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Abstract: Most of time series deriving from complex systems in real life is non-stationary, where the
data distribution would be influenced by various internal/external factors such that the contexts are
persistently changing. Therefore, the concept drift detection of time series has practical significance.
In this paper, a novel method called online entropy-based time domain feature extraction (ETFE) for
concept drift detection is proposed. Firstly, the empirical mode decomposition based on extrema
symmetric extension is used to decompose time series, where features in various time scales can
be adaptively extracted. Meanwhile, the end point effect caused by traditional empirical mode
decomposition can be avoided. Secondly, by using the entropy calculation, the time-domain features
are coarse-grained to quantify the structure and complexity of the time series, among which six kinds
of entropy are used for discussion. Finally, a statistical process control method based on generalized
likelihood ratio is used to monitor the change of the entropy, which can effectively track the mean
and amplitude of the time series. Therefore, the early alarm of concept drift can be given. Synthetic
data sets and neonatal electroencephalogram (EEG) recordings with seizures annotations data sets
are used to validate the effectiveness and accuracy of the proposed method.
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1. Introduction

The study of time series has strong theoretical significance and application value in real life.
Due to its practical importance, the works related to the applications of time series are widely used
in finance, engineering, medicine, and other fields [1–4]. The time series deriving from real life are
normally non-stationary, which means the contents of sequence data would change over time due to
various factors. For example, EEG data of a patient with epilepsy would be considerably different in
normal state and during the attack, which leads to distinct contents of bio-information time series.
These changes are known as concept drift, which widely exists in various kinds of time series data [5,6].
The study of concept drift of time series has the practical implications. For instance, the prediction
of time series is always a hot topic in this community and various studies have been proposed [7–9].
However, the existing prediction models commonly depended on the specific data, which means a
new volatility pattern of time series could greatly affect the prediction performance. The root cause
of the above case is the existence of concept drifts. Since the prediction models are trained based on
the original concepts of time series, with the emergence of concept drift, it cannot be suitable for the
current situation such that the prediction accuracy would be affected. Therefore, how to effectively
detect the concept changes of time series is of significance.
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Generally, concept drift detection methods can be divided into two types [5], one is explicit
detection methods, i.e., supervised detection methods, and the other is implicit detection methods, i.e.,
unsupervised detection methods. From the perspective of probability, the explicit detection methods
regard the concept drift as the change of the joint probability distribution P(X,Y) of the sample data
X and its corresponding label Y, and the implicit detection methods are to track the change of the
sample data distribution P(X) [5]. From another point of view, explicit detection methods usually need
base-learners to deal with classification problems, and directly determine the occurrence of drifts by
monitoring whether the performance indicators of base learner classification (such as classification
error rate) reach a threshold [10–12]. When dealing with concept drift, these methods usually discard
the previous base-learners and replace them with a new base-learner. For some ensemble learning
methods [13,14], they will be according to the performance of each base-learner to decide whether
to add a new base-learner, reduce an existing one, or adjust their corresponding weights. Implicit
detection methods do not need data labeling. By extracting and transforming the features of data, they
monitor the changes of data features to achieve the purpose of concept drift detection [15,16], where
the so-called changes generally include statistical characteristics of data, data distribution, or some
particular metrics.

Even though many approaches related to the detection of concept drifts of time series have
been proposed in recent years [17–19], some problems are still open. On the one hand, most of the
existing detection algorithms are based on the performance indicators of the classifiers. However,
time series data are difficult to be marked in the real environment such that the absence of ground
truth is an unavoidable problem. On the other hand, some concept drift detection methods are based
on the assumption of independent data. Therefore, due to the particularity of time series data, it is
impractical to apply the existing models without any modification. In addition, in the real environment,
considering the influence of noises in the time series, the obtained data is also difficult to be learnt
directly [20].

In order to solve the difficulties mentioned above, in this paper, a novel unsupervised algorithm
is proposed for the online time series concept drift detection. Firstly, an empirical mode decomposition
(EMD) method [21] based on extrema symmetric extension is used to decompose time series. After
decomposition, a series of intrinsic mode functions (IMFs) containing different time scales of the
original signals can be obtained, where various features of time series in different scales can be revealed.
Furthermore, entropy methods have been used to measure the structure and complexity of time series,
where the structural characteristics of IMFs with different frequencies can be analyzed. Compared with
directly monitoring from the original signals, the obtained data has higher signal-to-noise ratio and
intuitiveness. When concept drifts occur, the changes of time series would result in the fluctuations of
entropy values. In order to detect the changes, a generalized likelihood ratio (GLR) based statistical
process control algorithm [22] is used. This method calculates the statistical characteristics of the
data in each sliding window and compares with a given threshold to judge the breakpoint, so as to
determine the location of the concept drift. The main contributions are summarized as follows:

• A novel unsupervised algorithm is proposed for online time series concept drift detection, which
can effectively detect the occurrence of concept drift in streaming data by capturing the fine
structures of data in different time scale.

• Entropy methods are used to capture the changes of intrinsic structures of the original sequence
in different time domains, where multiple application scenarios are discussed according to the
characteristics of entropies in detail.

• A statistical process control method based on GLR is designed to monitor the changes of the
obtained entropy information, which can determine the concept drift in time and reduce the
false alarms.
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The rest of the paper is organized as follows: The second part presents the literature review;
the third part is the introduction of the proposed algorithm entropy-based time domain feature
extraction (ETFE), where the principle and implementation are included; the fourth part is the related
experiments, which include the performance evaluation of the proposed method in synthetic data and
real data; the fifth part is the conclusion and prospect of our work.

2. Related Works

In recent years, some theoretical results have been proposed to tackle with the concept drifts in
time series. In order to solve the problem that real time series data are difficult to be labeled due to
the characteristics of flow patterns and high frequencies, Cavalcante [23] proposed an explicit drift
method by exploring the influence of concept drift in financial time series on prediction accuracy, where
ELM [24] was used as prediction method, DDM [10] and ECDD [11] were used as drift detectors. In the
following work, Cavalcante proposed a new concept drift detection method called feature extraction
drift detection (FEDD) [17], which determined the presence of concept drifts by detecting the temporal
characteristics of the time series, and it can also provide a better explanation of temporal evolution
than monitoring prediction accuracy.

In order to deal with the influence of time dependence of time series on concept drift detection,
Guajardo [25] proposed a support vector machine regression model based on seasonal pattern to
predict time series. The idea of this method was to divide the data in a sliding window into training
set and test set. When the sliding window moved forwards, latest data were used to retrain the model.
The size of the sliding window was adjusted according to the seasonal pattern of the time series to
adapt to the characteristics of the data in the current time period. In this way, the model structure
can take the latest data information into account, but for real time series without predefined seasonal
patterns, the cycle of acquiring seasonal patterns will not be practical.

Costa et al. [19] dealt with the concept drift of time series by decomposing the time series into
deterministic components consisting of non-independent observations and stochastic components
consisting of independent observations. In order to eliminate the time dependence in deterministic
components, Taken’s immersion theory was used to decompose deterministic components into
independently and identically distributed data. In this way, both deterministic and stochastic
components were subjected to independent and identical distribution, and the constructed model from
these data can be more stable.

In this paper, a novel unsupervised algorithm is proposed for the online time series concept drift
detection. Compared with the existing detection methods, the novelty and innovation brought by this
approach is that, based on IMFs revealing the original signals, entropy methods are used to capture the
changes of intrinsic structures of the original sequence in different time domains, where the extracted
features have higher signal-to-noise ratio. Furthermore, the statistical control process can effectively
determine the occurrence of concept drift and reduce the false alarms.

3. Model

In this section, the ETFE method is to be introduced in detail, which is an online unsupervised
concept drift detection algorithm for time series. Since the existence of noise and abnormal interferences
in the original time series, it is difficult to directly detect concept drift from the original data [26].
Based on EMD with the extrema value symmetric extension, IMFs obtained by decomposing the
original time series can extract the features of time series in various time scales. Since the high frequency
IMF is more sensitive and the low frequency IMF can reveal the overall trend, by combination of
different IMFs, the early alarm for concept drift can be achieved. Entropy, as a measure of complexity,
can quantify the structure and fluctuation scales of the time series. Therefore, the drifts will be reflected
in the changes of entropy, i.e., the changes of entropy information can be detected through statistical
control process. Generally, the proposed method mainly consists of three parts: firstly, an EMD based
on extrema symmetric extension is used to decompose the original time series; secondly, the features
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of IMFs in different time scales are calculated by using entropies; thirdly, the IMF-Entropy values are
monitored by a GLR-based statistical control process algorithm such that the occurrence of concept
drift can be detected. The flow chart of the whole model is shown in Figure 1.
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Figure 1. Entropy-based time domain feature extraction (ETFE) model framework.

3.1. The Decomposition for Time Series

EMD is a method proposed by Huang et al. [21], which can decompose the signals into different
IMFs according to the time scales of the data. Each IMF has a clear physical meaning and contains
features of the original data. EMD can be used to analyze non-linear and non-stationary signal
sequences with high signal-to-noise ratio and time-frequency focusing. In addition, EMD method has
strong local representativeness and can be applied to tackle with time-varying signals. The advantages
of EMD are the reason it is often used in time series analysis in the fields of medicine, industrial
production, and financial derivatives [27,28].

However, the process of EMD is normally affected by the endpoint effect, and the divergent results
will gradually pollute the data inward, resulting in distortion of the results [29]. Different methods
have been proposed for handling with endpoint effect [30], where the symmetrical extrema extension
can be taken as the primary method because of its small impact on the final result [31]. The basic idea
of extrema symmetric extension is that, before the cubic spline interpolation of signals is carried out,
the relationships between the maximum, the minimum, and the endpoint are judged first, and the
extrema symmetric extensions of the data at both ends are implemented, respectively. Based on the
previous works, the decomposition of time series can be carried out as follows:

1. Let x(t), t = 1, 2, . . . , l present the time series. x(t) contains M local maximums and N local
minimums, and their indexes are denoted as Im(i), i = 1, 2, . . . , M and In(i), i = 1, 2, . . . , N,
respectively. In this way, the corresponding local maximum and local minimum are
Ui = x(Im(i)), i = 1, 2, . . . , M and Vi = x(In(i)), i = 1, 2, . . . , N.



Entropy 2019, 21, 1187 5 of 22

2. Start from the left side. When Im(1) < In(1), if the value of the left end point is larger than the
first local minimum value, that is x(1) > V(1), then the local maximum value point Im(1) is used
as the center of symmetry to extend d units to left. The time indexes and values of the extension
sequence are:

k = 2Im(1) − i, x(k) = x(i), i = Im(1) + 1, . . . , Im(1) + d

3. When In(1) < Im(1), if the value of the left end point is smaller than the first local minimum value,
that is x(1) < U(1), then the local minimum value point In(1) is used as the center of symmetry
to extend d units to left. The time indexes and values of the extension sequence are:

k = 2In(1) − i, x(k) = x(i), i = In(1) + 1, . . . , In(1) + d

4. When x1 < V(1) or x(1) > U(1), the left endpoint is used as the symmetric center to extend d units
to the left, and the time indexes and values of the extension sequence are obtained as follows:

k = 2− i, xk = x(i), i = 2, . . . , d

5. Extend the right endpoint in the same way.
6. Find out all local maximum points and local minimum points in the sequence xt after extension,

and fit the upper envelope u(t) of the maximum points and the lower envelope v(t) of the
minimum points by cubic spline interpolation. Then, the original sequence is between the
upper envelope and the lower envelope. Subsequently, by calculating the mean p(t) of the upper
envelope and the lower envelope, the original sequence can be converted into a new sequence h(t):

p(t) = (u(t) + v(t))/2
h(t) = x(t) − p(t)

7. Check if the obtained h(t) meets the following conditions:

(1) The number of local extremum points and the number of zero crossing points is equal or
the difference is at most 1.

(2) The average of the envelopes of the local maximum and the local minimum is zero.

If the above two conditions are satisfied, the obtained h(t) is called as s-th IMF, where s indicates
the number of repeats of steps 6 and 7. Then, the obtained h(t) is denoted by hs(t). And if not,
replace x(t) with h(t). Repeat step 6 until h(t) meets the above criteria.

8. Residual r(t) is the difference between h(t) and xt obtained in step 7 and then x(t) is replaced by
r(t) to calculate the next IMF. The steps 6–7 are repeated f times until the obtained f -th residual is
a monotonic function. In this way, the original time series xt is represented in the following form:

x(t) =
f∑

i=1

hi(t) + r f (t)

9. Delete the data of the extension part and retain only the data decomposed from the original part.

3.2. The Calculation of IMFs’ Entropy

Since the noise and disturbance existing in time series, the changes of time-domain characteristics
of time series are difficult to be captured by directly extracting information from raw sequence data [32].
When the contents of time series change, in order to quantify the change degrees and track the processes
from different time scales, EMD with extrema symmetric extension is first used to decompose time
series adaptively so as to get IMFs in different time domains. Then, the entropy of IMFs is calculated
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such that the time series can be monitored from the angle of time domain characteristics in various
time scales.

Approximate entropy (ApEn) is a kind of statistical measuring for the complexity of time series,
which can be applied in the non-linear and non-stationary data with high noise [33]. Generally,
the approximate entropy can be calculated as follows:

1. Time series x(1), x(2), . . . , x(l) are provided, and a threshold r (usually chosen as 0.2 std, where
std is the standard deviation of the original sequence) for similarity comparison and a metric γ
(usually chosen as 2 or 3) for defining the length of the reconstructed sequence.

2. The original sequence is reconstructed to obtain l−γ+ 1 subsequences X(1), X(2), . . . , X(l− γ+ 1).
Among them, subsequence X(i) = x(i), x(i + 1), . . . , x(i + γ−1).

3. The distance dγ[X(i), X( j)] between two reconstructed vectors X(i) and X( j) is calculated, where
dγ is determined by the maximum difference of the corresponding position elements in the
two vectors.

4. Count the number of vectors satisfying the following conditions, and calculate the ratio between
the number and the total subsequence data length:

Cγi (r) =
num

[
dγ(X(i), X( j)) < r

]
l− γ+ 1

This process is called the template matching process of X(i), and Cγi (r) represents the matching
probability between any X( j) and template X(i).

5. Calculate the average similarity rate:

φγ(r) =

∑L−γ+1
i=1 log

(
Cγi (r)

)
l− γ+ 1

6. According to steps 1–5 above, the average similarity rate is calculated when the length of
subsequence is divided by γ + 1.

7. Calculate the approximate entropy:

ApEn(l,γ, r) = φγ(r) −φγ+1(r)

It can be seen from the calculation process of ApEn that, when the difference between two
subsequences is large, the number that satisfies dγ[X(i), X( j)] ≤ r will be small, and the amount of
information corresponding to it will be large. Meanwhile, ApEn has some shortcomings. As a result of
the existence of self-matching, it shows a bias towards regularity. There is a lack of relative consistency
between approximate entropy values calculated by different parameter combinations, and it is also
sensitive to the length of data sets.

Sample entropy (SampEn) [34] is an improvement of ApEn. The calculation process is similar to
that of ApEn, but some shortcomings of ApEn have been overcome. SampEn is based on the model of
logarithmic function. In order to avoid the occurrence of ln(0), when calculating the distance between
reconstructed vectors, the process of self-matching is eliminated such that ApEn exhibits good relative
consistency and is independent of the length of the data set.

Different from SampEn, fuzzy entropy (FuzzEn) [35] introduces an exponential function, namely a
fuzzy membership function, to measure the similarity between two sequences. The fuzzy membership
function is continuous and therefore, it ensures that the FuzzEn value is stable and does not mutate.
Meanwhile, it also ensures the maximum self-similarity value of the sequence. In addition, the change
of parameters of FuzzEn has little effect on the computed results.
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Although SampEn, ApEn, and FuzzEn can be used to measure the complexity of time series, they
ignore the time dependence of elements in time series. Permutation Entropy (PeEn) [36] is a measure
of time series complexity from the perspective of intrinsic structure of time series. It calculates the
PeEn value by comparing the adjacent values and mapping them to ordered patterns to obtain the
frequency of each permutation.

In the definition of PeEn, when extracting ordered patterns for each time series, no other
information is retained except the ordered structure, such as the magnitude of time series information.
This may lead to the same PeEn value for time series with different amplitude scales or fluctuation
patterns. Weighted Permutation Entropy (WPeEn) [37] can better capture abrupt changes in time series
by assigning different weights to sequences according to fluctuation sizes. It is calculated in a similar
way to the PeEn method, but the WPeEn can better detect some mutations and amplitude changes by
introducing the variance of the sequence as a weight.

Increment entropy (IncrEn) is a new measure of time series complexity in recent years [38],
the definition of which is similar to PeEn. But, in the calculation of IncrEn, the relationship between two
adjacent elements in time series is expressed by two variables, one of which represents the direction
of fluctuation and the other represents the magnitude of fluctuation. In this way, a time series is
characterized by the direction and amplitude of fluctuations between adjacent elements, and then
the frequency of the characteristic vectors is counted to quantify the complexity of the time series.
Additionally, IncrEn also introduces a parameter to indicate the precision of the fluctuation amplitude.
If the precision is set too large, it will be sensitive to noise, and if the setting is too small, the information
expressed will be less. Therefore, the choice of parameter will affect the value of IncrEn to some extent.

Therefore, in order to comprehensively analyze the application of entropy in the concept drift
detection, various entropy methods, including the six entropies above, have been conducted and the
comparative results have been discussed.

3.3. Statistical Process Control for the Detection of Concept Drifts

From the discussion results of IMF-Entropy, it can be seen that, when concept drift occurs,
the calculation results of IMFs’ entropy change in the values of the mean, variance, or both. In order to
monitor its changes, a statistical process control (SPC) model based on GLR [39] is used. In the
existing works, the traditional concentration inequality such as Hoeffding’s Inequality [40], Bernstein’s
Inequality [41], can only capture the deviation between the mean and its expectation, but it is difficult
to work in the situation where the mean changes are slight but the fluctuation is obvious. Therefore,
the statistical process control model is applied, where changes existing in both mean and variance can
be detected.

We simulate a process as follows:

x(i) ∼

 N
(
µ1, σ2

1

)
i f i ≤ τ

N
(
µ2, σ2

2

)
i f i > τ

where x(1), x(2), . . . , x(i), . . . are the successive observations. In this process, the mean, the variance,
or both, of the processes change after the time point τ.

It is assumed that the change point ϑ, and the current time step is q, where 0 < ϑ < q, the GLR test
statistic is defined as:

GLR = ϑlog
S0,q

S0,ϑ
+ (q− ϑ)log

S0,q

Sϑ,q

where Si, j = Vi, j/( j− i), and Vi, j is the variance of the sequence x(i + 1), . . . , x( j).
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According to [39], in the case of no shift, this statistic has an asymptotic chi-squared distribution
with 2 degrees of freedom. The quality of this approximation can be improved substantially by dividing
the Bartlett correction factor, so as to make the expectation of the GLR equal to the degrees of freedom:

Gϑ,q =
(
ϑlog

S0,q
S0,ϑ

+ (q− ϑ)log
S0,q
Sϑ,q

)
/C

C = 1 + 11
12

(
1
ϑ + 1

q−ϑ −
1
q

)
+

(
1
ϑ2 +

1
(q−ϑ)2 −

1
q2

)
If there is no prior knowledge to determine the location of the change point, the max Gϑ,q can be

found through the GLR test process at all possible points, yielding Gmax,q = maxϑGϑ,q, and then the
drift can be determined by comparing with the control threshold. The whole continuous SPC process
is as follows:

1. When the number of consecutive observations reaches a predefined number, Gmax,q is calculated.
2. If Gmax,q ≤ δq, where δq is an appropriate control threshold, it means that there is insufficient

evidence for the occurrence of shifts of variance and mean in the data stream.
3. If Gmax,q > δq, it means that there is evidence for the occurrence of shifts of variance and mean in

the data stream.

In the implementation of GLR algorithm, the space complexity is not high. Only two arrays are
needed for the calculation. One array is the sum of the whole data Wq =

∑q
i=1 x(i), and the other array

is the sum of squared deviations from the moving mean P0,q. The calculation of two arrays can be
quickly updated by the following recursive formulas:

Wq+1 = Wq + x(q + 1)

P0,q+1 = P0,q + q
(
x(q + 1) −Wq/q

)2
/(q + 1)

GLR test statistics can be easily calculated:

Xi,ϑ = (Wϑ −Wi)/(ϑ− i)

Pi,ϑ = P0,ϑ − P0,i − i(ϑ− i)/ϑ
(
X0,i −Xi,ϑ

)2

Although the computational speed of the statistics required for GLR test is fast, the process of
finding the appropriate breakpoint ϑ to maximize Gϑ,q will become a burden because of the increasing
amount of streaming data. So, the Willsky–Jones [42] method is applied to keep only the H most recent
observations and using only these observations in the testing procedure. Whenever a new observation
arrives, Wq and P0,q are computed, and then the longest element is removed from the H most recent
observations, and the latest value is added. In this way, the breakpoint ϑ calculated by GLR test is
limited to the latest H data. This method does not ignore all the information outside the window,
which not only has statistical significance but also makes the calculation faster.

Assuming no change occurs, the average number of observations received before a false positive
detection is equal to 1/α, where α is the specified probability of an erroneous signal. This quantity is
referred to as the average run length (ARL) [43]. The calculation of ARL is a computationally expensive
procedure but it only needs to be carried out a single time, and the values can then be stored in a
look-up table. We use the Change Point Model (CPM) package [43] in the implementation of GLR
control process algorithm, which includes some pre-calculated thresholds for specific ARL, because
the control threshold is related to the selection of ARL and takes a lot of computing time.

3.4. The Overall Approach of Concept Drifts Detection

The above three modules constitute the proposed method. The origin series data need to be
decomposed based on a segment of time series, therefore a sliding window is required. If the window
size is too small, it will contain less information, and a larger window will miss catching some local
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behaviors. Actually, there is not a general way to determine the length of window size, which is related
to features of time series. For instance, the window size of data deriving from medical field may be
considerably different from the one from financial field. Therefore, the size of the sliding window can
be selected according to the prior knowledge in the actual application scenes.

With the addition of new observations, time series data in the window is decomposed by the
extrema symmetric extension EMD method. When drift occurs, it will inevitably lead to changes in the
original time series. Since IMFs are the characteristic expressions of the original time series in various
time scales, the changes in the internal structures and complexity of IMFs would correspondingly occur.
From the above discussion, we can see that, when drifts occur, although the changes are difficult to be
directly observed from the original data, the variance and mean of IMF’s entropy have significantly
changed. Therefore, in order to detect this change in the environment of streaming data, we introduce
a GLR-based statistical process control method. Through GLR statistical test, the breakpoint that
maximizes the GLR statistics can be found out. Then, one can judge whether the condition of drifts
is reached by comparing GLR statistics with the predefined control threshold. When the drifts are
detected, the detector will start again from the next observation value of the detection point. The overall
ETFE Algorithm proposed is shown in Algorithm 1. And the implementation code of this algorithm
has been uploaded [44].

Algorithm 1 The overall algorithm of ETFE

Input: data stream x1, x2, . . .
Initialization: Initialize the parameters of the specified entropy, the size of sliding window H, the threshold of
control limit δq

1 foreach observation xi in stream do
2 if i < H then
3 sliding window append xi
4 continue
5 else
6 sliding window append xi
7 imfs← EMD({x1, x2, . . . , xw}) /* use EMD with the data in sliding window */
8 entropy value← Entropy({imfs}) /* use the specific entropy method to calculate the entropy value of imfs */
9 update the interim parameters of GLR with entropy value
10 calculate the GLR test statistic
11 Gmax,q←maxϑGϑ,q /* GLR test is used for finding the change point ϑ */
12 If Gmax,q ≤ δq then
13 There is no evidence of drift occurs
14 else
15 There is evidence of drift occurs
16 drift detection position← ϑ

17 drift detection time← i
18 restart from the next observation

From the Algorithm 1, one can see the time complexity mainly lies in the computations of EMD,
entropy and GLR test statistic. EMD is widely used in data stream processing because of its low time
complexity [28]. The time cost of EMD lies in the generation of IMFs in each iteration, and its time
complexity is O(nlogn), where n is the length of sliding windows. Here, only the first two IMF are
used in the proposed approach. In the calculation of entropy, it is necessary to compare the relations
among the reconstructed subsequences, so the time complexity is O

(
n2

)
. GLR test statistic is calculated

based on the latest window, and the time complexity is O(n). From the above analysis, one can see
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that time consumption is related to the size of sliding window. Meanwhile, the decomposition and
the calculation process of entropy and GLR test statistic are carried out on the data in each sliding
window, so the space complexity is also related to the size of the window as O(n), where the sliding
window approach is known for avoiding memory cost. Therefore, the proposed algorithm is adequate
for real-time streaming data processing.

Through the analysis of the space and time complexity of the proposed algorithm, it can be
seen that the proposed algorithm can be fully applied to the big data scene including high frequency
with high volumes, where the detection of concept drifts in the real-time data flow can be achieved.
Therefore, the proposed model can be implemented in some applications, such as monitoring abnormal
price fluctuation caused by manipulation in financial derivatives market, change of data distribution
caused by machine faults in industrial production and the attack of patients, etc.

4. Performance

In this part, a full evaluation of the proposed method is carried out. Firstly, six entropy methods
are involved to make a brief comparative study, by which one can intuitively observe the feasibility of
scheme. Secondly, by using synthetic data sets, the effectiveness of the proposed method is validated.
Thirdly, the real EEG data sets are used to achieve the further verification.

4.1. The Evaluation of Various Entropy Methods

Two autoregressive processes xt = 1.5xt−1 − 0.4xt−2 − 0.3xt−3 + 0.2xt−4 + wt and xt = −0.1xt−1 +

1.2xt−2 + 0.4xt−3 − 0.5xt−4 + wt are used to create a sequence of data over a period of time, and the
synthetic series is shown in Figure 2.
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Figure 2. Synthetic time series data consisting of two autoregressive processes.

Two autoregressive processes represent two different concepts of time series, and the length of
each phase is 2000. As shown in Figure 2, the process of concept drift is simulated by combining two
synthetic sequence data, in which distinct concepts are displayed in different colors. As a result of the
fluctuations of two time series being similar, it is difficult to be directly detected from the original data.
By decomposing the synthesized data, IMFs with different frequency characteristics can be obtained.
By using the entropy method, the structure and complexity of each IMF can be quantified. Figure 3
shows the results of IMF1 and IMF2 using different kinds of entropy.
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In this group of experiments, IMF1 and IMF2, i.e., the two highest frequency IMFs, are used,
where a sliding window with size 100 is set up. Whenever new observation enters, the sliding window
moves forward one unit. By transforming the original time series, the entropy change of IMF1 and
IMF2 can be seen after 2000 points, where the concept drift occurs and the distribution of data begins
to change.

As to IMF-FuzzEn, it shows that IMF1’s entropy fluctuates around 0.2 in the first concept. After
2000 points, IMF1’s entropy declines significantly and maintains around−0.1. IMF2’s entropy maintains
the fluctuation around 0.1 in the first concept. After the first 2000 points, IMF2’s entropy experiences
a significant upward change, and maintains around 0.25. It can be seen that the occurrences of the
concept drifts will lead to the changes of the structure and complexity of time series in different
time-domain features. Since the frequency of IMF1 is higher than the one of IMF2, IMF1 reveals more
complex fluctuation patterns and is sensitive to the change of time series. Therefore, when the concept
of original time series changes, the entropy of IMF1 can provide a reflection earlier than the one of
IMF2. The same situation is also reflected in IMF-PeEn and IMF-IncrEn.

In IMF-SampEn, after 2000 points, although the mean value of IMF1’s entropy has not obviously
changed, the variance reflects large fluctuations, where the variance of IMF1’s entropy becomes smaller
and that of IMF2 becomes larger. Similarly, the change of high-frequency IMF1 in ApEn occurs earlier
than that of IMF2.

From the results of IMF-WPeEn, one can see that after 2000 points, the mean and variance of the
entropies of both IMF1 and IMF2 have changed. The mean of the entropy of IMF1 has increased, but
the variance has decreased. Meanwhile, the mean and variance of the entropy of IMF2 have increased.
Similarly, the change of IMF1 is earlier than that of IMF2.

From the above results of IMF-Entropy, it can be concluded that, when concept drift occurs,
the entropies of IMFs will change in mean, variance, or both. In addition, from the view of entropy,
the change of higher frequency IMF is earlier than that of lower frequency IMF, which means that high
frequency IMF is more sensitive to the change and low frequency IMF will need a certain time delay
to catch the change. Such a mechanism can filter the anomalies or noises in original data. Therefore,
the features extracted by the calculation results of IMFs’ entropy can better reflect the concept change
of data and have more robustness.
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4.2. Experiments in Synthetic Data

Although there are many studies on concept drift, the data used for concept drift is mostly based
on supervised classification algorithms, and the data set aimed for studies of concept drift in time series
is still lack. In order to determine the breakpoints of concept drift and to measure the effectiveness of
detection algorithm, synthetic data is also an effective method. Due to the particularity of time series,
there is a lack of benchmark data set for concept drift detection of time series in real environment.
In this work, the artificial data set in [17] are applied, which contains the time series with concept
drifts. In order to simulate the concepts of time series, time series is created using the autoregressive
process, that is, time series are represented as xt = a1xt−1 + a2xt−2+, . . . ,+apxt−p + wt, where wt is
white noise and subjects to a normal distribution wt ∼ N

(
0, σ2

)
, is the coefficient of the autoregressive

model. The standard deviation σ2 of wt and the autoregressive coefficient ap are shown in Table 1.
The data set consists of 120 time series: (1) AR(4) time series, which are affected by AR coefficient
and standard deviation of white noise. (2) AR(6) time series, which are affected by AR coefficient and
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standard deviation of white noise. (3) AR(p) time series, which are affected by order p, AR coefficient,
and white noise standard deviation. Each group of data consists of 40 pieces of time series data, each of
which has a length of 12,000 points and is composed of 4 concepts. Drifts are achieved by changing
the parameters.

Table 1. The parameters of synthetic time series data.

Time Series Group Concept ap σ2

Linear 1

1 {0.9, −0.2, 0.8, −0.5} 0.5
2 {−0.3, 1.4, 0.4, −0.5} 1.5
3 {1.5, −0.4, −0.3, 0.2} 2.5
4 {−0.1, 1.4, 0.4, −0.7} 3.5

Linear 2

1 {1.1, −0.6, 0.8, −0.5, −0.1,
0.3} 0.5

2 {−0.1, 1.2, 0.4, 0.3, −0.2,
−0.6} 1.5

3 {1.2, −0.4, −0.3, 0.7, −0.6,
0.4} 2.5

4 {−0.1, 1.1, 0.5, 0.2, −0.2,
−0.5} 3.5

Linear 3

1 {0.5, 0.5} 0.5
2 {1.5, 0.5} 1.5
3 {0.9, −0.2, 0.8, −0.5} 2.5

4 {0.9, 0.8, −0.6, 0.2, −0.5,
−0.2, 0.4} 3.5

According to the common configuration, the parameters of the six entropies are set to be shown in
Table 2, where std is the standard deviation of the time series, and the parameter τ in PeEn and WPeEn
represents the embedding time delay and the parameter ϕ in IncrEn represents the precision of the
fluctuation amplitudes. The sliding window size is 100, the ARL is 200, which is equivalent to the
significance level α = 0.95, and the startup is set to be 10% of the total sequence length. It should be
noted that we do not pre-process the original data, such as normalization or standardization, so that
there is no prior knowledge and can better simulate data flow in the real environment.

Table 2. The parameters of the six kinds of entropy methods.

Entropy Type Parameters

Approximate Entropy γ = 3, r = 0.2 std
Sample Entropy γ = 3, r = 0.2 std
Fuzzy Entropy γ = 3, r = 0.2 std

Permutation Entropy γ = 4, τ = 1
Weighted Permutation Entropy γ = 4, τ = 1

Increment Entropy γ = 3, ϕ = 2

In order to verify the effectiveness of the proposed algorithm in synthetic time series, four metrics,
including detection delay, detection position offset, false alarms, and miss detection numbers are
implemented, where detection delay represents the number of delay instances between detection time
and the occurrence time of drift, detection position offset represents the number of instances between
the detection position and the actual drift position, false alarms represents the number of false alarms
and miss detection numbers represents the number of true alarms missed by the detector. An example
is shown in Figure 4, where the blue line represents the false detection and the red line represents the
correct detection.
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Figure 4. An example of alarms for a data stream (red lines indicate true alarms and blue lines indicate
false alarms).

In the experiments, the proposed method runs in 120 time series data, each of which runs 30 times.
The statistical results obtained by IMF1 and IMF2 are shown in Tables 3 and 4 in the form of mean ±
standard deviation.

Table 3. Comparisons of ETFE using IMF1 and other detection methods.

Data Set Method
Detection

Delay
(Instances)

Detection
Position Offset

(Instances)
False Alarms Miss Detection

Numbers

Linear 1

ETFE_ApEn 222.31 ± 60.91 45.19 ± 10.61 11.57 ± 2.11 0
ETFE_SampEn 216.30 ± 71.21 59.05 ± 19.52 10.88 ± 1.95 0.03 ± 0.17
ETFE_FuzzEn 264.53 ± 89.27 47.33 ± 8.91 12.61 ± 1.67 0.06 ± 0.24

ETFE_PeEn 249.82 ± 77.36 31.62 ± 9.26 11.38 ± 1.42 0.03 ± 0.17
ETFE_WPeEn 280.44 ± 81.46 63.51 ± 11.61 10.93 ± 1.38 0
ETFE_IncrEn 251.71 ± 89.98 34.24 ± 13.56 11.55 ± 2.37 0.03 ± 0.17

FEDD_cos 197.33 ± 56.67 197.33 ± 56.67 2.47 ± 1.33 0
FEDD_pear 188.78 ± 43.91 188.78 ± 43.91 2.52 ± 1.17 0.03 ± 0.17
ELM_ECDD 419.23 ± 97.34 419.23 ± 97.34 3.47 ± 2.37 0.56 ± 0.61
ELM_DDM 306.66 ± 45.65 306.66 ± 45.65 4.89 ± 1.92 0.43 ± 0.49
ELM_PHt 487.34 ± 87.40 487.34 ± 87.40 3.56 ± 1.87 0.54 ± 0.51

Linear 2

ETFE_ApEn 300.95 ± 90.40 32.04 ± 12.63 13.61 ± 2.58 0
ETFE_SampEn 398.20 ± 101.34 56.0 ± 21.42 12.43 ± 1.53 0.03 ± 0.17
ETFE_FuzzEn 401.20 ± 121.77 67.2 ± 34.76 11.58 ± 1.07 0.03 ± 0.17

ETFE_PeEn 345.94 ± 77.95 28.0 ± 11.93 10.98 ± 1.53 0
ETFE_WPeEn 298.35 ± 81.85 44.1 ± 19.80 12.53 ± 1.57 0.03 ± 0.17
ETFE_IncrEn 387.32 ± 99.29 51.2 ± 21.13 10.12 ± 2.10 0.06 ± 0.24

FEDD_cos 256.93 ± 87.67 256.93 ± 87.67 2.56 ± 1.11 0.03 ± 0.17
FEDD_pear 248.34 ± 98.24 248.34 ± 98.24 2.12 ± 1.23 0.03 ± 0.17
ELM_ECDD 455.86 ± 104.98 455.86 ± 104.98 3.64 ± 1.82 0.54 ± 0.42
ELM_DDM 411.31 ± 94.56 411.31 ± 94.56 4.78 ± 1.63 0.37 ± 0.38
ELM_PHt 516.78 ± 132.54 516.78 ± 132.54 3.36 ± 1.66 0.58 ± 0.61

Linear 3

ETFE_ApEn 411.52 ± 121.66 72.9 ± 11.22 10.77 ± 1.41 0
ETFE_SampEn 512.38 ± 205.30 101.2 ± 29.25 9.89 ± 1.54 0
ETFE_FuzzEn 503.06 ± 211.45 41.2 ± 19.31 11.55 ± 1.34 0

ETFE_PeEn 385.57 ± 113.48 52.3 ± 21.54 12.71 ± 1.87 0.03 ± 0.17
ETFE_WPeEn 431.35 ± 138.35 57.6 ± 14.52 9.78 ± 1.10 0
ETFE_IncrEn 392.52 ± 177.43 48.3 ± 10.56 11.12 ± 1.16 0

FEDD_cos 289.78 ± 89.63 289.78 ± 89.63 2.83 ± 1.53 0
FEDD_pear 304.39 ± 89.10 304.39 ± 89.10 2.32 ± 1.29 0.03 ± 0.17
ELM_ECDD 501.89 ± 160.35 501.89 ± 160.35 3.66 ± 1.86 0.60 ± 0.22
ELM_DDM 453.80 ± 174.23 453.80 ± 174.23 4.23 ± 1.43 0.41 ± 0.33
ELM_PHt 567.32 ± 214.55 567.32 ± 214.55 3.49 ± 1.44 0.53 ± 0.39
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Table 4. Comparisons of ETFE using IMF2 and other detection methods.

Data Set Method
Detection

Delay
(instances)

Detection
Position Offset

(instances)
False Alarms Miss Detection

Numbers

Linear 1

ETFE_ApEn 382.91 ± 154.34 45.19 ± 11.35 9.13 ± 1.24 0.03 ± 0.17
ETFE_SampEn 489.02 ± 169.55 69.05 ± 22.44 9.33 ± 1.54 0
ETFE_FuzzEn 494.17 ± 201.74 78.33 ± 31.52 11.56 ± 2.11 0.06 ± 0.24

ETFE_PeEn 329.82 ± 139.45 60.13 ± 17.88 11.17 ± 1.33 0.03 ± 0.17
ETFE_WPeEn 430.21 ± 111.43 71.56 ± 26.43 9.21 ± 1.49 0
ETFE_IncrEn 442.26 ± 122.43 44.24 ± 10.36 10.08 ± 1.34 0.06 ± 0.24

FEDD_cos 197.33 ± 56.67 197.33 ± 56.67 2.47 ± 1.33 0
FEDD_pear 188.78 ± 43.91 188.78 ± 43.91 2.52 ± 1.17 0.03 ± 0.17
ELM_ECDD 419.23 ± 97.34 419.23 ± 97.34 3.47 ± 2.37 0.56 ± 0.61
ELM_DDM 306.66 ± 45.65 306.66 ± 45.65 4.89 ± 1.92 0.43 ± 0.49
ELM_PHt 487.34 ± 87.40 487.34 ± 87.40 3.56 ± 1.87 0.54 ± 0.51

Linear 2

ETFE_ApEn 467.32 ± 144.77 72.30 ± 19.82 9.64 ± 1.34 0
ETFE_SampEn 472.35 ± 156.81 83.14 ± 21.43 9.89 ± 1.16 0.06 ± 0.24
ETFE_FuzzEn 367.75 ± 135.65 77.27 ± 13.21 12.57 ± 1.96 0.10 ± 0.3

ETFE_PeEn 578.85 ± 189.11 48.34 ± 9.87 11.34 ± 1.78 0
ETFE_WPeEn 414.35 ± 131.32 53.12 ± 12.21 11.56 ± 1.99 0.06 ± 0.24
ETFE_IncrEn 517.56 ± 176.44 67.33 ± 15.43 12.33 ± 1.87 0.06 ± 0.24

FEDD_cos 256.93 ± 87.67 256.93 ± 87.67 2.56 ± 1.11 0.03 ± 0.17
FEDD_pear 248.34 ± 98.24 248.34 ± 98.24 2.12 ± 1.23 0.03 ± 0.17
ELM_ECDD 455.86 ± 104.98 455.86 ± 104.98 3.64 ± 1.82 0.54 ± 0.42
ELM_DDM 411.31 ± 94.56 411.31 ± 94.56 4.78 ± 1.63 0.37 ± 0.38
ELM_PHt 516.78 ± 132.54 516.78 ± 132.54 3.36 ± 1.66 0.58 ± 0.61

Linear 3

ETFE_ApEn 543.87 ± 189.45 89.53 ± 35.43 11.21 ± 1.60 0.03 ± 0.17
ETFE_SampEn 598.45 ± 197.05 134.23 ± 62.34 9.80 ± 1.42 0.06 ± 0.24
ETFE_FuzzEn 532.54 ± 156.07 88.23 ± 21.33 11.77 ± 1.50 0

ETFE_PeEn 433.33 ± 145.67 124.66 ± 65.41 11.46 ± 1.23 0.06 ± 0.24
ETFE_WPeEn 513.45 ± 173.40 111.76 ± 54.98 9.08 ± 1.09 0.03 ± 0.17
ETFE_IncrEn 612.24 ± 211.04 156.78 ± 71.37 8.56 ± 1.76 0

FEDD_cos 289.78 ± 89.63 289.78 ± 89.63 2.83 ± 1.53 0
FEDD_pear 304.39 ± 89.10 304.39 ± 89.10 2.32 ± 1.29 0.03 ± 0.17
ELM_ECDD 501.89 ± 160.35 501.89 ± 160.35 3.66 ± 1.86 0.60 ± 0.22
ELM_DDM 453.80 ± 174.23 453.80 ± 174.23 4.23 ± 1.43 0.41 ± 0.33
ELM_PHt 567.32 ± 214.55 567.32 ± 214.55 3.49 ± 1.44 0.53 ± 0.39

In the experiments, the proposed ETFE combining with six kinds of entropy methods are
evaluated, the results of which would compare with the existing detection algorithms proposed
in [17,23]. The parameter configurations of FEDD, ELM_ECDD, ELM_DDM, and ELM_PHt are the
same as those in [17]. The differences of the detection delays between FEDD and ETFE are not obvious,
but the proposed algorithm has a fewer detection position offset, which makes a great help for the drift
position location in specific production. The proposed ETFE is different from static data detection, and
therefore the detection process will be affected by local data, which results in a larger number of false
alarms comparing with the five comparisons. However, missing warnings of ELM_DDM, ELM_ECDD,
and ELM_PHt are higher than that of the proposed method. In actual application, the harm caused by
missing alarms is much serious than that of false detection.

In the actual application, the appropriate entropy method can be selected according to the
intrinsic structure of the data to be tested. If the regularity or similarity is present in the time series,
the approximate entropy or sample entropy may be selected; fuzzy entropy can be selected when the
data are stable or insensitive to parameter selection; when one pays attention to the order relation
within the data, the permutation entropy or the increment entropy can be chosen. If one needs to
consider fluctuation scale within the data and capture the anomalies, the weighted permutation entropy
is the appropriate one.

In addition, from the results of ETFE detection using IMF1 and IMF2, one can obtain that,
the detection delay and detection offset of IMF2 are normally higher than those of IMF1, which shows
that IMF2, as a low-frequency feature, is less sensitive to time series changes compared with IMF1.
And, judging from the number of false alarms, false alarms in IMF2 are less than that those in IMF1,
which shows that IMF2 as a low-frequency feature is slightly affected by noise or anomalies. Moreover,
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the number of miss detection numbers in IMF2 is higher than that in IMF1, which also shows that
IMF2 is not sensitive to data changes. Therefore, when IMF2 is used to implement detection, some
drifts with slight changes may miss. Even so, the number of missing warnings using IMF2 remains
at a very low level. Based on the above results, in the practical application, the high frequency IMFs
can be used as a low-delay detection, while the low frequency IMFs can be used as a follow-up drift
confirmation, which can make the results more robust and practical.

4.3. Experiments in Real Data

The real data applied is a dataset of neonatal EEG recordings and seizure annotations [45].
Neonatal epilepsy is a common emergency in neonatal intensive care unit. The data set contains EEG
records from newborns and the labeling of EEG by human experts. EEG records are recorded from 79
newborns in the Neonatal Intensive Care Unit of Helsinki University Hospital. The median duration
of these EEG records is 74 minutes (IOR: 64–96 minutes). In the data set, each expert commented on
an average of 460 epileptic seizures, including 39 neonatal seizures and 22 non-epileptic seizures by
consensus. Detailed data set information can be referred to [45].

In the dataset of neonatal EEG recordings and seizure annotations, not all EEG data are labeled by
experts, data from the EEG dataset containing the annotations of the experts are selected. In addition,
since the opinions of three experts are not uniform for some periods of onset, in order to ensure the
consistency of the expert labeling, 30 periods of data with annotations of three experts are chosen.
The applied data sets are shown in Table 5, where Data is the EEG record of selected patients containing
epileptic seizures, Annotated Period is the annotation of three experts A, B, and C for epilepsy detection
during seizures, and Selected Period is a period of time that contains three experts’ annotation periods.
The length of onset time is about 1/3 of the selected time period, which will be used as the data for the
effectiveness test of the proposed method.

Table 5. EEG data labeled by experts for experiments.

Data.
Annotated Period (s)

Selected Period (s)
A B C

EEG1 [104, 121] [96, 122] [96, 121] [70, 150]
EEG1 [1179, 1209] [1178, 1206] [1179, 1194] [1150, 1220]
EEG5 [975, 1508] [993, 1449] [993, 1446] [500, 2000]
EEG7 [95, 112] [97, 106] [98, 110] [80, 130]
EEG14 [255, 278] [254, 282] [256, 279] [210, 310]
EEG14 [3331, 3342] [3330, 3343] [3330, 3342] [3310, 3360]
EEG16 [5685, 5707] [5692, 5707] [5685, 5706] [5660, 5730]
EEG17 [2957, 3011] [2904, 3116] [2901, 2940] [2800, 3200]
EEG20 [559, 586] [563, 584] [565, 585] [540, 610]
EEG20 [3827, 3885] [3824, 3899] [3827, 3886] [3760, 3960]
EEG20 [3962, 3980] [3952, 3985] [3965, 3980] [3930, 4010]
EEG25 [3449, 3477] [3414, 3484] [3451, 3473] [3400, 3490]
EEG25 [4792, 4814] [4767, 4829] [4792, 4811] [4750, 4860]
EEG31 [1885, 1964] [1887, 1966] [1887, 1966] [1800, 2040]
EEG31 [2423, 2524] [2423, 2523] [2423, 2522] [2320, 2620]
EEG38 [5367, 5460] [5369, 5438] [5369, 5438] [5300, 5490]
EEG38 [5857, 5886] [5840, 5889] [5859, 5885] [5800, 6020]
EEG44 [294, 375] [297, 375] [293, 374] [210, 450]
EEG44 [644, 661] [647, 663] [644, 663] [620, 690]
EEG44 [2504, 2518] [2508, 2517] [2504, 2517] [2480, 2540]
EEG47 [1841, 1898] [1841, 1896] [1832, 1898] [1790, 1960]
EEG51 [4356, 4684] [4373, 4679] [4344, 4663] [4040, 5000]
EEG62 [1344, 1725] [1346, 1725] [1336, 1725] [940, 2125]
EEG63 [2423, 2526] [2427, 2528] [2424, 2519] [2330, 2630]
EEG67 [751, 780] [753, 788] [754, 782] [720, 810]
EEG67 [1366, 1410] [1367, 1410] [1348, 1407] [1300, 1470]
EEG73 [1429, 1454] [1429, 1454] [1429, 1479] [1380, 1500]
EEG76 [391, 436] [393, 432] [386, 435] [350, 475]
EEG79 [565, 620] [540, 620] [566, 620] [460, 700]
EEG79 [2441, 2494] [2416, 2490] [2444, 2493] [2360, 2570]
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Figure 5 shows a sample of EEG data selected, and the annotations of the experts A, B, and C on
the epileptic seizures are indicated by dotted lines in three different colors.
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One can observe that the change of EEG data mainly occurs in amplitudes of sequence data. Since
the weighted permutation entropy and the increment entropy are more sensitive to the changes of
data amplitudes, they are used in the group of experiments. The parameters of WPeEn and IncrEn are
the same as those of the previous experiments. The size of sliding window is set to be 100, moving
forward 5 units at a time. In the setting of GLR parameters, startup is 20% of the total data length and
ARL is 200, which is equivalent to the significance level α = 0.95.

The data stream of EEG data cannot obtain the labels in real time so it is impossible to directly use
the supervised detection method. Therefore, in the comparative experiments, the algorithm proposed
in [23] is used, where ELM is used to establish a regression model for time series. ELM is a regression
model widely used in time series prediction and has strong generalization ability. The regression error
ŷ− ytrue is assumed to meet the normal distribution, and the regression errors are monitored by using
Drift Detection Method (DDM) [10], Early Drift Detection Method (ECDD) [11] and Page-Hinkley
method (PHt) [6]. ELM-DDM, ELM-ECDD, and ELM-PHt have similar application scenarios in concept
drift detection, therefore, they are applied for the comparative study.

In order to verify the effect of the proposed method, Cohen’s kappa consistency test [46] is used
to calculate the test results obtained by all methods and the annotations of three experts. The Kappa
value is calculated in seconds by unifying the unit of expert labeling and the results obtained by all
methods, and then the whole EEG records used in the experiment are averaged. All the methods used
in the experiments are used to determine the onset interval by monitoring the concept drift in real time.
The results presented are kappa values and the corresponding 95% confidence interval obtained by
bootstrap. In addition, all methods are compared by false alarm numbers and miss detection rates.

From Table 6, the Kappa values of the detection results of ETFE_WPeEn and ETFE_IncrEn are
significantly higher than those of the other three methods. On the one hand, the time-domain features
of EEG can be extracted and denoised after decomposition, so as to filter the interference of noise
and timely capture the frequency change at the time of onset. On the other hand, the WPeEn and the
IncrEn are sensitive to the structural and amplitude changes of the sequence data. Compared with
other entropy, the coarsening results obtained by these two entropies can better reflect the changes.
And the concept drift can be better detected by the statistical control process based on GLR. Since EEG
signals do not change slowly but rapidly during the onset of disease, methods such as DDM and PHt
tend to detect abrupt concept drifts more effectively [17], while ECDD is better at the concept drift
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detection of gradual patterns. Therefore, when detecting EEG data, ELM_DDM and ELM_PHt will
more accurately locate the onset of the disease than ELM_ECDD. However, due to the influence of
high noise, high frequency, uncertainty, and other factors in EEG data, the overall detection effect of
ELM_ECDD, ELM_DDM, and ELM_PHt is not as good as that of ETFE.

Table 6. Kappa values and confidence intervals obtained from the test results.

Methods Comparison Expert A Expert B Expert C

ETFE_WPeEn 0.824 (0.705–0.901) 0.802 (0.698–0.895) 0.833 (0.716–0.871)
ETFE_IncrEn 0.815 (0.731–0.897) 0.798 (0.717–0.874) 0.825 (0.729–0.903)
ELM_ECDD 0.655 (0.545–0.713) 0.637 (0.596–0.744) 0.678 (0.530–0.796)
ELM_DDM 0.715 (0.601–0.813) 0.694 (0.612–0.785) 0.723 (0.578–0.849)
ELM_PHt 0.709 (0.604–0.785) 0.661 (0.591–0.762) 0.735 (0.586–0.801)

Figure 6 shows the effect of these five methods on false alarms. The false alarms of ELM-PHt,
ELM-DDM, and ELM-ECDD are significantly higher than those of the proposed algorithm. This is
because there are some noises in EEG data, so the fit ability of ELM model is weak when using
original data to train ELM directly. Therefore, it is difficult to distinguish the occurrences of concept
drifts, which would limit its robustness. The proposed algorithm can obtain features in different time
scales, which can play a role in denoising. Furthermore, the features of the original sequence can
be transformed by IMF-Entropy. Since the WPeEn and IncrEn are good at capturing the amplitude
changes of the sequence. they are used to coarsen the time domain characteristics of the original
sequence. Since a statistical process control method that can capture mean and variance changes, GLR
will detect such changes and give early warning in time.
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Figure 7 shows the comparison of five methods in miss detection rates. Since the EEG data to be
detected is a segment of data containing epilepsy onset, it is equivalent to three contexts, which means
that there are two detection points with concept drifts, where 50% of the detection results mean that
only one of the two detection points has been captured. From the display of the results, we can see that
the median of all the methods in the box plot of the Missing detection rate is near zero, which indicates
that there are few missing detection cases in the detection process. On the one hand, compared with
ELM_ECDD and ELM_PHt, the miss detection of ETFE_WPeEn and ETFE_IncrEn only appears as an
exception. Meanwhile, the miss detections of ELM_ECDD and ELM_PHt are significantly more than
that of the proposed method. On the other hand, compared with ELM_DDM, although it obtains a
similar effect, but, ELM_DDM would trigger more error alarms than that of the proposed method.
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Generally speaking, experiments show that compared with ELM_ECDD, ELM_DDM, and
ELM_PHt, ETFE combined with WPeEn and IncrEn have higher accuracy in determining the onset
interval by detecting concept drift, trigger fewer false alarms, and also have lower miss detection rate.

5. Conclusions

In this paper, a novel method called ETFE is proposed for online detection of concept drifts in
time series. Firstly, because the real time series data have the characteristics of non-stationary and
high noise, the empirical mode decomposition method based on extrema symmetric extension is used
to decompose the time series. The time-domain features in different time scales can be effectively
extracted and have good signal-to-noise ratio. Secondly, because the concept drift of time series is
accompanied by the change of time series structure, the entropy information is used to represent the
time-domain characteristics in a coarse-grained way. Finally, when concept drift occurs, the changes
of contents in time series will lead to the variation of entropy information. Therefore, the concept
drift can be determined by monitoring the changes of the values of mean and variance based on GLR
statistical control process.

In the experimental part, synthetic time series data and real data are used to verify the proposed
algorithm. As to synthetic time series data, six entropy methods are conducted to discuss the time
domain characteristics in different time scales obtained by decomposition. The metrics of detection
delay, detection position offset, false alarms, and miss detection numbers are used to verify the
effectiveness of the proposed method. In the real data experiment part, the newborn EEG record
and epileptic seizure annotation data set are applied, where three existing methods are compared
with the proposed method. The results show that our method has better detection results of concept
drift with higher robustness. In the further research, when the complexity of time series is analyzed
under different time scales, it would be meaningful to introduce multi-scale entropy into this work.
In addition, statistical process control methods can be further enhanced to improve the detection of
concept drift.
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