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Abstract: Condition-based maintenance (CBM) is a promising technique for a wide variety of
deteriorating systems. Condition-based maintenance’s effectiveness largely depends on the quality
of condition monitoring. The majority of CBM mathematical models consider perfect inspections,
in which the system condition is assumed to be determined error-free. This article presents a
mathematical model of CBM with imperfect condition monitoring conducted at discrete times.
Mathematical expressions were derived for evaluating the probabilities of correct and incorrect
decisions when monitoring the system condition at a scheduled time. Further, these probabilities
were incorporated into the equation of the Shannon entropy. The problem of determining the optimal
preventive maintenance threshold at each inspection time by the criterion of the minimum of Shannon
entropy was formulated. For the first time, the article showed that Shannon’s entropy is a convex
function of the preventive maintenance threshold for each moment of condition monitoring. It was
also shown that the probabilities of correct and incorrect decisions depend on the time and parameters
of the degradation model. Numerical calculations show that the proposed approach to determining
the optimal preventive maintenance threshold can significantly reduce uncertainty when deciding on
the condition of the monitoring object.

Keywords: condition monitoring; false-positive; false-negative; Shannon entropy; preventive
maintenance threshold; minimum entropy

1. Introduction

The concept of “entropy” is widely used in various fields of science. Its discoverer, Clausius,
introduced this concept in the early 1850s for highly specific thermodynamic purposes. He proved a
theorem that states that the amount of heat received by the system in any circular process, divided by
the absolute temperature at which it was received, is not positive.

Boltzmann, between 1872 and 1875, introduced the concept of the entropy of a thermodynamic
system that is defined as the product of Boltzmann’s constant and natural logarithm of the number of
different microscopic states corresponding to a given macroscopic state.

Shannon, in 1948, proposed using the concept of entropy in information theory [1]. The Shannon
formula calculates information binary entropy for independent random events with m possible states
distributed with probabilities

→
p = p1, pm:
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H
(
→
p
)
= −

m∑
j=1

p j log2 p j (1)

The Shannon entropy equivalently measures the amount of uncertainty represented by a probability
distribution

→
p = p1, pm. Initially, only communication theory used the concept of Shannon entropy.

However, subsequently, the Shannon entropy began to be used in many different fields of science and
technology such as machine learning [2], biomedical informatics [3], reliability [4], prognostics [5], fault
detection [6], condition monitoring [7], maintenance [8], fingerprint recognition [9], geosciences [10],
fatigue damage modeling [11], and many others.

Such widespread use of the Shannon entropy concept indicates its great potential in solving
various problems of science and technology. As mentioned above, Shannon entropy has also been used
as a metric in the problems of optimizing condition monitoring and maintenance [7,8]. In condition
monitoring tasks, entropy usually represents a metric for the selection of informative data received
from sensors [12,13]. In condition-based maintenance (CBM) tasks, the Shannon entropy is used to
evaluate the degradation process [14,15]. However, such use of Shannon entropy in CBM as a metric
seems wholly insufficient. Indeed, the main objectives of the CBM include (1) the accumulation of
statistical data for each component of equipment, (2) determination of the equipment component
degradation rate, (3) selection of the most effective inspection schedule, and (4) minimization of
the failure risk for the selected inspection schedule [16]. As can be seen, the concept of entropy in
published studies is still being used to solve tasks associated with the first and second intermediate
objectives. But, the Shannon entropy has not yet been used to solve the more significant third and
fourth CBM objectives. There is an explanation for this fact. Two preliminary tasks should be solved
to use Shannon entropy for reaching the third and fourth objectives. Firstly, it is necessary to choose
or derive indicators of the maintenance’s effectiveness that would include the probabilities of correct
and incorrect decisions made by the results of condition monitoring; and, secondly, these probabilities
should be functions of operational time and parameters of the degradation model. However, as the
related literature shows (see Section 2), all relevant studies assume that either the condition monitoring
is perfect or the probabilities of correct and incorrect decisions are constant and do not depend on the
parameters of the degradation model. Under these assumptions, when using CBM, it is impossible
to solve correctly the problems of determining the optimal inspection schedule and minimizing the
probability of failure in the upcoming time interval. The latter is because assuming perfect monitoring
or assuming the error probabilities to be constant is impossible to choose the optimal threshold for
preventive maintenance, according to which potentially unreliable systems would be rejected.

The purpose of this study is to present a CBM decision-making method based on determining
the optimal preventive maintenance threshold on the criterion of minimal Shannon entropy for each
inspection time. A mathematical model of CBM was developed which considers the probabilities
of correct and incorrect decisions made when checking system operability over the next interval of
operation at scheduled inspection times. Contrary to previous studies, these probabilities depend on
operational time, parameters of the degradation model, and the preventive maintenance threshold.
Then, these probabilities were incorporated into the formula of Shannon entropy. As a result, Shannon
entropy depended on the scheduled time of condition monitoring and threshold of preventive
maintenance. Further, the problem was formulated to determine the optimal threshold by the criterion
of minimum Shannon entropy for each of the inspection times. The proposed approach significantly
reduces the probability of system failure in the interval between inspections due to the rejection of
potentially unreliable systems. Finally, numerical calculations for a degrading radar power supply are
presented to illustrate the application and advantages of the proposed method.

The organization of the article is as follows: Section 2 provides a literature review on the modeling
of CBM. In Section 3, the quantification of uncertainty when monitoring a system’s condition is
conducted. Section 4 considers the Shannon entropy of imperfect condition monitoring. The optimality
criterion of preventive maintenance thresholds is presented in Section 5. Section 6 examines a model



Entropy 2019, 21, 1193 3 of 18

of the stochastic degradation process. Section 7 presents the results and discussion. In Section 8,
the conclusions are formulated. Abbreviations, nomenclature, and references are given at the end of
the article.

2. Literature Review

Maintenance based on condition monitoring is currently considered as a promising approach for
improving operational reliability and reducing the operating costs of various deteriorating systems.
A growing interest in CBM is manifested by a large number of studies devoted to various mathematical
models and methods of optimization. The majority of the existing CBM models with scheduled
inspections can be conditionally divided into two groups: CBM models with perfect inspections and
CBM models with imperfect inspections.

First, let us consider CBM models with perfect inspections. Chen et al. [17] considered an
optimal replacement strategy for CBM with optimal inspection intervals for the case when degradation
corresponds to an inverse Gaussian process with random effects. Abdel-Hameed [18,19] presented a
model of optimal periodic inspections based on the class of increasing Markov processes. The inspection
periodicity and preventive maintenance threshold are considered variables. Grall et al. [20] considered
a system that is subjected to stochastic degradation and monitored using inspections. Corrective
or preventive maintenance is carried out when the deteriorating process reaches either the failure
threshold or preventive maintenance threshold. Dieulle et al. [21] proposed a mathematical model to
investigate the joint influence of the preventive maintenance threshold and inspection schedule on the
total costs of the system maintenance. Deloux et al. [22] considered an approach to the construction
and optimization of CBM policy for an accumulative degradation system. The optimization target
function is the total cost of various inspections, replacements, and idle time. Grall et al. [23] considered
a CBM structure for a gradually degrading single-unit system. The proposed decision-making model
is used to determine the optimal inspection schedule and, if necessary, the replacement times as well.
Huynh et al. [24] considered CBM of a single-unit system subject to dependent failures due to the fact
of deterioration and traumatic shock events. Wang et al. [25] introduced the maintenance scheduling
threshold for organizing the maintenance resources according to the system state. The maintenance
scheduling threshold is used as a controlled variable in combination with the preventive maintenance
threshold and failure threshold. Guo et al. [26] considered a CBM strategy with three possible actions:
periodic inspection, preventive maintenance, and corrective maintenance. Liu et al. [27] considered
a maintenance policy for degrading systems with state-dependent operating costs. The system is
replaced when the level of its degradation exceeds the preventive maintenance threshold. Flage et
al. [28] considered a model determining an optimal inspection and maintenance scheme for a one-unit
system with a stochastic degradation process. Deloux et al. [29] proposed modeling the influence of a
random operating environment on the behavior of a system with randomization of gamma-process
degradation parameters.

In the analyzed CBM models [17–29], the authors assumed perfect inspections as a result of which
the condition of the system is determined error-free. However, in reality, the inspections are imperfect,
and incorrect decisions about system condition are possible.

He et al. [30] examined a maintenance model with periodic imperfect inspections. When inspecting
the system, its failure is detected with the probability p ∈ (0, 1). After failure detection, a corrective
maintenance of the system is performed. If no failure was detected over a specified time interval,
the system is replaced with a new one. Kallen and Noortwijk [31] considered a decision-making model
for the case of periodic inspections of the system condition which minimizes the expected average cost
per year. The observed stochastic process includes the original process and a normally distributed
measurement error. Newby and Dagg [32] considered a CBM model in which the measurement result
includes the initial process of system degradation along with a normally distributed measurement
error. Ye et al. [33] considered a CBM model which utilizes a stochastic Wiener process to model
degradation with measurement error. Within this model, the distribution of the remaining useful
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life (RUL) is calculated which is used to make decisions about restoring or using the system. Tang et
al. [34] also proposed a novel RUL prediction method for lithium-ion batteries based on the Wiener
process with measurement error which can be used for optimizing CBM. Lam [35] considered a CBM
model of a deteriorating system with non-perfect inspections. That is, an inspection is associated with
the probability of detection and probability of false alarm. Badıa et al. [36] proposed a maintenance
model where the result of inspection may give a wrong result.

Maintenance models with imperfect inspections proposed in References [37–39] considered two
types of errors: false-positives with conditional probability α and false-negatives with conditional
probability β and, accordingly, true-positives and true-negatives with conditional probabilities 1 −
α and 1 − β. These studies did not consider any preventive maintenance threshold when checking
the system, and the conditional probabilities of incorrect decisions α and βwere constant. They did
not depend on the parameters of the system degradation process. However, in reality, the error
probabilities when checking the deteriorating system condition are not constant coefficients but depend
on the time and parameters of the degradation process [40].

The conducted analysis of the CBM mathematical models shows that a large number of
research articles are devoted to solving various problems associated with condition monitoring
and decision-making. The published studies pay particular attention to the determination of the
optimal preventive maintenance threshold, optimal inspection schedule, the trustworthiness of
inspections, optimization criteria as well as degradation process models. The majority of published
CBM mathematical models consider perfect inspections, in which the system condition is determined
error-free. The mathematical models of maintenance with imperfect inspections are based on the
decision rule, aimed at rejecting only systems that are inoperable at the time of condition monitoring.
The drawback of this decision rule is the impossibility of rejecting the systems that may fail within
the operation interval before the next time point of condition monitoring. Also, some mathematical
models assume that the probabilities of incorrect decisions when monitoring the system condition are
constants and do not depend on the time and degradation process parameters which does not reflect
the real conditions.

3. Quantification of Condition Monitoring Uncertainty at Successive Times

Let us assume that the condition of the system is determined by the value of a state parameter
Y(t), which is a non-stationary continuous-time stochastic process with monotonically increasing
realizations. The system operates in an infinite time interval and is monitored at successive times
t1, t2, . . . , ti, . . . (i = 1, 2, . . . ), where t0 = 0. The measurement result of the state parameter Y(t) at time
ti is expressed as

Ξ(ti) = Y(ti) + N(ti) (2)

where N(ti) is the random noise or measurement error at time ti.
Further, we assume that random variables Y(ti) and N(ti) are independent.
When checking the system condition at time ti, we introduce the following decision rule.

If ξ(ti) < PTi, the system is judged as operable in the interval (ti, ti+1), where ξ(ti) is the realization
of Ξ(ti) at time ti, PTi is the preventive maintenance threshold (PTi ≤ FT) at time ti, and FT is the
functional failure threshold. If ξ(ti) ≥ PTi, the system is judged as inoperable in the interval (ti, ti+1).
Therefore, the decision rule is intended to reject any system that is not operable for use in the next
interval of operation.

From the perspective of the applicability of the system that should operate in the interval (ti, ti+1),
when monitoring Y(t) at time t = ti, one of the following mutually exclusive events may occur:

Γ1(ti, ti+1) =
{
Y(ti+1) < FT∩Ξ(ti) < PTi

}
(3)

Γ2(ti, ti+1) =
{
Y(ti+1) < FT∩Ξ(ti) ≥ PTi

}
(4)
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Γ3(ti, ti+1) =
{
Y(ti) < FT∩Y(ti+1) ≥ FT∩Ξ(ti) < PTi

}
(5)

Γ4(ti, ti+1) =
{
Y(ti) < FT∩Y(ti+1) ≥ FT∩Ξ(ti) ≥ PTi

}
(6)

Γ5(ti, ti+1) =
{
Y(ti) ≥ FT∩Ξ(ti) < PTi

}
(7)

Γ6(ti, ti+1) =
{
Y(ti) ≥ FT∩Ξ(ti) ≥ PTi

}
(8)

where Γ1(ti, ti+1) is the joint occurrence of the following events: the system is operable over the
time interval (ti, ti+1) and is judged as operable over the time interval (ti, ti+1) at inspection time ti;
Γ2(ti, ti+1) is the joint occurrence of the following events: the system is operable over the time interval
(ti, ti+1) and is judged as inoperable over the time interval (ti, ti+1) at inspection time ti; Γ3(ti, ti+1) is
the joint occurrence of the following events: the system is operable at inspection time ti, fails within the
interval (ti, ti+1), and is judged as operable over the interval (ti, ti+1) at inspection time ti; Γ4(ti, ti+1) is
the joint occurrence of the following events: the system is operable at inspection time ti, fails within the
interval (ti, ti+1), and is judged as inoperable over the interval (ti, ti+1) at inspection time ti; Γ5(ti, ti+1)

is the joint occurrence of the following events: the system has failed until inspection time ti and is
judged as operable over the time interval (ti, ti+1) at inspection time ti; Γ6(ti, ti+1) is the joint occurrence
of the following events: the system has failed until inspection time ti and is judged as inoperable over
the time interval (ti, ti+1) at inspection time ti.

Further, the event Γ2(ti, ti+1) is called a “false-positive”, and events Γ3(ti, ti+1) and Γ5(ti, ti+1)

are called “false-negative 1” and “false-negative 2”, respectively. The events Γ1(ti, ti+1), Γ4(ti, ti+1),
and Γ6(ti, ti+1) correspond to the correct decisions named as “true-positive”, “true-negative 1”,
and “true-negative 2”, respectively.

Let us determine the probabilities of the events Γk(ti, ti+1), k = 1, 6. By the multiplication theorem
on the probability for the event Γ1(ti, ti+1) we have:

P
{
Γ1(ti, ti+1)

}
= P

{
Y(ti+1) < FT

}
P
{
Ξ(ti) < PT

∣∣∣Y(ti+1) < FT
}

(9)

where P
{
Y(ti+1) < FT

}
is the a priori probability that the system is in the operable state at time ti+1

and P
{
Ξ(ti) < PTi

∣∣∣Y(ti+1) < FT
}

is the conditional probability of judging the system operable over the
interval (ti, ti+1) at the inspection time ti under the condition that the system will not fail up to the
time ti+1.

For the monotonic stochastic process of degradation, the probability that the system will not fail
before time ti+1 is the same as the reliability function and is given by:

P
{
Y(ti+1) < FT

}
=

FT∫
−∞

ω(yi+1)dyi+1 (10)

where ω(yi+1) is the probability density function (PDF) of the system state parameter Y(t) at time
t = ti+1.

We determine the conditional probability P
{
Ξ(ti) < PTi

∣∣∣Y(ti+1) < FT
}

by integrating the

conditional PDF θ
{
ξi

∣∣∣Y(ti+1) < FT
}

of the random variable Ξ(ti) as follows:

P
{
Ξ(ti) < PTi

∣∣∣Y(ti+1) < FT
}
=

PTi∫
−∞

θ
{
ξi

∣∣∣Y(ti+1) < FT
}
dξi (11)

Under the assumption that Y(t) and N(t) are independent random variables, the conditional
PDF θ

{
ξi

∣∣∣Y(ti+1) < FT
}

is the convolution of functions f
{
yi
∣∣∣Y(ti+1) < FT

}
and ϕ(ni), where

f
{
yi
∣∣∣Y(ti+1) < FT

}
is the conditional PDF of random variable Y(t) at time t = ti under the condition

that Y(ti+1) < FT and ϕ(ni) is the PDF of random variable N(t) at time t = ti.
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Applying the formula of convolution integral we get:

θ
{
ξi

∣∣∣Y(ti+1) < FT
}
=

FT∫
−∞

f
(
yi
∣∣∣Y(ti+1) < FT

)
ϕ(ξi − yi)dyi (12)

By substitution of Equation (12) to (11) we obtain:

P
{
Ξ(ti) < PTi

∣∣∣Y(ti+1) < FT
}
=

FT∫
−∞

f
(
yi
∣∣∣Y(ti+1) < FT

) PTi∫
−∞

ϕ(ξi − yi)dξidyi (13)

Making the change of variables ni = ξi − yi in Equation (13) gives:

P
{
Ξ(ti) < PTi

∣∣∣Y(ti+1) < FT
}
=

FT∫
−∞

f
(
yi
∣∣∣Y(ti+1) < FT

) PTi−yi∫
−∞

ϕ(ni)dnidyi (14)

By the Bayes formula for continuous random variables, we determine the conditional PDF:

f
(
yi
∣∣∣Y(ti+1) < FT

)
=

FT∫
−∞

ω(yi, yi+1)dyi+1/

FT∫
−∞

ω(yi+1)dyi+1 (15)

whereω(yi, yi+1) is the joint PDF of random variables Y(ti) and Y(ti+1).
By substitution of Equation (15) into (14) we get:

P
{
Ξ(ti) < PTi

∣∣∣Y(ti+1) < FT
}
=

FT∫
−∞

FT∫
−∞

ω(yi, yi+1)
PTi−yi∫
−∞

ϕ(ni)dnidyidyi+1

FT∫
−∞

ω(yi+1)dyi+1

(16)

The final expression for the probability of a true-positive, we obtain by substitution of Equations (16)
and (10) into (9).

P
{
Γ1(ti, ti+1)

}
=

FT∫
−∞

FT∫
−∞

ω(yi, yi+1)

PTi−yi∫
−∞

ϕ(ni)dnidyidyi+1 (17)

Applying the multiplication theorem on the probability to the false-positive event (4) gives:

P
{
Γ2(ti, ti+1)

}
= P

{
Y(ti+1) < FT

}
P
{
Ξ(ti) ≥ PT

∣∣∣Y(ti+1) < FT
}

(18)

where P
{
Ξ(ti) ≥ PT

∣∣∣Y(ti+1) < FT
}

is the conditional probability of judging the system inoperable over
the interval (ti, ti+1) at the inspection time ti under the condition that the system will not fail up to the
time ti+1.

Integrating the conditional PDF θ
{
ξi

∣∣∣Y(ti+1) < FT
}

of a random variable Ξ(ti) over the range of
exceeding the preventive threshold PTi, we determine the conditional probability of judging the system
inoperable as follows:

P
{
Ξ(ti) ≥ PTi

∣∣∣Y(ti+1) < FT
}
=

∞∫
PTi

θ
{
ξi

∣∣∣Y(ti+1) < FT
}
dξi (19)
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By substitution of Equation (12) to (19) we obtain:

P
{
Ξ(ti) ≥ PTi

∣∣∣Y(ti+1) < FT
}
=

FT∫
−∞

f
(
yi
∣∣∣Y(ti+1) < FT

) ∞∫
PTi

ϕ(ξi − yi)dξidyi (20)

Changing the variables ni = ξi − yi in Equation (20) results in:

P
{
Ξ(ti) ≥ PTi

∣∣∣Y(ti+1) < FT
}
=

FT∫
−∞

f
(
yi
∣∣∣Y(ti+1) < FT

) ∞∫
PTi−yi

ϕ(ni)dnidyi (21)

Substituting Equation (15) into (21) gives:

P
{
Ξ(ti) ≥ PTi

∣∣∣Y(ti+1) < FT
}
=

FT∫
−∞

FT∫
−∞

ω(yi, yi+1)
∞∫

PTi−yi

ϕ(ni)dnidyidyi+1

FT∫
−∞

ω(yi+1)dyi+1

(22)

By substituting Equations (10) and (22) into (18), we obtain the following equation for the
probability of a false-positive:

P
{
Γ2(ti, ti+1)

}
=

FT∫
−∞

FT∫
−∞

ω(yi, yi+1)

∞∫
PTi−yi

ϕ(ni)dnidyidyi+1 (23)

The probabilities of the events (5)–(8) are derived analogically to the probabilities P
{
Γ1(ti, ti+1)

}
and P

{
Γ2(ti, ti+1)

}
. Applying some mathematical manipulations to the events (5)–(8), we get:

P
{
Γ3(ti, ti+1)

}
=

∞∫
FT

FT∫
−∞

ω(yi, yi+1)

PTi−yi∫
−∞

ϕ(ni)dnidyidyi+1 (24)

P
{
Γ4(ti, ti+1)

}
=

∞∫
FT

FT∫
−∞

ω(yi, yi+1)

∞∫
PTi−yi

ϕ(ni)dnidyidyi+1 (25)

P
{
Γ5(ti, ti+1)

}
=

∞∫
FT

ω(yi)

PTi−yi∫
−∞

ϕ(ni)dnidyidyi+1 (26)

P
{
Γ6(ti, ti+1)

}
=

∞∫
FT

ω(yi)

∞∫
PTi−yi

ϕ(ni)dnidyidyi+1 (27)

4. The Shannon Entropy of Imperfect Condition Monitoring

As already noted, the events Γ1(ti, ti+1), Γ4(ti, ti+1), and Γ6(ti, ti+1) correspond to the correct
decisions, and the events Γ2(ti, ti+1), Γ3(ti, ti+1), and Γ5(ti, ti+1) correspond to incorrect decisions when
monitoring the condition of the system at time ti (i = 1, 2, . . .). With perfect monitoring, the sum of the
probabilities of correct decisions would be equal to one, and the sum of the probabilities of incorrect
decisions would be zero. Thus, with perfect monitoring, there is no uncertainty. However, real condition
monitoring is imperfect due to the non-ideal measuring equipment and various noises. Therefore,
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the sum of the probabilities of correct decisions is less than unity, and the sum of the probabilities of
incorrect decisions is greater than zero. Therefore, any decision made when monitoring the system
condition carries some uncertainty. To characterize correct and incorrect decisions, we introduce two
indicators, namely, the total error-free and the total error probabilities.

Perror− f ree(ti, ti+1) = P
{
Γ1(ti, ti+1)

}
+ P

{
Γ4(ti, ti+1)

}
+ P

{
Γ6(ti, ti+1)

}
(28)

Perror(ti, ti+1) = P
{
Γ2(ti, ti+1)

}
+ P

{
Γ3(ti, ti+1)

}
+ P

{
Γ5(ti, ti+1)

}
(29)

Further, the degree of uncertainty of the decisions made when monitoring the system condition at
the time ti we estimate using Shannon entropy. Substituting Perror− f ree and Perror into Equation (1) gives:

H(ti, ti+1) = −Perror− f ree(ti, ti+1) log2 Perror− f ree(ti, ti+1) − Perror(ti, ti+1) log2 Perror(ti, ti+1) (30)

Comparing Equations (1) and (30), we can see that m = 2, p1 = Perror− f ree, and p2 = Perror. Moreover,
since the events Γ1, Γ6 form a complete group of incompatible events, then Perror− f ree + Perror = 1.
Therefore, due to the properties of Shannon entropy, Equation (30) has a maximum of one bit when
Perror− f ree = Perror = 0.5 and tends to zero when Perror− f ree → 1 and Perror → 0 .

Indicator (30) is a measure of how much information is not available about the system condition.

5. Optimal Preventive Maintenance Thresholds

The problem of determining the optimal preventive maintenance threshold PTopt
i at inspection

time ti (i = 1, 2, . . .) depends on the chosen optimization criterion. As a criterion for optimizing PTopt
i

at inspection time ti, we choose the minimum of Shannon entropy, i.e.,

PTopt
i ⇒ min

PTi
[H(ti, ti+1; PTi)], i = 1, 2, . . . (31)

The probabilities Perror− f ree and Perror are largely dependent on the preventive maintenance
threshold PTi at each time point of condition monitoring. Therefore, choosing the value of the
threshold PTi that reduces the probability of Perror and increases the probability of Perror− f ree, one can
achieve a minimum of entropy, i.e., to reach minimum uncertainty at each scheduled time of condition
monitoring. This is the meaning of the optimization criterion (31).

6. Degradation Process Model

Let us assume that the following monotone stochastic function describes the process of degradation
of a system:

Y(t) = a0 + A1tβ (32)

where a0 is the initial value of the system state parameter Y(t) defined in the range from 0 to FT, A1 is
the random degradation rate of the system state parameter defined in the interval from 0 to∞, and β
is the exponent of time.

Realizations of the random process of degradation Y(t) are a convex function, if β > 1, a concave
function if β < 1, and a linear function if β = 1.

On the base of the change of variables method [41], we derive the PDF ω(yi) and ω(yi, yi+1)

as follows:

ω(yi) =
1

tβi
Φ

 yi − a0

tβi

 (33)

ω(yi, yi+1) =
1

tβi
Φ

 yi − a0

tβi

δ
yi+1 −

a0 +
(yi − a0)t

β

i+1

tβi


 (34)

where Φ(a1) is the PDF of random degradation rate A1 and δ(x) is the delta function.
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By substitution of Equations (33) and (34) in (17) and (23)–(27), after specific mathematical
transformations, we obtain the following analytical formulas for calculating the probabilities of possible
decisions when monitoring the system at time ti:

P
{
Γ1(ti, ti+1)

}
=

(FT−a0)/tβi+1∫
0

Φ(x)

PTi−(a0+xtβi )∫
−∞

ϕ(ni)dnidx (35)

P
{
Γ2(ti, ti+1)

}
=

(FT−a0)/tβi+1∫
0

Φ(x)

∞∫
PTi−(a0+xtβi )

ϕ(ni)dnidx (36)

P
{
Γ3(ti, ti+1)

}
=

(FT−a0)/tβi∫
(FT−a0)/tβi+1

Φ(x)

PTi−(a0+xtβi )∫
−∞

ϕ(ni)dnidx (37)

P
{
Γ4(ti, ti+1)

}
=

(FT−a0)/tβi∫
(FT−a0)/tβi+1

Φ(x)

∞∫
PTi−(a0+xtβi )

ϕ(ni)dnidx (38)

P
{
Γ5(ti, ti+1)

}
=

∞∫
(FT−a0)/tβi

Φ(x)

PTi−(a0+xtβi )∫
−∞

ϕ(ni)dnidx (39)

P
{
Γ6(ti, ti+1)

}
=

∞∫
(FT−a0)/tβi

Φ(x)

∞∫
PTi−(a0+xtβi )

ϕ(ni)dnidx (40)

From the analysis of Equations (35)–(40) follows that the sum of probabilities of correct and
incorrect decisions when monitoring the system condition at time ti is equal to unity.

7. Results and Discussion

The transmitter is the most expensive part of a radar system [42]. It is of great importance to
providing fault prediction; therefore, condition monitoring of the power supply voltage is carried out
at discrete times ti = iτ (i = 1, 2, . . .), where τ is the periodicity of condition monitoring. If the output
voltage of the radar transmitter power supply exceeds the threshold FT = 25 kV, it enters the failed
state, and corrective maintenance is required [42]. The transmitter supply voltage as a function of
time is well approximated by the stochastic deterioration process (32) with the following parameter
values: a0 = 19.645 kV, β = 1.3, E(A1) = 0.015 kV/h, σ(A1) = 0.008 kV/h, where E(A1) and σ(A1) are,
respectively, the mathematical expectation and standard deviation of the random degradation rate A1.
We further assume that Φ(a1) is a truncated Gaussian PDF. Accuracy of voltage measurements in the
range of 20–30 kV is approximately ±2% [43]. Therefore, we assume that the standard deviation of
measurement error σN = 0.4 kV.

Figures 1–5 show the dependence of Shannon entropy on a preventive maintenance threshold
for various moments of condition monitoring when τ = 100 h. Table 1 shows a summary of the
optimization by criterion (31). From Figures 1–5 and Table 1, we can draw the following conclusions:

• For moments of condition monitoring t1 and t2, Shannon entropy decreases with an increase in
the preventive threshold and then remains constant up to the failure threshold FT. Therefore,
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as follows from Figure 1a,b, for the moment t1 the value of the preventive threshold can be any in
the interval (21.9, 25) kV and for the moment t2 in the interval (23.3, 25) kV;

• Shannon entropy is a strictly convex function of the preventive maintenance threshold, starting at
time t3 = 300 h and subsequent moments of condition monitoring;

• The optimal preventive maintenance threshold increases with the time of inspection for ti >
t2 (i = 3, 4, . . .), which may be explained by an increase in the mathematical expectation of the
stochastic degradation process (32) with time;

• Starting from time t1 = 100 h, Shannon’s minimum entropy increases with increasing inspection
time, reaching a maximum at t4 = 400 h, and then decreases almost to zero at t10 = 1000 h.
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Table 1. Summary of the optimized preventive maintenance thresholds.

Number of
Condition

Monitoring, i

Current Moment of
Condition Monitoring,

ti (h)

Next Moment of
Condition

Monitoring, ti+1 (h)

Optimal Preventive
Maintenance Threshold,

PTopt
i (kV)

Minimal Value of
Shannon Entropy,

H(ti,ti+1;PTopt
i ), (bit)

1 100 200 21.9 < PTopt
1 ≤ 25 0

2 200 300 23.3 < PTopt
2 ≤ 25 0.006

3 300 400 23.6 0.27
4 400 500 23.7 0.45
5 500 600 23.84 0.38
6 600 700 23.95 0.26
7 700 800 24.08 0.17
8 800 900 24.18 0.11
9 900 1000 24.25 0.08
10 1000 1100 24.4 0.06

To clarify the last conclusion, let us consider simultaneously the dependence of the minimum
Shannon entropy on the moment of condition monitoring and the plot of the cumulative distribution
function of time to failure, shown in Figure 6a,b. As can be seen in Figure 6a,b, the entropy was nearly
zero when the cumulative distribution function was close to zero or unity, respectively, at early and
late inspection times.
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Indeed, at early inspection times (t < t3 = 300 h), the item was most probably in the operable state.
Therefore, the degree of uncertainty in the condition of the item was low. That is why the Shannon
entropy was also low. On the other hand, at late inspection times (t > t7 = 700 h), the item was most
probably in the failed state. Consequently, the degree of uncertainty in the condition of the item was
also low. That was why the Shannon entropy was low. Thus, the maximum value of the Shannon
entropy corresponded to the time where the cumulative distribution function had the highest rise, i.e.,
in the vicinity of t4 = 400 h.

Figure 7 shows the dependence of the optimal preventive maintenance threshold on the time
of condition monitoring. The optimal thresholds for inspection times t1 = 100 h and t2 = 200 h
corresponded to the minimal possible values according to Table 1.

As can be seen in Figure 7, the optimal preventive maintenance threshold increased with the time
of condition monitoring gradually approaching the degradation failure threshold FT.
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The optimal preventive maintenance threshold depends on the time of condition monitoring
because of the probabilities of correct and incorrect decisions (35)–(40) that change over time.

Figures 8–10 illustrate how the probabilities of true-positive, false-positive, true-negative 1,
false-negative 1, true-negative 2, and false-negative 2 depend on the time of condition monitoring
ti = t ∈ (100 h, 1000 h) when the preventive maintenance threshold is 23.7 kV for each time of
inspection and ti+1 = t + 100 h.

From the analysis of plots in Figures 8–10, we can draw the following conclusions:

• All probabilities depend on the time of condition monitoring t;
• The probability of true-positive is almost constant from 0 to 250 h and starts to decrease rapidly in

the interval 300 to 500 h reaching 30% at t = 500 h, and then begins to decrease slowly reaching
2.3% at t = 1000 h;

• The probability of false-positive begins to go up remarkably at t = 240 h and get to 5.5% at
t = 480 h, and then slowly decreases to 1.1% at t = 1000 h;

• The probability of true-negative 1 begins to increase significantly at t = 250 h and get to 28% at
t = 450 h, and then gradually decreases to 1.4% at t = 1000 h;

• The probability of false-negative 1 begins to go up strongly at t = 100 h and get to 6% at t = 360 h,
and then decreases to 0.016% at t = 1000 h;

• The probability of true-negative 2 is almost zero from 0 to 350 h and starts to increase rapidly in
the interval 400 to 600 h reaching 65% at t = 600 h, and then increases slower reaching 95.1% at
t = 1000 h;

• With the chosen preventive maintenance threshold, the probability of false-negative 2 is almost
zero over the interval (0, 1000 h).
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From Figures 8–10, it follows that all the probabilities of correct and incorrect decisions are very
much functions of time. Besides, we can see from the PDF (33)–(34) and Formulas (35)–(40) that
these probabilities also depend on the model parameters of the degradation process. Therefore,
in the CBM models, it is wrong to assume that the probabilities of false-positive, true-positive,
false-negative, and true-negative can be constants.

We should note that the proposed approach to decision making at condition monitoring can
be applied not only to deteriorating processes described by the model (32) but also to many
other monotonic stochastic processes such as the Gamma process, inverse Gaussian process,
etc. Specific examples of such processes are the propagation of cracks in the blades of wind
turbines [44,45], an increase in the iron content in lubricating oil [46,47], the capacity of lithium-ion
batteries [48,49], etc.

8. Conclusions

This article proposed a new approach to optimizing the decision-making process when monitoring
the condition of a deteriorating system at scheduled times by the criterion of minimum Shannon
entropy. Mathematical expressions were derived for evaluating the probabilities of correct and incorrect
decisions, such as true-positive, false-positive, true-negative 1, false-negative 1, true-negative 2, and
false-negative 2, when monitoring the system condition at a scheduled time. For the first time, the
probabilities of correct and incorrect decisions when monitoring the system condition were incorporated
into the equation of Shannon entropy. It was first shown that Shannon’s entropy is a convex function
of the preventive maintenance threshold for condition monitoring moments. It was also shown that
minimal Shannon’s entropy varies from zero at low failure probability to the maximum value at a high
rise of failure probability and again drops to almost zero when the cumulative distribution function of
time to failure approaches unity. By numerical calculations, it was shown that the optimal preventive
maintenance threshold increases with the time of condition monitoring gradually approaching to the
degradation failure threshold. For the first time, we showed that the probabilities of true-positive and
true-negative 2 are monotonic decreasing and increasing functions of time, respectively; while the
probabilities of false-positive, true-negative 1, false-negative 1, and false-negative 2 are not monotonic
functions of time. Moreover, the latter four functions have a non-symmetric bell shape with a
pronounced maximum. The obtained results can significantly reduce the uncertainty when making
decisions about the system condition based on the conducted monitoring.

Our future work will include an application of the proposed approach to different deteriorating
systems such as wind turbine blades, gearboxes, and other components; modification of the proposed
mathematical model for the case of a multicomponent system; and development of a decision-making
model based on imperfect condition monitoring and prognostication.
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The following abbreviations exists in the manuscript:
CBM Condition-based maintenance
PDF Probability density function
RUL Remaining useful life
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Nomenclature

ti Time of conducting condition monitoring
Y(ti) Random value of the system state parameter at time ti
Ξ(ti) Random measurement result of the system state parameter at time ti
N(ti) Random noise or measurement error at time ti
ξ(ti) Realization of Ξ(ti) at time ti
FT Functional failure threshold
PTi Preventive maintenance threshold at time ti

PTopt
i Optimal preventive maintenance threshold at time ti

Γ1(ti, ti+1) True-positive event at inspection time ti
Γ2(ti, ti+1) False-positive event at inspection time ti
Γ3(ti, ti+1) False-negative 1 event at inspection time ti
Γ4(ti, ti+1) True-negative 1 event at inspection time ti
Γ5(ti, ti+1) False-negative 2 event at inspection time ti
Γ6(ti, ti+1) True-negative 2 event at inspection time ti
P
{
Γ1(ti, ti+1)

}
Probability of true-positive event at inspection time ti

P
{
Γ2(ti, ti+1)

}
Probability of false-positive event at inspection time ti

P
{
Γ3(ti, ti+1)

}
Probability of false-negative 1 event at inspection time ti

P
{
Γ4(ti, ti+1)

}
Probability of true-negative 1 event at inspection time ti

P
{
Γ5(ti, ti+1)

}
Probability of false-negative 2 event at inspection time ti

P
{
Γ6(ti, ti+1)

}
Probability of true-negative 2 event at inspection time ti

ω(yi+1) Probability density function of the system state parameter at time ti+1
Perror− f ree(ti, ti+1) Total error-free probability
Perror(ti, ti+1) Total error probability
H(ti, ti+1) Shannon entropy when monitoring the system condition at the time ti
a0 Initial value of the system state parameter
A1 Random degradation rate of the system state parameter
β Exponent of time
Φ(a1) Probability density function of random degradation rate A1

δ(x) Delta function
E(A1) Mathematical expectation of the random degradation rate A1

σ(A1) Standard deviation of the random degradation rate A1

σN Standard deviation of measurement error
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