,(n+1)/2|+ |Sn,n+1+(n+1)/2|+ · · ·+
|Sn,(n+1)k+(n+1)/2| for all k. If we let k be (n− 1)/2, then we have

|C| =|C0|+ |C1|+ · · ·+ |C(n+1)n/2|

≤|Sn,(n+1)/2|+ |Sn,n+1+(n+1)/2|+ · · ·+ |Sn,(n+1)n/2|

≤|Sn,(n+1)(n−1)/2|+ |Sn,(n+1)(n−3)/2|+ · · ·+ |Sn,0|

=|VT0(n)|.

4.3. Special Case of k = 1

Theorem 1 implies that if we can find any code that satisfies the inequality in Equation (1) or
the inequality in Equation (2), then VT code is not optimum. Thus, the plausible strategy to disprove
the conjecture is finding a counterexample for Conjecture 1. However, in this section, we show the
inequality in Equation (1) is true for all n when k = 1.

We define two functions that are useful in the remaining sections. The following lemma is for the
definition of the first function.

Lemma 5. For any n-dimensional binary vector xn,

vn+1(BI(xn))
∆
= {vn+1(x̃n+1) : x̃n+1 ∈ BI(xn)} = {vn(xn), vn(xn) + 1, . . . , vn(xn) + n + 1}.
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Proof. It is well-known that the size of BI(xn) is n + 2 for all xn [30]. Clearly, a single insertion can
only increase a VT-sum, in other words, for yn+1 ∈ BI(xn),

vn+1(yn+1) ≥ vn(xn).

On the other hand, a single insertion can increase a VT-sum by at most n + 1 by adding “1” to the
last position. More precisely, for yn+1 ∈ BI(xn), we have

vn+1(yn+1) ≤ vn(xn) + n + 1 = vn+1(xn1).

Note that {vn+1(yn+1) : yn+1 ∈ BI(xn)} are all distinct, and therefore

vn+1(BI(xn)) = {vn(xn), vn(xn) + 1, . . . , vn(xn) + n + 1}.

First, we define a map g which maps xn to yn+1 where vn+1(yn+1) ≡ 0 mod (n + 1) and
yn+1 ∈ BI(xn). More precisely, we have g : X n → ⋃

i≥0 Sn+1,(n+1)i, where g(xn) ∈ BI(xn).
Since vn+1(BI(xn)) = {vn(xn), . . . , vn(xn) + n + 1} consists of n + 2 consecutive numbers, we can
determine g(xn) uniquely when xn 6∈ VT0(n). On the other hand, if xn ∈ VT0(n), both xn0 and xn1
are possible candidates for g(xn). In this case, we set g(xn) = xn0.

Define another function h : X n+1 → X n, where h(xn+1) = xn. The function h simply deletes
the last bit. If we combine two functions, we get f (xn) = h(g(xn)). Then, the function f satisfies the
following properties.

Lemma 6.

1. For all xn ∈ X n, we have f (xn) ∈ VT0(n).
2. If xn ∈ VT0(n), then f (xn) = xn.
3. For all xn ∈ X n, we have |vn( f (xn))− vn(xn)| ≤ n.

Proof.

1. Let yn+1 = g(xn), then we have

vn( f (xn)) ≡ vn(h(yn+1)) ≡ vn+1(yn+1) ≡ 0 (mod n + 1).

2. If vn(xn) ≡ 0 mod (n + 1), then we have g(xn) = xn0, and therefore f (xn) = xn.
3. If we let yn+1 = g(xn), then we have

vn( f (xn))− vn(xn) =vn(yn)− vn(xn)

=vn+1(yn+1)− (n + 1)yn+1 − vn(xn)

=vn+1(g(xn))− (n + 1)yn+1 − vn(xn).

Recall that we have vn(xn) ≤ vn+1(yn+1) ≤ vn(xn) + n + 1. If vn(xn) ∈ VT0(n), then f (xn) =

xn, which implies vn( f (xn)) − fn(xn) = 0. On the other hand, if vn(xn) 6∈ VT0(n), we have
vn(xn) + 1 ≤ vn+1(g(xn)) ≤ vn(xn) + n. In such case, vn( f (xn))− vn(xn) achieves the maximum
value when yn+1 = 0 and vn+1(g(xn)) = vn(xn) + n. In other words,

vn+1(g(xn))− vn(xn)− (n + 1)yn+1 ≤ vn(xn) + n− vn(xn) = n.
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On the other hand, it achieves the minimum value when yn+1 = 1 and vn+1(g(xn)) = vn(xn) + 1.
In other words,

vn+1(g(xn))− vn(xn)− (n + 1)yn+1 ≥ vn(xn) + 1− vn(xn)− (n + 1) = −n.

Thus, we have

|vn( f (xn))− vn(xn)| ≤n.

This concludes the proof.

Then, we have a theorem that supports Conjecture 1.

Theorem 2. For positive integer n, any single deletion code C satisfies the following inequality.

|C0|+ |C1|+ · · · |Cn+1| ≤ |Sn,0|+ |Sn,n+1|.

Proof. Let C ′ = ⋃n+1
i=0 Ci. From the above lemma, we have vn( f (xn)) ≤ vn(xn) + n ≤ 2n + 1 for all

xn ∈ C ′. Since f (xn) ∈ VT0(n), it is clear that vn( f (xn)) should be either 0 or n + 1. In other words,

f (xn) ∈ Sn,0 ∪ Sn,n+1.

Suppose there exists xn, x̃n ∈ C ′ such that f (xn) = f (x̃n) = yn, then vn(yn) is either 0 or n + 1.
First, if vn(yn) = 0, then yn = 0n. In this case, the weights (number of ones) of xn and x̃n are at most
one, i.e., w(xn), w(x̃n) ≤ 1. This implies that 0n−1 ∈ BD(xn)∩BD(x̃n) which is a contradiction. On the
other hand, consider the case where vn(yn) = n + 1. Since g(xn), g(x̃n) ≤ 2n + 1 and vn+1(yn1), we
have g(xn) = g(x̃n) = yn0. This implies that BI(xn) ∩ BI(x̃n) has at least one element, and therefore
BD(xn) ∩ BD(x̃n) 6= ∅. This is a contradiction.

Thus, f |C ′ : C ′ → Sn,0 ∪ Sn,n+1 is an injective function, and therefore

|C ′| = |C0|+ |C1|+ · · ·+ |Cn+1| ≤ |Sn,0|+ |Sn,n+1|.

4.4. Integer Programming

As mentioned above, if we can find a single deletion code that satisfies the inequality in
Equation (1) or the inequality in Equation (2), that immediately disproves the optimality of VT
code. Since the size of the problem is relatively smaller when k is small, we can numerically solve the
Integer Programming (IP) problem without relaxation.

For example, we can check whether the inequality in Equation (1) holds or not for some fixed n
and k, using the following optimization problem.

max
X

∑
i:vn(b(i))≤(n+1)k

Xi

s.t. ∑
i∈QI(yn−1)

Xi ≤ 1, for yn−1 ∈ X n−1

Xi ∈ {0, 1}, i = 0, 1, . . . , N − 1.
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For some n and k, if the maximum value of the objective function is smaller than or equal to

Mn,k
∆
= |Sn,0|+ |Sn,n+1|+ . . . + |Sn,(n+1)k|,

then it means that no single deletion code satisfies the inequality in Equation (1).
Note that the number of variables are |{xn ∈ X n : vn(xn) ≤ (n + 1)k}|, which is strictly smaller

than 2n. We solve the above optimization numerically for various n and k. For all combinations that we
tried, the maximum value of the objective function is Mn,k. The following table shows all combinations
of (n, k) that we were able to check in a reasonable amount of time.

n 11 12 13 14 15 16
k = 1 X X X X X X
k = 2 X X X X X X
k = 3 X X X X X X
k = 4 X X X X

Entries without check mark are combinations that we could not check due to the running time.
Similarly, we numerically verify the inequality in Equation (2) from Lemma 4. For all combinations

of (n, k) that we tried, we were not able to find any counterexample. The following table shows all
combinations that we were able to check.

n 11 13 15
k = 1 X X X
k = 2 X X X
k = 3 X X X

5. Conclusions

We investigated the maximum size of binary single deletion code. Tighter upper bounds are
provided using Mixed Integer Linear Programming relaxation. In the case of n = 11, we showed that
the size of the largest single deletion code is smaller than or equal to 173. This implies that the largest
single deletion code is size of either 172 or 173. In addition, we showed a conjecture that is equivalent
to the optimality of VT code. Numerical results are proposed that support the conjecture that VT code
is an optimum single deletion code.

One possible direction for future work is semi-relaxed Semidefinite Programming problem.
Since Lovász number (which is based on Semidefinite Programming) provides a better bound than
LP, we can propose the Mixed Integer Semidefinite Programming as we semi-relaxed the LP problem.
Solvers for Mixed Integer Semidefinite Programming are not as popular as solvers for MILP except a
few initial works [31]. However, we think it can verify the optimality of VT code in the case of n = 11.

Funding: This work was supported by the Samsung Research Funding and Incubation Center for Future
Technology under Grant SRFC-IT1802-09
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