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Abstract: In multi-modality image fusion, source image decomposition, such as multi-scale transform
(MST), is a necessary step and also widely used. However, when MST is directly used to decompose
source images into high- and low-frequency components, the corresponding decomposed components
are not precise enough for the following infrared-visible fusion operations. This paper proposes
a non-subsampled contourlet transform (NSCT) based decomposition method for image fusion,
by which source images are decomposed to obtain corresponding high- and low-frequency sub-bands.
Unlike MST, the obtained high-frequency sub-bands have different decomposition layers, and each
layer contains different information. In order to obtain a more informative fused high-frequency
component, maximum absolute value and pulse coupled neural network (PCNN) fusion rules are
applied to different sub-bands of high-frequency components. Activity measures, such as phase
congruency (PC), local measure of sharpness change (LSCM), and local signal strength (LSS), are
designed to enhance the detailed features of fused low-frequency components. The fused high- and
low-frequency components are integrated to form a fused image. The experiment results show that
the fused images obtained by the proposed method achieve good performance in clarity, contrast,
and image information entropy.

Keywords: image fusion; image entropy; PCNN; infrared and visible fusion; image decomposition;
phase congruency

1. Introduction

Both infrared and visible images are widely used in daily life. Due to the difference in wavelength,
infrared and visible light contain different image information. Infrared images can reflect all the
objects that emit infrared radiation. Visible-light images can provide the scene details. No matter
whether an infrared or visible-light image, it is difficult for an image captured by a single shot to
contain all-in-focus images in one scene. Infrared-visible fusion techniques can effectively combine
the complementary information, which are the indicative features and detailed information extracted
from infrared and visible images, respectively [1]. In the fused infrared-visible image, the targeted
item can be highlighted and the corresponding indicative features as well as detailed information are
retained. At present, image fusion techniques as a type of image pre-processing methods, especially
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for infrared-visible image fusion, have been widely applied to the target recognition in different
environments, such as smart city, battlefield, remote sensing, and so on [2,3].

In recent years, transform domain based methods have become the mainstream in infrared-visible
image fusion, which include pyramid, wavelet transform, multi-scale geometric transform, sparse
representation [4,5], and so on. Pyramid, wavelet transform, and multi-scale geometric transform
can be categorized as MST-based methods. MST-based methods have three main steps. First, MST is
employed to decompose each source image into high-frequency sub-bands at different scales and
directions as well as one low-frequency sub-band. Then, the obtained high- and low-frequency
sub-bands are fused separately following different fusion rules. Finally, the fused image is obtained
by performing the inverse MST on both fused high- and low-frequency sub-bands. Double-tree
complex wavelet transform as a kind of wavelet transform can only capture a limited amount of edge
information, but cannot correctly and effectively represent the discontinuity of lines and curves [6].
As a true two-dimensional (2D) multi-scale geometric analysis method, contourlet transform (CT)
possesses localization, multi-resolution, multi-scale, multi-direction, and anisotropy.

As a shift-invariant version of CT, NSCT performs well in transform domain, and has been
widely used in image fusion. NSCT has multi-scale and multi-direction features, which can solve
the limitations of traditional wavelet methods in the representation of image curves and edges [7].
Compared with traditional MST-based image fusion methods, NSCT has shift invariance and also
suppresses pseudo-Gibbs phenomenon [8,9]. Based on the above advantages, Liu proposed a general
image fusion framework based on MST and sparse representation (SR) [10]. It overcomes the
shortcomings of MST- and SR-based fusion methods at the same time. However, redundancy and loss
of residue exist in this method [11]. Li proposed an infrared-visible image fusion method based on
PC information, which fuses PC information into the coefficients of frequency bands [12]. However,
the computational complexity of this fusion method is high.

In traditional infrared-visible images, the target information cannot be extracted effectively. Ding
proposed an infrared-visible image fusion method based on non-downsampling shear transform
(NSST) and sparse structure features [13]. First, source images are decomposed into high-
and low-frequency sub-band coefficients. According to the advantages of principal component
analysis (PCA) in principle information extraction, the PCA-based method is then used to fuse the
low-frequency sub-band coefficients. At the same time, a new sparse-feature extraction method of
high-frequency sub-band coefficients is proposed, which fuses the high-frequency components of
source images. Finally, a fused image is obtained by inverse NSST. An infrared-visible image fusion
method that integrates NSST and spiking cortical model was proposed by Kong [14]. This method uses
NSST to reconstruct the decomposed components, which not only makes the fused image have good
performance in human-eye visualization, but also effectively reduces the computational complexity.
On the other hand, the fusion of different-scales and -direction sub-images can be realized by using
a spiking cortical model. Xiang proposed an infrared-visible image fusion algorithm based on an
adaptive dual-channel unit-linking PCNN in an NSCT domain [15]. This algorithm uses NSCT to
decompose source images in multiple scales and directions. In order to make the adaptive dual-channel
PCNN, the average gradient of each pixel is taken as the connection strength, and the time matrix
adaptively determines the number of iterations. In the fusion process, a low-frequency sub-band and
the modified spatial-frequency Laplacian of a high-frequency sub-band are used as input to excite the
adaptive dual-channel unit-linking PCNN. Zhang proposed an NSCT-based infrared image fusion
method, which used an adaptive Gaussian (AG) fuzzy membership method, compressed sensing
(CS) technique, and total variation (TV) based gradient descent reconstruction algorithm to do the
fusion calculation of infrared-visible image [8]. Wang proposed an infrared-visible image fusion
method that integrates data compression based on sparse representation and compressed sensing [16].
This method first performs random projection compression on the remote sensing data, and then
obtains the sparse coefficients of the compressed sample by sparse representation. Finally, fusion
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coefficients are combined with fusion influence factors, and the fused image is reconstructed by fusing
sparse coefficients.

This paper proposes a novel precise decomposition framework for infrared-visible image fusion,
in which image energy and details can be preserved well. First, NSCT is used to decompose source
images to obtain corresponding high- and low-frequency components. The high-frequency sub-bands
of each decomposed layer contain different information. For the top decomposed layer, the activity
level of high-frequency coefficients is measured by a PCNN model [17]. For other decomposed layers,
the absolute value of each high-frequency coefficient is taken as the activity level value following
the absolute (ABS) maximum rule [10]. For low-frequency bands, PC is used as the image feature,
whose value is not affected by image brightness, contrast, and illumination intensity. According to the
information of PC, LSCM, and LSS, the low-frequency fusion rule is formulated. This rule enhances
the detailed features of each source image. Finally, the fused image is reconstructed by performing
inverse NSCT on the fused high- and low-frequency images. The main contributions of this paper can
be summarized as follows:

• The high- and low-frequency components of source images are processed separately based on
their own features.

• It applies PCNN and ABS to high-frequency sub-bands of different layers, which achieves a more
precise decomposition of high-frequency components.

• The proposed image fusion algorithm can capture the details of source images well by integrating
the advantages of NSCT, PCNN, and PC.

The rest of the sections of this paper are structured as follows: Section 2 proposes an
infrared-visible image fusion framework based on an NSCT domain and specifies the corresponding
technical details; Section 3 analyzes the results of comparative experiments; and Section 4 concludes
this paper.

2. The Proposed Algorithm

The proposed infrared-visible image fusion framework is shown in Figure 1, which has four
main steps: image decomposition, the fusion of both high- and low-frequency sub-bands, and image
reconstruction. It decomposes source images into 5-layer high- and low-frequency sub-bands first.
Then, it applies different methods to the fusion of high- and low-frequency sub-bands, respectively.
The decomposed high-frequency sub-bands are further categorized into two parts, Hl,k

A,l<5, Hl,k
B,l<5,

and Hl,k
A,l=5, Hl,k

B,l=5. Hl,k
A,l<5 and Hl,k

B,l<5 are fused by the method of maximum absolute value.
The fused high-frequency sub-bands contain the overall image structure information. PCNN is
used to fuse Hl,k

A,l=5 and Hl,k
B,l=5. (The related details are explained in the following paragraph.)

The fused low-frequency sub-bands retain the detailed information and the residual image information.
Finally, it combines the fused high- and low-frequency sub-bands, which can make the fused image
more informative.
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Figure 1. The proposed infrared-visible image fusion framework.

2.1. NSCT

NSCT can overcome the frequency aliasing phenomenon caused by upsampling and
downsampling on CT [18,19]. NSCT is a discrete image calculation framework that achieves
shift-invariant, multi-scale, and multi-direction by using non-subsampled pyramid filter banks
(NSPFBs) and non-subsampled directional filter banks (NSDFBs). Thus, the proposed solution uses
NSCT to decompose source images into high- and low-frequency components.

Two source images are decomposed into high-frequency
{

Hl,k
A , Hl,k

B

}
and low-frequency {LA, LB}

bands by performing L-level NSCT decomposition. Hl,k
A and Hl,k

B represent the high-frequency
components at the decomposition level l and direction k of source image A and B, respectively, while
LA and LB are the corresponding low-frequency components of source image A and B, respectively.

2.2. Fusion of High-Frequency Sub-Bands

The high-frequency sub-bands of different decomposed layers contain different information,
which retains the overall image structure information. The maximum absolute value and PCNN fusion
rules are applied to the fusion of different high-frequency sub-bands, which ensures that the structure
information of source images is retained.
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As shown in Equation (1), for the high-frequency sub-bands of the decomposed layer l = 5,
the activity level of high-frequency coefficients is measured by PCNN fusion rule. In our previous
experiments, we used the different number of decomposition layers to test the performance of the
proposed solution many times. According to the objective evaluation metrics, the corresponding results
were compared. There is one trade-off between the performance and processing time. The performance
of four decomposition layers is poor, and the processing time of six decomposition layers is long. Five
decomposition layers can use a relatively short time to achieve a good performance in PCNN fusion.
The proposed solution uses two different methods to fuse the high-frequency sub-bands from five
decomposition layers. The method of maximum absolute value is used to fuse the high-frequency
sub-bands from 1–4 layers. PCNN is applied to the fusion of the high-frequency sub-bands from the
5th layer. The fusion effects of the high-frequency sub-bands can be effectively improved, which is
confirmed by the comparative experiments:

Hl,k
F (i, j) = Hl,k

F (i, j)l=5 + Hl,k
F (i, j)l<5. (1)

In Equation (1), Hl,k
F (i, j) represents the fused high-frequency coefficients. Hl,k

F (i, j)l=5 represents
the 5-level high-frequency fusion coefficients, which can be obtained by Equation (2). Equation (2)
integrates the PCNN model, in which the entropy of the absolute value of high-frequency band is used
as the network input. Then, the PCNN excitation times of high-frequency components Ml,k

A,ij [N] and

Ml,k
B,ij [N] are calculated by Equation (3), where N denotes the number of iterations:

Hl,k
F (i, j)l=5 =


Hl,k

A (i, j)l=5, i f Ml,k
A,ij [N] ≥ Ml,k

B,ij [N],

Hl,k
B (i, j)l=5, otherwise,

(2)

Mij [n] = Mij [n− 1] + Pij [n] , (3)

where Pij [n] denotes the output model of PCNN [17].
Figure 2 shows the architecture of PCNN model used in the proposed image fusion method.

In PCNN, Fij[n] and Lij[n] are the feeding input and the linking input of the neuron at position (x, y)
in iteration n, respectively, which can be obtained by Equations (4) and (5).

Figure 2. Architecture of the PCNN model used in the proposed method.
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Fij[n] = Sij, (4)

Lij[n] = VL ∑
kl

Wijkl Pkl [n− 1], (5)

where Fij[n] is related to the intensity of input image Sij during the whole iteration process. Lij[n]
is associated with the previous exciting status of eight surrounding neurons through the synaptic
weights shown in Equation (6):

Wijkl =

 0.5 1.0 0.5
1.0 0.0 1.0
0.5 1.0 0.5

 . (6)

The parameter VL represents the amplitude of linking input. Uij[n] is the internal activity that
consists of two terms, which can be calculated by Equation (7):

Uij[n] = e−a f Uij[n− 1] + Fij[n](1 + βLij[n]). (7)

In the first term, e−a f Uij[n − 1] is a decay of its previous value, where the parameter a f is an
exponential decay coefficient. The second term Fij[n](1 + βLij[n]) denotes the nonlinear modulation of
Lij[n] and Fij[n], where the parameter β is the linking strength. The output module Pij[n] of the PCNN
has two statuses, including excited (Pij[n] = 1) and unexcited (Pij[n] = 0):

Pij[n] =

{
1, if Uij[n] > Eij[n− 1],
0, otherwise,

(8)

Eij[n] = e−ae Eij[n− 1] + VEPij[n]. (9)

The status depends on its two inputs, which are current internal activity Uij[n] and previous
dynamic threshold Eij[n − 1]. According to Equation (9), the iteration is updating the dynamic
threshold, where ae and VE are the exponential decay coefficient and the amplitude of Eij[n],
respectively.

Similarly, Hl,k
F (i, j)l<5 represents the 1-to-4 level high-frequency fusion coefficients, which can be

obtained by Equation (10):

Hl,k
F (i, j)l<5 =


Hl,k

A (i, j)l<5,
Entropy(Hl,k

A l<5)

≥ Entropy(Hl,k
B l<5),

Hl,k
B (i, j)l<5, otherwise.

(10)

In Equation (10), Entropy(Hl,k
A l<5) and Entropy(Hl,k

B l<5) represent the information entropy of

high-frequency components Hl,k
A and Hl,k

B , respectively. The information entropy of high frequency
component Hl,k

x can be calculated by Equation (11):

Entropy(Hl,k
x ) =

1
m× n

n

∑
j=1

m

∑
i=1

log2

∣∣∣Hx
l,k(i, j)

∣∣∣, (11)

where m and n are the total column and row number of Hl,k
x , and |Hx

l,k(i, j)| is the maximum entropy
of the ABS. The maximum entropy of the ABS is used as the fusion measurement of high-frequency
sub-bands.
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2.3. Fusion Rule of Low-Frequency Sub-Bands

The low-frequency sub-bands of NSCT filtered images mainly describe the detailed information
that corresponds to the texture and edge information of source images. In medical imaging, organ or
cell lesions are often identified by the detailed information. Thus, the enhancement of detailed features
from each source image is the key of low-frequency sub-bands fusion.

This paper uses PC to enhance image features that make low-frequency sub-bands more
informative. PC as a dimensionless measure can evaluate the significance of each image feature.
In low-frequency sub-bands, PC value reflects the sharpness of image object. Thus, PC is used as the
phase of the coefficient with maximal local sharpness. Since an image can be regarded as 2D signals [9],
PC of an image pixel at location (x,y) can be calculated by Equation (12).

PC(x, y) =
∑k Eθk (x, y)

ε + ∑n ∑k An,θk (x, y)
(12)

where θk is the orientation angle at k scale [9], An,θk denotes the amplitude of the n-th Fourier
component, and angle θk, ε is a positive constant to remove the PC components of image signals.
Eθk (x, y) can be calculated by Equation (13):

Eθk (x, y) =
√

F2
θk (x, y) + H2

θk (x, y), (13)

where Fθk (x, y) = ∑n bn,θk (x, y) and Hθk (x, y) = ∑n cn,θk (x, y). bn,θk (x, y) and cn,θk (x, y) are the
convolution results of input image pixel at location (x,y), which can be evaluated by Equation (14):

[bn,θk (x, y), cn,θk (x, y)] = [IL(x, y) ∗Mb
n, I(x, y) ∗Mc

n], (14)

where IL(x, y) is the low-frequency image pixel value at location (x, y). Mb
n and Mc

n are the even- and
odd-symmetry filters of 2D log-Gabor at scale n. As a contrast invariant, PC has defects that do not
reflect the local contrast changes. To compensate the lack of PC, a measure of sharpness change (SCM)
shown in Equation (15) is developed:

SCM (x, y) = ∑
(x0,y0)∈Ω0

(IL (x, y)− IL (x0, y0))
2, (15)

where Ω0 represents a local area at location (x, y). Meanwhile, LSCM shown in Equation (16) is
introduced to calculate the contrast of location (x, y) neighborhood:

LSCM (x, y) =
M

∑
i=−M

N

∑
j=−N

SCM (x + i, y + j), (16)

where (2M + 1)× (2N + 1) denotes the neighborhood size. Since LSCM and PC cannot fully reflect
the local signal strength, LSS shown in Equation (17) is introduced:

LSS (x, y) = Max
i∈(−M,M)

Max
j∈(−N,N)

∣∣xij − µMN
∣∣ , (17)

where xij is the pixel in location of this image patch, µMN represents the mean value of this image
patch.
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As shown in Equation (18), a global measurement (GM) is proposed that integrates PC, LSCM,
and LSS complements to measure different aspects of image information:

GM (x, y) = (PC (x, y))α · (LSCM (x, y))β · (LSS (x, y))γ, (18)

where α, β, and γ are the parameters used in GM to adjust PC, LSCM, and LSS, respectively. When
GM is obtained, the fused image of low-frequency sub-bands can be calculated by the rule proposed in
Equation (19):

LF(x, y) =

{
LA (x, y), i f LmapA (x, y) = 1,
LB (x, y), otherwise,

(19)

where LF(x, y), LA(x, y), LB(x, y) are low-frequency sub-bands of the fused image, source image IA
and IB, respectively. Lmapi (x, y) denotes a decision map for the fusion of low-frequency sub-bands,
which can be calculated by Equation (20):

Lmapi (x, y) =

{
1, i f dΦi (x, y)e > M̃×Ñ

2 ,
0, otherwise,

(20)

where de is the cardinality of a set, and Φi(x, y) can be calculated by Equation (21). The cardinality of a
set is helpful to obtain the abundant image details and structure information:

Φi (x, y) =


(x0, y0) ∈ Ω1|GMi (x0, y0) ≥
max(GM1 (x0, y0) , ..., GMi−1 (x0, y0) ,
GMi+1 (x0, y0) , ..., GMK (x0, y0))

 (21)

where Ω1 represents a sliding window with a size of M̃× Ñ centered at location (x,y), and K is the
number of source images. GM defined in Equation (18) is expressed as a general term. In Equation (21),
the subscript of GM is used to select the corresponding maximum value from source images.

For input source images A and B, the high-frequency components
{

Hl,k
A , Hl,k

B

}
and low-frequency

components {LA, LB} are first obtained by NSCT decomposition. The activity level of high-frequency
components

{
Hl,k

A , Hl,k
B

}
is then measured by using the absolute maximum rule and PCNN model.

Meanwhile, it applies PC to the fusion of low-frequency components. Finally, the fused high- and
low-frequency components HF and LF are inversely transformed by NSCT to obtain the fused image
IF . Algorithm 1 shows the main steps of the proposed infrared-visible image fusion solution.
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Algorithm 1 The proposed infrared-visible image fusion algorithm

Input:

source image A and B

Parameters: decomposition layer l, decomposition direction k
Output:

fused image F
1: for each source image A and B do

2: Decompose source image A and B into corresponding high- and low-frequency sub-bands{
Hl,k

A , Hl,k
B

}
and {LA, LB} by NSCT respectively

3: end for
4: for each decomposed layer do

5: if the decomposed layer l = 5 of high-frequency sub-bands then

6: Measure the activity level of high-frequency coefficients by PCNN.
7: Obtain the 5th layer fusion coefficient of high-frequency sub-bands by PCNN as follows:

Hl,k
F (i, j)l=5 =

{
Hl,k

A (i, j)l=5, i f Ml,k
A,ij [N] ≥ Ml,k

B,ij [N]

Hl,k
B (i, j)l=5, otherwise

8: end if
9: if the decomposed layer l < 5 of high-frequency sub-bands then

10: Use the maximum entropy of the ABS of coefficient as the actually measured value of activity

level.
11: Obtain the first four-layer coefficients of high-frequency sub-bands as follows:

Hl,k
F (i, j)l<5 =


Hl,k

A (i, j)l<5,
Entropy(Hl,k

A l<5)

≥ Entropy(Hl,k
B l<5)

Hl,k
B (i, j)l<5, otherwise

12: end if
13: The obtained image of high-frequency sub-bands is Hl,k

F (i, j) = Hl,k
F (i, j)l=5 + Hl,k

F (i, j)l<5
14: end for
15: for each source image A and B do

16: It uses PC, LSCM, and LSS to design GM:

GM (x, y) = (PC (x, y))α · (LSCM (x, y))β · (LSS (x, y))γ

17: Calculate the image of low-frequency sub-bands by the following rule:

LF(x, y) =

{
LA (x, y) i f LmapA (x, y) = 1

LB (x, y) otherwise
18: end for
19: The inverse NSCT is applied to the obtained images of high- and low-frequency sub-bands

{HF, LF} to get the fused image F.

3. Comparative Experiments

3.1. Experiment Preparation

In comparative experiments, 30 sets of infrared-visible images are used to test the fusion
performance. The resolution of test images are 256 ∗ 256. The infrared wavelength is 700–2526 nm,
and the visible wavelength is 390–700 nm. Infrared-visible image pairs were collected by Liu [10] and
can be downloaded from quxiaobo.org. All the experiment’s program’s codes are programmed in
Matlab 2014a (MathWorks, Natick, MA, USA) on an Intel(R) Core(TM)i7-4790CPU (Intel, Santa Clara,
CA, USA) @ 3.60 GHz Desktop with 8.00 GB RAM.

3.2. Objective Evaluation Metrics

For the evaluation of fused image, a single evaluation metric cannot fully reflect the performance of
fused image [20,21]. Therefore, it is necessary to use multiple metrics to do comprehensive performance
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analysis. This paper uses five objective metrics to evaluate the performances of different fusion
methods, which include QTE [22,23], QAB/F [24,25], QMI [23], QCB [23,26], and QVIF [25,27]. QTE

is used to evaluate the Tsallis entropy of the fused image. QAB/F as a gradient-based quality index
measures the edge information. QMI is used to evaluate the similarity between the fused image and
source images. Both QCB and QVIF measure the human visual performance of the fused image.

3.3. Experiment Results of Infrared-Visible Image Fusion

In this section, the proposed NSCT-based fusion framework is compared with seven popular
fusion methods, such as the adaptive spare representation (ASR) based image fusion method proposed
by Liu [28], the convolutional neural network (CNN) based image fusion method proposed by Liu [29],
the multi-channel medical image fusion (CT) proposed by Zhu [25], the multi-modality image fusion
method with joint patch clustering based dictionary learning (KIM) proposed by Kim [30], the image
fusion based on multi-scale transform and sparse representation (MST-SR) proposed by Liu [10],
a novel infrared and visual image fusion algorithm based on NSST and improved PCNN (NSST-PCNN)
was proposed by Li [31], and an infrared and visible image fusion scheme based on NSCT and PC
information (NSCT-PC) proposed by Li [9]. This section only picks the fused results of six comparative
experiments from thirty attempts to analyze the fusion performance.

3.3.1. Comparative Experiments—1

Figure 3 shows the fused results of infrared-visible image fusion experiment—1. As shown in
Figure 3c,f, the fused images obtained by ASR and KIM have low brightness. The light brightness
in source image (a) is not well preserved in both (c) and (f), so images (c) and (f) have overall
poor visual performance. The CNN method does not perform well in some local areas as shown in
Figure 3d. According to the partially enlarged areas in Figure 3e, some local areas of the fused image
obtained by CT have high brightness, and the image detailed information is not obvious. In Figure 3i,
the saturation of the fused image is high, and the edge detailed information is not obvious. In addition,
the fused image obtained by NSCT-PCNN has low contrast, and the global image features have
poor performance. Compared the fused images (h) and (j) as well as the corresponding partially
magnified images in Figure 3, NSCT-PC and the proposed method have the close visual performance
of human eyes.

3.3.2. Comparative Experiments—2

Figure 4 shows the fused results of infrared-visible image fusion experiment—2. After the
comparisons of fused images obtained by different methods, it gets the following conclusions.
In Figure 4c,f, the fused images obtained by ASR and KIM have low brightness, and poor performance
in global features. As shown in the magnified areas of Figure 4d,e, CNN does not obtain the clear
details of fused image, the contrast of the partially enlarged image obtained by CT is high, and the
corresponding edge information is not obvious. For the fused image (f) in Figure 4 obtained by KIM,
the connection area of sky and forest has high edge brightness. As shown in Figure 4h, the fused image
obtained by NSCT-PCNN has high brightness and poor visual effect. Compared with the experiment
results of the other six fusion methods, the fused images obtained by NSCT-PC and the proposed
method have better fusion performance.
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Figure 3. Infrared-visible image fusion comparative experiments—1. (a,b) are source images, (c–j) are
the fused results of ASR, CNN, CT, KIM, MST-SR, NSCT-PCNN, NSCT-PC, and the proposed method,
respectively. At the bottom of each image, two areas marked in green and red dashed line frames
correspond to the magnified areas encompassed in green and red frames, respectively.

Figure 4. Infrared-visible image fusion comparative experiments—2. (a,b) are source images, (c–j) are
the fused results of ASR, CNN, CT, KIM, MST-SR, NSCT-PCNN, NSCT-PC, and the proposed method,
respectively. At the bottom of each image, two areas marked in green and red dashed line frames
correspond to the magnified areas encompassed in green and red frames, respectively.
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3.3.3. Comparative Experiments—3

Figure 5 shows the fused results of infrared-visible image fusion experiment—3. In Figure 5c,f,
both ASR and KIM obtain the fused images with high brightness, and do not preserve the detailed
information of source image (b). Comparing with ASR, the fused image obtained by KIM is fuzzy and
not conducive to human-eye observation. As shown in Figure 5d, the fused image obtained by CNN
has high saturation. In Figure 5e,g, the detail texture information of fused images obtained by CT and
MST-SR is not clear by observing the partially enlarged areas. Compared with the proposed method,
the fused image obtained by NSCT-PCNN in Figure 5h has low saturation and poor performance in
global features. As shown in Figure 5i,j, NSCT-PC and the proposed method have good performance
in both global and local features.

Figure 5. Infrared-visible image fusion comparative experiments—3. (a,b) are source images, (c–j) are
the fused results of ASR, CNN, CT, KIM, MST-SR, NSCT-PCNN, NSCT-PCand the proposed method,
respectively. At the bottom of each image, two areas marked in green and red dashed line frames
correspond to the magnified areas encompassed in green and red frames, respectively.

3.3.4. Comparative Experiments—4

Figure 6 shows the fused results of infrared-visible image fusion experiment—4. In Figure 6c,
the fused image obtained by ASR has a general visualization performance. As shown in Figure 6d,
the car light has high brightness in the fused image obtained by CNN. In Figure 6e,g, the fused images
obtained by CT and MST-SR are dark, and have poor overall visualization performance. As shown in
Figure 6f,h, the fused images obtained by KIM and NSCT-PC have high brightness. After the analysis
of detailed information, the detailed textures of fused images are not obvious, which are not conducive
to human-eye observation. Comparing with NSCT-PC, the proposed method has better performance
in both global and local features of source images.
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Figure 6. Infrared-visible Image Fusion Comparative Experiments—4. (a,b) are source images, (c–j) are
the fused results of ASR, CNN, CT, KIM, MST-SR, NSCT-PCNN, NSCT-PCand the proposed method,
respectively. At the bottom of each image, two areas marked in green and red dashed line frames
correspond to the magnified areas encompassed in green and red frames, respectively.

3.3.5. Analysis of Comparative Experiment Results

As the analysis of 30 comparative experiments, Table 1 and Figure 7 show the average objective
evaluation results of infrared-visible image fusion. In Table 1, all the best results are marked in
bold. According to the results shown in Table 1 and Figure 7, the proposed method achieves the best
performance in QAB/F, QMI , QCB, and QVIF, and the second best performance in QTE. QTE of the
proposed method is a little bit lower than the best one obtained by NSST-PCNN. It means that both
the proposed method and NSST-PCNN can retain more information of source images. Meanwhile,
the similarities between the fused images obtained by these two methods and source images are
also comparable. For the QAB/F metric, the proposed method is slightly higher than other methods.
Thus, the proposed method performs better in the preservation of image edge details. Additionally,
the proposed method can also preserve the global and local features of source images well, and also
achieve a good performance in human-eye visualization. As shown in Figure 7, the proposed method
uses the shortest processing time in infrared-visible image fusion among all the eight fusion methods,
which is much less than others as well as about 40% of the second shortest processing time. Thus,
the results of comparative experiments confirm that the proposed infrared-visible image fusion solution
has a low algorithm complexity and can effectively reduce the related costs.
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Table 1. Average objective evaluations of thirty infrared-visible image fusion comparative experiments.

QTE QAB/F QMI QCB QV IF

ASR 0.4123 0.6470 1.9354 0.5334 0.4250
CNN 0.4402 0.4528 2.0952 0.5288 0.4582
CT 0.3931 0.5639 1.8511 0.4965 0.3848
KIM 0.3896 0.6011 1.8408 0.4966 0.4062
MSR-SR 0.4195 0.6888 2.0132 0.5524 0.4563
NSST-PCNN 0.4697 0.6082 2.1546 0.5308 0.4299
NSCT-PC 0.4262 0.6639 2.0337 0.5608 0.4352
Proposed 0.4541 0.7122 2.1813 0.5622 0.4811

Figure 7. Average objective evaluations of thirty infrared-visible image fusion comparative experiments.

4. Conclusions

In this paper, an NSCT-based precise high-frequency decomposition method for infrared-visible
image fusion is proposed. The fusion method combines NSCT, PCNN model, and PC information to
improve the visual quality of fused images. Specifically, the method uses NSCT to achieve the high-
and low-frequency decomposition of source images. The fusion of high-frequency image coefficients is
realized by introducing PCNN and ABS as the activity metrics of high-frequency coefficients. In the
fusion of low-frequency components, it integrates the fusion rules of LSCM, LSS, and PC features to
achieve the energy preservation and detail extraction of low-frequency components. Finally, the fused
image is obtained by inverse NSCT over the fused high- and low-frequency components. Compared
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to other image fusion methods, the proposed method achieves good performance on the structural
similarity and detail preservation in fused images. The experiment results confirm that the proposed
method has good effectiveness and high speed in infrared-visible image fusion.

In the future, the proposed method will be optimized to increase the processing speed. A weighted
fusion will be explored to improve the fusion performance. The statistical tests, such as Friedman’s
test, will be introduced to compare the performance of the proposed method. The proposed image
fusion method will also be extended to other multi-modality image fusion areas, such as medical image
fusion, multi-focus image fusion, and so on as well as face recognition, especially in night scenes.
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