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Abstract: In this paper, we introduce a new general family of distributions obtained by a subtle
combination of two well-established families of distributions: the so-called power Topp–Leone-G and
inverse exponential-G families. Its definition is centered around an original cumulative distribution
function involving exponential and polynomial functions. Some desirable theoretical properties of
the new family are discussed in full generality, with comprehensive results on stochastic ordering,
quantile function and related measures, general moments and related measures, and the Shannon
entropy. Then, a statistical parametric model is constructed from a special member of the family,
defined with the use of the inverse Lomax distribution as the baseline distribution. The maximum
likelihood method was applied to estimate the unknown model parameters. From the general
theory of this method, the asymptotic confidence intervals of these parameters were deduced. A
simulation study was conducted to evaluate the numerical behavior of the estimates we obtained.
Finally, in order to highlight the practical perspectives of the new family, two real-life data sets
were analyzed. All the measures considered are favorable to the new model in comparison to four
serious competitors.

Keywords: power Topp–Leone distribution; inverse exponential-G family; moments; entropy;
estimation; data analysis

MSC: 60E05; 62E15; 62F10

1. Introduction

Owing to the growing amount of data from various applied fields and unstoppable computer
progress, there is increasing motivation on developing efficient and flexible statistical models.
Such models can be derived from general families of distributions having desirable properties,
such as those constructed from a generator distribution. The main idea of this construction is
to add shape parameter(s) to a baseline distribution with the aim to upgrade its flexibility level.
Among the well-known examples of such families, there are the beta-G [1], Kumaraswamy-G [2],
Weibull-GG [3], Garhy-G [4], type II half logistic-G [5], Transmuted Topp–Leone G [6], generalized odd
log-logistic-G [7], odd Fréchet-G [8], power Lindley-G [9], Fréchet Topp–Leone-G [10], exponentiated
generalized Topp–Leone-G [11], and truncated inverted Kumaraswamy-G [12]. We also refer to the
exhaustive survey in [13]. Recently, several researchers used the Topp–Leone (TL) distribution as
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generator distribution to develop new general families, reaching the aims of simplicity and flexibility.
Among them, Ref. [14] proposed the Topp–Leone-G (TL-G) family, Ref. [15] introduced the power
TL-G (PTL-G) family, Ref. [16] introduced the generalized TL-G family, Ref. [17] studied the type II
TL-G family, and [18] proposed the type II generalized TL-G family.

For the purposes of this paper, let us describe in detail the PTL-G family from [15]. The PTL-G
family is defined by the following cumulative distribution function (cdf):

F(x; α, β, ξ) = G(x; ξ)αβ[2− G(x; ξ)β]α, x ∈ R,

with α, β > 0, where G(x; ξ) is a cdf of a baseline continuous distribution which may depend on a
vector parameter ξ; i.e., ξ = (ξ1, ξ2, . . .). As indicated by the name, the construction of the family uses
the so-called power Topp–Leone distribution as the generator distribution. In comparison to the (power
one) TL-G family, Ref. [15] demonstrated the significant impact of the parameter β on the shapes of
the probability density and hazard rate functions, providing desirable modeling properties. This is
particularly flagrant with the consideration of the gamma distribution as the baseline distribution, as
illustrated by the graphics and applications of [15].

In a parallel work, beyond the TL distribution and its extensions, Ref. [19] introduced the inverse
exponential-G (IE-G) family, based on the inverse exponential distribution as the generator distribution,
and defined by the following cdf:

F(x; ξ) = e1− 1
G(x;ξ) , x ∈ R.

The main features of this family are being simple, with no new, additional parameters, and having a
completely different nature of the former baseline cdf G(x; ξ) owing to the combination the exponential
(implicit) odd functions. An immediate remark illustrating this claim is the following: it has a fastest
rate of decay to 0 when G(x; ξ)→ 0. By the consideration of a practical data set and the exponential
distribution as baseline distribution, Ref. [19] shows that the corresponding model is better than the
Lindley and exponential models (all having the same number of parameters). The nice results behind
the IE-G family have been the driver for more investigations, with extended or modified versions of
this family. We refer the reader to [8,20] for the odd Fréchet-G family, Ref. [21] for the extended odd
Fréchet-G family, and [22] for the modified odd Fréchet-G family.

In this paper, in view of the previously mentioned literature, we introduce a new family of
distributions by combining, in some senses, the PTL-G and IE-G families. It is defined by composition
of their respective cdfs, i.e., by the cdf given by

F(x; α, β, ξ) = eαβ
(

1− 1
G(x;ξ)

) [
2− eβ

(
1− 1

G(x;ξ)

)]α

, x ∈ R, (1)

with α, β > 0. Thus, this cdf can be view as a polyno-exponential transformation of the baseline cdf
G(x; ξ). The new family is called the new power TL-G (NPTL-G) family. Thus, by construction, we aim
to combine the benefits of the PTL-G and IE-G families, and thus, create new statistical perspectives of
various kinds. The key motivations behind the NPTL-G family are the following.

1. To provide very simple models and create new simple distributions.
2. To improve the flexibility of existing distributions on various aspects (such as mode, median,

skewness, and kurtosis. . . ).
3. To provide better fits than competing modified models having the same of higher number

of parameters.

We support these claims both in full generality and by putting the light on the special member
of the NPTL-G family defined with the inverse Lomax (ILx) distribution as the baseline distribution
(the reason of this choice will be explained later). The resulting distribution, called the new power
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Topp–Leone inverse Lomax (NPTLILx) distribution, offers a new three-parameter lifetime distribution,
with a high potential of applicability. We illustrate that by the means of two practical data sets with
different features: the first one is from [23] and is about active repair times for airborne communication
transceiver, and the second one is from [24] and is about actual tax revenue in Egypt. Favorable results
were obtained for the proposed model in comparison to serious competitors, motivating its use wider
statistical uses.

The contents of this paper are organized as follows. In Section 2, the basics of the NPTL-G family
are presented, as is the NPTLILx distribution. Various mathematical properties of the family are
discussed in Section 3. Section 4 is devoted to the estimation of the unknown parameters from the
NPTLILx model, with a comprehensive simulation study. The data analyses are shown in Section 5
with numerical and graphical illustrations. A conclusion and perspectives are formulated in Section 6.

2. Basics of the NPTL-G Family

The basics of the NPTL-G family are presented in this section, with a focus on the main functions
of interest.

2.1. Probability Density Function

Upon differentiation of F(x; α, β, ξ) according to x, owing to (1), the probability density function
(pdf) of the NPTL-G family is given by

f (x; α, β, ξ) = 2αβ
g(x; ξ)

G(x; ξ)2 eαβ
(

1− 1
G(x;ξ)

) [
1− eβ

(
1− 1

G(x;ξ)

)] [
2− eβ

(
1− 1

G(x;ξ)

)]α−1

, x ∈ R, (2)

where g(x; ξ) is the probability density function corresponding to G(x; ξ). From this expression, some
asymptotic results on f (x; α, β, ξ) can be derived. When G(x; ξ)→ 0, we have

f (x; α, β, ξ) ∼ 2αβ
g(x; ξ)

G(x; ξ)2 eαβ
(

1− 1
G(x;ξ)

)
.

Furthermore, when G(x; ξ)→ 1, we have

f (x; α, β, ξ) ∼ 2αβ2g(x; ξ) [1− G(x; ξ)] .

The variations of f (x; α, β, ξ) can be studied in a standard manner, starting with the critical point(s)
given by the solution of the non-linear equation according to x: {ln[ f (x; α, β, ξ)]}′ = 0, with

{ln[ f (x; α, β, ξ)]}′ = g(x; ξ)′

g(x; ξ)
− 2

g(x; ξ)

G(x; ξ)
+ αβ

g(x; ξ)

G(x; ξ)2 − β
g(x; ξ)eβ

(
1− 1

G(x;ξ)

)
G(x; ξ)2

[
1− eβ

(
1− 1

G(x;ξ)

)]

− β(α− 1)
g(x; ξ)eβ

(
1− 1

G(x;ξ)

)
G(x; ξ)2

[
2− eβ

(
1− 1

G(x;ξ)

)] .

Then, for a critical point xc, the sign of {ln[ f (x; α, β, ξ)]}′′ |x=xc is informative on its nature (minimum,
maximum, or inflection point).
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2.2. Hazard Rate Function

The hazard rate function (hrf) of the NPTL-G family is given by

h(x; α, β, ξ) =
f (x; α, β, ξ)

1− F(x; α, β, ξ)

=

2αβg(x; ξ)eαβ
(

1− 1
G(x;ξ)

) [
1− eβ

(
1− 1

G(x;ξ)

)] [
2− eβ

(
1− 1

G(x;ξ)

)]α−1

G(x; ξ)2
{

1− eαβ
(

1− 1
G(x;ξ)

) [
2− eβ

(
1− 1

G(x;ξ)

)]α} , x ∈ R.

Some asymptotic results on h(x; α, β, ξ) are presented below. When G(x; ξ)→ 0, we have

h(x; α, β, ξ) ∼ 2αβ
g(x; ξ)

G(x; ξ)2 eαβ
(

1− 1
G(x;ξ)

)
.

Additionally, when G(x; ξ)→ 1, we have

h(x; α, β, ξ) ∼ 2g(x; ξ) [1− G(x; ξ)]−1 .

Thus, the parameters α and β have a significant effect on the asymptotes when G(x; ξ) → 0, but no
effect when G(x; ξ)→ 1. The variations of h(x; α, β, ξ) can be studied in similar manner to f (x; α, β, ξ)

by using the relation {ln[h(x; α, β, ξ)]}′ = {ln[ f (x; α, β, ξ)]}′ + h(x; α, β, ξ).

2.3. A Special Member: The NPTLILx Distribution

The NPTL-G family contains distributions of various natures, depending on the choice of the
baseline distribution. In this study, as evoked in the introduction, we chose the inverse Lomax
distribution with shape parameter θ > 0 as the baseline distribution to define the NPTLILx distribution.
Thus, it is defined by the following cdf:

G(x; θ) =
(

1 + x−1
)−θ

, x > 0,

(another parameter of the former definition of the inverse Lomax distribution has been reduced
to 1 for the purposes of the paper). Let us now briefly motivate this choice. As suggested by its
name, the inverse Lomax distribution is the distribution of the random variable Y = 1/X, where X
denotes a random variable following the standard Lomax distribution (with parameters θ and 1). The
corresponding pdf and hrf are, respectively, given by

g(x; θ) = θx−2
(

1 + x−1
)−θ−1

and

h(x; θ) =
θx−2 (1 + x−1)−θ−1

1− (1 + x−1)
−θ

, x > 0.

In addition to being simple, it has been proven to be a very flexible to model data having a subjacent
non-monotonic hrf. Further details and applications can be found in [25–27].

Thus, the NPTLILx distribution is defined by the following cdf:

F(x; α, β, θ) = eαβ
[
1−(1+x−1)

θ
] {

2− eβ
[
1−(1+x−1)

θ
]}α

, x > 0, (3)

with α, β, θ > 0. The corresponding pdf and hrf are given by, respectively,
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f (x; α, β, θ) =

2αβθx−2
(

1 + x−1
)θ−1

eαβ
[
1−(1+x−1)

θ
] {

1− eβ
[
1−(1+x−1)

θ
]}{

2− eβ
[
1−(1+x−1)

θ
]}α−1

(4)

and

h(x; α, β, θ) =

2αβθx−2 (1 + x−1)θ−1 eαβ
[
1−(1+x−1)

θ
] {

1− eβ
[
1−(1+x−1)

θ
]}{

2− eβ
[
1−(1+x−1)

θ
]}α−1

1− eαβ
[
1−(1+x−1)

θ
] {

2− eβ
[
1−(1+x−1)

θ
]}α , x > 0.

Possible shapes of the pdf and hrf of the NPTLILx distribution are illustrated in Figures 1 and 2,
respectively. In particular, from Figure 1, we see that the pdf can be right skewed and reversed-J
shaped. From Figure 2, we see that the hrf can be increasing, decreasing, upside down, and bathtub
shaped. All these curvature properties are known to be desirable to create flexible statistical models.
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3. Some Mathematical Properties

The section presents some important mathematical properties of the NPTL-G family.

3.1. On a Stochastic Ordering

The following result shows some inequalities involving F(x; α, β, ξ).

Proposition 1. For any x ∈ R such that G(x; ξ) > 0, the following inequalities hold:

eαβ
(

1− 1
G(x;ξ)

) [
2− G(x; ξ)β

]α
≤ F(x; α, β, ξ) ≤ 2αeαβ

(
1− 1

G(x;ξ)

)
.

Proof. The bracket term in the definition of F(x; α, β, ξ) given by (1) is central. Since eβ
(

1− 1
G(x;ξ)

)
∈

(0, 1), we have 2 − eβ
(

1− 1
G(x;ξ)

)
≤ 2, implying the second inequality. For the first inequality, the

following well-known logarithmic inequality: for y > −1, y
1+y ≤ ln(1 + y) gives e1− 1

1+y ≤ 1 + y,

implying that e1− 1
G(x;ξ) ≤ G(x; ξ) by taking y = G(x; ξ)− 1. Therefore, we have eβ

(
1− 1

G(x;ξ)

)
≤ G(x; ξ)β,

and a fortiori, 2− G(x; ξ)β ≤ 2− eβ
(

1− 1
G(x;ξ)

)
. The first inequality follows. This ends the proof of

Proposition 1.

An immediate consequence of Proposition 1 is the following stochastic ordering result:

F∗(x; α, β, ξ) ≤ F(x; α, β, ξ),

where F∗(x; α, β, ξ) = eαβ
(

1− 1
G(x;ξ)

)
is the cdf of the exponentiated IE-G family (with power

parameter αβ).
Another stochastic ordering result comes from the following remark: the function Fo(x; α, β, ξ)

given by

Fo(x; α, β, ξ) = eαβ
(

1− 1
G(x;ξ)

) [
2− G(x; ξ)β

]α
, x ∈ R,

has the properties of a cdf, with the corresponding pdf given by

fo(x; α, β, ξ) = αβ
g(x; ξ)

G(x; ξ)2 eαβ
(

1− 1
G(x;ξ)

) {
2− [1 + G(x; ξ)]G(x; ξ)β

} [
2− G(x; ξ)β

]α−1
, x ∈ R.

To the best of our knowledge, it is new in the literature (and out the scope of this paper).

3.2. Quantile Function with Some Related Measures and Functions

The quantile function (qf) of the NPTL-G family is expressed in the following result.

Proposition 2. The qf of the NPTL-G family is given by

Q(u; α, β, ξ) = QG

[{
1− 1

β
ln
(

1−
√

1− u
1
α

)}−1

; ξ

]
, u ∈ (0, 1),

where QG(u; ξ) is the qf corresponding to G(x; ξ).

Proof. For the sake of simplicity, let us set xu = Q(u; α, β, ξ) for u ∈ (0, 1). Then, by
the definition of a qf, xu satisfies the non-linear equation: u = F(xu; α, β, ξ), implying that

u = eαβ
(

1− 1
G(xu ;ξ)

) [
2− eβ

(
1− 1

G(xu ;ξ)

)]α

; hence, u
1
α = eβ

(
1− 1

G(xu ;ξ)

) [
2− eβ

(
1− 1

G(xu ;ξ)

)]
, which is

equivalent to solving the polynomial equation according to y: y2 − 2y + u
1
α = 0, with y = eβ

(
1− 1

G(xu ;ξ)

)
.
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By determining the two roots of this polynomial, keeping only the one in the unit interval (since y ∈

(0, 1)), we get y = 1−
√

1− u
1
α . After some algebra, we get G(xu; ξ) =

{
1− 1

β ln
(

1−
√

1− u
1
α

)}−1

.

The desired result follows by compounding with QG(u; ξ), ending the proof of Proposition 2.

From the qf, we can define several quantities of importance, providing distributional properties
of the family. Some of them are presented below.

The three quartiles of the NPTL-G family are defined by Q1 = Q(1/4; α, β, ξ), Q2 = Q(1/2; α, β, ξ),
and Q3 = Q(3/4; α, β, ξ). In particular, the median of the NPTL-G family is given by

M = Q2 = QG


1− 1

β
ln

1−

√√√√1−
(

1
2

) 1
α



−1

; ξ

 .

Additionally, the inter-quartile range is given by IQR = Q3 −Q1, allowing one to define the Galton
coefficient of skewness and the Moors coefficient of kurtosis, given by, respectively,

S =
Q3 + Q1 − 2M

IQR

and

K =
Q(7/8; α, β, ξ)−Q(5/8; α, β, ξ) + Q(3/8; α, β, ξ)−Q(1/8; α, β, ξ)

IQR
.

See [28,29] for more details on these coefficients, respectively.
On the other hand, upon differentiation of Q(u; α, β, ξ) according to u, the corresponding quantile

density function is given by

q(u; α, β, ξ) =
u

1
α−1

2αβ
√

1− u1/α

(
1−

√
1− u

1
α

){
1− 1

β ln
(

1−
√

1− u
1
α

)}2×

qG

[{
1− 1

β
ln
(

1−
√

1− u
1
α

)}−1

; ξ

]
, u ∈ (0, 1),

where qG(u; ξ) is the quantile density function corresponding to G(x; ξ). Also, the hazard quantile
function is defined by

H(u; α, β, ξ) =
1

(1− u)q(u; α, β, ξ)

=

2αβ
√

1− u1/α

(
1−

√
1− u

1
α

){
1− 1

β ln
(

1−
√

1− u
1
α

)}2

(1− u)u
1
α−1

×

{
qG

[{
1− 1

β
ln
(

1−
√

1− u
1
α

)}−1

; ξ

]}−1

, u ∈ (0, 1).

These functions have central roles in reliability. Further details can be found in [30].
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Last but not least, the qf allows us to generate values from members of the NPTL-G family. This
property will be used in Section 4.2 in the context of the NPTLILx distribution; i.e., with the qf given
by QG(u; θ) = (u−

1
θ − 1)−1, u ∈ (0, 1), so

Q(u; α, β, θ) =

{1− 1
β

ln
(

1−
√

1− u
1
α

)} 1
θ

− 1

−1

, u ∈ (0, 1).

As a numerical illustration, Table 1 shows the values of Q1, M, Q3, S, and K of the NPTLILx
distribution for some parameter values.

Table 1. The values of Q1, M, Q3, S, and K of the NPTLILx distribution for some parameter values.

(α, β, θ) Q1 M Q3 S K

(0.5, 0.5, 0.5) 0.0162 0.0413 0.1108 0.4703 1.8976
(1.5, 0.5, 0.5) 0.0667 0.1377 0.3000 0.3917 1.7017
(2.5, 0.5, 0.5) 0.1150 0.2200 0.4464 0.3664 1.6542
(3.5, 0.5, 0.5) 0.1594 0.2922 0.5701 0.3533 1.6323
(5.0, 0.5, 0.5) 0.2200 0.3877 0.7298 0.3421 1.6151
(5.0, 1.0, 0.5) 0.5513 0.9168 1.6330 0.3244 1.5894
(5.0, 2.0, 0.5) 1.2624 2.0174 3.4724 0.3167 1.5807
(5.0, 3.0, 0.5) 1.9896 3.1308 5.3207 0.3148 1.5788
(5.0, 5.0, 0.5) 3.4563 5.3666 9.0231 0.3137 1.5778
(5.0, 5.0, 1.0) 7.3808 11.2118 18.5331 0.3130 1.5772
(5.0, 5.0, 2.0) 15.2458 22.9128 37.5597 0.3128 1.5771
(5.0, 5.0, 3.0) 23.1143 34.6163 56.5877 0.3128 1.5771
(5.0, 5.0, 5.0) 38.8534 58.0246 94.6445 0.3128 1.5771

We see in Table 1 that the effects of α, β, and θ on the quartiles are significant (we always have
S > 0 so the distribution is right-skewed and moderate variations for K).

3.3. Series Expansion

The exp-G family of distributions, introduced by [31], is defined by the following cdf:
Gγ(x; ξ) = G(x; ξ)γ, x ∈ R, with γ > 0. The corresponding pdf is given by

gγ(x; ξ) = γg(x; ξ)Gγ−1(x; ξ), x ∈ R.

The interesting part of the exp-G family is to have well-known properties for a lot of baseline cdfs
G(x; ξ). For instance, the member of the exp-G family defined with the inverse Lomax distribution as
baseline with shape parameter θ becomes the inverse Lomax distribution with shape parameter γθ.

The following result concerns a series expansion for the pdf of the NPTL-G family in terms of
pdfs of the exp-G family.

Proposition 3. We have the following series expansion:

f (x; α, β, ξ) =
+∞

∑
k,`,m=0

m+`

∑
q=1

ωk,`,m,qgq(x; ξ),

where

ωk,`,m,q =

(
α

k

)(
−`
m

)(
m + `

q

)
2α−k 1

`!
(α + k)`β`(−1)k+`+m+q,

with the notation: (b
a) = b(b− 1) . . . (b− a + 1)/a!.
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Proof. We first investigate a series expansion of F(x; α, β, ξ) based on the Equation (1). Since

eβ
(

1− 1
G(x;ξ)

)
/2 ∈ (0, 1), the generalized binomial formula gives[

2− eβ
(

1− 1
G(x;ξ)

)]α

=
+∞

∑
k=0

(
α

k

)
2α−k(−1)kekβ

(
1− 1

G(x;ξ)

)
.

On the other hand, thanks to the power series of the exponential function, we get

e(α+k)β
(

1− 1
G(x;ξ)

)
=

+∞

∑
`=0

1
`!
(α + k)`β`

(
1− 1

G(x; ξ)

)`

.

Now, it follows from the generalized and standard binomial formulas that(
1− 1

G(x; ξ)

)`

=
+∞

∑
m=0

(
−`
m

)
(−1)`+m[1− G(x; ξ)]m+`

=
+∞

∑
m=0

m+`

∑
q=0

(
−`
m

)(
m + `

q

)
(−1)`+m+qGq(x; ξ).

By combining all the above equalities together, we obtain

F(x; α, β, ξ) =
+∞

∑
k,`,m=0

m+`

∑
q=0

ωk,`,m,qGq(x; ξ).

Upon differentiation of F(x; α, β, ξ) according to x, we get the desired result, by removing the term in
q = 0, which vanished. Proposition 3 is proven.

3.4. General Moments with Some Related Measures and Functions

Let X be a random variable having the cdf given by (1) (defined on a probability space (Ω,A, P),
with an expectation denoted by E). Then, for any function φ(x) (such that all the following introduced
quantities exist or converge), we have

E [φ(X)] =
∫ +∞

−∞
φ(x) f (x; α, β, ξ)dx

=
∫ +∞

−∞
φ(x)2αβ

g(x; ξ)

G(x; ξ)2 eαβ
(

1− 1
G(x;ξ)

) [
1− eβ

(
1− 1

G(x;ξ)

)] [
2− eβ

(
1− 1

G(x;ξ)

)]α−1

dx.

Two equivalent expressions involving already introduced qfs are as follows:

E [φ(X)] =
∫ 1

0
φ[QG(u; ξ)]2αβu−2eαβ(1− 1

u )
[
1− eβ(1− 1

u )
] [

2− eβ(1− 1
u )
]α−1

du

and

E [φ(X)] =
∫ 1

0
φ

{
QG

[{
1− 1

β
ln
(

1−
√

1− u
1
α

)}−1

; ξ

]}
du.

Numerical solutions exist to evaluate them for given G(x; ξ), φ(x) and α, β, and θ. Alternatively, we
can consider Proposition 3, which implies that

E [φ(X)] =
+∞

∑
k,`,m=0

m+`

∑
q=1

ωk,`,m,qUq(φ, G), (5)
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where

Uq(φ, G) =
∫ +∞

−∞
φ(x)gq(x; ξ)dx = q

∫ 1

0
uq−1φ[QG(u; ξ)]du.

In some circumstances, truncated sums can be considered for practical purposes; for a large integer K,
the following approximation reveals to be tractable and efficient:

E [φ(X)] ≈
K

∑
k,`,m=0

m+`

∑
q=1

ωk,`,m,qUq(φ, G).

Some specific choices for φ(x) are of particular interest. Some of them are discussed below.

• By taking φ(x) = xs, we get the s-th moment of X—i.e., µ′s = E(Xs), including the mean of X, i.e.,
µ = µ′1 = E(X)—and allow the expression the variance of X; i.e., σ2 = µ′2 − (µ′1)

2.
• By taking φ(x) = (x− µ)s, we get the s-th central moment of X, i.e., µs = E[(X− µ)s], allowing

one to calculate the s-th general coefficient of X given by Cs = µs/σs, among others. This
coefficient is useful to investigate the skewness and kurtosis properties of X.

• By taking φ(x) = etx, we get the moment generation function of X according to the variable t; i.e.,
M(t) = E(etX). It is well-known that µ′s = M(t)(s) |t=0.

• By taking φ(x) = eitx, we get the characteristic function of X according to the variable t; i.e.,
ϕ(t) = E(eitX). In a same title of the cdf, the characteristic function entirely determines the
NPTL-G family.

• By taking φ(x) = φy(x) = xs1{x≤y}, which is equal to xs if x ≤ y and 0 otherwise, we get the s-th
incomplete moment of X according to the variable y; i.e., µ′s(y) = E(Xs1{X≤y}). This function is
useful to define mean deviations of X, the corresponding residual life function, Bonferroni and
Lorenz curves, and others.

In the case of the NPTLILx distribution, since f (x; α, β, θ) ∼ 2αβ2θ2x−3 when x → +∞, the mean
exists but the variance does not exist, nor do moments of order greater to 2 (there is no problem when
x → 0). However, all the incomplete moments exist for any fixed y > 0. In this regard, Table 2 provides
the four first incomplete moments for X with y = 1000.

Table 2. The values for the first four incomplete moments of the NPTLILx distribution; i.e., µ
′
s(y) with

s = 1, 2, 3, 4, with y = 1000, for some parameter values.

(α, β, θ) µ
′
1(1000) µ

′
2(1000) µ

′
3(1000) µ

′
4(1000)

(0.5, 0.5, 0.5) 0.1330 0.4114 62.0150 31180.1500
(1.0, 0.5, 0.5) 0.2289 0.8177 124.0269 62360.2800
(3.0, 0.5, 0.5) 0.5037 2.4083 372.0441 187080.6
(0.5, 1.0, 0.5) 0.3216 1.5544 247.4997 124628
(0.5, 3.0, 0.5) 1.1648 12.2536 2209.2820 1118342
(0.5, 0.5, 1.0) 0.4499 1.6965 248.6065 124813.2
(0.5, 0.5, 3.0) 3.6376 41.6806 6308.0930 3138854
(2.0, 2.0, 0.5) 1.8826 22.1519 3941.2640 1991066
(2.0, 2.0, 2.0) 8.7637 288.4201 62161.91 31710832
(2.0, 2.0, 15) 65.7921 9473.519 3149044 1707182402
(2.0, 2.0, 30) 125.1442 28393.86 11331002 6455199311
(2.0, 5.0, 20) 180.9897 55135.34 25604726 15505315569
(5.0, 5.0, 20) 268.5182 106564.8 56092507 35760970261
(10, 10, 10) 337.2701 160356.5 93263392 62533636278

3.5. Shannon Entropy

Here, we study the Shannon entropy of the NPTL-G family as defined by [32]. We recall that the
Shannon entropy of a random variable measures the amount of uncertainty for the outcome of this
variable. A high entropy reveals a high degree of uncertainty.
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Now, let X be a random variable having the cdf given by (1). Then, the Shannon entropy of X is
defined by

η = −E{ln[ f (X; α, β, ξ)} = −
∫ +∞

−∞
ln[ f (x; α, β, ξ)] f (x; α, β, ξ)dx.

By the use of any mathematical software, for a given baseline cdf G(x; ξ), φ(x) and α, β, and θ, we can
determine this integral. Another approach consists of developing η by the use of the pdf given by (2):

η = − ln(2)− ln(α)− ln(β)− αβ− E {ln[g(X; ξ)]}+ 2E {ln[G(X; ξ)]}+ αβE
[

1
G(X; ξ)

]
− E

{
ln
[

1− eβ
(

1− 1
G(X;ξ)

)]}
− (α− 1)E

{
ln
[

2− eβ
(

1− 1
G(X;ξ)

)]}
.

Some expectation terms can be expressed by using (5) with an appropriate function φ(x) as soon as
Uq(φ, G) exists and the sums converge.

In the context of the NPTLILx distribution, some values of η are collected in Table 3 for some
parameter values.

Table 3. The values of the Shannon entropy of the NPTLILx distribution for some parameter values.

α β θ η

0.5 0.5 0.5 −1.3743
1.0 0.5 0.5 −0.7246
2.0 0.5 0.5 −0.1757
3.0 0.5 0.5 0.1094
5.0 0.5 0.5 0.4405
10 0.5 0.5 0.8528
10 1.0 0.5 1.5895
10 2.0 0.5 2.2907
10 5.0 0.5 3.1614
10 8 0.5 3.5497
0.5 0.5 0.1 −12.8618
5.0 0.5 0.1 −3.9876
5.0 5.0 0.1 1.1590

In Table 3, the values belongs to the wide interval [−12.8, 3.55], meaning that α, β, and θ have an
important impact on the amount of information quantified by η.

4. Estimation with Numerical Results

In this section, we investigate the NPTLILx model characterized by the cdf given by (3). Thanks to
its attractive theoretical and practical properties, the maximum likelihood method is used to estimate
the parameters α, β, and θ. Numerical results attest to the efficiency of the estimates obtained.

Hereafter, we consider a random variable X following the NPTLILx distribution with parameters
α, β, and θ.
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4.1. Maximum Likelihood Estimation

Let x1, . . . , xn be a random sample of size n of X. Then, by using the pdf given by (4), the likelihood
and log-likelihood functions are, respectively, given by

L(α, β, θ) =
n

∏
i=1

f (xi; α, β, θ)

= (2αβθ)n
n

∏
i=1

x−2
i

(
1 + x−1

i

)θ−1
eαβ

[
1−(1+x−1

i )
θ
] {

1− eβ
[
1−(1+x−1

i )
θ
]}{

2− eβ
[
1−(1+x−1

i )
θ
]}α−1

and

`(α, β, θ) = ln[L(α, β, θ)] = n ln(2) + n ln(α) + n ln(β) + n ln(θ)− 2
n

∑
i=1

ln(xi)

+ (θ − 1)
n

∑
i=1

ln(1 + x−1
i ) + αβ

n

∑
i=1

[
1− (1 + x−1

i )θ
]
+

n

∑
i=1

ln
{

1− eβ[1−(1+x−1
i )θ ]

}
+ (α− 1)

n

∑
i=1

ln
{

2− eβ[1−(1+x−1
i )θ ]

}
.

The maximum likelihood estimates (MLEs) of α, β, and θ, say α̂, β̂, and θ̂, respectively, are defined such
that L(α̂, β̂, θ̂) = max(α,β,θ)∈(0,+∞)3 L(α, β, θ) or `(α̂, β̂, θ̂) = max(α,β,θ)∈(0,+∞)3 `(α, β, θ). Let us work
with the function `(α, β, θ) for the sake of simplicity. Since `(α, β, θ) is differentiable with respect to
α, β, and θ, the MLEs can obtained by solving the non-linear equations defined by the first partial
derivatives of `(α, β, θ) with respect to α, β, and θ equal to 0, with

∂`(α, β, θ)

∂α
=

n
α
+ β

n

∑
i=1

[
1− (1 + x−1

i )θ
]
+

n

∑
i=1

ln
{

2− eβ[1−(1+x−1
i )θ ]

}
,

∂`(α, β, θ)

∂β
=

n
β
+ α

n

∑
i=1

[
1− (1 + x−1

i )θ
]
−

n

∑
i=1

[
1− (1 + x−1

i )θ
]

eβ[1−(1+x−1
i )θ ]

1− eβ[1−(1+x−1
i )θ ]

− (α− 1)
n

∑
i=1

[
1− (1 + x−1

i )θ
]

eβ[1−(1+x−1
i )θ ]

2− eβ[1−(1+x−1
i )θ ]

and

∂`(α, β, θ)

∂θ
=

n
θ
+

n

∑
i=1

ln(1 + x−1
i )− αβ

n

∑
i=1

(1 + x−1
i )θ ln(1 + x−1

i )

+ β
n

∑
i=1

(1 + x−1
i )θ ln(1 + x−1

i )eβ[1−(1+x−1
i )θ ]

1− eβ[1−(1+x−1
i )θ ]

+ β(α− 1)
n

∑
i=1

(1 + x−1
i )θ ln(1 + x−1

i )eβ[1−(1+x−1
i )θ ]

2− eβ[1−(1+x−1
i )θ ]

.

The complexity of these expressions do not allow us to provide closed-forms for the MLEs. However,
several numerical solutions exist to maximize `(α, β, θ) based on Newton–Raphson algorithms, one of
which is employed in this study.
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The corresponding Fisher information matrix we observed is given by

J(α, β, θ) = −


∂2`(α,β,θ)

∂α2
∂2`(α,β,θ)

∂α∂β
∂2`(α,β,θ)

∂α∂θ
∂2`(α,β,θ)

∂β∂α
∂2`(α,β,θ)

∂β2
∂2`(α,β,θ)

∂β∂θ

∂2`(α,β,θ)
∂θ∂α

∂2`(α,β,θ)
∂θ∂β

∂2`(α,β,θ)
∂θ2

 .

(the elements of J(α, β, θ) are upon request from the authors). When n is large, the distribution of
the subjacent random vector behind (α̂, β̂, θ̂) can be approximated by a three dimensional normal
distribution with mean vector (α, β, θ) and covariance matrix J(α̂, β̂, θ̂)−1. By denoting vα̂, vβ̂ and vθ̂ ,
the diagonal elements of this matrix, we are able to construct asymptotic confidence intervals for α, β,
and θ. Indeed, with the adopted notations, the asymptotic (equitailed) confidence intervals (CIs) of α,
β, and θ at the level 100(1− γ)% are given by, respectively,

CIα =
[
α̂− zγ/2

√
vα̂, α̂ + zγ/2

√
vα̂

]
, CIβ =

[
β̂− zγ/2

√
vβ̂, β̂ + zγ/2

√
vβ̂

]
and

CIθ =
[
θ̂ − zγ/2

√
vθ̂ , θ̂ + zγ/2

√
vθ̂

]
,

where zγ/2 is the upper γ/2-th percentile of the normal distribution N (0, 1). For practical purposes, if
lower bounds of these intervals are negative, we can put it at 0, since all the parameters are supposed
to be positive. All the technical details can be found in [33].

4.2. Numerical Results

Here, we provide a simulation study to show the nice behavior of the MLEs for the NPTLILx
model presented in the subsection above. First of all, let us mention that a random sample from X
can be obtained by the use of the qf: for any random sample of size n from the uniform distribution
U (0, 1), say u1, . . . , un, the corresponding random sample of size n of X is given by x1, . . . , xn with
xi = Q(ui; α, β, θ).

From N random samples of X, let ε be either α, β, or θ and ε̂i be the MLE of ε constructed from
the i-th sample. Then, we define the (mean) MLE, bias, and mean square error (MSE) by, respectively,

M̂LEε(n) =
1
N

N

∑
i=1

ε̂i, B̂iasε(n) = M̂LEε(n)− ε, M̂SEε(n) =
1
N

N

∑
i=1

(ε̂i − ε)2.

Additionally, the asymptotic (mean) confidence intervals of α, β, and θ at the level 100(1− γ)%
can be determined. We define the (mean) lower bounds (LBs), (mean) upper bounds (UBs), and (mean)
average length (ALs) by, respectively,

L̂Bε(n) = M̂LEε(n)− zγ/2V̂ε(n), ÛPε(n) = M̂LEε(n) + zγ/2V̂ε(n), ÂLε(n) = 2zγ/2V̂ε(n),

where V̂ε(n) = (1/N)∑N
i=1
√vε̂i . For the purposes of this study, we consider the levels 90% and 95%,

so z0.05 = 1.644854 and z0.025 = 1.959964, respectively. The software Mathematica 9 was employed.
Our simulation study was based on the the following plan.

• N = 1000 random samples of size n = 100, 200, 300, and 1000 are to be generated from X.
• Values of the true parameters (α, β, θ) are taken as, in order, (0.5, 0.1, 0.5), (1.5, 0.5, 0.5), and

(1.8, 0.4, 1.2).
• The MLEs, MSEs, biases, LBs, UBs, and ALs for the selected values of the parameters are to

be calculated.

Numerical outcomes are listed in Tables 4–6.
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Table 4. Maximum likelihoods (MLEs), biases, MSEs, LBs, UBs, and ALs of the NPTLILx model for
(α = 0.5, β = 0.1, θ = 0.5).

n Par. ML Bias MSE
90% 95%

LB UB AL LB UB AL

100

α 0.290 −0.210 0.105 −0.528 1.109 1.637 −0.685 1.266 1.951

β 0.163 0.063 0.016 −0.090 0.417 0.508 −0.139 0.466 0.605

θ 0.572 0.072 0.012 0.364 0.780 0.416 0.324 0.820 0.496

200

α 0.304 −0.196 0.103 −0.329 0.937 1.266 −0.450 1.058 1.508

β 0.146 0.046 0.008 −0.031 0.324 0.354 −0.065 0.358 0.422

θ 0.567 0.067 0.011 0.386 0.749 0.363 0.351 0.784 0.433

300

α 0.340 −0.160 0.084 −0.264 0.944 1.207 −0.379 1.059 1.438

β 0.137 0.037 0.006 0.021 0.254 0.233 −0.001 0.276 0.277

θ 0.548 0.048 0.007 0.414 0.683 0.269 0.388 0.709 0.321

1000

α 0.342 −0.158 0.074 −0.064 0.747 0.811 −0.141 0.825 0.966

β 0.124 0.024 0.002 0.047 0.200 0.153 0.033 0.215 0.182

θ 0.545 0.045 0.005 0.435 0.655 0.220 0.414 0.676 0.263

Table 5. MLEs, biases, MSEs, LBs, UBs, and ALs of the NPTLILx model for (α = 1.5, β = 0.5, θ = 0.5).

n Par. ML Bias MSE
90% 95%

LB UB AL LB UB AL

100

α 2.042 0.542 5.123 −211.872 215.955 427.827 −252.834 256.918 509.752

β 0.373 −0.127 0.055 −8.964 9.711 18.674 −10.752 11.499 22.250

θ 0.618 0.118 0.060 −30.579 31.814 62.393 −36.553 37.788 74.341

200

α 1.843 0.343 1.449 −81.290 84.975 166.265 −97.209 100.894 198.103

β 0.442 −0.058 0.015 −4.239 5.124 9.363 −5.136 6.021 11.156

θ 0.547 0.047 0.019 −10.112 11.206 21.317 −12.153 13.247 25.400

300

α 1.667 0.167 0.874 −45.858 49.192 95.050 −54.959 58.293 113.252

β 0.458 −0.042 0.012 −2.019 2.935 4.954 −2.493 3.410 5.903

θ 0.542 0.042 0.013 −5.733 6.818 12.550 −6.934 8.019 14.953

1000

α 1.358 −0.142 0.460 −2.292 5.008 7.300 −2.991 5.707 8.698

β 0.534 0.034 0.002 0.184 0.884 0.700 0.117 0.951 0.834

θ 0.534 0.034 0.010 0.279 0.788 0.509 0.230 0.837 0.607

From Tables 4–6, we can see that, when n increases, biases, MSEs, and ALs decrease. This
observation is consistent with the well-known convergence properties of the MLEs.
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Table 6. MLEs, biases, MSEs, LBs, UBs, and ALs of the NPTLILx model for (α = 1.8, β = 0.4, θ = 1.2).

n Par. ML Bias MSE
90% 95%

LB UB AL LB UB AL

100

α 2.843 1.043 1.889 −1324.960 1330.640 2655.600 −1579.220 1584.900 3164.120

β 0.639 0.239 0.675 −94.183 95.462 189.645 −112.341 113.619 225.960

θ 1.573 0.373 0.660 −252.661 255.807 508.468 −301.344 304.490 605.834

200

α 1.095 −0.705 0.523 −359.428 361.618 721.046 −428.464 430.654 859.119

β 0.331 −0.069 0.014 −27.830 28.493 56.324 −33.223 33.886 67.109

θ 1.571 0.371 0.183 −109.805 112.947 222.752 −131.132 134.274 265.406

300

α 1.150 −0.650 0.519 −306.474 309.685 616.159 −365.468 368.679 734.147

β 0.421 0.021 0.004 −18.962 19.804 38.766 −22.674 23.515 46.189

θ 1.390 0.190 0.165 −92.650 95.370 188.020 −110.652 113.372 224.024

1000

α 1.260 −0.540 0.496 −138.760 141.281 280.040 −165.572 168.093 333.665

β 0.387 −0.013 0.001 −9.334 10.007 19.341 −11.186 11.859 23.044

θ 1.361 0.161 0.150 −45.112 48.295 93.407 −54.055 57.238 111.293

5. Data Analysis

In this section, we prove the flexibility of the NPTLILx model by analyzing two practical datasets.
The fits of the NPTLILx model are compared to the competitive models listed in Table 7. The common
point of all of them is the use the inverse Lomax distribution as the baseline distribution.

Table 7. The competitive models considered.

Distribution Reference

Inverse Lomax (ILx) [34]

Inverse Power Lomax (PILx) [35]

Topp–Leone Inverse Lomax (TILx) [36]

Weibull Inverse Lomax (WILx) [37]

Except the former inverse Lomax distribution, the considered models possess three or
four parameters. The comparison of these models was performed by using the following
well-known statistical benchmarks: CVM (Cramér–von Mises); AD (Anderson–Darling); KS
(Kolmogorov–Smirnov) statistic with the corresponding p-value, minus log-likelihood (− ˆ̀); AIC
(Akaike information criterion); CAIC (corrected Akaike information criterion); BIC (Bayesian
information criterion); and HQIC (Hannan–Quinn information criterion). For the CVM, AD, KS,
(− ˆ̀), AIC, CAIC, BIC, and HQIC, the smaller the value is, the better the fit to the data. Additionally,
the higher the p-values of the KS test are, the better the fit to the data. All these measures were
computed by using the R software.

Dataset I: The first data refer to [23]. It consists of 40 observations of the active repair times for
airborne communication transceiver. The unit is the hour. The data are: 0.50, 0.60, 0.60, 0.70, 0.70, 0.70,
0.80, 0.80, 1.00, 1.00, 1.00, 1.00, 1.10, 1.30, 1.50, 1.50, 1.50, 1.50, 2.00, 2.00, 2.20, 2.50, 2.70, 3.00, 3.00, 3.30,
4.00, 4.00, 4.50, 4.70, 5.00, 5.40, 5.40, 7.00, 7.50, 8.80, 9.00, 10.20, 22.00, 24.50.

A basic statistical description of the data gives: n = 40, mean = 4.01, standard deviation = 5.17,
median = 2.1, skewness = 2.62, and kurtosis = 7.02. One can notice that the data are skewed to the
right with a high kurtosis.

Dataset II: Next, we use the actual taxes dataset as described in [24]. The data consist of
the monthly actual taxes revenue in Egypt from January 2006 to November 2010. The unit is the
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1000 million Egyptian pounds. The data are: 5.9, 20.4, 14.9, 16.2, 17.2, 7.8, 6.1, 9.2, 10.2, 9.6, 13.3, 8.5,
21.6, 18.5,5.1,6.7, 17, 8.6, 9.7, 39.2, 35.7, 15.7, 9.7, 10, 4.1, 36, 8.5, 8, 9.2, 26.2, 21.9, 16.7, 21.3, 35.4, 14.3, 8.5,
10.6, 19.1, 20.5, 7.1, 7.7, 18.1, 16.5, 11.9, 7, 8.6, 12.5, 10.3, 11.2, 6.1, 8.4, 11, 11.6, 11.9, 5.2, 6.8, 8.9, 7.1, 10.8.

A basic statistical description of the data gives: n = 59, mean = 13.49, standard deviation = 8.05,
median = 10.6, skewness = 1.57, and kurtosis = 2.08. Thus, these data are skewed to the right with a
moderate kurtosis.

The graphical and numerical analyses of these two datasets are as follows. Figure 3 presents the
total test time (TTT) plots of the two datasets. The first plot shows a convex curve, indicating that
a decreasing hrf for the fitting model is appropriate for Data set I, whereas the second plot shows a
concave curve, indicating that an increasing hrf for the fitting model is appropriate for Data set II.
These cases are covered by the NPTLILx model, as shown in Figure 2.
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Figure 3. Total test time (TTT) plots for Datasets I and II, respectively.

Tables 8 and 9 present the CVM, AD, KS, and the related p-value, and the MLEs of the models’
parameters for Datasets I and II, respectively. The obtained p-values indicate that the NPTLILx model
is the best. Tables 10 and 11 communicate the − ˆ̀, AIC, BIC, CAIC, BIC, and HQIC of the models for
Datasets I and II, respectively. Since the smallest values are obtained for the NPTLILx model, it can
be considered the best with these criteria. The estimated pdfs and cdfs for the considered models
are displayed in Figures 4 and 5 for Datasets I and II, respectively. The plots of the estimated pdfs
are visually refined via an individual treatment in Figures 6 and 7. In order to give another point of
view, we illustrate the adequateness of the models via the use of probability–probability (PP) plots in
Figures 8 and 9, for Datasets I and II, respectively. In particular, for Dataset II, in view of the perfect
adjustment of the scatter plot by the PP line, it is clear that the NPTLILx model provides a better
fit in comparison to the other models. To resume, the NPTLILx model reveals itself to be the more
appropriate model for the two datasets, illustrating its applicability in a concrete setting.
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Table 8. Goodness-of-fit measures, MLEs, and SEs for Dataset I.

Model CVM AD KS p-Value MLEs with SEs (in Parentheses)

NPTLILx 0.0550 0.3462 0.0943 0.8683 α β θ

0.0682 11.9902 1.5651

(0.0897) (2.4167) (0.6425)

WILx 0.1522 1.0852 0.1784 0.1566 a b λ β

0.0026 0.8867 0.0185 0.2581

(0.0006) (0.1938) (0.0285) (0.7650)

TILx 0.0685 0.4578 0.1108 0.7100 α β λ

37.8324 2.9879 0.1676

(9.7598) (1.9941) (0.2682)

PILx 0.1079 0.6582 0.1272 0.5369 α β λ

0.1130 6.8594 0.0571

(0.1242) (6.4470) (0.2480)

ILx 0.0632 0.4065 0.0981 0.8355 α β

0.2003 8.2426

(0.1372) (5.1671)

Table 9. Goodness-of-fit measures, MLEs, and SEs for Dataset II.

Model CVM AD KS p-Value MLEs with SEs (in Parentheses)

NPTLILx 0.0357 0.2698 0.0615 0.9786 α β θ

14.4361 0.4378 5.0301

(1.0378) (1.1103) (0.2431)

WILx 0.2363 1.4829 0.3248 7.79× 10−6 a b λ β

0.0021 1.1404 0.0172 3.9985

(0.0002) (0.1202) (0.0064) (3.1371)

TILx 0.0398 0.2701 0.0998 0.5988 α β λ

50.4579 0.0908 15.8617

(6.7245) (0.2094) (3.9080)

PILx 0.1133 0.6440 0.1447 0.1689 α β λ

1.1545 2.3262 300.7315

(0.4472) (0.2880) (121.3061)

ILx 0.0529 0.3075 0.2928 8.06× 10−5 α β

0.1464 71.1473

(0.2569) (23.8010)
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Table 10. The values of − ˆ̀, AIC, and KS with its p-value for Dataset I.

Model − ˆ̀ AIC CAIC BIC HQIC

NPTLILx 88.8229 183.6459 184.3125 188.7125 185.4778

WILx 98.2937 204.5874 205.7303 211.3429 207.0300

TILx 90.5459 187.0919 187.7586 192.1586 188.9239

PILx 90.5908 187.1817 187.8484 192.2483 189.0136

ILx 91.3612 186.7226 187.0469 190.1003 187.9439

Table 11. The values of − ˆ̀, AIC, and KS with its p-value for Dataset II.

Model − ˆ̀ AIC CAIC BIC HQIC

NPTLILx 189.2811 384.5622 384.9985 390.7948 386.9951

WILx 219.6212 447.2424 447.9832 455.5526 450.4864

TILx 190.3769 386.7538 387.1902 392.9864 389.1868

PILx 195.1056 396.2113 396.6476 402.4439 398.6442

ILx 211.6436 427.2872 427.5015 431.4422 428.9091
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Figure 4. Plots for the estimated pdfs and cdfs for Dataset I.
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Figure 5. Plots for the estimated pdfs and cdfs for Dataset II.
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Figure 6. Plots of the pdfs estimated for Dataset I.
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Figure 9. PP plots of considered models for Dataset II.

We end this section by providing some additional graphical and numerical elements on the
NPTLILx model, related to the quantities presented in Section 4.1. To illustrate the uniqueness of the
MLEs of α, β and θ, the profiles of the log-likelihood function are proposed in Figures 10 and 11 for
Datasets I and II, respectively. The Fisher information matrices of the NPTLILx model taken at the
MLEs for Datasets I and II are, respectively, given by

JI =


0.0080 −0.0354 −0.0018

−0.0354 5.8404 0.0216

−0.0018 0.0216 0.4128

 , JI I =


1.0770 −1.2877 −0.0627

−1.2877 1.2327 0.0654

−0.0627 0.0654 0.0590

 .

Then, the confidence intervals for α, β, and θ at the levels 90% and 95% are provided in Table 12.
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Figure 10. Profiles of the log-likelihood function of the NPTLILx model for Dataset I.
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Figure 11. Profiles of the log-likelihood function of the NPTLILx model for Dataset II.

Table 12. Confidence intervals for the parameters of the NPTLILx model for Datasets I and
II, respectively.

CI α β θ

90% [0 0.2157] [8.0147 15.9656] [0.5081 2.6220]

95% [0 0.2440] [7.2534 16.7269] [0.3058 2.8244]

CI α β θ

90% [12.7289 16.1432] [0 2.2642] [4.6302 5.4300]

95% [12.4020 16.4701] [0 2.6139] [4.5536 5.5065]

6. Conclusion and Perspectives

In this paper, we introduced and studied a new general family of distributions, called the NPTL-G
family, based on the so-called power Topp–Leone-G and inverse exponential-G families. Various
mathematical properties were presented, including stochastic ordering, quantile function and related
measures, general moments and related measures, and the Shannon entropy, with discussions. Then,
we payed special attention to a member of the family defined with the inverse Lomax distribution,
called the NPTLILx distribution. The estimation of the unknown model parameters was done with the
maximum likelihood method, with numerical guarantees on their behavior via a simulation study. The
applicability of the NPTLILx model was then illustrated by the consideration of two practical datasets.
It was then proven that the NPTLILx model is a serious alternative to other models, also using the
inverse Lomax distribution as the baseline. Future work will include the constructions of various
regression models, Bayesian estimation of the parameters, and analyses of new datasets. Thanks to its
numerous qualities, we believe that the NPTL-G family can be helpful for the practitioner, for statistical
analyses beyond the scope of this paper.

Among the interesting perspectives of work, one could investigate the confidence bounds and
supersaturation properties of the cdfs of the members of the NPTL-G family, which are useful for
choosing an appropriate model for given data, following the spirit of [38–42]. All these aspects need
further investigations that we leave for future works.
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