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Abstract: Heat transfer modeling plays a major role in design and optimization of modern and efficient
thermal-fluid systems. Further, turbulent flows are thermodynamic processes, and thus, the second
law of thermodynamics can be used for critical evaluations of such heat transfer models. However,
currently available heat transfer models suffer from a fundamental shortcoming: their development is
based on the general notion that accurate prediction of the flow field will guarantee an appropriate
prediction of the thermal field, known as the Reynolds Analogy. In this work, an assessment of
the capability of the Reynolds Analogy in predicting turbulent heat transfer when applied to shear
flows of fluids of different Prandtl numbers will be given. Towards this, a detailed analysis of the
predictive capabilities of the Reynolds Analogy concerning entropy generation is presented for steady
and unsteady state simulations. It turns out that the Reynolds Analogy provides acceptable results
only for mean entropy generation, while fails to predict entropy generation at small/sub-grid scales.

Keywords: Reynolds Analogy; entropy generation; steady/unsteady calculations

1. Introduction

There are various systems where turbulent heat transfer plays an important role in development
and optimization. These include cooling systems for nuclear power plants, where liquid metal is used
as coolant [1,2]; boiler systems for biomass combustion [3]; and heat exchange devices in petroleum
industry [4], to name just a few. Further, all of these systems share important commonalities: first,
experimental investigations are either not possible or prohibitively expensive [5], and second, the
underlying thermodynamics process must be as efficient as possible to avoid loss of energy. Optimizing
these systems requires a detailed insight into the complex dynamics of heat and mass transfer,
demanding advanced and reliable models. In addition, various systems employ working fluids with
significantly different Prandtl (denoted as Pr) numbers (ranging from Pr� 1 for liquid metal to a few
hundreds for crude oils). The variety in Pr numbers stresses the prediction capabilities of turbulent heat
transfer models. Further, the challenge of modeling turbulent heat transfer arises from its strong and
complex coupling to the turbulent field. Thus, a reliable model for the flow field (momentum transport)
is a mandatory condition for a model of turbulent heat transfer. As a consequence, the main focus in
research/modeling was on the modeling of momentum field in the past decades [6].
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Turbulent momentum and heat transfer are based on the same underlying physical mechanism
of cross-streamwise mixing of fluid elements [6]. Thus, the fundamental assumption that a correct
prediction of the momentum transport leads to appropriate prediction of the heat transfer is often made.
This analogy is based on the eddy diffusivity approach and is well known as Reynolds Analogy [6].
While this concept is a drastic simplification, it is still widely applied to a majority of industrial
applications of Computational Fluid Dynamics (CFD) when first-order statistical quantities such as
mean temperature and Nußelt number are of interest.

Furthermore, turbulent flows are thermodynamic processes and the directions of all such
processes are restricted by the second law of thermodynamics. Thus, this law can be used for critical
evaluation of turbulence and heat transfer models as discussed in Reference [7]. In applications,
irreversibilities—described by the second law of thermodynamics—decrease the available energy
of the working fluid [8]. This leads to an increase of system entropy and entropy generation [9–11].
In conjunction with heat transfer and fluid mechanic principles, it is possible to evaluate the impact of
irreversibilities related to heat transport and thermo-fluid systems. Various investigations using the
entropy concept including different configurations and physical processes with a variety of numerical
and analytical approaches to better understanding the process can be found in References [7,12–15].

Based on this concept, only a few Direct Numerical Simulation (DNS) can be found in the
literature [16–21], which are restricted to simple geometries and low-to-medium Reynolds numbers
due to the high computational cost. To overcome this problem, Reynolds Averaged Navier Stokes
equation (RANS) approaches have been often used to study entropy generation dynamics at high
Reynolds numbers. These investigations are reported in few studies [22–26]. However, it is well known
that prediction capabilities of RANS models are limited when dealing with turbulent flows with large
scale and unsteady characteristics. Unsteady approaches could offer a potential alternative strategy that
allow prediction of unsteady dynamics of the flow field, such as hybrid Unsteady Reynolds Averaged
Navier Stokes equation (URANS)/Large Eddy Simulation (LES). These overcome restrictions by DNS
and RANS simulations to predict flow and thermal statistics accurately yet computationally affordable.
Despite the potential of LES and hybrid approaches, only a few publications using these concepts for
entropy analyses are available [7,27].

Concerning heat transfer modeling, it is worth noting that both RANS (steady) and unsteady
approaches employ mainly the Reynolds Analogy to predict the thermal quantities (total/sub-grid
part). This investigation aims to provide a comprehensive assessment of capabilities of the Reynolds
Analogy to predict the entropy generation dynamics particularly through heat transfer in different
turbulent environments (working fluids with different Prandtl numbers).

The rest of this paper is organized as follows: In Section 2, the employed turbulence models along
with relevant transport equations will be presented and discussed. In Section 3, an overview of test
cases and numerical approach is provided. Results obtained from the simulations are presented and
discussed in Section 4. The paper ends up with a summary and conclusion in Section 5.

2. Governing Equations

The current study aims to provide a comprehensive assessment of the prediction capabilities of
the Reynolds Analogy for entropy production when applied to turbulent, attached, wall-bounded
shear flows of fluids with different Pr numbers. Towards this end, various aspects of this analogy
regarding entropy production will be investigated. First, the sensitivity of the Reynolds Analogy with
respect to the turbulence model employed to predict the flow field will be investigated. Therefore, two
different turbulence models, i.e., k−ω− SST (Shear Stress Transport) and k− ε− ζ − f , will be used
for steady state (RANS) simulations. In order to prelude effects of numerical instabilities/uncertainties
on the model performance, 3-dimensional domains with appropriate mesh resolutions have been used
for the RANS simulations.
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As the next step, performance of the Reynolds Analogy in unsteady simulations where the analogy
operates as a sub-grid-scale (sgs) model is assessed. Sensitivity to grid resolution is investigated as
it is an indicator of basic properties of sgs models. The k − ω − SST-IDDES (Improved Delayed
Detached Eddy Simulation) model will be used for the unsteady simulations. This model is a hybrid
URANS/LES model and is able to provide an accurate prediction of the flow field—comparable to
wall-modeled LES—at affordable computational cost [28]. The mathematical formulation of turbulence
models used in the current study in conjunction with other transport equations (energy, temperature
variance, and entropy) will be presented and discussed in the following.

2.1. Turbulence Models

2.1.1. The k−ω− SST Model

The k− ω − SST model is one of the most commonly used models. It employs two transport
equations, one for turbulent kinetic energy k and one for the inverse of dissipation rate ω to provide
necessary turbulence scales [29]. The model equations read as follows:

Dk
Dt

=
∂

∂xi

[(
ν +

νt

σk

) ∂k
∂xi

]
+ P̃k − β?ρωk, (1)

Dω

Dt
=

∂

∂xi

[(
ν +

νt

σω

) ∂ω

∂xi

]
+ 2(1− F1)

σω2

ω

∂k
∂xi

∂ω

∂xi
+

γ

νt
Pk − βω2, (2)

with P̃k = min(Pk; clε) and Pk = τij
∂ui
∂xj

as mechanical turbulent production. Further details on model
constants and functions, i.e., cl , β, β?, γ, τij, σω2, and F1, are provided in Reference [29].

2.1.2. The k− ε− ζ − f Model

The k − ε − ζ − f is well known to be able to predict near-wall effects in shear flows [30].
In addition to the transport equation for kinetic energy k and its dissipation ε, two more equations are
solved. The first one is a transport equation for the velocity scale ratio ζ = v2/k and the second one is
an elliptic relaxation concept, f , to sensitize ζ. For brevity, the model is referred as the ζ − f model.
The model equations are as follows:

Dk
Dt

=
∂

∂xi

[(
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) ∂k
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]
+ Pk − ε, (3)
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∂
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τ
, (4)
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∂
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L2 ∂2 f
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i
− f =

1
τ
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C1 + C

′
2

Pk
ε

)(
ζ − 2

3

)
, (6)

with Pk = τij
∂ui
∂xj

and νt = Cµζkτ. Further details on model constants and functions, i.e., τij, τ, C1,

C
′
2, Cε1, and Cε2, are provided in Reference [30].
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2.1.3. The k−ω− SST-IDDES Model

k−ω− SST-IDDES employs a modified version of the k−ω− SST model to improve near-wall
prediction and to enable unsteady calculations. It is defined with two transport equations for k and ω:

Dk
Dt

=
∂

∂xi

[(
ν +

νt

σk

) ∂k
∂xi

]
+ Pk −

√
k3/lIDDES, (7)

Dω

Dt
=

∂

∂xi

[(
ν +

νt

σω

) ∂ω

∂xi

]
+ 2(1− F1)

σω2

ω

∂k
∂xi

∂ω

∂xi
+

γ

νt
Pk − βω2, (8)

where blending function F1; production term Pk; and model constants γ, σk, σw, σw2, and β are imported
from the original k− ω − SST model [29]. It should be noted that, within k− ω − SST-IDDES, only
the destruction term in the k-equation is modified by introducing the lIDDES term, whereas the ω

equation remains unchanged. lIDDES is responsible for triggering a transition from URANS mode into
a scale-resolving mode. A detailed description of this methodology can be found in References [31,32].

2.2. Energy Equation and Heat Transfer Model

The Reynolds-averaged energy equation follows [33]:

ρcp
DT
Dt

= ST +
∂

∂xi

[(
λ

∂T
∂xi

)
− ρcpθui

]
, (9)

Assuming incompressible flow and constant physical properties and neglecting addition source,
ST , and terms such as radiation, the equation for the mean temperature T can be written as below:

DT
Dt

=
∂

∂xi

[( ν

Pr
∂T
∂xi

)
− θui

]
. (10)

The quantity θui on the right-hand side is called turbulent heat flux and is the Reynolds-averaged
fluctuating velocity–temperature correlation. This quantity needs to be modeled in order to close
the equation.

The simplest and mostly used approach to model the turbulent heat flux is the Reynolds Analogy.
This approach is based on the assumption that the momentum and thermal layer overlay and, thus,
have the same thickness. Therefore, it is assumed that an accurate computation of the momentum
transport leads to an accurate prediction of the temperature field. In addition, it is assumed that
the turbulent heat flux is proportional to the mean temperature gradient [34], which leads to the
following relation:

θui = −
νt

σt

∂T
∂xi

, (11)

with σt as the turbulent Prandtl number, usually taken constant and equal to 0.9 [6]. This value is
suitable/appropriate only for fluids with Pr numbers around unity. Concerning low Pr number fluids,
this value is significantly lower than the averaged reference value obtained from DNS; see Figure 1.
However, this value provides a reasonable estimation for high Pr number fluids except for regions
very close to solid surfaces, i.e., y+ < 3; see Figure 1.
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Figure 1. Variation of turbulent Prandtl number σt at different Reτ and Pr numbers: Reτ = 395 with
Pr = 0.025 [35] ( ) and Pr = 0.71 [35] ( ), and Reτ = 150 with Pr = 200 [36] ( ).

Moreover, it is immediately clear that the capability of the Reynolds Analogy is limited to only
first-order statistics in nonhomogeneous directions and, thus, fails to predict the heat flux in the
homogeneous direction when employed for steady-state simulations.

In case of unsteady calculations, the internal energy equation (Equation (10)) as well as the
Reynolds Analogy (Equation (11)) take the following form:

DT
Dt

=
∂

∂xi

[( ν

Pr
∂T
∂xi

)
− θui

sgs
]

and θui
sgs

= −νt
sgs

σ
sgs
t

∂T
∂xi

, (12)

where θui
sgs

and νt
sgs represent sub-grid heat flux and sub-grid eddy viscosity, respectively. Thus, the

total heat flux is the sum out of sub-grid-scale (sgs) and resolved (res) components.

2.3. Temperature Variance Equation

As for a turbulent flow field, for which the characteristic time is provided by τm = k/ε, it is also of
interest to introduce a characteristic time scale for thermal mixing, which can be given as τθ = θ2/2εθ ,
where θ2 is the temperature variance and εθ is its dissipation. These quantities are important for
entropy analyses, as will be shown later. The modeled transport equation for θ2 reads as follows [6]:

Dθ2

Dt
= 2P

θ2 − 2εθ +
∂

∂xi

[( ν

Pr
+

νt

σk

)∂θ2

∂xi

]
, (13)

where P
θ2 = −θui∂T/∂xi is the production of temperature variance and εθ is the dissipation of

temperature variance. Introducing an additional transport equation for this quantity would be the
most consistent approach to close Equation (13). However, closing this equation is more complex
compared to modeling the equation for the dissipation of turbulent kinetic energy ε. As stated in
Reference [6], twice as many free parameters, including two turbulent time scales (mechanical and
thermal), and two production terms need to be determined. These issues have been discussed in a few
investigations [37–40].

However, often, a simpler approach that assumes a constant thermal to mechanical time-scale
ratio, denoted asR = τθ/τm, is used to provide information on the thermal time scale [6,41]. Several
studies [34,42,43] have shown that the assumption of a constant ratio—with a typical value of R =

0.5—works pretty well for fluids with Pr number around unity. Nevertheless, it is commonly used
even when dealing with Pr numbers significantly different than unity [6], despite the lack of extensive
assessment and validation. Using the typical value of 0.5 for R leads to the following relation for
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εθ and is used in this study along with the Reynolds Analogy to determine εθ in the temperature
variance equation:

εθ =
εθ2

k
. (14)

In case of unsteady calculations, the transport equation for the temperature variance (Equation (13))
takes the following form:

Dθ2sgs

Dt
= 2Psgs

θ2
− 2ε

sgs
θ +

∂

∂xi

[( ν

Pr
+

ν
sgs
t

σ
sgs
k

)∂θ2sgs

∂xi

]
, (15)

with

Psgs
θ2

= −θui
sgs ∂T

∂xi
and ε

sgs
θ =

εsgsθ2sgs

ksgs . (16)

Thus, the total temperature variance is the sum of res and sgs components.

2.4. Entropy Equation

Entropy generation due to different mechanisms will be presented and discussed in the following.
Under the assumptions of Cartesian coordinates, incompressible fluid, single-phase flow, and
non-reacting and Fourier heat conduction, the second law of thermodynamics can be expressed
as a local imbalance as below [44]:

ρ
Ds
Dt

+
∂

∂xi

[ qi
Θ

]
= Πv + Πq ≥ 0. (17)

The two production terms, Πv and Πq, represent important mechanisms for entropy production.
If production due to radiation is neglected, these two are as below:

Πv =
µ

Θ

(∂Ui
∂xj

+
∂Uj

∂xi

)∂Ui
∂xj

, (18)

Πq =
1

Θ2 qi
∂Θ
∂xi

=
λ

Θ2
∂Θ
∂xi

∂Θ
∂xi

, (19)

where Πv is the production due to the viscous dissipation and Πq is the production by heat transfer
due to finite temperature gradients. These terms are always positive and, thus, act as source terms.
Both terms need to be calculated for entropy generation analysis, since they are responsible for
irreversibilities evolving in heat transferring viscous fluid flows.

2.4.1. Entropy Production—Steady-State calculations

In the concept of Reynolds Averaged Navier Stokes equation (RANS), Equation (17) holds
the instantaneous values, and following the Reynolds decomposition [45,46], this equation can
be decomposed into mean and fluctuating parts. Accordingly, entropy production due to viscous
dissipation can be decomposed into mean and fluctuating parts, i.e., Πv = Πv + Π

′
v, with

Πv =
µ

T

(∂ui
∂xj

+
∂uj

∂xi

)∂ui
∂xj

, (20)

Π
′
v =

µ

T

(∂ui
∂xj

+
∂uj

∂xi

)∂ui
∂xj

=
µ

T

(∂ui
∂xj

)2

︸ ︷︷ ︸
A

. (21)
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Calculation of Πv is possible using knowledge on mean values of velocity and temperature, which
are always known in calculations. In contrast, Π

′
v is not closed and has to be modeled. Considering

the exact equation for turbulent dissipation, ε = ν(∂ui/∂xj)2, and thus by assuming an equivalence
between ε and the term A, discussed in Reference [45], Equation (21) can be approximated via known
mean values as below:

Π
′
v =

ρ

T
ε. (22)

Similarly, entropy production due to heat transfer can be decomposed into mean and fluctuation
parts, i.e., Πq = Πq + Π

′
q, with

Πq =
λ

T2
∂T
∂xi

∂T
∂xi

, (23)

Π
′
q =

λ

T2
∂θ

∂xi

∂θ

∂xi
=

λ

T2

( ∂θ

∂xi

)2

︸ ︷︷ ︸
B

. (24)

Again, Πq can be calculated via known mean quantities while Π
′
q needs to be modeled.

Considering the exact equation for thermal dissipation, εθ = 2α(∂θ/∂xi)2, and thus by assuming
a local equilibrium between εθ and term B entropy production due to heat transfer as well as using the
Boussinesq approximation for the production term, discussed in Reference [45], Equation (24) can be
approximated as follows:

Π
′
q =

ρcp

T2 εθ . (25)

Since εθ is not directly known without a transport equation, it can be calculated using the model
given by Equation (14).

2.4.2. Entropy Production—Unsteady calculations

In contrast to the steady-state approach, the entropy production terms in Equation (17) must be
split into res and sgs components as below:

Πv ≈
〈

µ

T

(∂ui
∂xj

+
∂uj

∂xi

)∂ui
∂xj

〉
︸ ︷︷ ︸

〈Πres
v 〉

+

(
〈Πv〉 −

〈
µ

T

(∂ui
∂xj

+
∂uj

∂xi

)∂ui
∂xj

〉)
︸ ︷︷ ︸

〈Πsgs
v 〉

, (26)

Πq ≈
〈

λ

T2
∂T
∂xi

∂T
∂xi

〉
︸ ︷︷ ︸

〈Πres
q 〉

+

(
〈Πq〉 −

〈
λ

T2
∂T
∂xi

∂T
∂xi

〉)
︸ ︷︷ ︸

〈Πsgs
q 〉

, (27)

where 〈( )〉 donates spatial and time averaging (ensemble averaging). The res components can be
calculated via known mean quantities while sgs components will be approximated following [7]
as below:

〈Πsgs
v 〉 ≈

ρ

T
〈εsgs〉, (28)

〈Πsgs
q 〉 ≈

cpρ

T2 〈εθ sgs〉. (29)

3. Numerical Setup

The Reynolds Analogy is assessed using previously mentioned turbulence models at different
Reynolds and Prandtl numbers. The details of the numerical schemes and the respective flow
configuration are described in the following section.
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3.1. Flow Configuration

The configuration is a fully developed turbulent channel flow, shown in Figure 2. The size of
the computational domain is 2πδ, 2δ, andπδ. Different Reynolds and Prandtl numbers have been
considered based on the availability of reference (DNS) data. The details of all simulations are
summarized in Table 1. Note that the Reynolds number is defined based on the friction velocity at wall
(Uτ) and channel half height δ. A constant pressure gradient is applied via an additional source term
in the momentum equation to drive the flow to the targeted Reynolds number. Periodic boundary
conditions are imposed in the streamwise and the spanwise directions, and no-slip condition is used at
both walls. For the temperature field, a mean uniform heat flux at the walls and periodic boundary
conditions in the streamwise and the spanwise directions have been applied. Further, it is important to
mention that the temperature variance is set to zero at the wall. Detailed information on the influence
of the boundary condition can be found in References [37,40,47]. The results are normalized by the
channel half width δ, the friction velocity Uτ , the kinematic viscosity ν, the density ρ, the friction
temperature Tτ , and the friction entropy production rate Sτ .

Figure 2. Sketch of horizontal channel flow configuration.

Table 1. Overview of simulations.

Reτ Pr Reference Type Resolution Grids

395 0.025 Kawamura et al. [35] steady 48× 72× 48 A-100unsteady

unsteady 128× 192× 48 B-100

395 0.71 Kawamura et al. [35] steady 48× 72× 48 A-100unsteady

unsteady 128× 192× 48 B-100

150 200 Bergant et al. [36] steady 48× 72× 48 A-1000unsteady

unsteady 128× 192× 96 C-250

Detailed information on the mesh resolutions used for the unsteady-state simulations are given
in Table 2. A simple gradient spacing is used to achieve appropriate distribution in the wall-normal
direction. Further, it should be noted that the stretch factor r should be less than ≈1.2 [48,49], which is
fulfilled for all meshes.

It is worth mentioning that, to the best of authors’ knowledge, no explicit DNS data are available
on the entropy generation in a fully developed turbulent channel flow, i.e., entropy production has
been calculated using available DNS data for quantities such as velocity and temperature as input data
for the relations discussed in Section 2.4. For this study, the required DNS data have been taken from
References [35,36].
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Table 2. Details of the grid resolution for fully developed turbulent channel flow for
unsteady-state simulations.

Reτ Grids ∆x+ ∆y+
w − ∆y+

c ∆z+ Nx Ny Nz r

395
DNS [35] 9.88 0.15–6.52 4.59 512 192 512 -

Mesh A-100 51.7 0.49–19.1 25.9 48 72 48 1.14
Mesh B-100 19.5 0.19–19.0 128 192 1.05

150
DNS [36] 12.3 0.04–3.3 4.6 192 145 128 -

Mesh A-1000 19.5 0.03–27.7 9.7 48 72 48 1.21
Mesh C-250 7.5 0.03–8.7 5.1 128 192 96 1.06

3.2. Code Description

All numerical simulations presented in this work are performed using OpenFOAM-v1706 with
necessary modifications for the purpose of this paper. PISO (Pressure-Implicit with Splitting of
Operators) algorithm has been used for steady and unsteady calculations. Second-order schemes have
been used for velocity, turbulence, and thermal quantities for both steady and unsteady simulations.
Further, a Courant number around 0.05 was chosen for a reliable prediction of the velocity and
temperature field for unsteady calculations as suggested in Reference [31].

4. Results and Discussion

In the framework of the present study, prediction capabilities of the Reynolds Analogy in
accordance with the second law of thermodynamics for turbulent thermal effects at different Reynolds
and Prandtl numbers are investigated, as provided in Table 1. This covers a wide range of Pr numbers,
i.e., Pr = 0.025, 0.71, and 200, to study capabilities of the Reynolds Analogy when dynamics of heat
transfer are significantly different. The main goal here is to provide an assessment by investigating
the entropy prediction capabilities of the Reynolds Analogy. The results obtained from different
simulations will be explained and discussed in the following.

4.1. Steady-State Simulations

The steady-state simulations are carried out using the k−ω− SST and ζ − f RANS-based models.
It should be noted that mesh convergence studies have been done for all simulations. While only mesh
independent results are presented, the detailed analyses can be found in Reference [50].

4.1.1. Pr = 0.71

Figure 3 presents mean velocity, dissipation of turbulent kinetic energy k, mean temperature,
root mean square (rms) value of temperature fluctuations, as well as production and dissipation of
θ2 at Reτ = 395 for Pr = 0.71. As expected, mean velocity and mean temperature profiles are in
good agreements with the DNS data. In contrast, ε is mispredicted in the near-wall region and shows
only good agreement with DNS data after the buffer layer, i.e., y+ > 30. Further, the rms value of
temperature fluctuation (θrms) is mispredicted by both turbulence models. A detailed analysis of the
transport equation for θ2 (Equation (13)) will help to understand the reason behind the misprediction.
The production of θ2 is well predicted, indicating that the production is primary due to the temperature
gradient in the wall-normal direction. However, the thermal dissipation εθ is mispredicted particularly
in the near-wall region, which is thought to be the main reason of misprediction of θ2 and, thus, θrms.
For this study, the assumption of a constant thermal to mechanical time-scale ratio (R) is used to derive
εθ . This assumption describes εθ based on ε, which could lead to misprediction of εθ in the near-wall
region, since ε is mispredicted in the near-wall region.

Figure 4 presents entropy production due to viscous dissipation (mean and fluctuation) and
production due to heat transfer (mean and fluctuation). It can be observed that both mean entropy
generations are well predicted as they are directly related to the mean velocity and temperature, which
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are well predicted by both turbulence models. However, the entropy productions due to fluctuations
are mispredicted in the near-wall region for both generation mechanisms. Further away from the
wall, both fluctuation quantities follow a very similar tendency compared to DNS data. Moreover, the
assumption of a constant thermal to mechanical ratio (constantR) seems to be reasonable for fluids
with Pr number around unity, as ε and εθ show pretty much similar dynamics as shown in Figure 3.
However, more advanced models for ε are required to accurately predict ε and, consequently, εθ as well
as entropy generation by fluctuations in the near-wall region. Furthermore, it can be seen that both
entropy generation mechanisms almost equally contribute to the total amount of entropy generated in
the process.
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Figure 3. Evolution of streamwise velocity (top left), dissipation of k (top right), temperature (middle left),
temperature root mean square (rms) (middle right), production of θ2 (bottom left), and dissipation of θ2

(bottom right) at Reτ = 395 for Pr = 0.71. ζ − f : , k−ω− SST: , DNS: .
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Figure 4. Evolution of mean entropy production Πi (top) and fluctuation entropy production Π
′
i

(bottom) due to viscous dissipation (v, left) and heat transfer (q, right) at Reτ = 395 for Pr = 0.71.
ζ − f : , k−ω− SST: , DNS: .

4.1.2. Pr = 0.025

The simulation for Pr = 0.025 is carried out at Reτ = 395, as provided in Table 1. It should
be noted that the flow field results are not shown as the temperature is considered to be a passive
scalar. Figure 5 presents mean temperature and temperature rms profiles along with production and
dissipation of θ2. In contrast to the previous simulation concerning Pr = 0.71, there are discrepancies
in mean temperature (underprediction of ≈25%) and temperature variance (equivalently θrms) is
severely overpredicted over the whole channel domain. As discussed in Reference [50] and shown
in Figure 1, the misprediction of the temperature is likely a result of the assumption of a constant
turbulent Prandtl number in the Reynolds Analogy. Further, the overprediction of the production of θ2

leads to the discrepancy in θrms. However, the situation is worse for the dissipation: as shown, both
turbulence models fail to predict the plateau behavior of εθ . Furthermore, it clearly can be seen that
the assumption of constant thermal to mechanical time scale (R) is not reasonable for fluids with Pr
numbers significantly less than unity, as ε (shown in Figure 3) indicates completely different tendency
compared to εθ—in contrast to fluids with Pr number around unity.

Figure 6 presents entropy production due to viscous dissipation (mean and fluctuation) and
production due to heat transfer (mean and fluctuation). As expected, mean entropy generation
due to viscous dissipation is in reasonable agreement with the DNS data. Further, mean entropy
generation due to heat transfer follows closely DNS data, with a slight deviation. Similar to the
previous simulation, entropy generation due to the fluctuations is in the near-wall region not accurately
predicted, mainly due to misprediction of ε and, accordingly, misprediction of εθ in near-wall region.
However, the prediction is in good agreement with the reference data further away form the wall.
It is worth mentioning that, in contrast to Pr = 0.71, the total entropy generation and, therefore,
the irreversibilities of the process mainly stem from the viscous dissipation as it dominates over the
entropy production due to heat transfer. This is probably due to high thermal conductivity of fluids
with low Pr numbers that allows an efficient heat transfer.
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(bottom left), and dissipation of θ2 (bottom right) at Reτ = 395 for Pr = 0.025. ζ− f : , k−ω− SST:
, DNS: .
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4.1.3. Pr = 200

In contrast to previous simulations, simulations for Pr = 200 are carried out at Reτ = 150 due
lack of sufficient reference data at higher Reτ . It was shown in Reference [39] that, for Pr = 0.71 and
larger, temperature field data is roughly independent of Reτ and the temperature field mainly depends
on Pr number. It is worth mentioning that high Prandtl number fluids impose some computational
challenges, and thus, certain mesh requirements need to be considered [36,50,51]. However, only
mesh-independent results are presented in this study.

Figure 7 presents mean velocity, dissipation of k, mean temperature, rms of temperature
fluctuations, as well as production and dissipation of θ2. It should be noted that, generally, turbulence
models have been developed based on high Reynolds number assumption. Therefore, prediction
quality of these models when dealing with relatively low Reynolds number, as in the present case,
might be decreased [50], such as for the mean velocity profile, which is thought to be the main reason
of the overprediction of mean temperature. In contrast to the mean temperature, θrms is strongly
underpredicted by both turbulence models, mainly due to the misprediction of dissipation of θ2, i.e.,
εθ . While the production is in good agreement with DNS data, the dissipation in the near-wall region
is severely mispredicted inside the thermal boundary layer, i.e., y+ ≈ 4.
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Figure 7. Evolution of streamwise velocity ( top left), dissipation of k ( top right), temperature ( middle
left), temperature rms (middle right), production of θ2 (bottom left), and dissipation of θ2 (bottom
right) at Reτ = 150 for Pr = 200. ζ − f : , k−ω− SST: , DNS: .

Figure 8 presents entropy production due to viscous dissipation (mean and fluctuation) and
production due to heat transfer (mean and fluctuation). It is worth mentioning that the very thin
thermal boundary layer with its high temperature gradient is clearly visible, especially in the evaluation
of Πq, which vanishes for y+ > 3. Again, it can be observed that both mean entropy generations,
i.e., Πv and Πq, are overall fairly well predicted as they are directly related to the mean velocity and
temperature values, which are in good agreement with the DNS data for both turbulence models.
Similarly, entropy production due to fluctuating quantities indicate acceptable predictions except
for regions very close to the wall. More importantly, entropy generation due to heat transfer is the
dominant mechanism, in contrast to previous simulation concerning low Pr fluids. This is most likely
due to very low thermal conductivity of the fluids, which leads to a very high temperature gradient
at the surface to reach the targeted energy that needs to be transferred to the fluid at the wall via
conduction.

Figure 7. Evolution of streamwise velocity (top left), dissipation of k (top right), temperature (middle left),
temperature rms (middle right), production of θ2 (bottom left), and dissipation of θ2 (bottom right) at
Reτ = 150 for Pr = 200. ζ − f : , k−ω− SST: , DNS: .
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Figure 8 presents entropy production due to viscous dissipation (mean and fluctuation) and
production due to heat transfer (mean and fluctuation). It is worth mentioning that the very thin
thermal boundary layer with its high temperature gradient is clearly visible, especially in the evaluation
of Πq, which vanishes for y+ > 3. Again, it can be observed that both mean entropy generations,
i.e., Πv and Πq, are overall fairly well predicted as they are directly related to the mean velocity and
temperature values, which are in good agreement with the DNS data for both turbulence models.
Similarly, entropy production due to fluctuating quantities indicate acceptable predictions except
for regions very close to the wall. More importantly, entropy generation due to heat transfer is the
dominant mechanism, in contrast to previous simulation concerning low Pr fluids. This is most
likely due to very low thermal conductivity of the fluids, which leads to a very high temperature
gradient at the surface to reach the targeted energy that needs to be transferred to the fluid at the wall
via conduction.
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Figure 8. Evolution of mean entropy production Πi (top) and fluctuation entropy production Π
′
i

(bottom) due to viscous dissipation (v, left) and heat transfer (q, right) at Reτ = 150 for Pr = 200.
ζ − f : , k−ω− SST: , DNS: .

4.2. Unsteady Simulations

Unsteady simulations have been carried out using the k−ω− SST-IDDES model. Three different
Pr numbers, i.e., 0.71, 0.025, and 200, have been considered. All three Pr numbers are investigated
with two different resolutions to demonstrate the influence of mesh resolution and, more importantly,
to study the behavior of the Reynolds Analogy when operating as an sgs model. Further, only results
on adequate grids will be presented; for details, see Reference [50]. All presented results are spatial
and time averaged, which corresponds to 〈( )〉, as described in the nomenclature.

The k − ω − SST-IDDES model is a hybrid URANS/LES approach and is able to provide an
accurate prediction of the flow field comparable to wall-modeled LES at affordable computational cost
[28]. Furthermore, this model treats the near-wall region in the URANS-model, while transitioning to
LES-mode away from the wall. This will allow investigation on the dynamics of the transition of the
Reynolds Analogy from URANS to LES-mode, where this analogy operates as an sgs model.
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4.2.1. Pr = 0.71

Figure 9 presents the results obtained at Reτ = 395 for Pr = 0.71 on mesh A-100 and B-100. This
includes mean velocity, mean temperature, and modeled viscous and thermal dissipations (ε and εθ). It
is important to mention that the resolved—and thus, total—components of ε and εθ are not presented
because they are not contributing in the calculation of entropy generation.
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Figure 9. Evolution of the streamwise mean velocity (top left), mean temperature (top right),
modeled dissipation of k (bottom left), and dissipation of θ2 (bottom right) at Reτ = 395 for Pr = 0.71
obtained on different meshes. A-100: , B-100: , A-100: , B-100: , DNS: .

It can be observed that the mean velocity is marginally influenced by mesh resolution. In contrast,
the mean temperature improves with increasing the resolution. Further, the model is not capable
of predicting the near-wall behavior of modeled ε and, consequently, εθ . More importantly, both
quantities vanish with increasing mesh resolution. This is particularly important for calculation of
entropy production, as the modeled part of ε and εθ contribute to determining irreversibilities of the
process. However, the Reynolds Analogy operating as an sgs model for thermal effects within IDDES
methodology indicates similar response to mesh resolution as the flow quantities, i.e., k and ε. This
has been discussed in detail in Reference [50]. Vanishing of modeled ε and εθ in response to mesh
refinement cannot be considered appropriate, as the fine resolution is still too coarse to support DNS.
Therefore, the Reynolds Analogy needs to be cautiously applied in unsteady simulations as it may fail
to capture phenomena that mostly occur at the small scale/sgs level.

Similar behavior is present in the prediction of θrms; see Figure 10. The near-wall behavior of
the total quantity is in acceptable agreement with DNS data while the behavior further away is
mispredicted on the coarse mesh (A-100). More importantly, the results are improved on the finer
resolution (B-100) and the resolved part of θrms is well predicted while the sgs part shows rather a
nonphysical plateau profile. Thus, it may be concluded that the model tries to resolve most of thermal
structures irrespective of mesh resolution.
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Figure 10. Evolution of θrms at Reτ = 395 for Pr = 0.71 obtained on different meshes; A-100 (left) and
B-100 (right). total: , resolved: , modeled: , DNS: .

The entropy production obtained on both mesh resolutions is given in Figure 11. As expected,
both resolved quantities, i.e., 〈Πres

v 〉 and 〈Πres
q 〉, are well predicted with a negligible discrepancy at the

wall. However, the modeled/sgs parts are not predicted accurately due to inaccurate prediction of ε

and, consequently, εθ . It is worth mentioning that the reduction of the modeled part is a consistent
response to mesh refinement. However, the extend of the reduction (vanishing) on a mesh that cannot
support DNS is concerning. Regarding total entropy production due to both mechanisms, it can be
observed that results obtained on the coarse mesh are in better agreement with the DNS data compared
to results obtained on the fine mesh. This will lead to the conclusion that the k − ω − SST-IDDES
model tries to resolve most structures especially on the fine mesh but fails to improve the resolved
quantities accordingly.Entropy 2019, xx, 5 18 of 28
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Figure 11. Evolution of entropy production due to resolved 〈Πres
i 〉 (top), sub-grid 〈Πsgs

i 〉 (middle) and
total 〈Πtot

i 〉 (bottom) parts due to viscous dissipation (v, left) and heat transfer (q, right) at Reτ = 395
for Pr = 0.7 obtained on different meshes. A-100: , B-100: , DNS: .

4.2.2. Pr = 0.025

It is shown in Reference [50] that mesh design plays an integral role in capturing thermal statistics
at low Pr numbers in unsteady-state simulations, and thus, only appropriate grids are employed for
this study; see Table 2 for details. It was shown that mesh needs to be close to isotropic in the core
region of channel in order to accurately resolve thermal structures. Furthermore, it should be noted
that the temperature is a passive scalar, and thus, the flow quantities are not presented again.

Results obtained for mean temperature and modeled εθ on mesh A-100 and B-100 are presented in
Figure 12. The temperature profile is well predicted on both grids and shows no remarkable sensitivity
regarding the mesh resolution. As expected, modeled εθ is mispredicted on both grids over the whole
domain and vanishes with increasing resolution. In contrast, the prediction of θrms shows a slight mesh
sensitivity; see Figure 13. The IDDES model tries to resolve θrms completely and pushes the simulation
towards DNS. However, the modeled part does not vanish completely and, finally, leads to a slight
overprediction on the fine mesh.

Figure 11. Evolution of entropy production due to resolved 〈Πres
i 〉 (top), sub-grid 〈Πsgs

i 〉 (middle) and
total 〈Πtot

i 〉 (bottom) parts due to viscous dissipation (v, left) and heat transfer (q, right) at Reτ = 395
for Pr = 0.7 obtained on different meshes. A-100: , B-100: , DNS: .
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4.2.2. Pr = 0.025

It is shown in Reference [50] that mesh design plays an integral role in capturing thermal statistics
at low Pr numbers in unsteady-state simulations, and thus, only appropriate grids are employed for
this study; see Table 2 for details. It was shown that mesh needs to be close to isotropic in the core
region of channel in order to accurately resolve thermal structures. Furthermore, it should be noted
that the temperature is a passive scalar, and thus, the flow quantities are not presented again.

Results obtained for mean temperature and modeled εθ on mesh A-100 and B-100 are presented in
Figure 12. The temperature profile is well predicted on both grids and shows no remarkable sensitivity
regarding the mesh resolution. As expected, modeled εθ is mispredicted on both grids over the whole
domain and vanishes with increasing resolution. In contrast, the prediction of θrms shows a slight mesh
sensitivity; see Figure 13. The IDDES model tries to resolve θrms completely and pushes the simulation
towards DNS. However, the modeled part does not vanish completely and, finally, leads to a slight
overprediction on the fine mesh.
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Figure 12. Evolution of the mean temperature (left) and modeled dissipation of εθ (right) at Reτ = 395
for Pr = 0.025 obtained on different meshes. A-100: , B-100: , A-100: , B-100: , DNS: .

0

0.2

0.4

0.6

1 10 100
0

0.2

0.4

0.6

1 10 100

θ+ rm
s

y+

θ+ rm
s

y+

Figure 13. Evolution of θrms at Reτ = 395 for Pr = 0.025 obtained on different meshes; A-100 (left) and
B-100 (right). total: , resolved: , modeled: , DNS: .

The entropy production obtained on both mesh resolutions is given in Figure 14. As expected, both
resolved quantities, i.e., 〈Πres

v 〉 and 〈Πres
q 〉 show reasonable agreement with the DNS data. However,

the sgs-entropy generation, i.e., 〈Πsgs
v 〉 and 〈Πsgs

q 〉, are severely mispredicted. This is mainly due
to the fact that the viscous dissipation rate ε is not accurately predicted and that, consequently, the
thermal dissipation rate εθ suffers from the same misprediction. Total entropy production due to
viscous dissipation 〈Πtot

v 〉 is in good agreement with DNS data. Similar to previous simulation for
Pr = 0.71, the prediction capabilities decrease slightly with increasing resolution. However, 〈Πtot

q 〉 is
mispredicted over the whole domain. Taking into account that, in contrast to Pr = 0.71, the sgs part of
entropy production due to heat transfer is roughly twice as big than the res part, the incapability of
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the methodology to predict the sgs part accurately is believed to be the reason for the misprediction
of 〈Πtot

q 〉.
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Figure 14. Evolution of entropy production due to resolved 〈Πres
i 〉 (top), sub-grid 〈Πsgs

i 〉 (middle) and
total 〈Πtot

i 〉 (bottom) parts due to viscous dissipation (v, left) and heat transfer (q, right) at Reτ = 395
for Pr = 0.025 obtained on different meshes. A-100: , B-100: , DNS: .

The results suggest that the main assumption of the Reynolds Analogy—strong similarity between
mechanical and thermal fields in combination with a constant thermomechanical time scale R—is
facing severe challenges in case of fluids with Pr numbers significantly less than unity, calling for more
advanced models for the heat flux as well as for εθ .
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Similar to the previous RANS simulations concerning Pr = 0.025, comparing total entropy
production due to the viscous dissipation and heat transfer leads to the conclusion that viscous
dissipation is the dominant mechanism, causing most irreversibilities of processes dealing with low
Pr fluids.

4.2.3. Pr = 200

Simulations for Pr = 200 have been performed at Reτ = 150 on two different resolutions;
see Table 1. As mentioned before, capturing the thermal effects at high Pr numbers fluids is very
challenging as the thermal boundary layer is very thin—compared to the boundary of the flow, which
leads to very dominant wall effects. As a result, investigating thermal boundary layers at high Pr
numbers are limited to relatively low Reτ due to the prohibitively expensive computational cost [36,51].

Results obtained for mean temperature, modeled dissipation of k, and θ2 on both meshes are
shown in Figure 15. Concerning temperature profile, the result is underpredicted on the coarse grid
(A-1000) by roughly 10%. However, the prediction improves on the fine mesh (B-250) and the profile is
in good agreement with DNS data. Regarding modeled dissipation of k, the quantity is mispredicted
especially close to the wall. Furthermore, the situation is worse for modeled εθ where the near-wall
region is completely mispredicted.
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Figure 15. Evolution of mean temperature (top), modeled dissipation of k (bottom left), and dissipation
of θ2 (bottom right) at Reτ = 150 for Pr = 200 obtained on different meshes. A-1000: , C-250: ,
A-1000: , C-250: , DNS: .
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θrms obtained on the same grids is presented in Figure 16. The profile is underpredicted over
the whole domain with the negligible modeled part on the coarse mesh. The sgs model is incapable
of capturing the near-wall dynamics and provides appropriate results, while the resolution is too
coarse to capture dynamics of θrms. While general improvement can be observed for θrms on the finer
mesh, the mesh resolution is not fine enough to deliver acceptable results for the thermal second-order
statistics.
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Figure 16. Evolution of θrms at Reτ = 150 for Pr = 200 obtained on different meshes; A-1000 (left) and
C-250 (right). total: , resolved: , modeled: , DNS: .

Figure 17 demonstrates the entropy generation due to different mechanism for Pr = 200.
As expected, the entropy generation due to resolved quantities, i.e., 〈Πres

v 〉 and 〈Πres
q 〉, are well

predicted with no significant sensitivity to grid resolution. In contrast, the entropy generation due to
the sgs model, e.g., 〈Πsgs

v 〉 and 〈Πsgs
q 〉, is mispredicted mainly due to the misprediction of the modeled

dissipation rate ε and, consequently, the modeled thermal dissipation rate εθ . However, in contrast to
previous cases, sgs parts of entropy generation play a minor role compared to the res part. Thus, the
misprediction of sgs parts is not notably present in the total value.

The results obtained for Pr = 200 suggest that the Reynolds Analogy is not playing an integral
part to model sub-grid thermal effects. This analogy fails to feature basic property of an appropriate
sgs model in a mesh with a coarser resolution than DNS, i.e., there is basically no modeled part for
temperature variance and entropy. Therefore, application of this analogy to capture near-wall thermal
phenomena in complex high Prandtl number flows where providing high enough resolution is not
feasible might lead to significant inaccuracies.

However, despite the issue discussed, the total entropy generation obtained from both
mechanisms confirm the finding of RANS simulation that most of the irreversibility of processes
dealing with high Pr number fluids stem from thermal phenomena.
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Figure 17. Evolution of entropy production due to resolved 〈Πres
i 〉 (top), sub-grid 〈Πsgs

i 〉 (middle) and
total 〈Πtot

i 〉 (bottom) parts due to viscous dissipation (v, left) and heat transfer (q, right) at Reτ = 150
for Pr = 200 obtained on different meshes. A-1000: , C-250: , DNS: .

5. Conclusions and Outlook

In this study, predictive capabilities of the Reynolds Analogy to determine entropy production
mainly through heat transfer has been thoroughly assessed. This includes application of this analogy
to turbulent wall-bounded shear flows at different Reynolds and Prandtl numbers within steady- and
unsteady-state calculations. In case of steady-state calculations, the Reynolds Analogy is able to provide
acceptable results for mean and fluctuating entropy generation for Prandtl numbers around unity.
Departing away from these Prandtl numbers, the Reynolds Analogy is still capable of predicting the
mean entropy production in good agreement with DNS data. However, the fluctuating production fails
particularly in the near-wall region, mainly due to the misprediction of the dissipation of kinetic energy.

Concerning unsteady calculations, it was shown that the Reynolds Analogy fails to feature basic
properties of an appropriate sub-grid scale model, mainly due to inappropriate response to mesh
resolution. Further, the mean entropy generation is well predicted for all investigated Prandtl numbers.
Concerning the sub-grid model properties, the model pushes the simulations towards direct numerical
simulation on any grid resolution, leading to misprediction of sub-grid values such as sub-grid entropy
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production particularly for low and high Prandtl numbers. This could lead to significant error when
near-wall phenomena and/or fluctuations are of great importance, and thus, the Reynolds Analogy
may not be considered as a reliable sub-grid scale modeling strategy. Moreover, results suggest that
optimization efforts need to be put on minimizing viscous dissipation for processes involving low
Prandtl number fluids while efficient heat transfer is the key to reducing irreversibility of a process
dealing with high Prandtl number fluids. Further, it turns out that both mechanisms for entropy
generation are equally important concerning fluids with Prandtl number around unity, suggesting
necessity of concurrent optimization to reduce viscous dissipation while making heat transfer more
efficient. This clearly makes optimization a more challenging task.

The obtained results confirm that using the zero-equation approach (the Reynolds Analogy)
cannot be deemed as an appropriate tool for design and optimization purposes, especially when
relying on entropy generation/optimization strategies and working fluids with non-unity Prandtl
numbers. This strongly suggests moving toward development of more advanced turbulent heat
transfer models consistent with thermodynamics laws, which requires application of one-equation
or algebraic models to model heat transfer phenomena [43] in conjunction with advanced turbulence
models capable of capturing complex and nonlinear wall effects.
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Nomenclature

cp specific heat capacity at constant pressure
f elliptic relaxation
k kinetic energy
r grid stretching factor in y-direction
s entropy density
ui velocity fluctuations
ui mean velocity
qi heat flux density vector
qw wall heat flux
y+ yPlus
Pr Prandtl
R = τθ/τm mechanical to thermal time-scale ratio
Reτ = Uτδ/ν turbulent Reynolds number
Sτ = να(Tw/Tτ)2/Uτλ friction entropy production rate
ST source terms in internal temperature equation
T mean temperature
Tτ = ρ/cpqwUτ friction temperature
Tw wall temperature
Uτ = Reτν/δ =

√
τw/δ friction velocity

Ui = ui + ui total velocity
α = λ/ρcp thermal diffusivity
δ channel half height
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ε dissipation of kinetic energy
εθ dissipation of the variance of temperature fluctuations
ζ = v2/k velocity scale ratio
θ temperature fluctuations
θui turbulent heat flux
θrms rms value of temperature fluctuations
θ2 temperature variance
Θ = T + θ total temperature
ω dissipation rate of kinetic energy
λ thermal conductivity
µ dynamic viscosity
ν kinematic viscosity
νt turbulent kinematic viscosity
Π entropy production
ρ density
σt turbulent Prandtl number
τm = k/ε mechanical time scale
τθ = θ2/2εθ thermal time scale
τw wall shear stress
( )sgs sub-grid component
( )res resolved component
( )tot total
( ) mean value
〈( )〉 spatial and time averaged
( )
′

fluctuating component
( )+ normalized by wall variables

Abbreviations

The following abbreviations are used in this manuscript:
res resolved
rms root mean square
sgs sub-grid-scale
AFM algebraic heat flux model
CFD Computational Fluid Dynamics
DNS Direct Numerical Simulation
EDM Eddy Diffusivity model
GGDH generalized gradient diffusion hypothesis
IDDES improved delayed ettached Eddy simulation
SGDH Simple Gradient Diffusion Hypothesis
LES Large Eddy Simulation
RANS Reynolds-Averaged Navier Stokes equation
URANS Unsteady Reynolds-Averaged Navier Stokes equation
THF turbulent heat flux
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