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Abstract: Within the Bayesian framework a non-intrusive uncertainty quantification is performed
to assess the uncertainty of ion–solid interaction simulations. For this we employ a reduced-order
spectral expansion approach which is capable of confining the number of model runs to a feasible
size. Moreover, the method facilitates sensitivity examinations regarding to input parameters of
the model. It is applied to the ion–solid simulation program SDTrimSP with several uncertain but
normally distributed input parameters, i.e., impact angle α, projectile energy E0, and surface binding
energy Esb. Consequently, the otherwise hardly accessible model parameter Esb can be estimated in
combination with recently acquired experimental data.

Keywords: uncertainty quantification; non-intrusive; spectral expansion; plasma-wall interactions;
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1. Introduction

Plasma-wall interactions are of crucial importance in the design of future fusion reactors, since
they determine the replacement cycle for the plasma exposed components of the wall. In order to
estimate the lifetime of those wall components atomistic simulations are essential. The basic principles
of the collisional processes are well understood within the binary collision approximation (BCA) for
which the first algorithmic approaches took place already more than 50 years ago [1]. Various sets
of parameters are on input to codes simulating ion–solid interactions [2–4], as there are composition
of the solid, surface roughness, or impact angle of the incident ions. Many of these parameters are
uncertain and a proper comparison with experimental data or other models requires the quantification
of the uncertainty of the result. Since the employed simulation-based methods of tackling many
particles traveling collisionally through matter imply the presence of overall non-linear interactions,
an easy access to estimates of the output uncertainties is pointless. Additionally, the computational
expense of individual simulations limits the number of simulations runs. Thus the estimation of
output uncertainties by Monte-Carlo (MC) methods or grid-based sampling often exceeds the available
computational budget, especially if the number of uncertain input parameters is large. Due to the
fact that the simulation data come with no estimation of their uncertainties, a sensitivity analysis of
a surrogate accomplished by Gaussian processes [5] from the data is costly as well, since it would
require repetitive calls of the simulation code to acquire some variance estimates. Therefore, in order
to reduce the computational effort we propose for the assessment of uncertainties of plasma-wall
interaction simulations a well-known non-intrusive reduced-order model approach (aka polynomial
chaos expansion [6]). While the intrusive method, firstly introduced in the context of the stochastic
Galerkin finite-element method [7], depends on the formulation and solution of a stochastic version of
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the original model, which complicates model changes and dresses up the impact of different model
terms to the output uncertainty, the non-intrusive method advantageously requires multiple solutions
of the original model, only. Consequently, our proposed approach not only reduces the number
of function evaluations needed by sampling methods, but provides simultaneously a quantitative
measure of which combinations of inputs have the most important impact on the result, i.e., it yields a
sensitivity analysis and the associated Sobol coefficients.

2. Bayesian Uncertainty Quantification

Based on the Bayesian framework we employ a spectral expansion to quantify the propagation
of uncertainty through the model. First introduced by Wiener [8] in the context of Hermite basis
functions, it was termed ‘polynomial chaos expansion’ at the time. Nowadays the notion of ‘chaos’ has
shifted and the use of the term ‘spectral expansion’ is more appropriate. Once successfully achieved,
the spectral representation is capable of quantifying the uncertainty for any point in model space or to
serve as a surrogate model.

For a spectral expansion, i.e., the description of a function by an in principle infinite (but in real
use finite) number of terms composed of an advantageously orthonormal basis function multiplied by
a "spectral" coefficient. Since the spectral coefficients are determined from a discrete set of collocation
points in the space of the uncertainty parameters our approach is non-intrusive, but approximate due
to the finite number of terms. The emerging integrals in the calculation of the coefficients are evaluated
by Gaussian quadrature which identifies the collocation points with those of the quadrature. Moreover,
we assume mutually independent normally distributed uncertainty parameters. The probability
density function in such a case is Gaussian and the adjunctive set of orthonormal basis functions are
Hermite polynomials [9].

To quantify the uncertainty of a result R with uncertainty parameters ~Ξ = {ξ1, ξ2, . . . , ξM},
we seek the appropriate function g(~Ξ) such that R will have the required distribution of the model
response, R = g(~Ξ). It is always possible to find an infinite expansion

g(~Ξ) =
∞

∑
k=0

akψk(~Ξ) ≈
P

∑
k=0

akψk(~Ξ), (1)

if the uncertainty parameters ~Ξ have finite variance. The approach is only feasible, if contributions
of higher orders become numerically insignificant and the infinite expansion in Equation (1) can be
limited to polynomial order P. This will be the case if the model preserves the functional nature of
the probability density function of the uncertainty parameters, i.e., a normally distributed uncertainty
parameter ξ leads to a normal distribution of the model value R.

Within the spectral expansion the coefficients ak are defined by

ak =
〈g(~Ξ), ψk(~Ξ)〉
〈ψk(~Ξ), ψk(~Ξ)〉

, (2)

with

〈g(~Ξ), ψk(~Ξ)〉 =
∫

g(~Ξ)ψk(~Ξ)p(~Ξ)d~Ξ =
∫

g(~Ξ)ψk(~Ξ)p(ξ1)p(ξ2) . . . p(ξM)dξ1dξ2 . . . dξM. (3)

We assume Gaussian character for the random variable, so the density p(ξ) is distributed
according to the normal (probability) distribution

p(ξ) =
1√
2π

exp
{
− ξ2

2

}
. (4)
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As stated above the adjunctive set of orthonormal basis functions for normally distributed
parameters is given by the so-called probabilist Hermite functions [9], which read up to fourth
order He0(ξ) = 1, He1(ξ) = ξ, He2(ξ) = ξ2 − 1, He3(ξ) = ξ3 − 3ξ, He4(ξ) = ξ4 − 6ξ2 + 3.
Because contributions from higher orders become negligible the chosen polynomial order suffices for
a good description of the uncertainty. With M as the number of the uncertainty parameters and P
the highest order of the polynomial basis set a total of K = (M + P)!/M!P! coefficients ak have to be
determined. For an example with M = 2 uncertainty parameters and P = 4 one would get following
K = 15 mixed basis functions ψk(~Ξ):

ψ0(~Ξ) = 1 ψ1(~Ξ) = ξ1 ψ3(~Ξ) = ξ2
1 − 1 ψ6(ξ) = ξ3

1 − 3ξ1 ψ10(~Ξ) = ξ4
1 − 6ξ2

1 + 3
ψ2(~ξ) = ξ2 ψ4(~Ξ) = ξ1ξ2 ψ7(ξ) = ξ2

1ξ2 − ξ2 ψ11(~Ξ) = ξ3
1ξ2 − 3ξ1ξ2

ψ5(~Ξ) = ξ2
2 − 1 ψ8(ξ) = ξ2

2ξ1 − ξ1 ψ12(~Ξ) = ξ2
1ξ2

2 − ξ2
1 − ξ2

2 + 1
ψ9(ξ) = ξ3

2 − 3ξ2 ψ13(~Ξ) = ξ3
2ξ1 − 3ξ2ξ1

ψ14(~Ξ) = ξ4
2 − 6ξ2

2 + 3

The normalization constants in Equation (3) are readily

〈ψk, ψk〉 =
∫

ψk(~Ξ)ψk(~Ξ)p(~Ξ)d~Ξ = maxk!. (5)

where maxk denotes the highest order in function ψk(~Ξ), e.g., maxk=14! = 4! = 24.
Due to the Gaussian nature of the probability function omnipresent in the integrals above, it is

beneficial to use Gauss–Hermite quadrature of order J for the evaluation:

〈g(~Ξ), ψ(~Ξ)〉 G.H.
=

J

∑
j1=1

J

∑
j2=1

. . .
J

∑
jM=1

g(ξ j1 , ξ j2 , . . . ξ jM )ψk(ξ j1 , ξ j2 , . . . ξ jM )wj1 wj2 . . . wjM , (6)

where the weights wj and the abscissas ξ j are provided by e.g., numerical recipes [10]. Eventually,
by making use of the orthogonal properties of the probabilist Hermite polynomials the mean of the
model result and its variance can be expressed with the spectral coefficients in Equation (3)

〈R〉 = a0 , var(R) = 〈R2〉 − 〈R〉2 =
K

∑
k=1

a2
kk!. (7)

Sobol coefficients [6] describe the impact of the uncertainty of the input on the result. For first
and second order they are defined by

Si =
Di

var(R)
(8)

and

Sij =
Dij

var(R)
, (9)

where the evaluation of the respective integrals

Di =
∫

g2
i (ξi)dξi, (10)

and
Dij =

∫ ∫
g2

ij(ξi, ξ j)dξidξ j, (11)

results in combinations of the coefficients of Equation (3). The first order Sobol coefficients of
Equation (8) answer the question which of the input parameters has the largest impact on the
uncertainty of the model outcome: the higher the value with respect to the others, the more it
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is advantageous to reduce the uncertainty of its associated parameter in order reduce the uncertainty
of the quantity of interest.

3. Ion–Solid Interaction Program SDTrimSP

SDTrimSP [11,12] is a parallelized Monte Carlo code which simulates transport of energetic
particles through a target by employing sequentially two-body collision approximation to compute
collision cascades in three dimensions. This approximation has been shown to be valid
(i.e., the stochastic fluctuations of the collision processes exceed the approximation error) for
impact energies larger than about 50 eV [13]. Versions of the SDTrimSP code differ in the
description of the target composition, e.g., as one-dimensional (c(x) [12]), two-dimensional (c(x,y) [14]),
or three-dimensional (c(x,y,z) [15]). Common to all versions (and key to the high code efficiency) is
the assumption of amorphous targets, which circumvents the storage of sample atom coordinates.
The simulations were performed with standard settings, i.e., considering a static one-dimensional
target (the concentral profile c(x) was kept constant) and the scattering integral was computed using
the Gauss–Mehler quadrature scheme with eight pivots. The varied parameters were the projectile
energy and the impact angle (with zero degrees corresponding to a perpendicular impact, parallel to
the surface normal).

4. Results and Discussion

The above program is applied to simulate ion–solid interactions for the case of incident deuterium
ions with an energy of E0 = 200 eV at an impact angle of α = 45 degrees to a surface consisting of
iron with a commonly used surface binding energy of ESB = 4.28 eV. We assume the parameters to be
Gaussian distributed within a σ of about 10%, i.e., σE0 = 20 eV, σESB = 0.4 degrees and σα = 4 eV.

First, in order to have a calibration standard to compare with we employ random sampling of the
model response. For each realization of the random variable {ξ1, . . . , ξN} there exists a model response
Ri = R(ξi) constituting the sample solution set {R1, . . . , RN} from which moments can be computed.
For this the expected mean is

〈R〉 = 1
N

N

∑
i=1

R(ξi) (12)

and its variance reads
var(R) = 〈R2〉 − 〈R〉2. (13)

In Figure 1 the results of a subset of a total of 203 = 8000 samples are shown for the above
parameter settings. While a depiction of the total set would overcharge the figure it was used to
calculated the variances for the yields of the respective parameter settings. The mean value for the
sputter yield is YMC = 0.052 with a standard deviation of σMC = 0.013. Even more, the full uncertainty
distribution may be established with help of a histogram if the sample solution set is sufficiently large
(N >∼ 1000).

Although this procedure is straightforward and automatically contains the full model answer with
all correlations, it has the vital drawback of a comparatively low convergence rate. If the computation
time of a single model output is not in the order of seconds or becomes more sophisticated with a
higher number of variables (curse of dimension), the mere accumulation of sample point densities to
infer the complete distribution is futile.

Much more promising in this respect is the spectral approach of Section 2 which results will
be discussed next. Applying the formulas of Section 2 for the case of three uncertainty parameters
~ξ = (ξ1, ξ2, ξ3) with

Ê0 = E0 + ξ1σE0 (14)

ÊSB = ESB + ξ2σESB (15)

α̂ = α + ξ3σα, (16)
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the summation of the terms in Equation (6) runs over three indices l1, l2, and l3. It is good numerical
praxis to employ the Gaussian quadrature with one order higher [10] than the highest polynomial
order of the spectral expansion, which requires an upper boundary of P + 1 = 5 for the used fourth
order polynomials.
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Figure 1. Sputter yield for deuterium on iron from SDTrimSP-simulations with energy, angle and
surface binding energy distribution for a subset of 216 out of a total of 203 samples. The respective
input variables are E0 = 200± 20 eV, ESB = 4.28± 0.4 eV and an incident angle o f 45± 4 degrees.
The resulting sputter yield is plotted with a color scheme ranging from dark blue at zero up to light
yellow at 0.09 sputtered atoms per incoming ion. The mean value of the sputter yield is YMC = 0.052
with a standard deviation of σMC = 0.013.

For numerical accuracy of the Gaussian quadrature it is expedient to be one order higher than the
polynomial order of the spectral expansion.

This results in a total of 216 terms (three nested summations, each running from li = 0–5 with
i = 1,2,3) over the collocation points composed of six Gaussian quadrature abscissas assigned to ξli and
six weights wli . The value for the function g(ξl1 , ξl2 , ξl3) is obtained from a SDTrimSP run, which takes
roughly three minutes on a modern CPU. However, the computations can be accelerated tremendously
because the simulations can be run in parallel. Once calculated, the 35 coefficients of Equation (6)
establish a fast surrogate model, which is simply the evaluation of a polynomial. This is shown in
Figure 2 as the red mesh. The respective sputter yield, for which the uncertainty quantification was
performed, is depicted in the center as the red sphere with YUQ = 0.050 at/ion and its standard
deviation of σUQ = 0.011 as the green perpendicular line. The comparison with the result of the
sampling approach above (YMC = 0.052± 0.013) shows excellent agreement.

Without the need to do any further simulations, various quantities may be inferred from the
coefficients, e.g., the variance as in Equation (3), or the Sobol coefficients, which allows the investigation
of the sensitivity of the result on the uncertainty of the input variables. For the above variables E0,
α and ESB we get the Sobol coefficients (only first order is numerically significant) shown in Table 1.
Regardless of the setting of the surface binding energy ESB, the Sobol coefficients indicate that the
improvement of the knowledge of ESB is most rewarding if one wants to reduce the uncertainty of the
sputter yield.
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Figure 2. The iron erosion by deuterium sputtering as function of impact angle and energy.
The surrogate model is given by the mesh (in red). The polynomial chaos expansion was computed
around E0 = 200 eV, ESB = 4.28 eV, and impact angle of 45 degrees. The red bullet indicates the mean
sputter yield of 0.050 with its uncertainty of 0.011 as the light green line. For illustration purposes
the input parameters E0 and α , while the surface binding energy ESB was set to 4.28 eV. In addition,
the blue plus signs show the scatter data from the sampling approach already shown in Figure 1.

Table 1. The table shows the Sobol coefficients of the three parameters E0, ESB and α at a projectile
energy of E0 = 200 eV and an impact angle of α = 45 degrees for different settings of the surface binding
energy ESB.

ESB 4.08 4.28 4.48 4.68 4.88 5.08

SE0 0.005 0.005 0.006 0.006 0.005 0.007
SESB 0.752 0.734 0.713 0.688 0.666 0.637
Sα 0.238 0.256 0.277 0.302 0.325 0.352

Following this trail, we performed a series of experimental measurements of the sputter yield for
different impact angles with α = 0, 45, 60 and 75 degrees at E0 = 2 keV deuteron. The experimental
details of the sample preparation, the high-current source SIESTA and of the measurements performed
are given in [16]. These angle-resolved data were augmented with energy dependent sputter yield
measurements from a recent study [17]. Then we applied the uncertainty quantification method
discussed above in order to provide quantitative estimates of the sputter yields at a variety of settings
for the surface binding energy ESB. It turned out that the most probable value for the surface binding
energy is Enew

SB = 4.8± 0.4 eV, one and a half standard deviations larger than the value commonly used
up to now [4], i.e., Eold

SB = 4.2± 0.4 eV.
With the revised setting of ESB we compared (see Figure 3) simulations of the sputter yield for

different incident energies of deuterium with results from Rutherford backscattering (RBS) and weight
loss (WL) experiments and got an improved agreement (except for E0 = 1 keV). With these results the
Bayes factor rules out another competitor to SDTrimSP (i.e., Monte Carlo decision for the occurrences of
collisions of incident ions with atoms in the target) being the SRIM model, which employs a quantum
mechanical treatment of ion-atom collisions and seems not to comprise all important effects present.
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Figure 3. Comparison of the sputter yield as a function of projectile energy for the previously set
surface binding energy ESB = 4.2± 0.4 eV (red squares) and the newly acquired setting of energy
ESB = 4.8± 0.4 eV (green squares) with data from experiments done in a Rutherford backscattering
setup (RBS, filled circles) and a weight loss setup (WL, open circles) [17]. A further model, SRIM (blue
squares), can almost certainly be ruled out. All lines shown are guides for the eye.

5. Summary and Conclusions

The non-intrusive polynomial chaos expansion for quantifying the propagation of uncertainty
through the model has been proven to be a valuable tool in describing the reliability of a model
outcome. The experience with the employed algorithm revealed that the spectral expansion with
moderate settings of employing only up to 4th order polynomials and six Gaussian quadrature abscissa,
which requires less than 1000 simulation runs, is well suited for the determination of a medium
number of uncertain parameters. We applied the method to SDTrimSP simulations in determining
the sputtering yield and its standard deviation for the example of incident deuterium ions on an iron
target. Residing on both quantities we could rule out the existing parameter setting for the surface
binding energy and assigned a new much more accurate one. With this newly set input parameter it
was possible to get a better agreement with available experimental data and eventually put us in the
position to rule out a competitive physical model.
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