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Abstract: The eigenvalue is one of the important cryptographic complexity measures for sequences.
However, the eigenvalue can only evaluate sequences with finite symbols—it is not applicable for
real number sequences. Recently, chaos-based cryptography has received widespread attention for
its perfect dynamical characteristics. However, dynamical complexity does not completely equate
to cryptographic complexity. The security of the chaos-based cryptographic algorithm is not fully
guaranteed unless it can be proven or measured by cryptographic standards. Therefore, in this paper,
we extended the eigenvalue complexity measure from the finite field to the real number field to make
it applicable for the complexity measurement of real number sequences. The probability distribution,
expectation, and variance of the eigenvalue of real number sequences are discussed both theoretically
and experimentally. With the extension of eigenvalue, we can evaluate the cryptographic complexity
of real number sequences, which have a great advantage for cryptographic usage, especially for
chaos-based cryptography.
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1. Introduction

Sequence complexity can be regarded as a series of measures that depicts the different characteristics
of sequences. For cryptographic uses, the most important complexity measures of sequences are
linear complexity, Lempel–Ziv (LZ) complexity, eigenvalue, and nonlinear complexity. The nonlinear
complexity of a sequence y is an important measure, and it is defined as the length of the shortest
Feedback Shift Register (FSR) that generates y. For the shortest Linear Feedback Shift Register (LFSR),
it is referred to as the linear complexity. These two measures have been studied for many decades [1–6].
In addition, Lempel and Ziv proposed another well known complexity measure for a given sequence,
which is called the LZ complexity [7]. The complexity is related to the number of distinct phrases
and the rate of their occurrence along the sequence. In the same study, the eigenvalue was provided
from a similar aspect as well, while the eigenvalue profile more closely reflected the rate of vocabulary
growth than the LZ complexity. The relationship between LZ complexity and nonlinear complexity
was studied in [8], which shows that these two complexity measures are converse in a sense.

For all these complexities, there exists a premise, which is that the measured sequences should
be on the finite field. This implies that the cardinality of the state set of the sequences should be
finite. For linear complexity and nonlinear complexity, the cardinality of the state set is always set
to be two, which corresponds to a binary sequence. The Lempel–Ziv complexity and the eigenvalue
can measure the sequences with N symbols, where N is finite. [9] studied the relationship between
the eigenvalue and Shannon’s entropy of finite symbol sequences. The authors of [10] studied the
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relationship between the nonlinear complexity and Shannon’s entropy of random binary sequences.
Moreover, the authors of [11] investigated a method to construct finite length sequences with the
large nonlinear complexity on the finite field. In addition, the authors of [12] used the Lempel–Ziv
complexity as a nonlinear analysis tool on the characterization of the effects of sleep deprivation on
the electroencephalogram, etc. To the best of our knowledge, most of the studies in these complexity
measures, including theoretical analyses and practical applications, were subjected to this constraint.

Nowadays, many physical systems can be used in cryptography for its complex dynamical
properties, such as chaos-based cryptography [13–20]. However, chaotic systems are based on
the real number field Rn, and the cardinality of the state variable is infinite. Currently, we always
prove a chaos-based secure cryptographic algorithm based on its high dynamical complexity.
However, the dynamical complexity is not completely equal to the cryptographic complexity.
Thus, the security of chaos-based cryptographic algorithms is not guaranteed by cryptography
researchers [21].

In order to overcome this weakness of chaos-based cryptography, we should evaluate the
complexity of chaotic sequences in a cryptographic way. However, all the cryptographic complexity
measures currently used are only available for finite symbol sequences. Thus, we should extend
the cryptographic complexity from the finite field to the real number field. In this paper, we mainly
focused on the eigenvalue complexity, extending this measure from the finite field to the real number
field to evaluate the cryptographic properties of real number sequences. The probability distribution,
expectation, and variance of the eigenvalue of real number sequences are discussed both theoretically
and experimentally.

The rest of this paper is organized as follows. In Section 2, a brief introduction for the eigenvalue
is presented and its extension to the real number field is proposed. The eigenvalue of two kinds of real
number sequences are discussed in Section 3, including the uniformly distributed random sequence
and the logistic chaotic sequence. In Section 4, four kinds of chaotic sequences are evaluated and
compared by using the extended eigenvalue measure. Finally, Section 5 concludes the whole paper.

2. Eigenvalue for Real Number Sequences

2.1. Eigenvalue for Binary Sequences

The eigenvalue was first proposed by Lempel and Ziv in [7], which described the number of
words occurring from a particular parsing procedure of the sequence. Here, we simply summarized
the definition of eigenvalue.

Let F2 denote the binary field and xN = x0x1x2 . . . xN-1 be s binary sequence with length N. xi
j is

denoted as the tuple xi . . . xj in the sequence, i ≤ j. The prefix and suffix of sequence xN is defined as
x0

j and xj
N-1, respectively. When j < N-1, they refer to proper prefix and proper suffix, respectively.

The vocabulary of a sequence xN is the set consisting of all tuples. If a tuple xi
j does not belong to the

vocabulary of a proper prefix of xN, it is called an eigenword. The eigenvalue of a sequence equals the
total number of eigenwords. The eigenvalue profile of xN is the integer-valued sequence determined
by k(yi), i = 1, 2, . . . , N.

Proposition 1 ([7]). The eigenvalue k(yN) of sequence yN equals the least l such that yN is reproducible by yl.

Example 1. Consider a binary sequence x6 = 010110. The vocabulary of this sequence is {0, 1, 01, 10, 11, 010,
101, 011, 110, 0101, 1011, 0110, 01011, 10110, 010110}. The eigenwords set is {110, 0110, 10110, 010110}.
Hence, the eigenvalue of x6 is 4, and the eigenvalue profile of x6 is 122244.

Based on the definition of the eigenvalue that we have, the eigenvalue of xN equals to k if, and only
if, the following two conditions hold.
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(1) The tuple xk-1xk . . . xN-1 does not belong to the vocabulary of a proper prefix of yN.
(2) The tuple xkxk+1 . . . xN-1 belongs to the vocabulary of a proper prefix of yN.

Obviously, the definition of the eigenvalue is available for binary sequences, and can be extended
to finite symbol sequences at most. However, the chaotic signals are defined on the real number
domain, which cannot be measured by this index. Therefore, extending the eigenvalue measure to the
real number domain is beneficial to chaos-based cryptography and many other aspects as well.

2.2. Eigenvalue of Sequences in the Real Domain

As we know, the eigenvalue measures the rate of growth of its vocabulary of a sequence.
However, strictly speaking, for a real random or chaotic sequence, there will not exist a tuple that
occurs more than once. Thus, we cannot judge a tuple based on whether it belongs or does not belong
to the vocabulary of a proper prefix.

In the real number field, the Euclidean distance is always used to judge whether two points are
close or not. Furthermore, in the dynamics analysis, many measures are based on the Euclidean distance,
such as the Lyapunov exponent, Kolmogorov entropy, and embedding dimension. Therefore, in this
paper, we used the Euclidean distance d to judge whether the new generated signal was repeated or
not. Assume that the sequence yN = y0y1y2 . . . yN-1 is a sequence in the real domain, yi∈R. The state yj
is regarded to be identical with yi if |yj - yi| < d, where i < j, xi is a state in the prefix y0

j. d is defined
as the undifferentiated distance that is used to judge whether two real numbers can be regarded as
the same. On this basis, we can judge whether the tuple in a sequence belongs to the vocabulary of a
proper prefix or not, and whether the eigenvalue can be used in the real number sequences.

Consider a random real number sequence xN = x0x1x2 . . . xN-1, where xi∈(a, b). Assume that the
distribution function of this sequence is p(x). The probability P(d) of the distance of two states xi and xj,
being larger than d, can be calculated as

P(d) = P(
∣∣∣x− y

∣∣∣ > d) =
∫ a+d

a p(x)
b∫

x+d
p(y)dydx+

∫ b
b−d p(x)

x−d∫
a

p(y)dydx

+
∫ b−d

a+d p(x)

 x−d∫
a

p(y)dy +
b∫

x+d
p(y)dy

dx
(1)

As shown in Equation (1), the probability P(d) can be calculated as the sum of three probabilities.
One is the probability of xi∈(a, a+d) and xj∈(xi+d, b); one is the probability of xi∈(b-d, b) and xj∈(a, xj-d);
and one is the probability of xi∈(a+d, b-d) and xj∈(a, xi-d) or (xi+d, b). Obviously, the probability P(d)
is influenced by the undifferentiated distance d. The states xi and xj in the sequence are regarded to
be identical with the probability 1-P(d). Thus, the probability of tuple xixi+1 . . . xN-1 belongs to the
vocabulary M of its proper prefix, which can be written as

P(xixi+1 . . . xN−1 ∈M) = 1−
(
1− (1− P(d))N−i

)i
(2)

According to conditions (1) and (2), the probability of k(xN) = k can be written as

P
(
k(yN) = k

)
= P(xkxk+1 . . . xN−1 ∈M, xk−1xk . . . xN−1 <M)

= 1− P(xkxk+1 . . . xN−1 ∈M, xk−1xk . . . xN−1 ∈M)

−P(xkxk+1 . . . xN−1 <M, xk−1xk . . . xN−1 ∈M)

−P(xkxk+1 . . . xN−1 <M, xk−1xk . . . xN−1 <M)

(3)

As we know, if the tuple xk-1xk . . . xN-1∈M, the tuple xkxk+1 . . . xN-1 must belong to M as well.
Thus, we have

P(xkxk+1 . . . xN−1 ∈M, xk−1xk . . . xN−1 ∈M) = P(xk−1xk . . . xN−1 ∈M) (4)
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P(xkxk+1 . . . xN−1 <M, xk−1xk . . . xN−1 ∈M) = 0 (5)

Furthermore, once the tuple xkxk+1 . . . xN-1 does not belong to M, the tuple xk-1xk . . . xN-1 will not
belong to M either. Thus, we have

P(xkxk+1 . . . xN−1 <M, xk−1xk . . . xN−1 <M) = P(xkxk+1 . . . xN−1 <M) (6)

According to Equations (4)–(6), Equation (3) can be simplified as

P
(
k(yN) = k

)
= 1− P(xk−1xk . . . xN−1 ∈M) − 0− P(xkxk+1 . . . xN−1 <M)

= P(xkxk+1 . . . xN−1 ∈M) − P(xk−1xk . . . xN−1 ∈M)
(7)

When Equation (2) is put into Equation (7), the probability of k(xN) = k can be written as

P
(
k(yN) = k, d

)
=

(
1− (1− P(d))N−k+1

)k−1
−

(
1− (1− P(d))N−k

)k
(8)

Based on Equation (8), the expectation and variance of the eigenvalue of the real number random
sequence xN can be written as

E
(
k(xN), d

)
=

N∑
k=1

k · P
(
k(xN) = k

)
=

N∑
k=1

k
((

1− (1− P(d))N−k+1
)k−1
−

(
1− (1− P(d))N−k

)k)
= 1 +

N−1∑
k=1

(
1− (1− P(d))N−k

)k
(9)

and

D
(
k
(
xN

)
, d

)
=

N∑
k=1

(
k− E

(
k
(
xN

)
, d

))2
· P

(
k(xN) = k, d

)
(10)

respectively.
Next, we use the extended eigenvalue to measure the complexity of uniformly distributed random

sequences and logistic chaotic sequences.

3. Two Examples

3.1. Eigenvalue of Uniformly Distributed Random Sequence

Consider a uniformly distributed random sequence, whose distributed function is

f (x) =
1

b− a
, a < x < b (11)

Without loss of generality, we can limit the region from (a, b) into (0, 1). The corresponding
distributed function is f (x) = 1, 0 < x < 1. When the distribution function is brought into Equation (1),
we have

P(d) = P(
∣∣∣x− y

∣∣∣ > d) = d2
− 2d + 1 (12)

Therefore, the probability of k(xN) = k can be depicted as

P
(
k(yN) = k, d

)
=

(
1−

(
2d− d2

)N−k+1
)k−1
−

(
1−

(
2d− d2

)N−k
)k

(13)

In order to have a more intuitive understanding, the probability distribution of the eigenvalue is
depicted in Figure 1 with different undifferentiated distances. The length N is set to be 1000.
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In Figure 1, we can see that most of the sequences’ eigenvalue are located in a relatively narrow
interval. Obviously, with different distances d, the probabilities of k(xN) = k are different. The peak will
move left with the growth of d, and the peak value will be gradually decreased. Thus, to evaluate the
eigenvalue of a real number sequence, the choice of distance d is crucial. Consider that [9] has studied
the eigenvalue probability of n-symbols’ random sequences with uniformly distributed sequences. In
order to keep consistency, we should choose 2d − d2 = 1/n, and then the distance d should be chosen by

d = 1−
√

1− 1/n (14)

Therefore, we can compare with the eigenvalue of binary random sequence by choosing d = 0.2929,
and we can compare with the eigenvalue of 3-symbols random sequence by choosing d = 0.1835, and
we can compare with the eigenvalue of 4-symbols random sequence by choosing d = 0.1340, etc.

Based on the distribution of eigenvalues, the expectation of the eigenvalue for random real number
sequences can be approximately calculated as

E
(
k(xN), d

)
=

N∑
k=1

k · P
(
k(xN) = k, d

)
=

N∑
k=1

k
((

1−
(
2d− d2

)N−k+1
)k−1
−

(
1−

(
2d− d2

)N−k
)k
)

= 1 +
N−1∑
k=1

(
1−

(
2d− d2

)N−k
)k

≈ N− log1/(2d−d2)N

(15)

for moderate–large N. Set N = 10,000, a uniformly distributed random sequence is randomly generated.
Figure 2 shows the eigenvalue of this sequence. In Figure 2, we can see that all the numerical results
are near the theoretical curve we derived in Equation (15), which indicates that the expectation of
eigenvalue of random real number sequences is correct.

Based on Equation (10), the variance of the eigenvalue of random real number sequences can be
approximately written as

D
(
k
(
xN

)
, d

)
=

N∑
k=1

(
k−N + log1/(2d−d2) N

)2
· P

(
k(xN) = k, d

)
(16)
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Set length N from 1000 to 50,000. Figure 3 shows that for different distances d, the variances of the
eigenvalue are all quite stable with the growth of length N.
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3.2. Eigenvalue of Logistic Chaotic Sequence

Consider the following logistic chaotic map,

yi+1 = 1− 2y2
i (17)

where yi∈(−1, 1) is the state variable. For an initial condition y0, we can generate a chaotic sequence
y0y1 . . . yn s according to the iteration. The distribution function of Equation (17) is [22]

f (y) =
1

π
√

1− y2
, −1 ≤ y ≤ 1 (18)
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According to Equation (1), the probability P(d) of the distance of two states, yi and yj, is larger
than d and can be calculated as

P(d) =
∫
−1+d
−1 f (yi)

1∫
x+d

f (y j)dy jdyi +
∫ 1

1−d f (yi)
x−d∫
−1

f (y j)dy jdyi

+
∫ 1−d
−1+d f (yi)

 x−d∫
−1

f (y j)dy j +
1∫

x+d
f (y j)dy j

dyi

= 1
4 +

arcsin(1−d)
π +

arcsin2(1−d)
π2

(19)

When Equation (19) is brought into Equation (8), the probability of k(xN) = k for the logistic chaotic
sequence can be easily calculated. Figure 4 depicts the probability distribution of the eigenvalue
of logistic chaotic sequences with different d values. In Figure 4, we can see that, as with random
sequences, the eigenvalue are also located in a relatively narrow interval, and the peak will move left
with the growth of d. The peak value will gradually be decreased as well.
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Based on Equation (9), the expectation of the eigenvalue of the logistic chaotic sequence can be
written as

E
(
k(xN), d

)
=

N∑
k=1

k · P
(
k(xN) = k, d

)

=
N∑

k=1
k


(
1−

(
3
4 −

arcsin(1−d)
π −

arcsin2(1−d)
π2

)N−k+1
)k−1

−

(
1−

(
3
4 −

arcsin(1−d)
π −

arcsin2(1−d)
π2

)N−k
)k


= 1 +

N−1∑
k=1

(
1−

(
3
4 −

arcsin(1−d)
π −

arcsin2(1−d)
π2

)N−k
)k

≈ N− log4π2/(3π2−4πarcsin(1−d)−4arcsin2(1−d))N

(20)

for moderate–large N. When we randomly select an initial condition, Figure 5 shows the eigenvalue
of this generated logistic sequence. Obviously, the eigenvalues of this sequence are all around the
theoretical curve we derived in Equation (20).
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Figure 5. The eigenvalue of the logistic sequence (the solid line denotes the theoretical curve of
expectation of eigenvalue for random real number sequences; symbol ‘*’ denotes the eigenvalue of the
generated logistic sequence).

Figure 6 depicts the comparison of the expectation of the eigenvalue of logistic sequences and
uniformly distributed random sequences under the same undifferentiated distance d = 0.1. In Figure 6,
we can see that there are almost no differences among the expectation eigenvalue of the logistic
sequences and random sequences. After enlarging, we can see that the eigenvalue of logistic sequences
is just a little lower than the random sequence, which implies that the logistic sequence cannot be
regarded as a perfect random sequence in this sense. For other undifferentiated distances, the results
are similar. Therefore, we omit them here to avoid redundancy.
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Correspondingly, the variance of the eigenvalue of logistic sequences can be approximately
written as

D
(
k
(
xN

)
, d

)
=

N∑
k=1

(
k−N + log4π2/(3π2−4πarcsin(1−d)−4arcsin2(1−d)) N

)2
· P

(
k(xN) = k, d

)
(21)

The variances of the eigenvalue of logistic sequences with different distances d are depicted in
Figure 7. This figure indicates that for every distance, the eigenvalue of logistic sequences are all stable
with the growth of length N.
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4. Measure the Complexity of Chaotic Sequences

With the extension of eigenvalue, we can use this complexity measure to evaluate the cryptographic
characteristics of different chaotic sequences. Here, the following four kinds of 1-D chaotic sequences
are generated and compared.

A. Chebyshev map

Chebyshev map can be written as

xi+1 = cos(a · arccos(xi)) (22)

where xi∈(−1, 1) is the state variable, a is the control coefficient. The Chebyshev map will be
chaotic since a = 2. In this test, we always set a = 3.

B. Sine map

Sine map can be mathematically described as

xi+1 = r sin(πxi) (23)

where r∈(0, 1] is the control parameter. In this test, we set r = 2 to make the Sine map chaotic.
C. Tent map

Tent map is a kind of piece-wise function, which can be described as

xi+1 =

{
xi/p, xi ∈ [0, p)

(1− xi)/(1− p), xi ∈ [p , 1]
(24)

where p∈(0, 1) is the control parameter. Particularly, when p = 0.5, the generated sequence will
quickly fall into a short cycle. Therefore, we always set p = 0.49 in this test.

D. Logistic map

The Logistic map has already been described in Equation (17), which we omitted here to
avoid redundancy.

Since the state variables of these four maps are in different domains, for consistency, we first compressed
them to the identical interval (0, 1). When d = 0.1, the eigenvalue of these four kinds of chaotic sequences
are depicted in Figure 8. Figure 8 shows that the chaotic sequences generated by the sine map have
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the largest eigenvalue, whereas the chaotic sequences generated by the Tent map have the lowest
eigenvalue. For other distances d, the results are similar.
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Thus, it can be seen that with the extended eigenvalue, we can evaluate the cryptographic
complexity of real number sequences effectively. However, it should be noted that this result does not
imply that the Sine map is better than other chaotic maps in cryptographic application. On the one hand,
the eigenvalue is only one of the cryptographic complexity measures; on the other hand, the eigenvalue
value is influenced by the control parameter of chaotic maps. For example, the eigenvalue of the Sine
chaotic sequence will be lower than the eigenvalue of the Chebyshev chaotic sequence when r = 1.

5. Conclusions

In order to evaluate the cryptographic complexity of real number sequences, in this paper, we
extended the so-called eigenvalue from the binary field to the real number field. The extended
eigenvalue was influenced by the undifferentiated distance, and we gave an exact value of this distance
corresponding to the N-symbol sequences. Both uniformly distributed random sequences and logistic
sequences were used as examples. The probability distribution, expectation and variance of these
two kinds of real number sequences were discussed both theoretically and experimentally. With the
extension of eigenvalue, we could evaluate the cryptographic complexity of real number sequences,
which has a great advantage for cryptographic usage, especially for chaos-based cryptography.
Furthermore, four kinds of chaotic sequences were evaluated by this extended complexity measure,
which indicates that our study is effective and of great interest.
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