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Abstract: We are concerned with the initial value problem for a multidimensional balance law with
multiplicative stochastic perturbations of Brownian type. Using the stochastic kinetic formulation
and the Bhatnagar-Gross-Krook approximation, we prove the uniqueness and existence of stochastic
entropy solutions. Furthermore, as applications, we derive the uniqueness and existence of the
stochastic entropy solution for stochastic Buckley-Leverett equations and generalized stochastic
Burgers type equations.
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1. Introduction

We are interested in the uniqueness and existence of the stochastic entropy solution for the
following stochastic scalar balance law:

dρ(t, x) + divx(F(ρ))dt +
d

∑
i=1

n

∑
j=1

∂xi Bi,j(t, ρ) ◦ dWj(t) = A(t, x, ρ)dt, x ∈ Rd, t > 0, (1)

with a non-random initial condition:

ρ(t, ·)|t=0 = ρ0(·) ∈ L1(Rd) ∩ L∞(Rd). (2)

Here ◦ is the Stratonovich convention and the use of the Stratonovich differential stems from the
fact that ordinary differential equations with time dependent converging Brownian motion give rise
stochastic differential equations of Stratonovich’s.

In (1), ρ(t, x) is a scalar random field. W(t) = (W1(t), W2(t),··· , Wn(t))> is an n-dimensional
standard Wiener process on the classical Wiener space (Ω,F ,P, (Ft)t>0), i.e., Ω is the space of all
continuous functions from [0, ∞) to Rn with locally uniform convergence topology, F is the Borel
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σ-field, P is the Wiener measure, (Ft)t>0 is the natural filtration generated by the coordinate process
W(t, ω) = ω(t). The flux function F = (F1, F2,··· , Fd) : R→ Rd is assumed to be of class W1,1

loc , i.e.,

F ∈W1,1
loc (R;Rd). (3)

The force A is supposed to satisfy that

A(t, x, 0) = 0, A ∈ L1
loc([0, ∞); L1(Rd; W1,1

loc (R)) + L∞(Rd; W1,1
loc (R))). (4)

For every 1 6 i 6 d, 1 6 j 6 n, we assume

Bi,j ∈ L2
loc([0, ∞); W1,2

loc (R)). (5)

When Bi,j = 0 (1 6 i 6 d, 1 6 j 6 n), (1) reduces to a deterministic partial differential equation
known as the balance law

∂tρ(t, x) + divx(F(ρ)) = A(t, x, ρ), x ∈ Rd, t > 0. (6)

The first pioneering result on the well-posedness of weak solutions for (6) is due to Kruz̆kov [1] .
Under the smoothness hypothesis on F and A, he obtained the existence in company with uniqueness
of the admissible entropy solutions. For a completely satisfactory well-posedness theory for balance
laws, one can consult to [2].

When A, F vanish and (Bi,j(t, ρ)) = diag(B1(ρ), B2(ρ),··· , Bd(ρ)), the equation has been discussed
by Lions, Perthame and Souganidis [3,4]. Under the presumption that B = (B1, B2,··· , Bd) ∈ C2(R),
they developed a path-wise theory with quasi-linear (i.e., B is independent of the derivatives of ρ)
multiplicative stochastic perturbations.

Recently there has been an interest in studying the effect of stochastic force on the corresponding
deterministic equations, especially for the uniqueness and existence of solutions. Most of works are
concentrated on the following form:

dρ(t, x) + divx(F(ρ))dt = A(t, x, ρ)dW̃(t), x ∈ D, t > 0, (7)

where W̃ is a 1-dimensional Wiener process or a cylindrical Wiener process, D ⊂ Rd is a bounded
domain or D = Rd. When d = 1, the bounded solution has been founded by Holden and Risebro [5],
and Kim [6] for the forces A(ρ) and A(t, x), respectively, under assumptions that ρ0 ∈ L∞ and A has
compact support. For general A, even the initial data is bounded, the solution is not bounded since the
maximum principle is not available. Therefore, Lp (1 6 p < ∞) is a natural space on which the solutions
are posed. When the force A is time independent, Feng and Nualart [7] developed a general theory for
Lp-solutions (2 6 p < ∞), but the existence was true only for d =1. Since then, Feng and Nualart’s
result was generalized in different forms. For example, Bauzet, Vallet and Wittbold [8], Biswas and
Majee [9] established the weak-in-time solutions, Karlsen and Storrøsten [10] derived the existence
and uniqueness of stochastic entropy solutions for general d > 1. At the same time, by using a
different philosophy, Chen, Ding and Karlsen [11], Debussche and Vovelle [12], Hofmanová [13] also
founded the well-posedness for Lp-solutions (1 < p < ∞) for any d > 1. Furthermore, there are many
other works devoted to discussing the Cauchy problem (7), (2), such as existence and uniqueness
for solutions on bounded domains [14–16], existence of invariant measures [17,18] and long time
behaviors [19] for solutions. For more details in this direction for random fluxes, we refer the readers
to [20,21], and for more details for Lévy noises to see [22–24].

If we regard the last term in (7) as a multiplicative perturbation for the scalar conservation law:

∂tρ(t, x) + divx(F(ρ)) = 0, x ∈ D, t > 0,
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then the spatial average satisfies

∫
D

ρ(t, x)dx =
∫

D
ρ0(x)dx +

∫ t

0

∫
D

A(s, x, ρ(s, x))dxdW̃(s).

So the mass is not preserved in general. But if one considers the noise given in (1), then the mass
is preserved exactly. It is one of our motivations to discuss the balance law

∂tρ(t, x) + divx(F(ρ)) = A(t, x, ρ), x ∈ Rd, t > 0,

with the noise give by the form ∑d
i=1 ∑n

j=1 ∂xi Bi,j(t, ρ) ◦ dWj(t). However, as far as we know the existing
results for weak solutions to (1), (2) are few and all the results are concentrated on the following special
case [25,26]:

dρ(t, x) + b(t, x) · ∇xρ(t, x)dt +
d

∑
i=1

∂xi ρ(t, x) ◦ dWi(t) = 0, x ∈ Rd, t > 0.

Further investigations are still needed. By using kinetic theory, we will prove the uniqueness and
existence of the stochastic entropy solution to (1), (2). Here the stochastic weak solution and stochastic
entropy solution are defined as follows:

Definition 1. ρ ∈ L∞
loc([0, ∞); L∞(Rd×Ω))∩C([0, ∞); L1(Rd×Ω)) is a stochastic weak solution of (1), (2),

if for every ϕ ∈ D(Rd),
∫
Rd ρ(t, x)ϕ(x)dx is anFt-semi-martingale and with probability one, the below identity

∫
Rd

ϕ(x)ρ(t, x)dx−
∫
Rd

ϕ(x)ρ0(x)dx−
∫ t

0

∫
Rd

F(ρ) · ∇x ϕ(x)dxds

=
d

∑
i=1

n

∑
j=1

∫ t

0
◦dWj(s)

∫
Rd

∂xi ϕ(x)Bi,j(s, ρ)dx +
∫ t

0

∫
Rd

A(s, x, ρ)ϕ(x)dxds (8)

holds true, for all t ∈ [0, ∞).

Remark 1. Our motivation to define the weak solution comes from the classical theory of partial differential
equations, i.e., ρ is a weak solution if it satisfies the equation in the sense of distributions: for every ψ ∈
D([0, ∞)×Rd),∫ ∞

0

∫
Rd

∂tψ(t, x)ρ(t, x)dxdt +
∫
Rd

ρ0(x)ψ(0, x)dx +
∫ ∞

0

∫
Rd

F(ρ) · ∇xψ(t, x)dxdt

= −
d

∑
i=1

n

∑
j=1

∫ ∞

0
◦dWj(t)

∫
Rd

Bi,j(t, ρ)∂xi ψ(t, x)dx−
∫ ∞

0

∫
Rd

A(t, x, ρ)ψdxdt, P− a.s.

holds. Since ρ is continuous in time, the above identity is equivalent to (8).

Definition 2. A stochastic weak solution of (1), (2) is a stochastic entropy solution, if for every η ∈ Ξ,

∂tη(ρ) + divx(Q(ρ)) +
d

∑
i=1

n

∑
j=1

∂xi Qi,j(t, ρ) ◦ Ẇj(t) 6 h(t, x, ρ), P− a.s., (9)

in the sense of distributions, i.e., for every ψ ∈ D+([0, ∞)×Rd) and almost all ω ∈ Ω∫ ∞

0
dt
∫
Rd

∂tψ(t, x)η(ρ)dx +
∫
Rd

ψ(0, x)η(ρ0)dx +
∫ ∞

0

∫
Rd

Q(ρ) · ∇xψ(t, x)dxdt

+
d

∑
i=1

n

∑
j=1

∫ ∞

0
◦dWj(t)

∫
Rd

∂xi ψ(t, x)Qi,j(t, ρ)dx +
∫ ∞

0

∫
Rd

h(t, x, ρ)ψ(t, x)dxdt > 0,
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where

Q(ρ) =
∫ ρ

η′(v)F′(v)dv, h(t, x, ρ) = A(t, x, ρ)η′(ρ),

Qi,j(t, ρ) =
∫ ρ

η′(v)∂vBi,j(t, v)dv, 1 6 i 6 d, 1 6 j 6 n,

and

Ξ = {c0ρ +
n

∑
k=1

ck|ρ− ρk|, c0, ρk, ck ∈ R are constants}.

Remark 2. We define the stochastic entropy solution by the inequality (9), and the source or motivation for this
definition comes from the ε→ 0 limit of the following equation

dρε(t, x) + divx(F(ρε))dt +
d

∑
i=1

n

∑
j=1

∂xi Bi,j(t, ρε) ◦ dWj(t)− ε∆ρε = A(t, x, ρε)dt.

Indeed, if one multiplies the above identity by η′(ρε), it yields that

∂tη(ρε) + divxQ(ρε) +
d

∑
i=1

n

∑
j=1

∂xi Qi,j(t, ρε) ◦ Ẇj(t)− εη′(ρε)(−∆x)
α
2 ρε = h(t, x, ρε).

Since η is convex, with the help of the chain rule,

εη′(ρε)∆ρε = ε∆η(ρε)− εη′′(ρε)|∇ρε|2 6 ε∆η(ρε).

Therefore,

∂tη(ρε) + divxQ(ρε) +
d

∑
i=1

n

∑
j=1

∂xi Qi,j(t, ρε) ◦ Ẇj(t)− ε(−∆x)
α
2 η(ρε) 6 h(t, x, ρε).

So the vanishing viscosity limit in the proceeding inequality leads to (9).

We state our first main result on the Cauchy problem (1), (2).

Theorem 1 (Stochastic kinetic formulation). Suppose that (3)–(5) hold.
(i) Let ρ be a stochastic entropy solution of (1), (2) and set u(t, x, v) = χρ(t,x)(v) = 1(0,ρ(t,x))(v) −

1(ρ(t,x),0)(v). Then

u ∈ L∞
loc([0, ∞); L∞(Rd ×Ω; L1(R))) ∩ C([0, ∞); L1(Rd+1 ×Ω)), (10)

and it is a stochastic weak solution of the following linear stochastic transport equation (i.e., it is Ft−adapted
and satisfies the equation in the sense of distributions)

∂tu + f (v) · ∇xu +
d

∑
i=1

∂xi u ◦ Ṁi(t, v) + A(t, x, v)∂vu = ∂vm, (x, v) ∈ Rd+1, t > 0, (11)

supplied with

u(t, x, v)|t=0 = χρ0(x)(v), (x, v) ∈ Rd+1. (12)
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Here f = F′,

Mi(t, v) =
n

∑
j=1

∫ t

0
σi,j(s, v)dWj(s), σi,j(s, v) = ∂vBi,j(t, v), 1 6 i 6 d, 1 6 j 6 n. (13)

0 6 m ∈ L1(Ω;D′([0, ∞)×Rd+1)), satisfying, for every T > 0 and for almost all ω ∈ Ω, m is bounded on
[0, T]×Rd+1, supported in [0, T]×Rd × [−K, K] (K = ‖ρ‖L∞((0,T)×Rd×Ω)), and for every φ ∈ D(Rd+1),

∫ t

0

∫
Rd+1

φ(x, v)m(ds, dx, dv), is Ft − adapted and continuous in t. (14)

(ii) Suppose that u(t, x, v) = χρ(t,x)(v). If u ∈ L∞
loc([0, ∞); L∞(Rd × Ω; L1(R))) ∩ C([0, ∞);

L1(Rd+1 ×Ω)) is a stochastic weak solution of (11)–(14). We set ρ(t, x) =
∫
R u(t, x, v)dv, then

ρ ∈ L∞
loc([0, ∞); L∞(Rd ×Ω)) ∩ C([0, ∞); L1(Rd ×Ω)), (15)

and it is a stochastic entropy solution of (1), (2).

Remark 3. (i) If u is a stochastic weak solution of (11)–(14), then (11) admits an equivalent representation:
for every φ ∈ D(Rd+1), every t ∈ [0, ∞),

∫
Rd+1 φ(x, v)u(t, x, v)dxdv is Ft−adapted and with probability one,

∫
Rd+1

φ(x, v)u(t, x, v)dxdv−
∫ t

0

∫
Rd+1

f (v) · ∇xφ(x, v)dxdvds

=
∫
Rd+1

φ(x, v)u0(x, v)dxdv +
d

∑
i=1

∫ t

0

∫
R

Mi(◦ds, dv)
∫
Rd

∂xi φ(x, v)u(s, x, v)dx

+
∫ t

0

∫
Rd+1

∂v[A(s, x, v)φ(x, v)]u(s, x, v)dxdvds−
∫ t

0

∫
Rd+1

∂vφ(x, v)m(dx, dv, ds).

(ii) To the present case, we only study (1) with F = F(ρ). However, if F depends on spatial variables,
i.e., F = F(x, ρ), we can also establish a stochastic kinetic formulation up to a long and tedious calculations.
In particular, for F(x, ρ) = b(x)F1(ρ), Bi,j = 0 and A(t, x, ρ)dt is replaced by A(ρ)dWt, we refer to [27],
and for F(x, ρ) = b(x)F1(ρ), Bi,j = δi,jρ and A(t, x, ρ) = 0, to [28], and some related work, to [29].

Our second result is on the uniqueness of the stochastic entropy solution.

Theorem 2 (Uniqueness). Let A(t, x, 0) = 0, that

A ∈ L1
loc([0, ∞); L1(Rd; W1,1

loc (R)) + L∞(Rd; W1,∞
loc (R))), (16)

[∂v A]+ ∈ L1
loc([0, ∞); L∞(Rd; L∞

loc(R))). (17)

Further, we assume that

F ∈W1,∞
loc (R;Rd), Bi,j ∈ L2

loc([0, ∞); W1,∞
loc (R)) (1 6 i 6 d, 1 6 j 6 n). (18)

Then there is at most one stochastic entropy solution ρ of (1), (2).

As a corollary, we have

Corollary 1 (Comparison Principle). Let ρ1 and ρ2 be two stochastic entropy solutions of (1), with initial
values ρ0,1 and ρ0,2, if ρ0,1 6 ρ0,2, then with probability one, ρ1 6 ρ2.
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To make Theorem 2 more clear, we exhibit two representative examples here.

Example 1. The first example is concerned with the Buckley-Leverett equation (see [2]), which provides a
simple model for the rectilinear flow of immiscible fluids (phases) through a porous medium. To be simple,
nevertheless, to capture some of the qualitative features, we consider the case of two-phase flows (oil and water)
in 1-dimensional space. In this issue, the Buckley-Leverett equation, with an external force, and a stochastic
perturbation reads{

dρ(t, x) + ∂x(F(ρ))dt + ∂xρ(t, x) ◦ dM(t) = µA(t, ρ)dt, x ∈ R, t > 0,
ρ(t, x)|t=0 = ρ0(x), x ∈ R,

(19)

where µ > 0 is a constant, W is a 1-dimensional standard Wiener process, ϑ ∈ L2
loc([0, ∞)), θ ∈

L1
loc([0, ∞)) and

M(t) =
∫ t

0
ϑ(s)dW(s), A(t, ρ) =

θ(t)ρ2

1 + ρ2 . (20)

The flux function F is determined using Darcy’s law and incompressibility of the two phases and is given
by [30]:

F(ρ) =
σ1 f1(ρ)

σ1 f1(ρ) + σ2 f2(ρ)
. (21)

σ1, σ2 > 0 denote the mobility of the oil and water phase, respectively, and f1(ρ), f2(ρ) represent the relative
permeability of oil and water, respectively. f1 and f2 are non-negative smooth functions and f1 + f2 > 0.

Applying Theorem 2, we obtain

Corollary 2. Assume that ρ0 ∈ L1(R) ∩ L∞(R). Then there exists at most one stochastic entropy solution ρ

of (19). Moreover, if the initial data is non-negative, then the unique stochastic (if it exists) is non-negative
as well.

Example 2. The second example is concerned with a generalized Burgers equation (see [31]). This equation
with a nonlinear stochastic perturbation of Brownian type, and a nonlinear nonhomogeneous term reads

dρ(t, x) + divx(ζ|ρ(t, x)|αρ(t, x))dt

+
d

∑
i=1

∂xi (ϑ(t)|ρ(t, x)|βρ(t, x)) ◦ dWi(t) = λ(t) sin(x)ργdt, x ∈ Rd, t > 0, (22)

associated with the initial value ρ0, where ζ ∈ Rd is a fixed vector, α, β > 0 are constants, 1 6 γ ∈ N, ϑ ∈
L2

loc([0, ∞)), λ ∈ L1
loc([0, ∞)). W(t) = (W1(t), W2(t),··· , Wd(t)) is a d-dimensional standard Wiener process.

From Theorem 2, we have

Corollary 3. Let ρ0 ∈ L1(R) ∩ L∞(R). If the stochastic entropy solutions of (22), (2) exists, then it is unique.
In addition, ρ0 > 0 implies the unique stochastic entropy solution (if it exists) ρ > 0.

Our third result is on the existence of the stochastic entropy solution. And now we should assume
the growth rates on the coefficients Bi,j, i.e., Bi,j(t, ρ) is at most linear growth in ρ, and regularity
property of A on spatial variables (e.g., Lipschitz continuous). In this case, we will establish the
existence for stochastic entropy solutions. Up to a tedious calculation which is not technique,
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all calculations for Bi,j(t, ρ) and A(t, x, ρ) are the same as ρσi,j(t) and A(t, ρ). To make our result
present in a concise form, we only discuss the following stochastic balance law:

∂tρ(t, x) + divx(F(ρ)) +
d

∑
i=1

∂xi ρ(t, x) ◦ Ṁi(t) = A(t, ρ), x ∈ Rd, t > 0, (23)

here Mi(t) =
∫ t

0 σi,j(s)dWj(s), (1 6 i, j 6 d).

Theorem 3 (Existence). Let F, σ and A satisfy

F ∈ C1(R;Rd), σi,j ∈ L2
loc([0, ∞)), A ∈ L1

loc([0, ∞); W1,∞(R)) and A(t, 0) = 0. (24)

Then there exists a stochastic entropy solution of the Cauchy problem (23), (2).

If one argues Buckley-Leverett Equations (19)–(21) again, then by Theorems 2 and 3, we obtain

Corollary 4. Let F, ϑ and A be given in Example 1 and assume ρ0 ∈ L1(R) ∩ L∞(R). Then there exists a
unique stochastic entropy solution ρ of (19). Moreover, if ρ0 > 0, then ρ > 0.

The rest of the paper is structured as follows. In Section 2, we give some preliminaries. In Section 3
we present the proof of Theorem 1. The uniqueness and existence of stochastic entropy solutions
are proved in Sections 4 and 5. Section 4 is devoted to the proof of the uniqueness and in Section 5,
we study the existence.

We end up the section by introducing some notations.
Notations. D(Rd), D(R), D([0, ∞)×Rd), D(Rd+1) and D([0, ∞)×Rd+1) stand for the sets of all

smooth functions on Rd, R, [0, ∞)×Rd, Rd+1 and [0, ∞)×Rd+1 with compact supports, respectively.
Correspondingly, D+(Rd), D+(R) D+([0, ∞)×Rd), D+(Rd+1) and D+([0, ∞)×Rd+1) represent the
non-negative elements in D(Rd), D(R), D([0, ∞)×Rd), D(Rd+1) and D([0, ∞)×Rd+1), respectively.
〈 , 〉v denotes the duality between D(R) and D′(R). 〈 , 〉t,x,v is the duality between D([0, ∞)×Rd+1)

and D′([0, ∞) × Rd+1). C(T) denotes a positive constant depending only on T, whose value may
change in different places. a.s. is the abbreviation of “almost surely”. The stochastic integration with a
notation ◦ is interpreted in Stratonovich sense and the others is Itô’s. For a given measurable function
g, g+ is its positive portion, defined by 1g>0g, and g− = [−g]+. sgn(g) = 1g>0 − 1g<0. N is natural
numbers and d, n ∈ N. For notational simplicity, we set

a =


a1,1, a1,2, · · · , a1,d
a2,1, a2,2, · · · , a2,d

...
...

. . .
...

ad,1, ad,2, · · · , ad,d

 =
1
2


σ1,1, σ1,2, · · · , σ1,n
σ2,1, σ2,2, · · · , σ2,n

...
...

. . .
...

σd,1, σd,2, · · · , σd,n




σ1,1, σ2,1, · · · , σd,1
σ1,2, σ2,2, · · · , σd,2

...
...

. . .
...

σ1,n, σ2,n, · · · , σd,n

 .

2. Preliminaries

In this section, we give some useful lemmas that will serve us well later in proving our
main results.

Lemma 1 (11). has the following equivalent representation:

∂tu + f (v) · ∇xu +
d

∑
i=1

∂xi uṀi(t, v)−
d

∑
i=1

d

∑
j=1

ai,j(t, v)∂2
xi ,xj

u + A∂vu = ∂vm, (x, v) ∈ Rd+1, t > 0. (25)
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Proof. Clearly, it suffices to show: for every φ ∈ D(Rd+1), and for all t ∈ [0, ∞),

d

∑
i=1

∫ t

0

∫
Rd+1

∂xi φ(x, v)u(s, x, v)dxMi(◦ds, dv)

=
d

∑
i=1

∫ t

0

∫
Rd+1

∂xi φ(x, v)u(s, x, v)dxMi(ds, dv)

+
d

∑
i=1

d

∑
j=1

∫ t

0
ds
∫
Rd+1

ai,j(s, v)∂2
xi ,xj

φ(x, v)u(s, x, v)dxdv.

With the aid of stochastic Fubini’s theorem (see [32] Theorem 4.18), we have

d

∑
i=1

∫ t

0

∫
Rd+1

∂xi φ(x, v)u(s, x, v)dxMi(◦ds, dv)

=
d

∑
i=1

∫ t

0

∫
Rd+1

∂xi φ(x, v)u(s, x, v)dxMi(ds, dv)

+
1
2

d

∑
i=1

∫
R

[ ∫
Rd

∂xi φ(x, v)u(·, x, v)dx, Mi(·, v)
]

t
dv,

where [·, ·]t denotes the joint quadratic variation, thus it is sufficient to demonstrate

d

∑
i=1

∫
R

[ ∫
Rd

∂xi φ(x, v)u(·, x, v)dx, Mi(·, v)
]

t
dv

= 2
d

∑
i=1

d

∑
j=1

∫ t

0
ds
∫
Rd+1

ai,j(s, v)∂2
xi ,xj

φ(x, v)u(s, x, v)dxdv.

Noticing that whichsoever (11) or (25) holds, then for every φ ∈ D(Rd+1), and for all t ∈ [0, ∞),
the martingale part of

∫
Rd ∂xi φ(x, v)u(t, x, v)dx (1 6 i 6 d) is given by

d

∑
j=1

∫ t

0

∫
Rd

∂2
xi ,xj

φ(x, v)u(s, x, v)dxMj(ds, v).

Therefore

d

∑
i=1

∫
R

[ ∫
Rd

∂xi φ(x, v)u(·, x, v)dx, Mi(·, v)
]

t
dv

=
d

∑
i=1

d

∑
j=1

∫
R

[ ∫ ·
0

Mj(ds, v)
∫
Rd

∂2
xi ,xj

φ(x, v)u(s, x, v)dx, Mi(·, v)
]

t
dv

=
d

∑
i=1

d

∑
j=1

n

∑
k=1

∫
R

dv
∫ t

0
ds
∫
Rd

∂2
xi ,xj

φ(x, v)u(s, x, v)σi,k(s, v)σj,k(s, v)dx

= 2
d

∑
i=1

d

∑
j=1

∫ t

0
ds
∫
Rd+1

ai,j(s, v)∂2
xi ,xj

φ(x, v)u(s, x, v)dxdv.

The proof of Lemma 1 is complete.

Lemma 2. For every p ∈ [1, ∞], we have the following embedding:

Lp(Rd; W1,1
loc (R)) ↪→ Lp(Rd; C(R)).
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Proof. Clearly, W1,1
loc (R) ↪→ C(R) (see [33]), for any g ∈ Lp(Rd; W1,1

loc (R)), g(x, ·) ∈ C(R) for almost
everywhere x ∈ Rd. Let −∞ < a < b < ∞ be two real numbers.

When p < ∞,

‖g‖p
Lp(Rd ;L∞(a,b)) =

∫
Rd

∥∥∥g(x, ·)
∥∥∥p

L∞(a,b)
dx

=
∫
Rd

∥∥∥ ∫ ·
a

∂vg(x, v)dv + g(x, a)
∥∥∥p

L∞(a,b)
dx

6 2p−1
{ ∫

Rd

[ ∫ b

a
|∂vg(x, v)|dv

]p
dx +

∫
Rd
|g(x, a)|pdx

}
< ∞.

When p = ∞, for almost everywhere x ∈ Rd, and all v ∈ [a, b],

| f (x, v)| =
∣∣∣ ∫ v

a
∂yg(x, y)dy + g(x, a)

∣∣∣ 6 ∫ b

a
|∂yg(x, y)|dy + |g(x, a)| < ∞,

which hints

Lp(Rd; W1,1
loc (R)) ↪→ Lp(Rd; L∞

loc(R)).

Thus the desired result follows.

In order to prove the uniqueness of the stochastic entropy solution, we need another two lemmas
below, the first one follows from DiPerna and Lions [34], and the proof is analogue, we only give the
details for the second one.

Lemma 3. Let k ∈ N, T ∈ (0, ∞), 1 6 p1, p2, q1, q2, α, β 6 ∞, that E ∈ Lp1(Ω; Lp2(0, T; W1,α
loc (R

k;Rk))),

G ∈ Lq1(Ω; Lq2(0, T; Lβ
loc(R

k))). Then

(E · ∇G) ∗ $̃ε1 − E · ∇(G ∗ $̃ε1) −→ 0 in Lr1(Ω; Lr2(0, T; Lγ
loc(R

k))) as ε1 → 0,

where 1 6 γ, r1, r2 < ∞, satisfying

1
α
+

1
β
6

1
γ

,
1
p1

+
1
q1

6
1
r1

,
1
p2

+
1
q2

6
1
r2

,

and

$̃ε1 =
1

ε1
k $̃(
·

ε1
) with $̃ ∈ D+(Rk),

∫
Rk

$̃(y)dy = 1, ε1 > 0.

And when k = d, we set $̃ by $1.

Lemma 4. Let g ∈ L2(Ω; L2
loc([0, ∞)), then

[ ∫ ·
0

g(s)dW(s) ∗ $2,ε2

]
(t) −→

∫ t

0
g(s)dW(s), in L2(Ω; L2

loc([0, ∞)) as ε2 → 0,

where W(t) is a 1-dimensional standard Wiener process, and

$2,ε2 =
1
ε2

$2(
·

ε2
) $2 ∈ D+(R),

∫
R

$2(t)dt = 1, supp$2 ⊂ (−1, 0).
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Proof. In fact, for every T ∈ (0, ∞),

E
∫ T

0

∣∣∣[ ∫ ·
0

g(s)dW(s) ∗ $2,ε2

]
(t)−

∫ t

0
g(s)dW(s)

∣∣∣2dt

= E
∫ T

0

∣∣∣ ∫
R

$2,ε2(s)ds
∫ t−s

0
g(r)dW(r)−

∫ t

0
g(r)dW(r)

∣∣∣2dt

= E
∫ T

0

∣∣∣ ∫ 0

−1
$2(s)ds

∫ t−ε2s

0
g(r)dW(r)−

∫ t

0
g(r)dW(r)

∣∣∣2dt

= E
∫ T

0

∣∣∣ ∫ 0

−1
$2(s)ds

∫ t−ε2s

t
g(r)dW(r)

∣∣∣2dt

6
∫ T

0
E sup

s∈[0,1]

∣∣∣ ∫ t+ε2s

t
g(r)dW(r)

∣∣∣2dt. (26)

For g ∈ L2(Ω; L2
loc([0, ∞)), the stochastic process {

∫ t
0 g(r)dWr, t > 0} is a martingale. With the

help of Doob’s inequality and the Itô isometry (see [35]), from (26), one obtains

E
∫ T

0

∣∣∣[ ∫ ·
0

g(s)dW(s) ∗ $2,ε2

]
(t)−

∫ t

0
g(s)dW(s)

∣∣∣2dt

6 4
∫ T

0
sup

06s61
E
∣∣∣ ∫ t+ε2s

t
g(r)dW(r)

∣∣∣2dt = 4
∫ T

0

∫ t+ε2

t
E|g(r)|2drdt. (27)

By letting ε2 tend to 0 in (27), we finish the proof.

3. Proof of Theorem 1

For every ζ, ϑ ∈ R, ∫
R
|χζ(v)− χϑ(v)|dv = |ζ − ϑ|,

so (10) implies (15), and vice versa. We need to check the rest of (i) and (ii) in Theorem 1.
Let ρ be a stochastic entropy solution of (1), (2) fulfilling the statement (i) in Theorem 1. For every

v ∈ R, it renders that

∂tη(ρ, v) + divxQ(ρ, v) +
d

∑
i=1

n

∑
j=1

∂xi Qi,j(t, ρ, v) ◦ Ẇj(t) = sgn(ρ− v)A(t, x, ρ)− 2m, (28)

for almost all ω ∈ Ω, where

η(ρ, v) = |ρ− v| − |v|,
Q(ρ, v) = sgn(ρ− v)[F(ρ)− F(v)]− sgn(v)F(v),
Qi,j(t, ρ, v) = sgn(ρ− v)[Bi,j(t, ρ)− Bi,j(t, v)]

−sgn(v)Bi,j(t, v), 1 6 i 6 d, 1 6 j 6 n,
m is a nonnegative measure on [0, ∞)×Rd+1.

(29)

For every φ1 ∈ D(R), then

〈∂vsgn(ρ− v)A(t, x, ρ), φ1〉v = −2φ1(ρ)A(t, x, ρ).

Observing that∫
R

g′(v)u(t, x, v)dv = g(ρ(t, x))− g(0), for every g ∈W1,1
loc (R), (30)
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and A(t, x, 0) = 0. On account of (4), it follows that

〈∂vu(t, x, ·)A(t, x, ·), φ1〉v = −
∫
R

u(t, x, v)∂v(φ1(v)A(t, x, v))dv = −φ1(ρ)A(t, x, ρ),

thus ∂vsgn(ρ− v)A(t, x, ρ) = 2∂vu(t, x, v)A(t, x, v).
Similarly, by using conditions (3) and (5), one computes in the sense of distributions that{

∂vη(ρ, v) = −2u(t, x, v), ∂vQ(ρ, v) = −2 f (v)u(t, x, v),
∂vQi,j(t, ρ, v) = −2σi,j(t, v)u(t, x, v), 1 6 i 6 d, 1 6 j 6 n.

(31)

From (31), one derives the identity (11). In order to prove the assertion of Theorem 1 (i), it suffices
to show that m satisfies all the properties described in (i).

Noting that ρ is bounded local-in-time, from (28) and (29), for every fixed T > 0, and almost all
ω ∈ Ω, m is supported in [0, T]×Rd × [−K, K], with K = ‖ρ‖L∞((0,T)×Rd×Ω). Accordingly, it remains
to examine that m is bounded and continuous in t. And it is sufficient to show that m([0, t]×Rd+1) is
bounded and continuous in t.

Since m > 0 and it is supported in a compact subset for v in R, we obtain

0 6 〈m, ψ⊗ 1〉t,x,v = −〈∂tu + f (v) · ∇xu + A∂vu +
d

∑
i=1

∂xi u ◦ Ṁi(t, v), ψ⊗ v〉t,x,v, P− a.s.,

for every ψ ∈ D+([0, ∞)×Rd).
By Lemma 1, then

0 6 〈m, ψ⊗ 1〉t,x,v

= −〈∂tu + f (v) · ∇xu + A∂vu +
d

∑
i=1

n

∑
j=1

σi,j(t, v)∂xi uẆj(t), ψ⊗ v〉t,x,v

+
d

∑
i=1

d

∑
j=1
〈ai,j(t, v)∂2

xi ,xj
u, ψ⊗ v〉t,x,v. (32)

Thanks to (30),

−〈∂tu + f (v) · ∇xu + A∂vu +
d

∑
i=1

n

∑
j=1

σi,j(t, v)∂xi uẆj(t), ψ⊗ v〉t,x,v

+
d

∑
i=1

d

∑
j=1
〈ai,j(t, v)∂2

xi ,xj
u, ψ⊗ v〉t,x,v

=
1
2

∫ T

0

∫
Rd

∂tψ(t, x)ρ2dxdt +
1
2

∫
Rd

ψ(0, x)ρ2
0(x)dx +

∫ T

0

∫
Rd

ρA(t, x, ρ)ψ(t, x)dxdt

+
∫ T

0

∫
Rd

[
ρ(t, x)F(ρ(t, x))−

∫ ρ(t,x)

0
F(v)dv

]
· ∇xψ(t, x)dxdt

+
d

∑
i=1

d

∑
j=1

∫ T

0

∫
Rd

[
Ai,j(t, ρ(t, x))ρ(t, x)−

∫ ρ(t,x)

0
Ai,j(t, v)dv

]
∂2

xi ,xj
ψ(t, x)dxdt

+
d

∑
i=1

n

∑
j=1

∫ T

0

∫
Rd

[
Bi,j(t, ρ)ρ(t, x)−

∫ ρ(t,x)

0
Bi,j(t, v)dv

]
∂xi ψ(t, x)dxdWj(t),

for every T > 0 and ψ ∈ D+([0, T)×Rd), where Ai,j(t, v) =
∫ v

0 ai,j(t, r)dr.
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On account of Hypotheses (3)–(5), by using Lemma 2, it leads to

〈m, ψ⊗ 1〉t,x,v

6
1
2

∫ T

0

∫
Rd

∂tψρ2dxdt +
1
2

∫
Rd

ψ(0, x)ρ2
0dx

+C(T)
∫ T

0

∫
Rd

ã(t, x)|ρ(t, x)|ψ(t, x)dxdt

+C(T)
∫ T

0

∫
Rd
|ρ(t, x)||∇xψ(t, x)|dxdt

+C(T)
d

∑
i=1

d

∑
j=1

∫ T

0

∫
Rd

ãi,j(t)|ρ(t, x)||∂2
xi ,xj

ψ(t, x)|dxdt

+
d

∑
i=1

n

∑
j=1

∫ T

0

∫
Rd

[
Bi,j(t, ρ)ρ−

∫ ρ(t,x)

0
Bi,j(t, v)dv

]
∂xi ψ(t, x)dxdWj(t), (33)

where

ã(t, x) = sup
v∈[−K,K]

|A(t, x, v)| ∈ L1
loc([0, ∞); L1(Rd)) + L1

loc([0, ∞); L∞(Rd)),

ãi,j(t) = sup
v∈[−K,K]

|Ai,j(t, v)| ∈ L1
loc([0, ∞)).

Using the Itô isometry and Lemma 1,

E
{ d

∑
i=1

n

∑
j=1

∫ T

0

∫
Rd

[
Bi,j(t, ρ)ρ−

∫ ρ(t,x)

0
Bi,j(t, v)dv

]
∂xi ψ(t, x)dxdWj(t)

}2

=
∫ T

0

n

∑
j=1

E
[ d

∑
i=1

∫
Rd
[Bi,j(t, ρ)ρ−

∫ ρ(t,x)

0
Bi,j(t, v)dv]∂xi ψ(t, x)dx

]2
dt

6 C
d

∑
i=1

n

∑
j=1

E
∫ T

0
b̃2

i,j(t)
[ ∫

Rd
|ρ(t, x)||∂xi ψ(t, x)|dx

]2
dt, (34)

where b̃i,j(t) = supv∈[−K,K] |Bi,j(t, v)| ∈ L2
loc([0, ∞)).

Obviously, (33) holds ad hoc for ψ(t, x) = ψ1(t)θk1(x), where k1 ∈ N, ψ1 ∈ D+([0, T)), θ ∈
D+(Rd),

θk1(x) = θ(
x
k1
), θ(x) =

{
1, when |x| 6 1,
0, when |x| > 2.

(35)

For this fixed k1, by an approximation demonstration, one can fetch

ψ1(t) =


1, t ∈ [0, T − 1

k1
],

−k1(t− T), t ∈ (T − 1
k1

, T],
0, t ∈ (T, ∞).

By letting k1 → ∞, we gain from (33) and (34) (by choosing a subsequence if necessary), that

∫ T

0

∫
Rd+1

m(dt, dx, dv)

6
1
2

[ ∫
Rd

ρ2
0dx−

∫
Rd

ρ2(T, x)dx
]
+ C(T)

∫ T

0

∫
Rd

ã(t, x)|ρ(t, x)|dxdt, P− a.s., (36)



Entropy 2019, 21, 1142 13 of 29

which suggests that for every given T > 0, m is bounded on [0, T]×Rd+1 and m ∈ L1(Ω;D′([0, ∞)×
Rd+1)).

Specially, when T → 0, we obtain

lim
T→0

∫ T

0

∫
Rd+1

m(dt, dx, dv) = 0, P− a.s..

The arguments employed above for 0 and T adapted to every 0 6 s, t < ∞ now, yields that

lim
t→s

∫ t

s

∫
Rd+1

m(dr, dx, dv) = 0,

which hints m is continuous in t. So u is a stochastic weak solution of (11)–(13) with m satisfying (14).
Let us show the reverse fact. Since m satisfies (14) and u(t, x, v) = χρ(t,x)(v) solves (11)–(13),

for every ψ ∈ D(Rd), then
∫
Rd ψ(x)ρ(t, x)dx =

∫
Rd+1 ψ(x)u(t, x, v)dxdv is Ft−adapted. It remains to

show the inequality (9).
Given ε > 0 and ρ̄ ∈ R, set

ηε(r, ρ̄) = (
√
(r− ρ̄)2 + ε2 − ε)− |ρ̄| ∈ C2(R),

then ηε is convex, η′ε(r, ρ̄) ∈ Cb(R), and

ηε(r, ρ̄) −→ |r− ρ̄| − |ρ̄| as ε −→ 0.

In a consequence of u(t, x, v) solving (11)–(13) with m satisfying (14), it follows that

〈∂vm, ψη′ε(v, ρ̄)ξk2(v)〉t,x,v = 〈∂tu +
d

∑
i=1

∂xi u ◦ Ṁi(t, v), ψη′ε(v, ρ̄)ξk2(v)〉t,x,v

+〈 f (v) · ∇xu + A∂vu, ψη′ε(v, ρ̄)ξk2(v)〉t,x,v

= 〈∂tu +
d

∑
i=1

n

∑
j=1

σi,j(t, v)∂xi u ◦ Ẇj(t), ψη′ε(v, ρ̄)ξk2(v)〉t,x,v

+〈 f (v) · ∇xu + A∂vu, ψη′ε(v, ρ̄)ξk2(v)〉t,x,v, (37)

for every ψ ∈ D+([0, ∞)×Rd), ξ ∈ D+(R), k2 ∈ N, where

ξk2(v) = ξ(
v
k2
), 0 6 ξ 6 1, ξ(v) =

{
1, when |v| 6 1,
0, when |v| > 2.

(38)

Applying the partial integration, one deduces

lim
k→∞
〈∂vm, ψη′ε(v, ρ̄)ξk2〉t,x,v = − lim

k→∞
〈m, ψ[η′′ε (v, ρ̄)ξk2 + η′ε(v, ρ̄)ξ ′k2

]〉t,x,v 6 0, P− a.s., (39)

when k2 is large enough, for m yields the properties stated in Theorem 1 (i).
Upon using (30) and (39), from (37), we derive∫ ∞

0
dt
∫
Rd

∂tψ(t, x)[ηε(ρ, ρ̄)− ηε(0, ρ̄)]dx +
∫ ∞

0
dt
∫
Rd

Qε(ρ, ρ̄) · ∇xψdx

> −
∫
Rd

ψ(0, x)[ηε(ρ0, ρ̄)− ηε(0, ρ̄)]dx−
∫ ∞

0
dt
∫
Rd

η′ε(ρ, ρ̄)A(t, x, ρ)ψ(t, x)dx

−
d

∑
i=1

n

∑
j=1

∫ ∞

0
◦dWj

∫
Rd

∂xi ψQε
i,j(t, ρ, ρ̄)dx, (40)
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by taking k2 to infinity, here

Qε(ρ, ρ̄) =
∫
R

f (v)η′ε(v, ρ̄)u(t, x, v)dv, Qε
i,j(t, ρ, ρ̄) =

∫
R

σi,j(t, v)η′ε(v, ρ̄)u(t, x, v)dv.

On the other hand

lim
ε→0

η′ε(ρ, ρ̄) = sgn(ρ− ρ̄)

and

lim
ε→0

Qε(ρ, ρ̄) = sgn(ρ− ρ̄)[F(ρ)− F(ρ̄)]− sgn(ρ̄)[F(ρ̄)− F(0)],

lim
ε→0

Qε
i,j(t, ρ, ρ̄) = sgn(ρ− ρ̄)[Bi,j(t, ρ)− Bi,j(t, ρ̄)]− sgn(ρ̄)[Bi,j(t, ρ̄)− Bi,j(t, 0)],

for almost everywhere (ω, t, x) ∈ Ω× [0, ∞)×Rd.
If one lets ε approach to zero in (40), we attain the inequality (9), thus ρ is a stochastic entropy

solution.

Remark 4. Our proof for Theorem 1 is inspired by Theorem 1 in [36], but the demonstration here appears to be
finer, and for more details, one can see [36] and also see [37] for nonlocal conservation laws.

4. Proofs of Theorem 2 and Corollary 1

We begin our discussion in this section to prove Theorem 2. Let ρ1 and ρ2 be two stochastic
entropy solutions of (1), with initial values ρ0,1 and ρ0,2, respectively. Then u1 = χρ1 and u2 = χρ2 are
stochastic weak solutions of (11) with nonhomogeneous terms ∂vm1 and ∂vm2, initial datum u0,1 = χρ0,1

and u0,2 = χρ0,2 , respectively.
Let $1 and $2 be two regularization kernels described in Lemmas 3 and 4, respectively. Let $3 be

another regularization kernel in variable v, i.e.,

$3 ∈ D+(R),
∫
R

$3(v)dv = 1.

For ε1, ε2, ε > 0, set

$1,ε1(x) =
1
εd

1
$1(

x
ε1
), $2,ε2(t) =

1
ε2

$2(
t

ε2
), $3,ε(v) =

1
ε

$3(
v
ε
),

then uε,ε
ι := uι ∗ $1,ε1 ∗ $2,ε2 ∗ $3,ε (ι = 1, 2) yields that

∂tuε,ε
ι + f (v) · ∇xuε,ε

ι + A(t, x, v)∂vuε,ε
ι

+∑d
i=1 ∂xi u

ε,ε
ι ◦ Ṁi(t, v) = ∂vmε,ε

ι + Rε,ε
ι ,

uε,ε
ι (t, x, v)|t=0 = χρι

0
∗ $1,ε1 ∗ $3,ε(x, v),

(41)

here Rε,ε
ι = Rε,ε

ι,1 + Rε,ε
ι,2 + Rε,ε

ι,3 , and
Rε,ε

ι,1 = f (v) · ∇xuε,ε
ι − [ f (v) · ∇xuι]ε,ε,

Rε,ε
ι,2 = A(t, x, v)∂vuε,ε

ι − [A(t, x, v)∂vuι]ε,ε,

Rε,ε
ι,3 = ∑d

i=1

{
∂xi u

ε,ε
ι ◦ Ṁi(t, v)− [∂xi uι ◦ Ṁi(t, v)]ε,ε

}
.

(42)
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For every δ > 0, we set ηδ(u) = (u2 + δ)
1
2 . For ι = 1, 2, if one uses Itô’s formula for ηδ(u

ε,ε
ι ) first,

and lets δ tend to 0 next, it follows that

d
dt

∫
Rd+1
|uε,ε

ι (t, x, v)|ξk2(v)θk1(x)dxdv

=
∫
Rd+1
|uε,ε

ι |ξk2(v) f (v) · ∇xθk1(x)dxdv

+
∫
Rd+1
|uε,ε

ι (t, x, v)|∂v[ξk2(v)A(t, x, v)]θk1(x)dxdv

+
d

∑
i=1

∫
Rd+1
|uε,ε

ι |∂xi θk1(x)ξk2(v) ◦ Ṁi(t, v)dxdv

+
∫
Rd+1

sgn(uε,ε
ι )ξk2(v)θk1(x)Rε,ε

ι dxdv

+
∫
Rd+1

ξk2(v)sgn(uε,ε
ι )θk1(x)∂vmε,ε

ι (t, x, v)dxdv, (43)

where Mi, θk1 and ξk2 are given by (13), (35) and (38), respectively.
Analogue calculations also yield that

d
dt

∫
Rd+1

uε,ε
1 (t, x, v)uε,ε

2 (t, x, v)ξk2(v)θk1(x)dxdv

=
∫
Rd+1

uε,ε
1 (t, x, v)uε,ε

2 (t, x, v)ξk2(v) f (v) · ∇xθk1(x)dxdv

+
∫
Rd+1

uε,ε
1 (t, x, v)uε,ε

2 (t, x, v)∂v[ξk2(v)A(t, x, v)]θk1(x)dxdv

+
d

∑
i=1

∫
Rd+1

uε,ε
1 (t, x, v)uε,ε

2 (t, x, v)∂xi θk1 ξk2 ◦ Ṁi(t, v)dxdv

+
∫
Rd+1

ξk2 θk1 [u
ε,ε
1 (t, x, v)∂vmε,ε

2 + uε,ε
2 (t, x, v)∂vmε,ε

1 ]dxdv

+
∫
Rd+1

ξk2(v)θk1(x)[Rε,ε
1 (t, x, v)uε,ε

2 (t, x, v) + Rε,ε
2 (t, x, v)uε,ε

1 (t, x, v)]dxdv. (44)

From (43) and (44), one infers

d
dt

∫
Rd+1

[|uε,ε
1 (t, x, v)|+ |uε,ε

2 (t, x, v)| − 2uε,ε
1 (t, x, v)uε,ε

2 (t, x, v)]ξk2(v)θk1(x)dxdv

=
∫
Rd+1

[|uε,ε
1 (t, x, v)|+ |uε,ε

2 (t, x, v)| − 2uε,ε
1 (t, x, v)uε,ε

2 (t, x, v)]ξk2(v) f (v) · ∇xθk1(x)dxdv

+
∫
Rd+1

[|uε,ε
1 (t, x, v)|+ |uε,ε

2 (t, x, v)| − 2uε,ε
1 (t, x, v)uε,ε

2 (t, x, v)]∂v[ξk2 A(t, x, v)]θk1 dxdv

+
d

∑
i=1

∫
Rd+1

[|uε,ε
1 (t, x, v)|+ |uε,ε

2 (t, x, v)| − 2uε,ε
1 (t, x, v)uε,ε

2 (t, x, v)]∂xi θk1(x)

× ξk2(v) ◦ Ṁi(t, v)dxdv +
∫
Rd+1

ξk2(v)θk1(x)[sgn(uε,ε
1 )Rε,ε

1 + sgn(uε,ε
2 )Rε,ε

2 ]dxdv

−2
∫
Rd+1

ξk2(v)θk1(x)[Rε,ε
1 uε,ε

2 + Rε,ε
2 uε,ε

1 ]dxdv + I(t), (45)

where

I(t) =
∫
Rd+1

ξk2(v)θk1(x)[sgn(uε,ε
1 )∂vmε,ε

1 + sgn(uε,ε
2 )∂vmε,ε

2 ]dxdv

−2
∫
Rd+1

ξk2(v)θk1(x)[uε,ε
1 ∂vmε,ε

2 + uε,ε
2 ∂vmε,ε

1 ]dxdv =: I1(t)− 2I2(t).
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Observing that for every T > 0, and almost all ω ∈ Ω, m1 and m2 are bounded on [0, T]×Rd+1,
supported in [0, T]×Rd × [−K, K], where

K = max{‖ρ1‖L∞(Ω×(0,T)×Rd), ‖ρ2‖L∞(Ω×(0,T)×Rd)}. (46)

Thus by taking k2 > K,{ ∫
Rd+1 ∂v(ξk2(v))θk1(x)[sgn(uε,ε

1 )mε,ε
1 + sgn(uε,ε

2 )mε,ε
2 ]dxdv = 0,∫

Rd+1 ∂v(ξk2(v))θk1(x)[uε,ε
1 mε,ε

2 + uε,ε
2 mε,ε

1 ]dxdv = 0.
(47)

From (41), with the aid of assumptions (3)–(5) and Lemma 2, mε
ι (ι = 1, 2) is continuous in v in a

neighborhood of zero. Besides, for almost everywhere (t, x, v),

sgn(uε,ε
ι ) −→ sgn(uε

ι ) = sgn(v), as ε→ 0.

Hence for large k2 (k2 > K) and every t > 0,

lim
ε→0

I1(t) = −2
∫
Rd

θk1(x)[mε
1(t, x, 0) + mε

2(t, x, 0)]dx. (48)

Moreover, due to (30) and the fact mι > 0 (ι = 1, 2), if one chooses k2 large enough, then

I2(t) =
∫
Rd+1

{ ∫
Rd+2

[
ξk2(ρ1(t− s, x− y) + τ)mε,ε

2 (t, x, ρ1(t− s, x− y) + τ)

+ξk2(ρ2(t− s, x− y) + τ)mε,ε
1 (t, x, ρ2(t− s, x− y) + τ)

]
× $3,ε(τ)θk1(x)dxdvdτ

}
$1,ε1(y)$2,ε2(s)dyds

−
∫
Rd+1

ξk2(v)θk1(x)[mε,ε
1 (t, x, v) + mε,ε

2 (t, x, v)]$3,ε(v)dxdv

> −
∫
Rd+1

ξk2(v)θk1(x)[mε,ε
1 (t, x, v) + mε,ε

2 (t, x, v)]$3,ε(v)dxdv

−→ −
∫
Rd

θk1(x)[mε
1(t, x, 0) + mε

2(t, x, 0)]dx, as ε→ 0. (49)

On account of (42), thanks to conditions (3) and (16), and Lemma 3, then,

lim
ε2→0

lim
ε→0

Rε,ε
ι,1 = 0, in L1(Ω; L1(0, T; L1

loc(R
d+1))), for ι = 1, 2, (50)

and

lim
ε1→0

lim
ε2→0

lim
ε→0

Rε,ε
ι,2 = 0, in L1(Ω; L1(0, T; L1

loc(R
d+1))), for ι = 1, 2. (51)

On the other hand, for fixed ε1, we have

Rε,ε
ι,3 =

d

∑
i=1

{
∂xi u

ε,ε
ι ◦ Ṁi(t, v)− [∂xi uι ◦ Ṁi(t, v)]ε,ε

}
:= Iε,ε

ι,3 −
1
2

Jε,ε
ι,3 ,

where

Iε,ε
ι,3 =

d

∑
i=1

{
∂xi u

ε,ε
ι Ṁi(t, v)− [∂xi u

ε1
ι Ṁi(t, v)]ε2,ε

}
,

Jε,ε
ι,3 =

d

∑
i=1

d

∑
j=1

n

∑
k=1

{
∂2

xi ,xj
uε,ε

ι σi,k(t, v)σj,k(t, v)− [∂2
xi ,xj

uε1
ι σi,kσj,k]

ε2,ε
}

.
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By Lemma 4 and (5),

lim
ε2→0

lim
ε→0

Iε,ε
ι,3 = 0, in L2(Ω; L2(0, T; L2

loc(R
d+1))), for ι = 1, 2, (52)

and by virtue of Lemma 3

lim
ε1→0

lim
ε2→0

lim
ε→0

Jε,ε
ι,3 = 0, in L1(Ω; L1(0, T; L1

loc(R
d+1))), for ι = 1, 2. (53)

For k1 and k2 (k2 is big enough) be fixed, if one lets ε tend to zero first, ε2 approach to zero next, ε1

incline to zero last, with the aid of (47)–(53) and Lemma 1, from (45), it leads to

E
∫
Rd+1

[|u1(t, x, v)|+ |u2(t, x, v)| − 2u1(t, x, v)u2(t, x, v)]ξk2(v)θk1(x)dxdv

6
∫
Rd+1

[|u0,1(x, v)|+ |u0,2(x, v)| − 2u0,1(x, v)u0,2(x, v)]ξk2(v)θk1(x)dxdv

+E
∫ t

0

∫
Rd+1

[|u1(s, x, v)|+ |u2(s, x, v)| − 2u1(s, x, v)u2(s, x, v)]ξk2 f (v) · ∇xθk1(x)dxdvds

+E
∫ t

0

∫
Rd+1

[|u1(s, x, v)|+ |u2(s, x, v)| − 2u1(s, x, v)u2(s, x, v)]∂v[ξk2 A(s, x, v)]θk1 dxdvds

+
d

∑
i=1

d

∑
j=1

E
∫ t

0

∫
Rd+1

[|u1|+ |u2| − 2u1u2]∂
2
xi ,xj

θk1(x)ξk2(v)ai,j(s, v)dxdvds. (54)

Observing that uι(t, x, v) = χρι(t,x)(v) = 1(0,ρι(t,x))(v)− 1(ρι(t,x),0)(v)(ι = 1, 2), and
|1(0,ρ1)

(v)− 1(0,ρ2)
(v)|2, if ρ1 > 0, ρ2 > 0,

|1(0,ρ1)
(v) + 1(ρ2,0)(v)|2, if ρ1 > 0, ρ2 < 0,

|1(ρ1,0)(v) + 1(0,ρ2)
(v)|2, if ρ1 < 0, ρ2 > 0,

|1(ρ2,0)(v)− 1(ρ1,0)(v)|2, if ρ1 < 0, ρ2 < 0,

=


|1(0,ρ1)

(v)− 1(0,ρ2)
(v)|, if ρ1 > 0, ρ2 > 0,

|1(0,ρ1)
(v) + 1(ρ2,0)(v)|, if ρ1 > 0, ρ2 < 0,

|1(ρ1,0)(v) + 1(0,ρ2)
(v)|, if ρ1 < 0, ρ2 > 0,

|1(ρ2,0)(v)− 1(ρ1,0)(v)|, if ρ1 < 0, ρ2 < 0,

we have |u1 − u2|2 = |u1 − u2|.
Since u1 and u2 are supported in [−K, K] for v, if one chooses k2 > K, it follows from (54) that

E
∫
Rd+1
|u1(t, x, v)− u2(t, x, v)|ξk2(v)θk1(x)dxdv

6
∫
Rd+1
|u0,1(x, v)− u0,2(x, v)|ξk2(v)θk1(x)dxdv

+E
∫ t

0

∫
Rd+1
|u1(s, x, v)− u2(s, x, v)|ξk2 f (v) · ∇xθk1(x)dxdvds

+E
∫ t

0

∫
Rd+1
|u1(s, x, v)− u2(s, x, v)|∂v[ξk2 A(s, x, v)]θk1 dxdvds

+
d

∑
i=1

d

∑
j=1

E
∫ t

0

∫
Rd+1
|u1(s, x, v)− u2(s, x, v)|∂2

xi ,xj
θk1(x)ξk2(v)ai,j(s, v)dxdvds

6
∫
Rd+1
|u0,1(x, v)− u0,2(x, v)|θk1(x)dxdv

+E
∫ t

0

∫
Rd+1
|u1(s, x, v)− u2(s, x, v)| f (v) · ∇xθk1(x)dxdvds

+E
∫ t

0

∫
Rd+1
|u1(s, x, v)− u2(s, x, v)|[∂v A(s, x, v)]+θk1 dxdvds

+
d

∑
i=1

d

∑
j=1

E
∫ t

0

∫
Rd+1
|u1(s, x, v)− u2(s, x, v)|∂2

xi ,xj
θk1(x)ai,j(s, v)dxdvds. (55)
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By taking k1 to infinity, with the help of (17), (18), then

E
∫
Rd+1
|u1(t, x, v)− u2(t, x, v)|dxdv

6
∫
Rd+1
|u0,1(x, v)− u0,2(x, v)|dxdv

+
∫ t

0
‖[∂v A(s, ·, ·)]+‖L∞(Rd×(−K,K))E

∫
Rd+1
|u1(s, x, v)− u2(s, x, v)|dxdvds,

where K is given by (46).
Therefore

E
∫
Rd
|ρ1(t, x)− ρ2(t, x)|dx

= E
∫
Rd+1
|u1(t, x, v)− u2(t, x, v)|dxdv

6
∫
Rd+1
|u0,1(x, v)− u0,2(x, v)|dxdv exp(

∫ t

0
‖[∂v A(s, ·, ·)]+‖L∞(Rd×(−K,K))ds)

=
∫
Rd
|ρ0,1(x)− ρ0,2(x)|dx exp(

∫ t

0
‖[∂v A(s, ·, ·)]+‖L∞(Rd×(−K,K))ds). (56)

From (56), we complete the proof.
It remains to prove Corollary 1. Indeed, if one mimics the above calculations, then

E
∫
Rd+1

[u1(t, x, v)− u2(t, x, v)]dxdv

=
∫
Rd+1

[u0,1(x, v)− u0,2(x, v)]dxdv

+E
∫ t

0

∫
Rd+1

[u1(s, x, v)− u2(s, x, v)]∂v A(s, x, v)dxdvds.

Observing that

[u1(t, x, v)− u2(t, x, v)]− =
|u1 − u2| − (u1 − u2)

2
,

hence

E
∫
Rd+1

[u1(t, x, v)− u2(t, x, v)]−dxdv

=
1
2
E
∫
Rd+1
|u1(t, x, v)− u2(t, x, v)|dxdv− 1

2
E
∫
Rd+1

[u1(t, x, v)− u2(t, x, v)]dxdv

6
1
2

∫
Rd+1

[
|u0,1(x, v)− u0,2(x, v)| − u0,1(x, v) + u0,2(x, v)

]
dxdv

+
1
2
E
∫ t

0

∫
Rd+1

[
|u1(s, x, v)− u2(s, x, v)| − u1(s, x, v) + u2(s, x, v)

]
∂v A(s, x, v)dxdvds

=
∫
Rd+1

[u0,1(x, v)− u0,2(x, v)]−dxdv

+E
∫ t

0

∫
Rd+1

[u1(s, x, v)− u2(s, x, v)]−∂v A(s, x, v)dxdvds

6
∫
Rd+1

[u0,1(x, v)− u0,2(x, v)]−dxdv

+E
∫ t

0
‖[∂v A(s, ·, ·)]+‖L∞(Rd×(−K,K))

∫
Rd+1

[u1(s, x, v)− u2(s, x, v)]−dxdvds.
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The Grönwall inequality applies, one concludes

E
∫
Rd
[ρ1(t, x)− ρ2(t, x)]−dx

6
∫
Rd+1

[u0,1(x, v)− u0,2(x, v)]−dxdv exp(
∫ t

0
‖[∂v A(s, ·, ·)]+‖L∞(Rd×(−K,K))ds)

=
∫
Rd
[ρ0,1(x)− ρ0,2(x)]−dx exp(

∫ t

0
‖[∂v A(s, ·, ·)]+‖L∞(Rd×(−K,K))ds) = 0,

which implies ρ1 6 ρ2, P− a.s..

Remark 5. As a special case, one confirms the uniqueness of stochastic entropy solutions for{
dρ(t, x) + divx(F(ρ))dt + ∑d

i=1 ∂xi ρ(t, x) ◦ dWi(t) = 0, x ∈ Rd, t > 0,
ρ(t, x)|t=0 = ρ0(x) ∈ L1(Rd) ∩ L∞(Rd),

when F ∈W1,∞
loc (R;Rd). However, we can not give an affirm answer on the problem whether the weak solution

is unique or not, when F is non-regular (such as F ∈ L∞(R;Rd)).

5. Proof of Theorem 3

The conclusion will be reached in three steps, and to make the expression simpler and clearer, we
use Rd

x ×Rv instead of Rd+1.

• Step 1: σ = 0. Now (11), (12) become to{
∂tu(t, x, v) + f (v) · ∇xu(t, x, v) + A(t, v)∂vu(t, x, v) = ∂vm, (x, v) ∈ Rd

x ×Rv, t > 0,
u(t, x, v)|t=0 = χρ0(x)(v), (x, v) ∈ Rd

x ×Rv.
(57)

We begin with building the existence of weak solutions for (57) by using the
Bhatnagar-Gross-Krook approximation, i.e., for ε > 0, we regard (57) as the ε → 0 limit of the
integro-differential equation{

∂tuε(t, x, v) + f (v) · ∇xuε + A(t, v)∂vuε =
1
ε

[
χρε(t,x) − uε

]
, (x, v) ∈ Rd

x ×Rv, t > 0,
uε(t, x, v)|t=0 = χρ0(x)(v), (x, v) ∈ Rd

x ×Rv,
(58)

where ρε(t, x) =
∫
R uε(t, x, v)dv.

• Assertion 1: (58) is well-posed in L∞
loc([0, ∞); L∞(Rd

x ×Rv)) ∩ C([0, ∞); L1(Rd
x ×Rv)).

Clearly, (58)1 grants an equivalent presentation

∂tZε + f (v) · ∇xZε + A(t, v)∂vZε =
1
ε

e
t
ε χ

e−
t
ε ρ̃ε

(v),

here

Zε(t, x, v) = e
t
ε uε(t, x, v), ρ̃ε =

∫
R

Zε(t, x, v)dv.

Due to the assumptions F ∈ C1(R;Rd) and A ∈ L1
loc([0, ∞); W1,∞(R)), there is a unique global

solution to the ODE

d
dt
(X(t, x, v), V(t, v))> = ( f (V), A(t, V))>, with (X(t, x, v), V(t, v))>|t=0 = (x, v)>, (59)

for every (x, v) ∈ Rd
x ×Rv.
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Therefore, along the direction (59),

Zε(t, X(t), V(t)) =
1
ε

∫ t

0
e

s
ε χ

e−
s
ε ρ̃ε(s,X(s,x,v))

(V(s, v))ds + χρ0(x)(v),

i.e.,

uε(t, X(t), V(t)) =
1
ε

∫ t

0
e

s−t
ε χρε(s,X(s,x,v))(V(s, v))ds + e−

t
ε χρ0(x)(v).

Define J(t, V) = |∂vV(t, v)|, thanks to Euler’s formula, then

exp(−
∫ t

0
[∂v A(s, V(s))]−ds) 6 J(t, V) 6 exp(

∫ t

0
[∂v A(s, V(s))]+ds), (60)

whence, the inverse of the mapping (x, v)> 7→ (X, V)> exists and it forms a flow of homeomorphic.
We thus have

uε(t, x, v) =
1
ε

∫ t

0
e

s−t
ε χρε(s,Xt,s(x,v))(Vt,s(v))ds + e−

t
ε χρ0(Xt,0(x,v))(Vt,0(v)), (61)

where (Xt,s(x, v), Vt,s(v))> = (X−1
s,t (x, v), V−1

s,t (v))>, i.e.,{
d
dt (Xs,t(x, v), Vs,t(v))> = ( f (Vs,t), A(t, Vs,t))>, t > s,
(Xs,t(x, v), Vs,t(v))>|t=s = (X(s, x, v), V(s, v))>,

and (Xs,t(x, v), Vs,s(v))> = (X(t, X(s, x, v), V(s, v)), V(t, V(s, v)))>.
For every u ∈ L∞

loc([0, ∞); L∞(Rd
x ×Rv)) ∩ C([0, ∞); L1(Rd

x ×Rv)), we define a mapping Sε by:

(Sεu)(t, x, v) =
1
ε

∫ t

0
e

s−t
ε χρu(s,Xt,s(x,v))(Vt,s(v))ds + e−

t
ε χρu

0 (Xt,0(x,v))(Vt,0(v)), (62)

here

ρu(t, x) =
∫
R

u(t, x, v)dv, ρu
0 (x) =

∫
R

u(0, x, v)dv = ρ0(x).

We claim that Sε is well-defined in L∞
loc([0, ∞); L∞(Rd

x ×Rv))∩ C([0, ∞); L1(Rd
x ×Rv)) and locally

(in time) contractive in C([0, ∞); L1(Rd
x ×Rv)).

Initially, we collate that (62) is well-defined. Indeed,

‖Sεu‖L∞([0,T]×Rd
x×Rv)

6 1, (63)

and for every 0 < T < ∞,

sup
06t6T

∣∣∣1
ε

∫ t

0
e

s−t
ε ds

∫
Rd

x×Rv
χρu(s,Xt,s(x,v))(Vt,s(v))dxdv + e−

t
ε

∫
Rd

x×Rv
χρu

0 (Xt,0(x,v))(Vt,0(v))dxdv
∣∣∣

= sup
06t6T

∣∣∣1
ε

∫ t

0
e

s−t
ε ds

∫
Rd

x×Rv
χρu(s,x)(v) exp(

∫ t

s
∂v A(r, Vs,r(v))dr)dxdv

+ e−
t
ε

∫
Rd

x×Rv
χρu

0 (x)(v) exp(
∫ t

0
∂v A(r, V0,r(v))dr)dxdv

∣∣∣
6 exp(

∫ T

0
‖[∂v A]+‖L∞(R)(t)dt)

[
(1− e−

T
ε )‖u‖C([0,T];L1(Rd

x×Rv))
+ ‖ρu

0‖L1(Rd
x×Rv)

]
, (64)



Entropy 2019, 21, 1142 21 of 29

thus (62) is meaningful.
For every g1, g2 ∈ L∞

loc([0, ∞); L∞(Rd
x ×Rv)) ∩ C([0, ∞); L1(Rd

x ×Rv)), an analogue calculation
of (64) also leads to

‖Sεg1 − Sεg2‖C([0,T];L1(Rd
x×Rv))

6 sup
06t6T

∣∣∣1
ε

∫ t

0
e

s−t
ε ds

∫
Rd

x×Rv
|χρg1 (s,Xt,s(x,v))(Vt,s(v))− χρg2 (s,Xt,s(x,v))(Vt,s(v))|dxdv

+ e−
t
ε

∫
Rd

x×Rv
|χ

ρ
g1
0 (Xt,0(x,v))(Vt,0(v))− χ

ρ
g2
0 (Xt,0(x,v))(Vt,0(v))|dxdv

∣∣∣
= sup

06t6T

∣∣∣1
ε

∫ t

0
e

s−t
ε ds

∫
Rd

x×Rv
|χρg1 (s,x)(v)− χρg2 (s,x)(v)| exp(

∫ t

s
∂v A(r, Vs,r)dr)dxdv

+ e−
t
ε

∫
Rd

x×Rv
|χ

ρ
g1
0 (x)(v)− χ

ρ
g2
0 (x)(v)| exp(

∫ t

0
∂v A(r, V0,r(v))dr)dxdv

∣∣∣
6 exp(

∫ T

0
‖[∂v A]+‖L∞(R)dt)

[
(1− e−

T
ε )‖g1 − g2‖C([0,T];L1(Rd

x×Rv))

+‖g1,0 − g2,0‖L1(Rd
x×Rv)

]
, (65)

where g1,0 = g1(t = 0) and g2,0 = g2(t = 0).
In particular, if g1,0 = g,0 = χρ0 , from (65), for every T > 0

‖Sεg1 − Sεg2‖C([0,T];L1(Rd
x×Rv))

6 exp(
∫ T

0
‖[∂v A]+‖L∞(R)(t)dt)(1− e−

T
ε )‖g1 − g2‖C([0,T];L1(Rd

x×Rv))
.

Given above T > 0 we select T1 > 0 so small that exp(
∫ T

0 ‖[∂v A]+‖L∞(R)(t)dt)(1− e−
T1
ε ) < 1.

Then we apply the Banach fixed point theorem to find a unique uε ∈ C([0, T1]; L1(Rd
x×Rv)) solving the

Cauchy problem (58). By (63), uε ∈ L∞([0, T]; L∞(Rd
x ×Rv)), so uε(T1) ∈ L1(Rd

x ×Rv))∩ L∞(Rd
x ×Rv).

We then repeat the argument above to extend our solution to the time interval [T1, 2T1]. Continuing,
after finitely many steps we construct a solution existing on the interval (0, T) for any T > 0. From this,
we demonstrate that there exists a unique uε ∈ C([0, ∞); L1(Rd

x × Rv)) ∩ L∞
loc([0, ∞); L∞(Rd

x × Rv))

solving the Cauchy problem (58).

• Assertion 2: (Comparison principle). For every ρ0, ρ̃0 ∈ L1(Rd) ∩ L∞(Rd), the allied solutions uε

and ũε of (58) satisfy

‖[uε(t)− ũε(t)]+‖L1(Rd
x×Rv)

6 exp(
∫ t

0
‖[∂v A]+‖L∞(R)(s)ds)‖[χρ0 − χρ̃0 ]+‖L1(Rd

x×Rv)

= exp(
∫ t

0
‖[∂v A]+‖L∞(R)(s)ds)‖[ρ0 − ρ̃0]+‖L1(Rd), (66)

‖ρε(t)− ρ̃ε(t)‖L1(Rd) 6 exp(
∫ t

0
‖[∂v A]+‖L∞(R)(s)ds)‖ρ0 − ρ̃0‖L1(Rd), (67)

‖ρε(t)‖L∞(Rd) 6 exp(
∫ t

0
‖[∂v A]+‖L∞(R)(s)ds)‖ρ0‖L∞(Rd). (68)
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Furthermore, if ρ0 6 ρ̃0, for almost all (t, x, v) ∈ (0, ∞) × Rd
x × Rv, and almost all (t, x) ∈

(0, ∞)×Rd,

uε(t, x, v) 6 ũε(t, x, v), ρε(t, x) 6 ρ̃ε(t, x). (69)

Equation (69) holds mutatis mutandis from (66) and u(t, x, v) = χρ(t,x)(v), it is sufficient to
show (66)–(68). Since the calculations for (67) and (68) are analogue of (66), we only show (66) here.
Let λε = [uε − ũε]+, by an approximation argument, it leads to

∂tλε(t, x, v) + f (v) · ∇xλε + A(t, v)∂vλε =
1
ε

[
χρε(t,x) − χρ̃ε(t,x) − (uε − ũε)

]
signλε, (70)

in (0, ∞)×Rd
x ×Rv, with the initial data

λε|t=0 = [χρ0(x)(v)− χρ̃0(x)(v)]+. (71)

Obviously, we have the following facts:[
χρε(t,x) − χρ̃ε(t,x) − (uε − ũε)

]
signλε =

[
χρε(t,x) − χρ̃ε(t,x)]signλε − λε, (72)

and ∫
R

[
χρε(t,x)(v)− χρ̃ε(t,x)(v)]signλε(t, x, v)dv 6

∫
R

λε(t, x, v)dv. (73)

Indeed, when ρε 6 ρ̃ε, (73) is nature and reversely,∫
R

[
χρε(t,x)(v)− χρ̃ε(t,x)(v)]signλε(t, x, v)dv 6

∫
R

[
χρε(t,x)(v)− χρ̃ε(t,x)(v)]dv

=
∫
R
[uε − ũε]dv

6
∫
R

λε(t, x, v)dv.

By (72), (73), from (70) it follows that

∂t

∫
R

λε(t, x, v)dv +
∫
R

f (v) · ∇xλεdv 6
∫
R

∂v A(t, v)λεdv 6 ‖[∂v A(t)]+‖L∞(R)

∫
R

λεdv,

which suggests that for every ϕ ∈ D(Rd),

d
dt

∫
Rd

x×Rv
λε(t, x, v)ϕ(x)dxdv 6

∫
Rd

x×Rv
f (v) · ∇x ϕλεdxdv + ‖[∂v A(t)]+‖L∞(R)

∫
Rd

x×Rv
λε ϕdxdv.

For every k ∈ N, we can choose ϕ such that for every 0 6 |x| 6 k, ϕ(x) = 1, then by letting k tend
to infinity, one deduces

d
dt

∫
Rd

x×Rv
λε(t, x, v)dxdv 6 ‖[∂v A(t)]+‖L∞(R)

∫
Rd

x×Rv
λε(t, x, v)dxdv. (74)

On account of the fact: for every α1, α2 ∈ R,∫
R
[χα1(v)− χα2(v)]+dv = [α1 − α2]+, (75)

from (74), by (71) and a Grönwall type argument, one arrives at (66).
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• Assertion 3: With locally uniform convergence topology, {uε} is pre-compact in C([0, ∞); L1(Rd
x ×

Rv)) and {ρε} is pre-compact in C([0, ∞); L1(Rd)).

From (66) (with a slight change), we have for every (x̃, ṽ) ∈ Rd
x ×Rv, t ∈ (0, ∞),

‖uε(t, x̃ + ·, ṽ + ·)− uε(t, ·, ·)‖L1(Rd
x×Rv))

6
1
ε

∫ t

0
e

s−t
ε ‖uε(s, x̃ + ·, ṽ + ·)− uε(s, ·, ·)‖L1(Rd

x×Rv)
exp(

∫ t

s
‖[∂v A]+‖L∞(R)(r)dr)ds

+e−
t
ε

∫
Rd

x×Rv
|χρ0(x+x̃)(v + ṽ)− χρ0(x)(v)|dxdv exp(

∫ t

0
‖[∂v A]+‖L∞(R)(r)dr).

Thus

‖uε(t, x̃ + ·, ṽ + ·)− uε(t, ·, ·)‖L1(Rd
x×Rv)

6
∫
Rd

x×Rv
|χρ0(x+x̃)(v + ṽ)− χρ0(x)(v)|dxdv exp(

∫ t

0
‖[∂v A]+‖L∞(R)(s)ds).

With the aid of (75), then for ṽ = 0, it follows that

‖ρε(t, x̃ + ·)− ρε(t, ·)‖L1(Rd)

=
∫
Rd

x

∣∣∣ ∫
Rv

uε(t, x̃ + x, v)dv−
∫
R

uε(t, x, v)dv
∣∣∣dx

6
∫
Rd

x×Rv
|uε(t, x̃ + x, v)− uε(t, x, v)|dxdv

6
∫
Rd

x×Rv
|χρ0(x+x̃)(v)− χρ0(x)(v)|dxdv exp(

∫ t

0
‖[∂v A]+‖L∞(R)(r)dr),

which implies for every 0 < T < ∞, {uε} is contained in a compact set of C([0, T]; L1
loc(R

d
x × Rv)),

{ρε} is pre-compact in C([0, T]; L1
loc(R

d)). Hence by appealing to the Arzela-Ascoli theorem, with any
sequence {εk}, εk → 0 as k→ ∞, is associated two subsequences (for ease of notation, we also denote
them by themselves) {uεk} and {ρεk}, such that

uεk −→ u ∈ C([0, T]; L1
loc(R

d
x ×Rv)), ρεk −→ ρ ∈ C([0, T]; L1

loc(R
d)), as k→ ∞.

On the other hand, by (63) and the lower semi-continuity,

u ∈ L∞
loc([0, ∞); L∞(Rd

x ×Rv)) ∩ C([0, ∞); L1(Rd
x ×Rv)),

ρ ∈ L∞
loc([0, ∞); L∞(Rd)) ∩ C([0, ∞); L1(Rd)).

• Assertion 4: 1
ε

[
χρε − uε

]
= ∂vmε, where mε > 0 is continuous in t and bounded uniformly in ε.

Let (t, x) ∈ (0, ∞)×Rd be fixed, assuming without loss of generality that ρε > 0, define

mε(t, x, v) =
1
ε

∫ v

−∞

[
χρε(t,x)(r)− uε(t, x, r)

]
dr.

In view of (61),

uε(t, x, r) ∈
{

[0, 1], when r > 0,
[−1, 0], when r < 0.
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Hence mε(t, x, v) is non-decreasing on (−∞, ρε) and non-increasing on [ρε, ∞). On the other hand,
mε(t, x,−∞) = mε(t, x, ∞) = 0, we conclude mε > 0.

Since ρ0 ∈ L1(Rd) ∩ L∞(Rd), owing to (60), (61) and (68), and the condition A ∈
L1

loc([0, ∞); W1,∞(R)), then

suppmε ⊂ [0, T]×Rd
x × [−K, K],

where K = ‖ρ‖L∞((0,T)×Rd) exp(
∫ T

0 ‖∂v A(t)‖L∞(R)ds).
For the above fixed T > 0,∫ T

0
dt
∫
Rd

dx
∫
R

mε(t, x, v)dv

=
∫ T

0
dt
∫
Rd

dx
∫ K

−K
dv
∫ v

−K
[∂tuε + f (r) · ∇xuε + A(t, r)∂ruε]dr

=
∫ T

0
dt
∫
Rd

dx
∫ K

−K
dv
∫ v

−K
[∂tuε(t, x, r) + A(t, r)∂ruε]dr

6 2K[‖uε(T)‖L1(Rd
x×Rv)

+ ‖uε(0)‖L1(Rd
x×Rv)

] +
∫ T

0
dt
∫
Rd

dx
∫ K

−K
A(t, v)uε(t, x, v)dv

−
∫ T

0
dt
∫
Rd

dx
∫ K

−K
dv
∫ v

−K
∂r A(t, r)uε(t, x, r)dr.

Combining (68), we arrive at

∫ T

0
dt
∫
Rd

dx
∫
R

mε(t, x, v)dv

6 4K2‖ρ0‖L1(Rd) + (1 + 2K)
∫ T

0
dt
∫
Rd

dx
∫ K

−K
‖∂v A(t)‖W1,∞(R)|uε(t, x, v)|dv.

Whence mε is bounded uniformly in ε.
By extracting a unlabeled subsequence, one achieves

mε → m > 0 in D′([0, ∞)×Rd
x ×Rv).

In order to show that m yields the properties stated in Theorem 1, it suffices to check that it is
continuous in t, and by a translation, it remains to demonstrate the continuity at zero. But this fact is
obvious, so the required result is complete.

• Assertion 5: u(t, x, v) = χρ(t,x)(v) and ρ solves (23), (2) with Mi ≡ 0 (1 6 i 6 d). In addition,
for every ρ0, ρ̃0 ∈ L1(Rd) ∩ L∞(Rd), the related solutions u and ũ of (57) fulfill

‖[u(t)− ũ(t)]+‖L1(Rd
x×Rv)

6 exp(
∫ t

0
‖[∂v A]+‖L∞(R)(s)ds)‖[χρ0 − χρ̃0 ]+‖L1(Rd

x×Rv)

= exp(
∫ t

0
‖[∂v A]+‖L∞(R)(s)ds)‖[ρ0 − ρ̃0]+‖L1(Rd), (76)

‖ρ(t)− ρ̃(t)‖L1(Rd 6 exp(
∫ t

0
‖[∂v A]+‖L∞(R)(s)ds)‖ρ0 − ρ̃0‖L1(Rd), (77)

‖ρ(t)‖L∞(Rd) 6 exp(
∫ t

0
‖[∂v A]+‖L∞(R)(s)ds)‖ρ0‖L∞(Rd). (78)
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Furthermore, if ρ0 6 ρ̃0, for almost all (t, x, v) ∈ (0, ∞) × Rd
x × Rv, and almost all (t, x) ∈

(0, ∞)×Rd,

u(t, x, v) 6 ũ(t, x, v), ρ(t, x) 6 ρ̃(t, x). (79)

In particular, if ρ0 > 0, then u > 0, ρ > 0.
Observing that uε → u, ρε → ρ and mε → m, so uε(t, x, v)− χρε(v) → 0 and then u = χρ(t,x)(v).

Moreover, ρ is a weak solution of (57).
With the help of (66)–(69), the rest of the assertion is clear.
Step 2: Existence of stochastic weak solutions to the Cauchy problem:{

∂tu + f (v) · ∇xu + ∑d
i=1 ∂xi u ◦ Ṁi(t) + A(t, v)∂vu = ∂vm, (x, v) ∈ Rd

x ×Rv, t > 0,
u(t, x, v)|t=0 = χρ0(v), (x, v) ∈ Rd

x ×Rv.
(80)

Before handling the general σ, we review some notions. For any a ∈ Rd, set τa by

τa ϕ(x) = ϕ(x + a), for every ϕ ∈ C(Rd),

and the pullback mapping of m by τ∗a is defined by

τ∗a m(φ̃) = m(τ−aφ̃) =
∫ ∞

0
dt
∫
Rd

dx
∫
R

φ̃(t, x− a, v)dv,

for every φ̃ ∈ D([0, ∞)×Rd
x ×Rv).

Let us consider the Cauchy problem below{
∂tũ(t, x, v) + f (v) · ∇xũ + A(t, v)∂vũ(t, x, v) = τ∗M(t)∂vm, (x, v) ∈ Rd

x ×Rv, t > 0,

ũ(t, x, v)|t=0 = χρ0(x)(v), (x, v) ∈ Rd
x ×Rv.

(81)

The arguments employed in (57) for ∂vm adapted to τ∗M(t)∂vm = ∂vτ∗M(t)m in (81) now,

produces that there is a ũ(ω) ∈ L∞
loc([0, ∞); L∞(Rd

x × Rv)) ∩ C([0, ∞); L1(Rd
x × Rv)) solving (81).

Note that τ∗M(t)∂vm is Ft-adapted with values in D′(Rd
x × Rv), thus for every φ ∈ D(Rd

x × Rv),∫
Rd

x×Rv
ũ(t, x, v)φ(x, v)dxdv is Ft-adapted. Besides, by Assertion 5, ũ ∈ L∞(Ω; L∞

loc([0, ∞); L∞(Rd
x ×

Rv))) ∩ C([0, ∞); L1(Rd
x ×Rv ×Ω)).

Hence, upon using Itô-Wentzell’s formula (see [38]) to G(y) =
∫
Rd

x×Rv
ũ(t, x, v)φ(x + y, v)dxdv,

one gains∫
Rd

x×Rv
ũ(t, x, v)φ(x + Mt, v)dxdv−

∫
Rd

x×Rv
χρ0(x)(v)φ(x, v)dxdv

=
∫ t

0
ds
∫
Rd

x×Rv
ũ f (v) · ∇xφ(x + Ms, v)dxdv +

∫ t

0
ds
∫
Rd

x×Rv
ũ∂v[A(s, v)φ(x + Ms, v)]dxdv

+
d

∑
i=1

∫ t

0
Mi(◦ds)

∫
Rd

x×Rv
ũ(s, x, v)∂xi φ(x + Ms, v)dxdv−

∫ t

0

∫
Rd

x×Rv
∂vφ(x, v)m(ds, dx, dv).

Let u(t, x, v) = ũ(t, x − Mt, v), then ũ ∈ L∞(Ω; L∞
loc([0, ∞); L∞(Rd

x × Rv))) ∩ C([0, ∞); L1(Rd
x ×

Rv ×Ω)), which is Ft-adapted, and
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∫
Rd

x×Rv
u(t, x, v)φ(x, v)dxdv−

∫
Rd

x×Rv
χρ0(x)(v)φ(x, v)dxdv

=
∫ t

0
ds
∫
Rd

x×Rv
u(s, x, v) f (v) · ∇xφ(x, v)dxdv +

∫ t

0
ds
∫
Rd

x×Rv
u(s, x, v)∂v[A(s, v)φ(x, v)]dxdv

+
d

∑
i=1

∫ t

0
Mi(◦ds)

∫
Rd

x×Rv
u(s, x, v)∂xi φ(x, v)dxdv−

∫ t

0

∫
Rd

x×Rv
∂vφ(x, v)m(ds, dx, dv). (82)

Thanks to (82) and Remark 3, hence there exists a stochastic weak solution to (80).
Step 3: Existence of stochastic entropy solutions to (23), (2).
Due to Step 2, one claims that

u(t, x, v) = χρ(t,x)(v) and ρ ∈ L∞(Ω; L∞
loc([0, ∞); L∞(Rd))) ∩ C([0, ∞); L1(Rd ×Ω)).

Theorem 1 (ii) applies, ρ is a stochastic entropy solution of (23), (2).

Remark 6. When A(t, ρ) = ξ(t)ρ(t, x), then analogue calculations of (77), (78) also yield that

‖ρ(t)‖Lι(Rd) 6 exp(
∫ t

0
ξ(s)ds)‖ρ0‖Lι(Rd), for t ∈ [0, ∞) and ι = 1 or ∞.

Whence for every p ∈ [1, ∞],

‖ρ(t)‖Lp(Rd) 6 C exp(
∫ t

0
ξ(s)ds). (83)

If there is a positive real number c > 0 such that ξ 6 −c, then with probability one, the unique stochastic
entropy solution ρ is exponentially stable. If for some real number α1, r1 > 0, ξ possesses the below form

ξ(t) =

{
− α1

t , when t ∈ (r1, ∞),
ξ1(t), when t ∈ [0, r1],

where ξ1 ∈ L1([0, r1]), then from (83),

‖ρ(t)‖Lp(Rd) 6

{
C, t ∈ [0, r1],
C

tα1 , t ∈ [r1, ∞),

which implies ρ is asymptotically stable.

6. Conclusions

In recent years, people have made broad research about the uniqueness and existence of solutions
for the conservation law

∂tρ(t, x) + divx(F(ρ)) = 0, x ∈ Rd, t > 0, (84)

with a stochastic perturbation. Most of these works are concentrated on the multiplicative type:

dρ(t, x) + divx(F(ρ))dt = A(t, x, ρ)dW̃(t), x ∈ D, t > 0, (85)
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where W̃ is a 1-dimensional Wiener process or a cylindrical Wiener process, D ⊂ Rd is a bounded
domain or D = Rd. However, for Equation (85), if we take the spatial average for ρ, then it satisfies

∫
D

ρ(t, x)dx =
∫

D
ρ0(x)dx +

∫ t

0

∫
D

A(s, x, ρ(s, x))dxdW̃(s).

It seems difficult to provide any bound on the average for the last term in the above identity. So
the mass is not preserved in general. But if one considers the scalar conservation (84) with the noise
given by ∑d

i=1 ∑n
j=1 ∂xi Bi,j(t, ρ) ◦ dWj(t),

dρ(t, x) + divx(F(ρ))dt +
d

∑
i=1

n

∑
j=1

∂xi Bi,j(t, ρ) ◦ dWj(t) = 0, x ∈ D, t > 0, (86)

then ∫
D

ρ(t, x)dx =
∫

D
ρ0(x)dx.

Therefore, with such noise, the mass is preserved exactly. From the point of this view, the noise given
here is more reasonable, and compared with the existing research works [5–18], this idea is new.

On the other hand, when we discuss the conservation law (84), L∞ is a natural space on which
the solutions are well-posed. But if one perturbs the Equation (84) by the noise A(t, x, ρ)dW̃(t), even
the initial data is bounded, the solution is not bounded since the maximum principle is not available.
Therefore, L∞ is not a natural space on which the solutions exist. Even though, if we assume further
that A has compact support, then L∞ solutions will exist [5,6]. However, in the present paper, by using
the stochastic kinetic formulation, we also found the existence for bounded solutions without the
compact support assumptions on coefficients for stochastic balance law (1). Moreover, we prove
the uniqueness for stochastic entropy solutions without any assumptions on the growth rates of the
coefficients to (1). Compared with the known results, the existence and uniqueness for stochastic
entropy solutions established in the present paper are new as well.
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