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Abstract: Eliminating noise signals of the magnetotelluric (MT) method is bound to improve the
quality of MT data. However, existing de-noising methods are designed for use in whole MT data sets,
causing the loss of low-frequency information and severe mutation of the apparent resistivity-phase
curve in low-frequency bands. In this paper, we used information entropy (IE), the Lempel-Ziv
complexity (LZC), and matching pursuit (MP) to distinguish and suppress MT noise signals. Firstly,
we extracted IE and LZC characteristic parameters from each segment of the MT signal in the
time-series. Then, the characteristic parameters were input into the FCM clustering to automatically
distinguish between the signal and noise. Next, the MP de-noising algorithm was used independently
to eliminate MT signal segments that were identified as interference. Finally, the identified useful
signal segments were combined with the denoised data segments to reconstruct the signal. The
proposed method was validated through clustering analysis based on the signal samples collected at
the Qinghai test site and the measured sites, where the results were compared to those obtained using
the remote reference method and independent use of the MP method. The findings show that strong
interference is purposefully removed, and the apparent resistivity-phase curve is continuous and
stable. Moreover, the processed data can accurately reflect the geoelectrical information and improve
the level of geological interpretation.

Keywords: magnetotelluric (MT); signal-noise separation; information entropy (IE); Lempel-Ziv
complexity (LZC); matching pursuit (MP)

1. Introduction

The magnetotelluric (MT) method, an electromagnetic exploration method proposed in the
early 1950s [1,2], measures the orthogonal electric-magnetic fields at the Earth’s surface to obtain the
distribution of the underground geoelectric structure. The MT method has a series of characteristics
such as its utilization of the natural field source, its large exploration depth, simple-formed plane wave
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theoretical impedance, and simple geological interpretation [3—-6]. Whether for research into deep
geological structures or the exploration of deep concealed blind ore bodies, the MT sounding method is
an effective means. However, the MT signal itself is extremely weak and random, making it impossible
to avoid complicated electromagnetic interference environments, leading to data contamination from
noise and low data collection reliability. Thus, useful MT signals can be extracted from the corrupted
data, and strong interference is purposefully suppressed, which is essential for a reliable geophysical
data interpretation.

For nonlinear and non-stationary MT signals, scholars have proposed a large number of MT signal
processing methods, such as the remote reference method [7], robust impedance estimation [8,9], wavelet
transform [10], Hilbert-Huang transform [11], mathematical morphology filtering [12], variational
mode decomposition [13], among others. All the above methods can filter the entire data set and
improve the quality of MT data to some extent. However, some useful MT signals are also filtered
out due to the lack of identification. The emerging developments in MT signal-noise identification
over recent years have presented a new processing mode for MT signal-noise separation [14,15]. These
methods distinguish whether the signal is contaminated by noise based on several characteristic
parameters extracted from the signal. Although these methods have produced good results, it still
takes a long time to extract the features during data processing.

Thus, the main focus of this paper is still the analysis and application of the complexity index.
Shannon first used the concept of entropy to evaluate the randomness information theory (IE); where
entropy is a simple and efficient feature that characterizes the complexity of a system [16]. Low entropy
of an MT time series indicates low complexity, whereas a higher value of entropy would imply higher
complexity, that is, low entropy corresponds to an MT signal with interference, otherwise it is a useful
MT signal. Kolmogorov proposed the significant concepts of system complexity in 1965s [17]. Given
the incalculability of the Kolomogorov complexity, the Lempel-Ziv complexity (LZC) algorithm was
designed to describe the complexity of the signal. Since the size of the value reflects the degree of
chaos, the LZC is also applied to evaluate the nonlinear dynamics of the MT time series. Nowadays, IE
and LZC are widely used as measures of dynamical complexity in several applications [18-20].

In this paper, a novel method was proposed for MT signal-noise separation using IE-LZC and
matching pursuit (MP). The IE-LZC characteristics were developed to analyze the essential features
of MT in combination with the fuzzy c-means (FCM) clustering algorithm for MT signal-noise
identification or with the selective use of matching pursuit (MP) as the de-noising algorithm. The
IE and LZC were extracted from each segment of the MT signal as characteristic parameters. The
FCM clustering is a partition-based clustering algorithm [21] designed to identify the signal and noise
automatically. The idea is to maximize the similarity between objects that are divided into the same
cluster, and the similarity between different clusters is the smallest. The MP algorithm is a highly
adaptive time-frequency signal decomposition and approximation method that is commonly used to
suppress signals identified as strong interference. We applied the proposed method for the clustering
analysis of signal samples collected from the Qinghai test site and the measured sites; where the results
were compared to those obtained using the remote reference method and independent use of the MP
method. According to the findings, the denoised data from the proposed method closely resembled
the original undisturbed data in terms of the essential characteristics, and the geoelectric structure
information of the measured site was accurately reflected in the results.

2. Methods and Materials

Based on the essential characteristics of the MT signal and noise, the collected MT data is often due
to factors such as topographical structure and the human electromagnetic environment, and various
electromagnetic noises inevitably interfere with it. However, the complex electromagnetic interference
sources cause some disturbances to show robust features in the time-series and frequency spectrum,
while other useful signals do not show any features in the time-series and frequency spectrum [22].
Therefore, the proposed method was processed for time-series and it was composed of three steps:
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characteristic extraction (IE and LZC), clustering analysis (FCM), and the de-noising algorithm (MP).
From the above steps, IE-LZC and MP are presented, respectively.

2.1. Information Entropy (IE)

Information entropy is a term describing the degree of uncertainty of the system [23,24], and
therefore, it can be used to measure nonlinear and nonstationary MT signals. Lower entropy means
less uncertainty of the information, that is, the MT signal with substantial interference in this paper. On
the other hand, a useful MT signal contains more random and complex information. The information
entropy is defined by Shannon as follows:

N

H(X) = =) p(x;) logp(x), (1)

1

where X is a discrete random variable with limited states, the probability of each state X = x;,i =
1,2,...,Nis denoted as p(x;) = p(X = x;).

2.2. Lempel-Ziv Complexity (LZC)

The Lempel-Ziv complexity is a nonlinear method for coarse-graining the original signal to form
a symbol series, and also for parsing data to estimate the complexity caused by the emergence of new
sub-sequences within the symbol series [25,26].

Given X = {x1,x2,x3 ...}, denotes the original string sequence, among them, set a = mean(X(i));
if X(i) > a, then x(i) = 0, or else 1. Let S and Q be two subsequences of sequence X, and SQ is a
concatenation of S and Q, while the sequence SQm is derived from SQ after its last character is deleted
(m implying deletion of the last character in the sequence) and v(SQm) denotes the vocabulary of all
different subsequences of SQm.

(1) Initialization; complexity counter ¢(N)= 1, S= x1, Q = x, therefore, SQn = x.

(2) Make S =x1,x2,...,% and Q= x,41, then SQn = x1,x,..., %, if Q belongs to v(SQm), then Q is
a subsequence of SQT, not a new sequence.

(3) Change Q to be x,,1, 12 and judge whether Q belongs to v(SQmn). Repeat above step until Q
does not belong to v(SQm).

(4) Ifnot, Q = Xp41,Xr42, ..., X+ is not a subsequence of SQm = x9,xy, ..., X,4i-1, SO increase ¢(N)
by one.

(5) After that, S = x1,x2,...,%x,4; and Q = x,4,41. Repeat the previous steps until Q is the last
character. Therefore, the number of subsequences in X is ¢(N), which is the measure of complexity.

The complexity value is related to the sequence length N and ¢(N) must be normalized. If the
number of different symbols is a, it has been shown that the upper bound of ¢(N) is as follows:

c(N) < N/((1-en)log, (N)) @)
where ¢y is a small quantity and ey — O(N — o), and N/log, (N) is the upper limit of ¢(N),

lim ¢(N) = b(N) = N/ log,(N) 3)

N-ooo

For a binary conversion @ = 2, b(N) = N/ log,(N). c¢(N) can be normalized by b(N) as:
C(N) = c(N)/b(N) €y

C(N) is the normalized LZC. The larger the value of the LZC, the more complex the sequence is;
that is, the MT signal has no interference.
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In this paper, IE and LZC were used as robust characteristic parameters to distinguish MT signals
from noise. Simultaneously, as the input of FCM clustering, it is used for signal-noise identification.

2.3. Matching Pursuit (MP)

The matching pursuit (MP) algorithm can be traced back to the overcomplete dictionary [27], that
is, the signal is decomposed into a sparse representation coefficient on a non-orthogonal basis. The
basic idea is to select the best atom to match the signal in each iteration and to constantly update the
residual signal until iterative termination [28]. The MP algorithm is as follows:

Let dictionary D = { gy}yer, where g, refers to redundant atoms, and then, the signal f can be
decomposed into:

f={f%0)80+Rf )

where < f, gy0> §y0 is the projection of the signal on the atoms, Rf is the residual signal, and g0 is
orthogonal to Rf, hence:

AP = |(f, )| + IRAP ®)

To minimize the residual signal, we approximated the best atom chosen to maximize the inner
product of the f and g0, and the residual signal. When iterating to n + 1, the residual after
approximating by n atoms can be expressed as:

R'f = <R"f, gyn>gyn +RUHLf (7)
Through N iterations, the signal f can be decomposed into:

N-1

f= Z <Rnf , 8}/n>8w +R'f ®)

n=0

Since the residual is exponentially decaying and thus ignored, the signal f can be approximated as:

N-1
f= 2 <Rnf / gyn>g7/n )
n=0

Figure 1 shows the MP de-noising effect of the ‘heavy sine’ signal in MATLAB under different
atoms, and the length of the ‘heavy sine’ signal was 1024. In the signal, we analyzed it by adding
random noise. Among them, the dictionary in the MP algorithm only contains sine (sin) and discrete
cosine (dct) atoms, as shown in Figure 1a, while Figure 1b displays the symlets (sym) and daubechies
(db) wavelet atoms. It can be seen from Figure 1a that in the part of the signal mutation, the sin/dct
atoms cannot accurately match the signal’s detail component, resulting in residual interference in the
reconstructed signal. Therefore, the sym/db wavelet atoms can match the abrupt part of the ‘heavy
sine’ signal.

To evaluate the MP de-noising performance of different atoms, the normalized cross-correlation
(NCC), signal-to-noise ratio (SNR), and mean square error (MSE) were used for the quantitative
analysis. Definitions of these parameters are as follows:

(1) NCC

NCC =

(10)

\/(é r0)( £ 20)

where (i) and g(7) represent the ‘heavy sine’ signal and profile of the noise, respectively.
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(2) SNR

SNR = 10lg———

5o0f 14

N
X f2(0)

1

X [f() - g

i=1

(3) MSE

MSE — " (£ ))?
- N;mz) ~8(0)

Table 1 is the comparison between the de-noising performance of different atoms.
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Figure 1. (Matching pursuit) MP de-noising effect of the ‘heavy sine’ signal under different atoms with

(a) sin/dct atoms and (b) sym/db wavelet atoms.

Table 1. MP de-noising performance of different atoms.

(11)

(12)

NCC SNR(dB) MSE
sin/dct 0.9990 22.6268 0.0112
sym/db wavelet 0.9996 23.6209 0.0061

From Table 1 together with Figure 1, the sym/db wavelet atoms achieve a higher NCC and SNR,
and a smaller MSE, which accurately matches the abrupt component signal, so that the reconstructed
signal is more precisely preserved. To this end, the appropriate atoms were selected to match the
stationary and abrupt signals effectively.

3. Experiments and Results

3.1. Step of the Proposed Method

The steps of the proposed method are detailed as follows:

Load the noisy MT data and equally divide it into the N segment of data.

identification, automatically distinguishing the signal and noise.

data segment identified as the MT noise, that is, the MP signal-noise separation.

Evaluate the apparent resistivity-phase curve and electromagnetic polarization direction.

Extract the IE and LZC of each segment of the MT data, and input to FCM clustering as signal-noise
The data segment identified as the MT signal is retained, and the MP technique eliminates the

The retained signal is combined with the denoised signal to reconstruct the useful MT signal.
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3.2. Clustering Analysis of the Sample Library

In this research, a library of 200 data samples was used from field measurements [29]: where
50 samples were MT signals without interference collected from a remote area with no man-made
activities in the Qinghai province. The rest of the contaminated data (referred to as “square wave
interference, triangle wave interference, and pulse wave interference”) were collected from the ore
concentration area.

The FCM clustering algorithm obtains the membership degree of each sample to all clustering
centers by optimizing the objective function, thereby determining the category of the samples to
achieve the purpose of automatic classification.

Figure 2 is the fuzzy c-means (FCM) clustering of the sample library signals; among them, cluster 1
represents the MT signals with interference and cluster 2 represents the MT signals without interference.
Characteristic parameters X and Y are the information entropy (IE) and Lempel-Ziv complexity (LZC),
respectively. Extract the IE and LZC characteristic parameters from the signals of the sample library and
then input them to FCM clustering; calculate the Euclidean distance from the characteristic value to the
cluster center, and then use contour lines to distinguish between the two types. Specifically, the contour
lines indicate the shortest and longest distance from the samples to the cluster center in the same type,
which can effectively divide the sample signals into different groups, thereby accurately identifying the
MT signals without or with interference. Thus, IE and LZC are suitable for distinguishing MT data, and
this sample library proved the feasibility of using FCM clustering for MT signal-noise identification.

*  Cluster1
* Cluster2
O Cluster center

o
©

o
o

Characteristic parameter Y

02 04 06 08
Characteristic parameter X

Figure 2. FCM clustering of sample library signals, where Cluster 1 represents MT signals with
interference, and Cluster 2 represents MT signals without interference; Characteristic parameter X and
Y are information entropy (IE) and the Lempel-Ziv complexity (LZC), respectively.

3.3. Simulated Interference Analysis of the Qinghai Test Site Signal

The test site (QH401504) data was collected from remote areas untouched by human activities
in the Qinghai province. The duration of data collection was about 19 h; where the pseudo-random
sequence transmitted by the wide-area electromagnetic transmitter was implanted into the MT data
collected in the first 1.5 h. During the remaining 17.5 h, the wide-field electromagnetic transmitter was
turned off, which meant that the MT data was unaffected by the strong interference. To this end, we
only analyzed the data collected during the last 17.5 h for this test site.

Figure 3 shows that large-scale interference was added to the undisturbed data for signal-noise
separation analysis and comparison of the denoised apparent resistivity-phase curves. The triangle
wave interference, charge-discharge triangle wave interference, and pulse wave interference were
added into the Ex or Hx channel, respectively. Figure 3a,b can effectively identify the artificially-added
interference types by extracting the characteristic parameters and the FCM clustering analysis, thereby
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eliminating large-scale abnormal waveforms while retaining as many details of the original signal as
possible for the reconstructed signal. Further comparison of the apparent resistivity-phase curves is
shown in Figure 3¢, where the apparent resistivity-phase curve of the original data is smooth and
continuous. However, noisy data causes the apparent resistivity-phase curve to mutate or fall severely
in the low frequency band. The apparent resistivity-phase curve of the reconstructed data using the
proposed method was consistent with that of the original data. Therefore, the proposed method could
suppress the MT abnormal waveform in a targeted manner and provided an effective way to analyze

the subsequent measured data of the measured sites.
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Figure 3. The Qinghai test site (QH401504) is disturbed by a noisy signal with (a) triangle wave
interference of Ex and (b) charge and discharge triangle wave and pulse wave interference of Hx; (c) is
a comparison of the apparent resistivity-phase curves.

3.4. Signal-Noise Separation Analysis of the Measured Data

To verify the effectiveness of the proposed method, Figure 4 shows the signal-noise separation
of the measured data using the IE-LZC and MP technique. The triangle wave and pulse wave
interference were identified and highlighted in red. The result confirmed that the proposed method
could distinguish between signals and interference.
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Figure 4. The signal-noise separation for the measured magnetotelluric (MT) data and comparison of

using the MP method (a) triangle wave interference and (b) pulse wave interference.

Large-scale strong interference was suppressed using the MP method for de-noising. Nevertheless,
this method lacked signal-noise identification, which could lead to improper filtration of abundantly
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useful information making it hard to reserve non-interfered MT signals. In contrast, the proposed
method not only quantitatively identified the signals and interference but it also suppressed the
identified interference purposefully, thereby avoiding the over-processing of the MP method and
abundantly preserving the slow-change components at low frequencies.

3.5. Apparent Resistivity-Phase Curve of the Measured Sites Analysis

Figure 5 shows the comparison of the apparent resistivity-phase curves of the original data, remote
reference (RR) method, matching pursuit (MP) method, and the proposed method. These measured
sites (C41820, EL22175, and EL22211) analyses were subjected to the same type of interference (square,
triangle, and pulse wave) in time domain waveforms. The sites were collected in the Luzong area,
Anhui province, China. The collection time was 19 h for Figure 5a and 1 h for Figure 5b and c,
respectively. The measured data were collected using a V5-2000 instrument (produced by Phoenix
Company, Canada). As most geophysical information on these sites is concentrated in low-frequency

bands, we only analyzed the low-frequency data in detail.
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Figure 5. Comparison of apparent resistivity-phase curves of the measured sites (a) C41820, (b) EL22175,
and (c) EL22211; red curve is for the original data, blue curve for the result obtained by the remote
reference (RR) method, pink curve for the data filtered by the matching pursuit (MP) method, and the
black curve for the result derived from the proposed method.

In Figure 5a, the apparent resistivity curves of the original data of py, and py» component appear
to rise severely at 10 Hz-0.1 Hz. However, the curves dropping in the frequency band below 0.1 Hz,
and the corresponding phase curve show severe mutation. Thus, the result belonged to the typical
near-source effect, and its data reliability was completely unexplained. The sites on Figure 5b,c were
conducted on the same line. The apparent resistivity curves of the original data in Figure 5b,c were
about 45° asymptote rising, and the corresponding phase curves were all close to 0° and 180°. Given
these sites were similar in their response when affected by strong interference, the results could not
reflect the underground inherent electrical structure information.

Compared to the result obtained using the remote reference (RR) method, the apparent resistivity
curve still kept rising, and the distortion data in the phase curve were not reduced. The result was
because the RR method only eliminated noise by selecting between a reference site and the measured
data distance. Under the influence of strong continuous interference, the RR method failed to produce
the desired effect. Although the matching pursuit (MP) method could suppress large-scale strong
interference in the time series, many low-frequency useful MT signals were filtered out. This caused
an upward trend that did not ease, as in Figure 5a, and a downward trend in Figure 5b,c in the
apparent resistivity curve in the low-frequency band. Meanwhile, the corresponding phase curve was
more chaotic. Moreover, the result could not effectively reflect underground geoelectric information.
According to the results, the proposed method can eliminate the section identified as MT interference
and reconstruct a useful MT signal with high precision. The apparent resistivity-phase curve becomes
stable and continuous, and its amplitude is also in the normal range. Thus, the result indicated that the
denoised data was more reliable and reasonable.

3.6. Polarization Direction Analysis

Polarization direction [30] of the electromagnet field is an indicator for evaluating MT data quality.
Thus, it was introduced to verify the effectiveness of the proposed method further. Figure 6 shows the
comparison of electromagnetic polarization direction at a frequency of 0.3 Hz for the measured site
EL22211 in the electric and magnetic fields, respectively. The left side of Figure 6a,b is the polarization
direction of the original data, and the right side shows the polarization direction after it is denoised by
the proposed method.
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Figure 6. Comparison of the polarization direction at 0.3 Hz for site EL22211, (a) electric field data, and

(b) magnetic field data.

The polarization direction of the original data in the electric field and magnetic field was
concentrated between —20° and —60° at 0.3 Hz, as shown in Figure 6. The active source area and
strong interference waveforms were flooded with the original data. The polarization direction of the
proposed method showed that electric and magnetic field data were relatively scattered and random,
which was consistent with the polarization characteristics of natural field data. This result indicated
that the proposed method was quite effective and the strong interference of the measured data had

been suppressed.

4. Discussions

Geophysical methods are undoubtedly a powerful means to search for deep concealed mineral
resources [31,32]. MT sounding is a significant method and has an irreplaceable role in the exploration
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of deep structures and metal deposits. However, weak MT data is highly susceptible to noise. For this
reason, the development of methods to eliminate MT noisy signals and improve the quality of MT data
will be beneficial to subsequent geoelectric structure analysis.

According to early literature on MT signal-noise separation, the MT data of time-frequency domain
is analyzed and denoised [33,34]. These methods cannot distinguish between the signal and noise,
and the useful data of low-frequencies are also filtered and blindly suppressed as noise, that is, the
results cannot truly and reliably reflect the underground electrical structure. Further research in recent
literature reveals that fractal, multifractal, entropy, and other ways of describing the characteristics of
MT signal-noise are emerging. More robust characteristic parameters are used for the analyses, and
good results have been obtained. However, this paper introduces only two characteristic parameters
(IE-LZC), which are simple in an algorithm, fast in calculation, and easy to implement. The efficiency
of MT signal-noise separation has improved with due consideration to data quality. For the mentioned
measured site processing (Figure 5), the proposed method can be completed in a short time.

In this study, the IE and LZC are combined with a cluster method to distinguish the MT signal
from interference. To validate the results, we first used sample library signal analysis to calculate the IE
and LZC characteristic parameters of the known sample signals, and then we input the outcomes into
FCM clustering (Figure 2). Considering the simple principle of the IE and LZC algorithm, these results
supported the hypothesis that the IE-LZC and cluster methods were able to distinguish between the
MT signal and interference (Figure 4). The MP algorithm is a signal sparse decomposition method,
which primarily uses the linear operation of the atom vector to gradually approximate the signal vector,
and it constantly iterates to achieve a given sparsity. The MP de-noising effect of two different atom
types (Figure 1) indicates that the appropriate atom can be selected to match the corresponding signal
for the mutation and stationary component of signals, where the mutation components are eliminated.
Meanwhile, the useful signals are preserved.

We verified the Qinghai test site (Figure 3) and compared the results to ones achieved using the
RR method and MP method for the measured sites (Figure 5). The proposed method could avoid
over-processing and preserve more useful MT signals with improved MT data quality. However, the
limitation of the paper was that when the signal and noise were gradually blurred, the clustering
precision would drop sharply. Moreover, the number of iterations and atomic types need to be preset
in the MP algorithm. If the intelligent algorithm is used to learn the MT data characteristics to improve
the identification accuracy and adaptive selection of the parameters in the MP algorithm, it will
significantly enhance the level of data processing.

5. Conclusions

A novel MT signal-noise separation method using information entropy (IE), Lempel-Ziv complexity
(LZC), and matching pursuit (MP) algorithms was proposed. To remedy the low efficiency and to
improve the accuracy of MT data processing in the existing techniques, the proposed method was
applied to distinguish between interference and useful MT signals by analyzing the data from the
Qinghai test site and other measured sites. The experimental results showed that the characteristic
parameters and cluster method could effectively identify MT strong interference in time series sequence,
while the MP de-noising could suppress results identified as MT strong interference while retaining
the slow-change components of low-frequencies. At the same time, the data quality and apparent
resistivity-phase curves were improved. The results obtained using the proposed method reflected the
inherent electrical structure information more realistically, providing more reliable data for inversion.
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