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Abstract: Security and privacy concerns are challenging the way users interact with devices. The
number of devices connected to a home or enterprise network increases every day. Nowadays,
the security of information systems is relevant as user information is constantly being shared and
moving in the cloud; however, there are still many problems such as, unsecured web interfaces, weak
authentication, insecure networks, lack of encryption, among others, that make services insecure.
The software implementations that are currently deployed in companies should have updates and
control, as cybersecurity threats increasingly appearing over time. There is already some research
towards solutions and methods to predict new attacks or classify variants of previous known attacks,
such as (algorithmic) information theory. This survey combines all relevant applications of this
topic (also known as Kolmogorov Complexity) in the security and privacy domains. The use of
Kolmogorov-based approaches is resource-focused without the need for specific knowledge of the
topic under analysis. We have defined a taxonomy with already existing work to classify their
different application areas and open up new research questions.
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1. Introduction

Cybersecurity experts develop mechanism to protect users and devices, but there is a constant
“arms race” between attackers and defenders. Security and research teams work every day on solutions
to audit and mitigate attacks. The number of challenges ranges from zero-day detection, software
vulnerabilities with known prior attacks or social engineering attacks.

These challenges have led to the production of many security and privacy protocols, and there are
security specialists in companies where their job is to analyze implementations and enhance security
mechanisms to prevent attackers from exploiting potential flaws and/or vulnerabilities.

However, from a security expert point of view, it is difficult to learn each protocol/implementation
to analyze the security to be implemented in the infrastructure.

To analyze the security of implementations, many companies prefer open source protocols because
it allows them to make a more informed choice about the security of a software [1]. Despite of having
benefits of using open source software, it does not provide security requirements by itself, because
there is a need to have continuous auditing of the code.

A security auditor would benefit from a solution that would check for new iterations without
needing to understand the entire implementation in detail.

One possible solution is to use Kolmogorov Complexity approach, typically feature free and not
requiring knowledge of the protocol itself to produce good results. This paper describes Kolmogorov
Complexity methods, such as Normalized Compression Distance (NCD), Compression-based
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Dissimilarity Measure (CDM), or Lempel–Ziv Jaccard Distance (LZJD), as well as multiple application
scenarios of each method in different cybersecurity settings.

For the categorization of the application scenarios, we propose a well-defined taxonomy. This
categorization allows the description of the state of the art with a precise sense of the context of what
has been done and what future contributions Kolmogorov Complexity can make.

The challenges for cybersecurity experts are considerable, including Privacy, Next-Generation
Secure Internet, Trusted Systems, Identity Management and Global Scale Techniques, and Usable
Security [2]. Kolmogorov Complexity and the NCD can impact on all of these categories, particularly
in the process of validation and automatization of features to avoid human error and improve code
quality and security towards trustworthy systems.

This work is inspired by the authors of [3], who provide research on machine learning and deep
learning methods for cybersecurity, focusing on summarizing previous research and comparing it.
The authors also focus on what information previous works use to produce their results (datasets
and models).

This paper is designed to provide an easy entry point for non-specialists and also to benefit
experienced researchers following state-of-the-art applications of Kolmogorov’s complexity related
measures to information security and privacy.

In addition to show its application scenarios and identifying solutions for each scenario, we also
open new research questions.

This work impacts on the recognition of Kolmogorov’s complexity as a way to prevent and detect
cyber threats, guiding research on new and innovative approaches on this field.

In brief, this paper wants to answer the following Research Questions (RQ) regarding the
Kolmogorov Complexity.

RQ1: What are the domains where it can impact?
RQ2: Can it be an efficient solution to meet the Cybersecurity requirements?
RQ3: Can its approximations be applied in new domains?

The paper is divided into the following sections. Section 1 is the introduction; Section 2 discusses
Kolmogorov complexity notions and practical formulas; Section 3 describes Applications Scenarios
with a novel taxonomy allowing classification of solutions in groups; Section 4 has a discussion of the
findings, with an attempt to explore future research on privacy and security challenges along with
directions for Kolmogorov Complexity improve the usability; and Section 5 shows the conclusions
according to the Cybersecurity scenarios.

2. Kolmogorov Complexity

Kolmogorov complexity [4], or algorithmic information theory, is a mathematically sound theory
measuring the amount of information in an individual object as its smallest representation. This
measure is noncomputable; recently, its approximation, based on compression, has been used in
computer science and a plethora of other scientific disciplines.

Normalized Information Distance (NID), based on Kolmogorov Complexity, measures the
minimal amount of information required to translate between two objects. It is well known that this
measure is also noncomputable, nevertheless we can approximate it by using standard compressors.
In the scope of statistical or clustering methods, it is important to measure the absolute information
distance between individual objects.

There are a number of different implementations trying to approximate the NID, the most known
implementation is the Normalized Compresion Distance (NCD).
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2.1. The Normalized Compression Distance

Cilibrasi and Vitány [5] introduced a new clustering method based on the NID. This method is
powerful; it does not need any background knowledge of a specific area to extract patterns independent
of the domain, allowing to cluster heterogeneous data and anomaly detection in time sequences. Some
applications are in music [6] or heart rate anomaly detection [7].

This method uses compressors to reduce a file to the small representation and uses file size to
perform mathematical calculation that cause similar files to produce similar results. The NCD was first
proposed by Ming Li et al. [8], as a real-world approximation to the notion of NID.

Some experiments shown by Rudi Cilibrasi et al. [5], regarding the impact of NCD on clustering,
show that the NCD is a (quasi-)universal similarity metric to a normal reference compressor. To apply
NCD we need to choose a compressor to make an approximation of the smallest representation of
the program.

NCD(x, y) =
C(xy)−min(C(x), C(y))

max(C(x), C(y))
(1)

In the Formula 1, we give as input two different files: x and y; the result of C(xy) represents the
file size resulting from compressing concatenation of x with y. C(x) and C(y) are the compression size
of x and y, respectively.

NCD function provides values in the range 0 ≤ r ≤ 1 + e representing the difference of two files.
Results of NCD closer to zero represent more similar objects (files); results closer to one are more
distinguishable objects. The e is due to imperfections in the compression algorithms, but for most
standard types of compression [8] is unlikely to see an e above 0.1. Tests with PMZ show that values of
NCD above 1 are not normal.

The NCD matrix is a matrix where the comparison of n samples is performed in a n× n matrix,
resulting in each object (file) being compared to each other and to itself. This matrix can be used in data
mining techniques such as clustering, where each entry can be classified accordingly to similar objects.

2.1.1. Optimizations of NCD

There are two types of NCD optimizations: Interleaving and NCD-shuffle proposed by Rebecca
Borbely et al. [9]. These solutions arise from the varying performance on large files (depending on the
compressor).

When NCD performs the computations of C(xy), the goal is to compress the values of both files to
help to determine the similarity, but compressors have some limitations. Algorithms like bz2 and zlib
have an explicit block size as a limiting factor, and lzma has a finite dictionary size. This dictionary has
repeated sentences representations translated into smaller symbols, allowing to compress original files
and their dictionary into new compressed files. As it processes its input, the dictionary grows. When
a dictionary size exceeds, the algorithm starts with an empty dictionary and if this occurs without
processing the entire x from C(xy), there is not a benefit of compress x followed of y. This makes the
compression obtain similar values of C(xy) to C(x) + C(y).

Interleaving is a solution that attempts to calculate the NCD at a specific size(appropriated
for the compression algorithm), assuming that x and y have the common parts aligned. Unlike
Interleaving, NCD-shuffle splits files into parts of a specific size (appropriated for the compression
algorithm), calculates the most similar block of x present in y, and aligns them to take advantage of
compression capability.

2.2. Compression-Based Dissimilarity Measure

CDM proposed by Eamonn Keogh et al. [10] is inspired by bioinformatics, learning, and
computational theory, and has been applied by different authors in other domains, such as data
linkage and reduplication problems [11].
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CDM(x, y) =
C(xy)

C(x) + C(y)
(2)

The formula to compute the CDM is represented in the Equation (2). The input are two different
files x and y. The result of C(xy) represents the size of the file resultant from the compression of the
concatenation of x with y and C(x) and C(y) is the results of the file compressed. Such as in NCD,
values close to 1 occur when x and y are not related, and values close to 0 occur when x is very similar
to y. The values of CDM varies by the compressor used.

2.3. Lempel–Ziv Jaccard Distance

LZJD [12] is a new derivation of compressor use to represent the NID and is inspired by the NCD.
This measure, instead of taking advantages of the object’s compression size, uses the Lempel–Ziv
(LZ) technique to create a compression dictionary of previously seen subsequences; therefore, in this
scenario, the compression iteration is done only because it is required to generate the dictionary. The
LZSet method is used to convert a sequence of bytes into a set of byte subsequences.

LZJD(x, y) = 1− J(LZSet(x), LZSet(y)) (3)

The LZJD is defined by Equation (3). The LZSet represents the compression dictionary and J is the
Jacard similarity is the cardinality of the intersection of two sets divided by the cardinality of their
union Equation 4.

J(A, B) =
|A ∩ B|
A ∪ B

(4)

2.4. Normalized Relative Compression

Normalized Relative Compression(NRC) [13] is another approximation to NID, but compared to
other approaches, is the C(x||y), which represents the compression of x relative to y.

Formula 5 represents the practical implementation of this approach. The inputs are two different
files: x and y and the |x| is the length of x. The value of C(x||y) varies depending on the object, if x
can be constructed from y the value is 0, if x can not be constructed from y the value is the size of x.

NRC(x||y) = C(x||y)
|x| (5)

3. Kolmogorov Complexity Application Scenarios

Kolmogorov complexity-based approaches can be applied to various scenarios. This section
describes the different application domains organized into a taxonomy. To build this, we started
by surveying publications that use NCD, LZJD, CDM and NRC on information security topics to
understand its impact. We then use a selection methodology for the different domains, based on
previous work in the different areas. In addition, we have included a review of previous work and
future research directions for each domain.

Figure 1 presents the taxonomy that is organized in five categories:

– Human (user) Interaction: Today’s systems need human-in-the-loop interactions. Users are very
susceptible to errors and this leads to challenges that can be solved [14–24].

– Software: The rapid pace of how the software is being used makes it almost impossible not to
use open forums/repositories to solve our needs. This creates software security breaches that
compromise user data even on data in transit [25–32].

– Malware: In recent years, companies have been attacked with malware. The scalability to mount
an attack on multiple institutions at once is not expensive compared to the reward. This leads to
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blackmail to companies/users, disclosure of files or credit card data in the web, or encryption of
databases and files [9,12,33–37].

– Identity/Authentication: With the exponential growth of wearables devices, users and devices
will need to manage a new authentication mechanism to pair and interact with enhanced features,
gathering information from the ECG (electrocardiogram) or similar, for example [38–42].

– Theory to practice: There are some protocols that enforce privacy and security in communications
between users. With the emergence of new cyberattacks and with the recent developments in
academia regarding privacy policies imposed by rules to protect user privacy, such as GDPR, it is
of utmost important to validate existing implementations to ensure user privacy [43].

Figure 1. Taxonomy.

The following subsections introduce each of the topics represented in the Figure 1.

3.1. Human Interactions

Corporations have multiple layers composed by network and physical security. Network security
has different components, such as firewalls, antivirus, or policies. However, physical security consists
of barriers to prevent people from entering the institution, for example. In this scenario, many authors
claim that the weakest part of the systems in the security chain is the human [44].

There are many solutions to mitigate this type of attacks, but there is no effective solution to solve
the problem because employees can be triggered by any means to do something wrong.

Kolmogorov Complexity has been used for early detection of fake content. Two application
scenarios are Phishing and Text Mining.

3.1.1. Phishing

Phishing is an activity by one attacker to impersonate another. This type of phishing attack
focuses mainly on two versions: e-mail and web pages.

On web pages, for example, we can see the similarity between an old and a new page to
understand the page’s evolution according to a threshold. This allows to dissuade the victim from
clicking or interacting with a web page similar to the one that the victim usually uses with an identical
link and content. This way, it tries to get the user to log in to this page for more sensitive information
and credentials, such as credit/debit card details, for example [45].

In emails, a person or entity may be compromised by an email sent from an illegitimate source,
pretending to impersonate other and requesting personal information (for example, a CEO requesting
the transfer/raise of an employee). Kathryn Parsons et al. [46] study the ability to classify an email as
phishing or not, and the conclusions are that 42% of the email was misclassified. The practical solution
to this is to develop new and innovative approaches to automatically detect SPAM/HAM.
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E-mail

E-mail can be classified between SPAM, HAM, and legitimate. SPAM is often understood as an
electronic system that sends unsolicited bulk messages to random locations or specific destinations,
such as the “Nigerian letter” [47]. HAM is a type of email sent from a mailing list subscribed by an
user directly or indirectly. For example, after submitting an article, users automatically subscribe to a
conference mailing list that sent all new articles published and call for papers. The classification of
incoming e-mail is an open issue in security research. With the growth of machine learning technologies,
attackers gain new ways to explore and exploit new types of attack vectors that customize SPAM
e-mails to targeted users. NCD has contributed to the detection of these type of attacks [14–16].

Delany and Bridge [16] focus on feature-free distance measure and compare them. In this paper,
the authors study NCD and CDM and introduced the concept of drift that represents a dynamic target
concept. The target concept can be viewed as a specific list of e-mails that changes over time according
to world events or seasons. The changes are also affected by people’s interests, for example, conference
or seminar reminders can become unpleasant. In brief, a subset of e-mails is selected according to
the time of the year or the more recent e-mails of each user. The advantages of using the concept
drift influence performance because a short list of emails is used to compare and update, allowing
detection of new type of e-mails in use without processing all historical e-mail (an example is e-mail
with historical facts that loose value over time).

For the study, the authors use a private dataset containing e-mails received by a set of users
for one year. Comparison of NCD with CDM shows that NCD outperforms CDM and the concept
drift decreases misclassification. Also, the results show that the accuracy of NCD compared with
Feature-Based Distance Measure (FDM) is better or equal. An advantage of use NCD is the cost to
setup and simpler periodic maintenance demands.

Other work on SPAM detection uses the Text REtrieval Conference (TREC) dataset, organized in
the year 2005. The dataset [48] contains 48,360 SPAM emails and 36,450 HAM emails. The authors
Prilepok et al. [14] performed a test with different compressors and concluded that, using the NCD, the
HAM classification was independent of the compressor. However, SPAM was compressor dependent,
but ranged from 66% with Burrows Wheeler with Adaptive Huffman Encoding, RLE and Fibonacci
Encoding up to 90% Adaptive Huffman. A more recent approach to Prilepock et al. [15] included the
previous TREC dataset with SpamAssassin Public Corpus and confirmed the effectiveness of this
approach. Also, authors perform a 2% improvement if the spam filter uses signatures. Signatures
contain information extracted from e-mails, but are much smaller and lead to a quick response, because
it is easier to verify that a signature is present in a predefined list than to compare incoming e-mail
with a SPAM and a HAM dataset by similarity (signatures only work if the message is exactly the same).

Web Pages

Phishing web pages have traditionally been detect by DOM tree, HTML code or link structure
of a page, but there are also new approaches to take advantage of Supersignals [49] and Gestalt [50].
T.-C. Chen et al. [17] introduced a system that takes advantage of these concepts to analyse the Web
page as indivisible entities (i.e., a whole) to be classified based in the human perceptions (visual
representation). To implement and compare the results of NCD in the detection of phishing web sites,
the authors used PhishTank [51]. PhishTank is an open platform that allow users to query threads
and report a website as phishing or not to other users. The results based on a series of experiments
demonstrate that this approach is capable of classify and cluster between similar and dissimilar web
pages. As future work, the authors propose a creation of an antiphishing system. This system was then
introduced by T.-C. Chen et al. [18]. To accomplish a better performance, the authors also implement
the possibility of adding a blacklist to the antiphishing platform allowing owners to submit a sample
of a fraudulent web page.
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Alberto Bartoli et al. [19] explore the feasibility of NCD as a phishing mechanism in web pages,
based on a real environment. The authors propose the possibility of an attacker learn the NCD formula
and then be capable of compute a page P that is similar to the targeted page P’, ensuring that NCD(p,p’)
is a higher value to mislead the behavior of the phishing algorithm. The authors also explore what can
be a significant difference, and the results include changes that only slightly change the appearance,
the brightness of the background color or the zoom of the entire website will not be noticed by the
user contrarily to the opposite value of NCD. They conclude that is complex to detect SPAM only with
NCD, but further iterations must be done to understand relevant parts of the web page (i.e., focus only
in the subset of the webpage that contains the login mechanism).

3.1.2. Text Analytic

Recent developments in text analytic focus in discovery of patterns specially in long
text. In a recent work [52], the authors suggest that we can use these to detect plagiarism in
e-Learning/e-Publishing systems, assist in preparation of expert reports in criminology, the
identification of channels of threats in cybersecurity, and providing digital libraries with tools for
studying writing style. The authors also compare the results of compression based algorithms with
n-grams and conclude that the precision reaches 20%. However, NCD, as a file fragment classifier, can
bridge and create mechanism to detect the authorship, example of this will be source code replication
or text available on the web can be copy by a individual with miner changes to mislead users, an
example of this is change small parts of the text. The work in this field is extensive and show the
variety of scenarios where NCD can be applied in long text analytic [53–58].

Social Media

With the growth of the number of Internet users and the importance, security agencies need
to gather and collect information to understand user behaviors. There are two major goals: detect
fakenews and detect physical or cyberattacks. Fakenews is one of the most relevant problems for
security researches, there are many research challenges on the detection and reduction in the spread of
fakenews [59]; also, there is a topics and threads that allow authorities to detect events and trending
topics and eventually illegal events [60–63] or to detect patterns in post from social media in order to
understand and detect users that control multiple social media accounts.

The work with NCD in this domains focus initially in the detection of suspicious accounts; Alami
and Beqqali [20] introduced a method using suspicious terms collected in a data base (manually added),
allowing classification of the entire message. This is done by dividing and classifying each word in two
categories Normal or Suspicious. The results were developed using a Twitter repository of messages
from 2012 [64]. An extension of this work by Alami and Beqqali [21] was proposed, the motivation
focus in the need of analyzing and create mechanism to disambiguation, in this scenario they classify
the hashtag, this allow to identify hashtag and message that should be threated as security problems,
and can have a specific dictionary, contrarily to have a fix dataset that took more time to compute. The
practical implementations of this in a real scenario was done by Rasheed [22], where it has also used
dataset with sentiment score to improve the dataset search.

Regarding the detection of multiple accounts, a recent article used NCD for this detection [23,24]
created two datasets containing information from Twitter feeds from individuals who each control
multiple Twitter accounts and one that merged with the StackExchange, most of the techniques
used failed when detecting same user accounts, as suggested by the authors temporal and semantic
approaches failed because users split accounts for example by topics meaning that the words
are different, also the publication ratio can also be different, meaning that NCD has the best
in the first dataset, by contrast, in the second it has not the best, the authors suggest that based
on the difference between the text sizes the NCD could not overcome this issue and did not results well.
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3.2. Software

With the exponential growth of smart devices and the proliferation of laptops and cloud
computing, there is a need for autonomous tools that together can work and reinforce practices
to contribute to better understanding and solving challenges such as finding vulnerability across
multiple layers of code/projects or understanding unsafe programming practices.

3.2.1. Code Sharing and Vulnerabilities

Software development has been empowered by sharing/colaborative platforms. An example of
this sharing platforms are Github and Stack Overflow. Github allows users to collaborate in projects
widely available, and stack overflow is a discussion forum that allows users to expose questions or
to answer another users about software-related problems. However, this platform also has issues
such as non-expert answers or the efficiency/safety of solutions that are not considered either. These
pieces of code can often introduce vulnerabilities in real-world deployments [65]. These platforms are
immediately recommended by search engines when there are code issues searched by developers, and
often they just copy/paste the code to solve a problem without auditing [66–68].

When vulnerabilities are found, they must be searched along all code from an enterprise to fix the
issue. There are many commercial applications that allow a developer to find security vulnerabilities
on source code. The approximations was first introduced by Takashi Ishio [25], where NCD is used
after a user finds a vulnerability. This process is simple: it only requires searching similar patterns in
the other files of the project to patch the same error. The tool is compared to a grep style detection but
with the benefits of NCD. Grep command only finds the exact type of code searched but with NCD,
it is possible to search for (very) similar changes, for example, the introduction of a variable or the
change of a loop variable from “i” to ‘j”. The NCD will be capable of detect these type of changes, by
acting dynamically, but the grep command only search for the pattern ignoring all variations.

The BinAuthor [26] is a framework for identifying the authors of program binaries and it uses
NCD as a way of identify structural similarity. The results indicate that the precision of these techniques
depends on the number of authors, for example approximately 50 authors or more make the accuracy
drops to 45%. The difference between authors with advances skills can be easily identified compared
to authors who do not have much experience.

3.2.2. Anomaly Detection

With the proliferation of network/mobile usage, many companies move the services to cloud,
such as banks, allowing customers to check balances or transfer funds between accounts [69]. This
challenges the way security experts look for security holes because hacking can be from different
sources, such as network connections, or by simply modifying the original application to perform
different requests.

Network

When software is deployed on a large scale, companies need to infer what is happening with
software to prevent cyber crime. It is important to debug for potential errors or to audit the system.
Typically, the first solution is to store all log information in empty files for postprocessing; this
information can be, for example, the number of attempts to log on to a system, the source IP, the
destination IP (in the case of central logs), and the ports used. The possibilities of using this information
have been explored by many authors with proven results [70]. A solution proposed by Gonzalo de
la Torre-Abaitua et al. [27,28], shows the possibility of using NCD to perform proper analysis of the
log files of multiple services to detect anomalies at an early stage. The authors identify five main
topics, but the two most important are URL identification domain generation algorithms and Domain
Generation Algorithms (DGA), which are important when parsing log files. DGA are algorithms and
DNS names that are periodically generate a domain name that try to pass by a real domain name.
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Malicious URL is normally a request made by users or machine for a web service that may follow a
bad parameter specification to try to enter in a debug mode or administration console, for example.
In this scenario, the authors used a public CSIC dataset [71] containing both safe and unsafe HTTP
queries, and they compare the results with similar approaches of anomaly detection, and the results
are very similar. The advantages of using NCD, is that there is no need for feature selection, depending
only on the compression algorithm. DGA solutions have the ability to detect fake domains on the
network, for example, when software is vulnerable and begins to connect to remote sites and exchange
information. In this scenario, NCD calculates similarity and produces better results with detection
known systems, but using a small percentage of domains to train the model.

Although our approach does not always improve the best results obtained by other researches
based on the same data, it leads to a similar performance avoiding the computational cost of any
previous feature selection process.

Christina Ting et al. [29] adopted the use of NCD in the analysis of DNS queries. The authors
used an Intrusion detection evaluation dataset (ISCXIDS2012) [72] from the Canadian Institute for
Cybersecurity where they extracted the DNS queries and answers. The authors introduce the slice
compression mechanism that is responsible for removing the applications data portions letting only
NCD with the protocol differences (i.e., the TCP connections loses all the application data letting only
the information of the headers available for processing). The results show that this can be a good
approach to apply to network protocols.

Mobile

Static analytic of Android application is used in scenarios such as testing if obfuscation algorithms
are working properly, testing if android applications are similar to the previous version, and if the code
does not include bad code, such as blockchain mining functionality or malware distribution [73]. The
first proposal by Anthony Desnos [30] tries to calculate similarity after decompiling the application
and search based on an algorithm that generates the signatures of each method, identify unchanged
methods, and search by similar methods using NCD. The authors make a test for the version of Skype
where 165 changes were detected by NCD. This changes can then be classified by degree of importance.
A recent work from Sreesh Kishore et al. [31] proposes a system that uses NCD to compute the app
lineage or detect malicious components in applications, because they use birthmarks from 60 APK.
Birthmarks are intrinsic characteristics of an application that can be uniquely identified. In java, the
proposed birthmarks are Used Classes, Constant Values in Field Variables, Sequence of Method Calls,
and Inheritance Structure proposed by Tamada et al. [32]. The system proposed to collect applications
from multiple sources and split them between test and baseline applications. Test applications are
crawled from the web, such as open repository or none standard markets and the baseline applications
are collected from the Google Play. Birthmarks are then extracted from applications and sent to the
compute engine, where if the applications have a NCD of less then 0.4, they are considered similar;
otherwise, they are marked as fake and not safe. They compare the results with androsim and this
system improved state-of-the-art detection of similar classes with 100% precision compared with 45.5%.

3.3. Malware Classification

As mentioned, phishing allows an attacker to spread and impersonate companies. This type
of impersonation attack can cause a user to download files that contain malware attacks. Therefore,
in addition to solve Phishing problems, it is also necessary to solve issues related with malware
attacks. Malware includes different types of attacks, such as viruses, worms and spyware. The
malware industry is a well-organized and well-funded marketplace dedicated to bypassing traditional
enterprise security systems. Once a computer is compromised, the entire infrastructure is in a critical
state. The impact can be huge on the brand or affect the business model, exposing personal or customer
information in many ways [74,75]. To help predict and improve the malware rating that Microsoft
released in 2015 as a challenge, the goal was to become effective at analyzing and classifying large
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amounts of files. These files should be grouped and identify their families. Traditional solutions
address malware detection by running and searching predefined bit patterns (signatures), which were
previously classified as malware in the virus database. The functionality of this is essentially limited
to previously known attacks, which means that the changes performed, will completely change the
malware signature, making it new and undetected malware, called metamorphic or polymorphic
malware. NCD can especially help with these small changes by calculating object similarity, making the
system more robust to character-level adversarial attacks, such as polymorphic/metamorphic viruses.

Metamorphic malware uses code obfuscation techniques to change its internal code structure
while maintaining its malicious functionality during each propagation. To improve and solve this
problem using NCD, Michael Bailey et al. [34] introduced the use of NCD, but instead of applying
to malware code or executable, it uses behavior. Malware behavior has already been proposed as a
solution to deal with polymorphism and metamorphism, where malware changes its visible sequence
of instructions as it spreads. To do this, authors use user-visible system state (such as open files, created
processes), and then use it as the malware fingerprint. These fingerprints are more stable than abstract
or dead code; they then run all malware in a controlled environment and collect this information. This
allows authors to compare and identify the type of malware exposed in each situation by those that
reflect similar classes of behavior.

Binary malware analysis is classified as static analysis where code is not executed; the advantages
of this type of analysis are the security of not having to create a safe environment. There are two
different works with compression in this kind of scenario ( [9,35]). Rebecca Schuller Borbely [9],
study the definition of normal compressor to understand the best compressor for Microsoft challenge
analysis [76]. The authors introduce two changes to the NCD formula to improve the compression
functionality using Interleaving and NCD-shuffle (see Section 2.1.1). These changes produce a
performance increase, for example, zlib increased from 50.5% to 83.9% in malware classification.
Another work from Alshahwan et al. [35] inspired by Wehner’s work [77] attempts to classify malware
based on executable binaries. The results show that a malware reported within a short period of time
(i.e., a few days) is more homogeneous than malware reported over a longer period of time (i.e., a
year). The authors carry out several studies and conclude that, by the time of 2015, the detection by
the platforms present on VirusTotal site was worse in all cases. A more recent study also outperformed
the VirusTotal in 2019 [78].

The LZJD [12,36] helps in the malware classification and introduced a comparison with NCD.
The results were interesting not only based on the improvement results, but on Microsoft’s dataset,
specially in the cost of computation, which makes the computation faster and simpler. The authors
show the results of Microsoft dataset analyzing with NCD in only 10% of the data and KNN with
k=1, and this increase predictions from 58.1% accuracy with NCD to 98.2% with LZJD. The results
show that this is a good result for malware classification. The same results were tested with the Drebin
dataset [79], which contains APKs from different Android applications, and from 67.2% with NCD,
the results with LZJD raised to 81.4%. To improve the system the authors also propose a stochastic
component to enhance the behaviour of the compressing algorithm [33].

There are other approaches that focus on using compression Approximate Minimum Description
Length (AMDL) and Best-Compression Neighbor(BCN) [80,81], but this is not derived from
Kolmogorov Complexity.

There is some work that focuses on comparing NCD with other market solutions. A recent paper
by Houtan Faridi et al. [37] concludes that NCD with a similarity threshold of 0.4, compared with
other approaches, is the best metric for detecting malware.

Table 1 represents and overview these articles. It focus on the format of malware used, the type of
Kolmogorov formula used, and the dataset used to test the solutions. We show in the table how to
compare different approaches with the same dataset, otherwise we cannot choose the best malware
classification solutions. There is, as shown in the previous sections, a greater impact of NCD compared
to LZJD.
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For future work, after performing a comparison with a fixed dataset of all the approaches, it is
also important to test the difference in a dataset of using traces compared with Binary or hexadecimal.

Table 1. Malware comparison table.

Malware Dataset
Articles Type Kolmogorov Microsoft Drebin Arbor Private VirusWatch Genome
[34] Traces NCD # #   # #
[35] Binary NCD # # #   #
[9] Binary NCD  # # # #  
[12,36] Binary LZJD   # # # #

 = Use the dataset; #= Not using the dataset.

3.4. Identity & Authentication

Traditional mobile authentication/identity, such as passwords or fingerprint techniques, are
vulnerable to attacks [82]. One of the new mechanisms to solve the problem of authentication, is the
usage of the smart lock technology. A smartwatch can be configured with the smartphone in order
to unlock by closeness. This way, smartwatch can identify a user [83]. These types of solutions are
being proposed, such as the use of Electrocardiogram (ECG), to authenticate/identify a specific person.
ECG is the representation of the electrical signal that comes from the contraction of the heart muscles,
indirectly it represents the flow of blood inside the heart [39]. A study to understand the number of
heartbeats needed to uniquely identify a person using NRC, shows that it is possible with only 5 to 12
heartbeats, maintaining the accuracy between 75 and 80% [38].

Arteaga-Falconi et al. [40] introduced ECG for Mobile devices to work as an authentication system.
The benefits of this type of systems for authentication are important for ensuring the presence of the
user without possibility of cloning the identity.

At this moment, the use of NCD in the authentication of mobile devices or in other systems is an
open challenge, but there are already some approaches in the identification of a user based in ECG and
compression mechanisms.

Past works have been focus on the identity based on known datasets that try to identify users.
Carvalho et al. [41] introduced NRC with an improvement compared to past works with the same
dataset. Later, Bras et al. [42] improved the results from 80% to near 90% in identification of users.

3.5. Theory to Practice

There are protocols that enforce privacy and security in communications between users. With
recent developments in academia regarding privacy policies imposed by rules to protect user privacy,
such as GDPR, it is essential to validate existing implementations to ensure user privacy.

Cryptographic Protocols

There is always a difference between theoretical and the equivalent practical implementations.
The theoretical approaches of cryptographic protocols, for example, are always published mathematical
proofs. However, there are a lot of open source implementations of these theoretical protocols, that are
used by companies in production, and there is no validation of the implementation regarding all the
mathematical proofs of the theory.

The problem of Software Engineering Practice in Scientific Programming has already been
introduce by Tim Storer [84], where it surveys facts from this problem that arise from the late 1960s
with work from Naylor and Finger [85].

NCD was introduced as a novel approach to solve these problems. An example of this is
the implementation analysis of a cryptographic protocol (Multiparty Computation (MPC)), where
Kolmogorov Complexity helps to detect anomaly patterns in the properties that are guaranteed by the
theory of the protocol [43] .
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MPC was formally introduced as secure two-party computation in 1982 [86–88]. Andrew
Yao introduced the millionaires’ problem in 1982, the seminal secure multiparty computation
example/problem. The scenario consists of two parties whom are both interested in knowing which
of them is richer without revealing their inputs (i.e., their actual wealth). In this scenario, each party
uses respective inputs x and y denoting their salaries. The goal is to find the highest salary, without
revealing their respective salaries. Mathematically, this can be achieved by computing

f (x, y) = max(x, y)

At the end of the protocol, each participant will get only the result of the function f , without getting
anything else about the other party’s input, i.e., the secret inputs will not be revealed. This protocol
has to ensure two main security properties:

– Privacy: The inputs are never revealed to other parties;
– Correctness: The output given at the end of the computation is correct.

These security guarantees are to be provided in the presence of adversarial behavior. There are
two classic adversary models that are typically considered: semi-honest (where the adversary follows
the protocol specification but may try to learn more than allowed from the protocol transcript) and
malicious (where the adversary can run any arbitrary polynomial-time attack strategy) [89].

The authors focused in the semi-honest attack, where both users communicate, and passively
intercept the information exchanged over MPC. For that, the authors used the network information
produced by the implementations to cluster them using NCD. To demonstrate their findings, they
created a scenario with the Forbes millionaires. This millionaires were replicated in a laboratory to
perform 5 communication between them. With this approach, the results show that only one (ABY [90])
of the four implementations(SPDZ-2 [91], TinyLEGO [92], and DUPLO [93]) is secure.

4. Discussion and Future Research Directions

In this section, we aim to discuss the initial defined research questions (see Section 1), suggesting
further research directions.

Regarding the question RQ1, the domains can be grouped in five categories: Theory to Practice,
Software, Human Interaction, Identity & Access Management, and Malware (see Figure 1).

From all categories, Human Interaction is the category with most different sub-domains, because
text analytics has been a very active research field over the years, especially regarding the similarity
between texts to detect authorship, for example.

Regarding the efficiency of solutions on meeting cybersecurity requirements, there is not a clear
answer (RQ2). Kolmogorov Complexity presents academic results that fit the needs from the real
world in many domains, but authors of some publication claim some limitations. This limitations
mean that in some scenarios, the existing results can be easily misleading. An example of this is the
detection of malware for the first time because, if an attacker knows the type of analytic performed, it
is possible to compute a new malware solution that is not detected otherwise. By performing random
tasks in the execution process, it generates a new type of output of the same attack. BinAuthor [26] is a
type of solution that shows multiple applications of Kolmogorov Complexity: it applies it to simple
tasks (detection of code structure similarity), and enhances it with external sources of information,
such as, in the example of collaborative phishing detection (PhishTank [51]).

So, the answer to the question RQ2 is that it depends on the application scenario.
New scenarios for NCD application to cybersecurity issues are emerging, and this is important

for research in the area and possibly to help address efficiency issues. Identity & Access Management
and Theory to Practice domains are the most recent application scenarios to Kolmogorov Complexity,
and this is the answer to RQ3. The utility and future work for these specific domains is:
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– Identity and Access Management: This field focuses on ECG-based identity validations and
authentication. This allows, for example, to collect this information with wearable and process
the heartbeat to provide identity, for example, physical access to institutions, login at the
computer/mobile phone, or identify patterns about the user feeling when reading an e-mail,
among other approximations.

– Theory to Practice: This domain is one of the most important when implementation arise from
the theoretical/mathematical proofs to a real world implementations. The first version of the
software must always be treated as unsafe and not immediately deployed at scale. The challenges
aims for searching patterns in homomorphic encryption, searchable encryption and other similar
protocols to measure the security and reliability of the system implementations. These type of
protocols can have a high impact on society, but it is important to test and find ways to validate
the security and privacy requirements.

Future Research Directions

Compared to other solutions, deploying Kolmogorov’s complexity needs work to enable the
academic community and businesses to begin using it as a true solution to cybersecurity issues. Also
taking into account the Figure 1, there are other future research challenges, including those presented
during RQ3, in existing domains that focus on framework availability or deployment in the real
environment:

– Software: In the future, the Software domain needs to be tested in a real environment. In
anomaly detection, the challenges is to test with known datasets, such as the summarized by
Cinthya Grajeda et al. [94] to understand the usability in new sub-domains. Besides analyzing
all the code, there should be a preprocessing of the data, following some rules depending on the
implementation and application scenario, to remove external sources of entropy. Regarding Code
Sharing and Vulnerabilities, the future directions should focus on the integration into open-source
tools to detect events based on multiple sources.

– Human Interactions: There is no evaluation in the real world environment of this approach. It is
interesting to evaluate phishing detection over time, for example, to see if the solution is viable or
not in a real context. Real-world deployments are needed to show the advantages of this approach
in cooperation with other tools to test the ability of outperform the state-of-the-art deployments,
especially in web pages and e-mail phishing. Further enhancements to Fakenews may benefit to
address some open issues proposed in this domain, such as automation and specialized tools [63].

– Malware: Regarding Malware, there is a clear need to compare all different articles against a
common dataset to compare the performance of each approach. This is especially important
when considering Table 1, where all articles are shown to use a different dataset. There are also
more datasets available for performance testing [94]. Real application scenarios, in our opinion,
should be based on an approach that uses NCD in the tool chain, but uses other external sources
of information with known practical results validated by security experts, enhancing these tools.

Future challenges are not only focused on cybersecurity issues, but also on mechanisms to allow a
faster pace for Kolmogorov Complexity algorithms. It is necessary to classify and show which formula
is the best for classification, using Kolmogorov Complexity, dependent of the application scenario. The
result depends on the compression algorithm or the size of the dictionary. All these studies must be
done to create mechanisms to clearly understand the functionality and limitations of each one.

The study of the normal compressor definition should be addressed as preliminary theoretical
studies have been performed, but no practical analytic is performed. Also, current implementations
of the formulas analyzed do not use the same implementations, for example, NCD uses Complearn,
which works almost instantly, making NCD one of the most widely used platforms. It is important to
create a library that gathers all these different formulas and compressors and show/test what are the
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best solutions for a specific scenario. LZJD, for example, should be tested in different scenarios as it is
one of the most recent approaches.

5. Conclusions

Over the years new opportunities and challenges for information theory have emerged. Many
research challenges have been focused on the use of Kolmogorov Complexity to compute similarity
between objects, especially focused in the medical domains. Current research have become a
multidisciplinary subject that includes applications on Machine Learning, for example.

In this article, we review the security and privacy features of the relevant practical
implementations of the Kolmogorov Complexity and assess their impact across multiple domains,
which is a clear demonstration of the use cases (Figure 1). The use of these technologies in the
cybersecurity domain is motivated by the feature free and no parameter to tune. Protocol proliferation
contributes to an autonomous framework that can be computed without much required knowledge.

Kolmogorov Complexity focus on the absence of need for in-depth knowledge of the domain
data, but this can induce users on trying to use it as a quick fix. However, from our perspective, many
times it is necessary to perform preprocessing data such as the authors that analyze the security of
MPC [43]. To perform validations, it was necessary to remove the entire network layer from wireshark
captures, because compression should not detect significant differences in non-MPC data. An example
of this is packet retransmission, which do not add MPC information but increases capture size and
introduces differences between captures.

In our assessment, of all Kolmogorov approaches, NCD is the most widely deployed solution,
but some changes are introduced, such as Interleaving, to support large files. This problem focus on
compressor limitations, such, lzip uses fixed-size dictionaries, which creates a problem that, when the
dictionary is full, is redefined to an empty data set again.

The impact of Kolmogorov Complexity is focused usually on the use of NCD. From our opinion,
this correlates with the availability of the libraries that implements this formula, contrarily to LZJD
that was proposed/implemented recently.
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