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Abstract: P-adic numbers serve as the simplest ultrametric model for the tree-like structures arising
in various physical and biological phenomena. Recently p-adic dynamical equations started to be
applied to geophysics, to model propagation of fluids (oil, water, and oil-in-water and water-in-oil
emulsion) in capillary networks in porous random media. In particular, a p-adic analog of the
Navier–Stokes equation was derived starting with a system of differential equations respecting
the hierarchic structure of a capillary tree. In this paper, using the Schauder fixed point theorem
together with the wavelet functions, we extend the study of the solvability of a p-adic field analog
of the Navier–Stokes equation derived from a system of hierarchic equations for fluid flow in a
capillary network in porous medium. This equation describes propagation of fluid’s flow through
Geo-conduits, consisting of the mixture of fractures (as well as fracture’s corridors) and capillary
networks, detected by seismic as joint wave/mass conducts. Furthermore, applying the Adomian
decomposition method we formulate the solution of the p-adic analog of the Navier–Stokes equation
in term of series in general form. This solution may help researchers to come closer and find more
facts, taking into consideration the scaling, hierarchies, and formal derivations, imprinted from the
analogous aspects of the real world phenomena.

Keywords: tree-like geometry; capillary networks; p-adic model of porous medium;
fluid’s propagation; complex geological phenomena; p-adic analog of Navier–Stokes equation;
pseudo-differential equations; p-adic wavelet basis; Schauder fixed point theorem; Vladimirov’s
operator; existence of solution

1. Introduction

The last decades have witnessed great use of Fourier and more generally wavelet analysis over
the p-adic fields, and its various physical applications in physics, biology and cognitive science,
and recently in geophysics. The keyword of these applications is “hierarchy”. These applications
are based on representation of hierarchies by tree-like geometry. Hierarchy is also a natural attribute
of ultrametric spaces which mathematically can be represented as a duality between ultrametric
(non-Archimedean) spaces and trees of balls in these spaces where mathematical tools such as integral
and series are frequently used (see also [1,2]). Thus, ultrametric (non-Archimedean) spaces play the
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crucial role in aforementioned applications. The simplest ultrametric spaces are given by homogeneous
trees, m-adic trees, where m > 1 is a natural number encoding the number of branches leaving each
vertex of the tree. If m = p is a prime number, such ultrametric spaces can be endowed with the
algebraic structure of a number field (addition, subtraction, multiplication, and division) that is
denoted as Qp, the field of p-adic numbers (Each number x ∈ Qp represents a branch of the p-adic
tree. In the mathematical model, branches are infinite. Of course, trees in nature, e.g., capillary
networks in random porous media, are finite. They are obtained as cutoffs of p-adic trees represented
by Qp, p > 1). This algebraic structure in combination with the ultrametric topology on Qp serve as
the basis for analysis that have some similarity and a lot of dissimilarity with the real analysis (see,
e.g., Escassut [3,4]).

The p-adic numbers were first applied in theoretical physics in an effort to solve one of the most
remarkable problems of modern physics, that of combining quantum mechanics and gravitation theory.
Hence it was conjectured in [5,6] that space-time geometry is non-Archimedean at Planck magnitudes
(∼ 10−33 cm). Regarding with diverse applications of the field Qp of p-adic numbers several later
papers including applicable contents have been published, e.g., [7–21]. These applications in turn
motivated the pure mathematicians to develop the new areas of p-adic analysis, containing p-adic
wavelet theory (see, e.g., [22–43]).

In this paper, the solvability of the p-adic analog of the Navier–Stokes equation via the wavelet
theory is discussed by the example of real world problem: the precise modeling of fluid flow in
highly heterogeneous, multiscale, and anisotropic porous media with strongly hierarchical architecture.
This problem is recognized among key technical challenges of Petroleum Industry looking for new
analytical solutions of classical mathematical analogue and new type of computing perspectives, more
closed to the pure science. The continuous interaction among rock, fluid, and flow properties, result in
dynamics of the geometry of mass transfer and waves routes, especially their continuity and tortuosity,
affected by strong mixture of a complex geological phenomena: tectonics, salt tectonics, carbonatation,
fluid dynamics, including the turbulence. The joint physical, petrophysical, geological, and mathematical
modeling in these conditions require the new typing of pores. In spite of classical pores division in
families of fractures, vughs and micropores, we propose their joint typing as fluid/waves conduits,
resulting from the complex mixture of different from the geological point of view, elemental flow units.
The tree-like geometry of these multi-sized conduits can be described with high precision by p-adic
numbers, which not only encode the scaling of real porous media space distribution, but also provide the
modeling of fluid flow with industry-leading quality and resolution. This work is our new attempt to
ensure the solvability of the p-adic analogue of Navier–Stakes equation via wavelet tools for real porous
media. The further model, combining the p-adic analogue of conduits with multifractal modeling of flow
and transport thorough these geometrically complex and strongly no lineal networks, just on the road.
Under the general assumption of the thermodynamical nature of multifractal systems, we conclude
that our trans-disciplinary approach is the example of the real world demands of the future of the Era
of Big Data and Entropy, the Queen of the Unified Physical, Geological, Numerical and, in general,
Mathematical analogical modeling.

Considering the historic remarks of this applied field, the cooperation between the research groups
of K. Oleschko (applied geophysics and petroleum research) and A. Khrennikov (p-adic mathematical
physics) led to initiating a new promising field of research [35–38]: p-adic and more generally ultrametric
modeling of the dynamics of flows (of, e.g., water, oil, and oil-in-water and water-in-oil emulsion)
in capillary networks in porous random media. The starting point of this project is the observation
that tree-like capillary networks are very common geological structures, especially in carbonates (see
Figures 1 and 2). The latter serves as rock base of oil-reservoirs. Fluids propagate through such trees of
capillaries, so it is useful to reduce the configuration space to these tree-like structures and the appropriate
mathematical model of such a configuration space is defined by an ultrametric space.
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(a) (b)

Figure 1. (a). The general view of Isosurface Cube constructed from the unfiltered seismic waves
amplitudes, distributed across the oil reservoir. The tree-like signature of Geo-conduits is especially
clear in the down part of the original image and is zoomed in on (b). The main question is to show
that the same connected and tortuous Geo-conduits, which conducted the seismic waves, are also the
guides of mass (oil) transfer in fractured reservoir of complex and unconventional architecture.

Figure 2. The effective metric for Geo-conduits patterns measurement was constructed by distribution
of three sized balls within seismic cube.

In 2017, Oleschko et al. [38] focused the p-adic dynamics described by fractional differential
operators (Vladimirov operators) starting with discrete dynamics based on hierarchically-structured
interactions between the fluids’ volumes concentrated at different levels of the percolation tree
and coming to the multiscale universal topology of the percolating nets. They presented a system
of dynamical equations reflecting the tree structure of a capillary network in porous media and
then derived the following nonlinear p-adic pseudo-differential equation for fluid’s velocity u(t.x)
along capillaries:

∂u(t, x)
∂t

= u(t, x)Du(t, x)− θD2u(t, x) + G(t, x), x ∈ Qp, t, u ∈ R, t ≥ 0, (1)
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where θ is the viscosity parameter with the initial condition u(0, x) = ϕ(x). This equation can be
considered as the p-adic analogue of the Navier–Stokes equation. We stress that this is just an analog
of the Navier–Stokes equation. The tree-like configuration space differs crucially from the real space of
hydrodynamics and this difference is reflected in dynamical equations. In particular, u is a real scalar
and not a real vector with three coordinates as in the Navier–Stokes equation in the Euclidean space,
see Section 3 for details. Alternative nonlinear term in p-adic analogue of the Navier–Stokes equation
was considered in paper of Kozyrev [39]. Moreover, the mathematical theory of such equations has
not yet been developed. Very recently, Khrennikov and Kochubei [43] investigated the local solvability
of Equation (1) using the von Wahl’s theorem for the case G(t, x) as the source term vanishes.

In the present paper, inspired by [43], our attention will be turned exclusively to study the
solvability of Equation (1) using the technique of wavelet basis and a well-known fixed point theorem.
Theory of p-adic wavelets was initiated by Kozyrev [11] and it found numerous applications (see,
e.g., [2,12,13,35]), including modeling of fluid propagation in capillary networks in random disordered
medium [36–38]. In Section 4, under certain conditions we study the solvability of an infinite system
which is derived from (1) (with wavelet expansion of solution) in the sequence space c0. In Section 5,
we employ a numerical method, the so-called Adomian decomposition method (ADM), to formulate
the solution of Equation (1) represented by series.

This paper demonstrates that, for fluids’ propagation through capillary networks in porous
disordered media, p-adic linear models developed and investigated in our previous works [35,36] can
be successfully generalized (at the mathematical level of rigorousness) to nonlinear phenomena.

2. Geophysics: From Fractal to Tree-Like Models

The starting point of our research was fractal/multifractal modeling in geophysics [44,45].
The detailed presentation on such an approach can be found in Section 1.1 of our paper [36]. Here we
briefly point to the most important moments. The fractal/multifractal scaling features of capillary
networks was studied (both theoretically and experimentally) since the early 1980s and 1990s [46,47]:
for invasion percolation, diffusion-limited aggregation (DLA), anti-DLA processes [48].

Later fractal modeling of fluids’ flows in porous random media [49], including transport
through tree-like networks and diffusion on fractals [50] was widely used in oil recovery studies [51].
This modeling was supported by theoretical and experimental studies demonstrating that fluid’s flow
through tree-like networks is faster [52,53].

Stanley and Meakin [46] have discussed the important thermodynamics aspects of multifractality
in physics and chemistry, founding the formal analogy among the probability distribution function
Z(q) and partition function Z(β). Therefore, the analogy between the Legendre transform f (α) and
entropy H, as well as between the function α and energy E was found. These analogies are the key
points for physics of fractal capillaries patterns treelike morphology. The difference in the medium
heterogeneity can be quantified by several multifractal indicators (for instance, the degree of the graph
symmetry or strength of singularity).

Thus, fractal/multifractal studies led to an understanding of the importance of tree-like structures
in mathematical modeling of fluids’ flows through capillary networks in porous disordered media.

3. Navier—Stokes Equation on Tree-Like Configuration Space and Its Generalizations

Here we briefly repeat the basics of the physical model leading to the p-adic analog of the
Navier–Stokes equation, see [38] for details. The main motivation for derivation of this equation is
application to modeling propagation of fluid’s flow through Geo-conduits, consisting of the mixture
of fractures (as well as fracture’s corridors) and capillary networks, detected by seismic as joint
wave/mass conducts (see Figures 1 and 2).

In such modeling [35,36], the tree-like structure of capillaries in real porous disordered media is
represented by trees endowed with the root distance—ultrametric spaces. The rock environment of
capillary networks is ignored. We explore only geometry of the network of capillaries. So, instead of
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the Euclidean configuration space, we use the tree-like configuration space. The rock environment is
encoded in the coefficients of the dynamical equations describing fluids’ propagation through capillary
networks in porous media. Tree-like geometry and ultrametric spaces give the proper mathematical
model for such networks.

In our model, the “spatial-variable” x belongs to an ultrametric space denoted by symbol X
and the time variable t is real. We operate with functions f (t, x) depending on real and ultrametric
variables. Here x is the “pore network coordinate”, each pathway of pore capillaries is encoded
by a point x of the ultrametric space (or in the tree-like representation—by a branch of the tree,
see [36] for details). Time is usual real time. Thus, by assigning the ultrametric coordinate x to a
system (e.g., oil or water droplet) we know in which pathway composed of capillaries this system is
located. The ultrametric model provides a fuzzy description of system’s location in a pore network.
The simplest trees are homogeneous trees, the p-adic trees. Furthermore, in this paper, we concentrate
our study on such configuration spaces. The general ultrametric case was considered in [36]. Of
course, real capillary structures are described by non-homogeneous trees. However, the general case
is essentially more complex mathematically. Here we were able to study (at the mathematical level
of rigorousness) only linear pseudo-differential equations for fluid’s propagation through capillary
networks in porous media.

Now, we turn to derivation of the p-adic analog of the Navier–Stokes equation, for simplicity
we consider the case p = 2. Consider the homogeneous tree with two branches leaving each vertex.
The root of the tree is denoted by I0; the levels of the tree are enumerated, n = 0, 1, 2, ...., where n = 0
corresponds to the root I0. Vertexes at the nth level of the tree are enumerated as In,j, j = 1, ..., 2n.
We are interested in capillaries connecting successive vertexes, i.e., from In−1,j to the corresponding
two vertexes at level n. They can be labeled in the same way as corresponding vertices, i.e., E1,1 = I0 I1,1

and E1,2 = I0 I1,2, the capillaries going from root I0 to vertexes I1 and I2. There are 2n edges connecting
vertexes of the (n− 1)-th level with vertices of the n-th level:

En,1 = In−1,1 In,1, En,2 = In−1,1 In,2, En,3 = In−1,2 In,3, En,4 = In−1,2 In,4, ...,

or
En,2j−1 = In− 1, jIn,2j−1, En,2j = In−1,j In,2j.

In the present model the diameters and lengths of edges are coupled by scaling 1/2. Thus at each
vertex In,j fluid’s flow is split into two capillaries that are two times shorter and thinner than the
capillary incoming to this vertex. Denote by un,j(t) the average velocity of fluid along capillary En,j.
Thus, in our model we are not interested in fluid’s velocity in each point of a capillary, but only in its
average with respect to capillary’s volume. The velocity is a real number. Its sign encodes the (average)
direction of the velocity along the capillary, towards and backwards with respect to the root of the tree.

In the mathematical model, instead of the discrete variables n, j we can operate with the continuous
2-adic variable x ∈ Q2 and velocity u(t, x), where t, u ∈ R, x ∈ Q2. In [38], we derived nonlinear
pseudo-differential dynamical Equation (1) for velocity u(t, x). Its form is analogous to the form of the
standard Navier–Stokes equation. However, it is the scalar-function equation, since fluid’s propagation
is only along capillary’s axis.

Derivation of the p-adic analog of the Navier–Stokes equation opens the door to consideration of
a bunch of interesting problems on dynamics of fluids in capillary networks. One of such problems
is coupling of the dynamics of fluid with electromagnetic field, derivation of the p-adic (capillary
network) analog of the system of magneto-fluid dynamics equations (cf. [54]). The main difficulty is
derivation of “restriction” of the Maxwell equations onto the capillary network and then their coupling
with the p-adic Navier–Stokes equation (cf. [54]). Such a theory can find applications in geophysics
(cf. [55]).

Finally, we remark that the tree-like structure of capillary networks is not only very common in
nature, but recently they started to be artificially manufactured—to speed up fluid’s propagation (see [56]
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and references herein). This applied research is theoretically justified by the works of Shou et al. [52,53]
on the tree-like basis of acceleration of fluid’s flows (see also [57] on p-adic modeling). Such industrial
applications stimulate p-adic (and more general ultrametric) modeling of fluids’ propagation in tree-like
capillary networks.

4. Mathematical Preliminaries

In this section, we recall some auxiliary facts concerned with p-adic fields and wavelet theory.
In view of the Ostrovski theorem (see [6], Ch. I, § 1.1), there exists, in some sense, only two “universes”
of equal status: the real universe and the p-adic one. The real “universe” is structured by the field
of real numbers R, which is introduced by the completion of the field Q of rational numbers with
relevance to the usual Euclidean norm, and the p-adic “universe” is based on the field Qp of p-adic
numbers, which is given as the completion of the field Q with respect to the p-adic norm | · |p. This
norm is defined as below. | · |p : |0|p = 0; if an arbitrary rational number x 6= 0 is represented as

x = pγ m
n

uniquely, where γ = γ(x) ∈ Z and m, n are not divisible by p then |x|p = p−γ. This norm
satisfies the following properties:

(i) |x|p ≥ 0 for every x ∈ Qp, and |x|p = 0 if and only if x = 0;
(ii) |xy|p = |x|p|y|p for every x, y ∈ Qp;

(iii) |x + y|p ≤ max{|x|p, |y|p}, for every x, y ∈ Qp, and when |x|p 6= |y|p, we have |x + y|p =

max{|x|p, |y|p}.

The condition (iii) as the strong triangle inequality makes the norm | · |p non-Archimedean and
hence the space (Qp, | · |p) is an ultrametric space.

We shall systematically utilize the notation and results from [6]. Denote by N,Z,C the sets of
positive integers, integers, and complex numbers, respectively.

Any p-adic number x ∈ Qp, x 6= 0, is represented in the canonical form as follows

x =
∞

∑
j=γ

xj pj (2)

where γ = γ(x) ∈ Z, and xk = 0, 1, . . . , p− 1, x0 6= 0, k = 0, 1, . . . The series converges in the p-adic
norm | · |p to p−γ, that is, |x|p = p−γ. Hence, the absolute value | · |p takes the discrete set of nonzero
values pγ, for γ ∈ Z. The fractional part of a p-adic number x ∈ Qp given by (2) is defined as

{x}p =


0, if γ(x) ≥ 0 or x = 0,

pγ(x0 + x1 p + x2 p2 + · · ·+ x|γ|−1 p|γ|−1), if γ(x) < 0.
(3)

The additive character χp of the field Qp is given by

χp(x) = e2πi{x}p , x ∈ Qp.

The topology equipped with | · |p in Qp are known by

Bγ(a) = {x ∈ Qp : |x− a|p ≤ pγ}, Sγ(a) = {x ∈ Qp : |x− a|p = pγ}

as balls and spheres of radius pγ with center at a, respectively. It is worth mentioning that any point
of the ball is its center, besides, any two balls in Qp are either disjoint or one is included in the other.
Furthermore, all balls and spheres are simultaneously open and closed sets in Qp. For the certain case,
the unit ball Zp = B0(0) is the ring of p-adic integers consisting of the elements represented by the
sum of p mutually disjoint balls.
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The topological group (Qp,+) is locally compact commutative and thus there is a additive
Haar measure dx, which is positive and invariant under the translation, i.e., d(x + a) = dx, a ∈ Qp.
This measure is unique by normalizing dx so that∫

B0

dx = 1, d(ax + b) = |a|pdx, a ∈ Q∗p = Qp − {0}.

Regarding with the additive normalized character χp(x) on Qp we get∫
Bγ

χp(ξx)dx = pγΩ(pγ|ξ|p),

where Ω(t) is the characteristic function of the segment [0, 1] ⊂ R.
A complex-valued function f in Qp is said to be a locally constant function if for any x ∈ Qp,

there exists an integer l(x) ∈ Z such that f (x + y) = f (x), for every y ∈ Bl(x). The largest of these
numbers, l = l( f ), is called the parameter of constancy of the function f . We denote the space of locally
constant functions on Qp by E(Qp). Indicate by D(Qp) the space of Bruhat–Schwartz test functions,
i.e., the subspace of E(Qp) including compactly supported functions. Moreover, denote by D′(Qp) the
set of all linear functionals on D(Qp) (see also ([6], VI.3)).

The Fourier transform of test function ϕ ∈ D(Qp) is given by the formula

ϕ̂(ξ) = F[ϕ](ξ) =
∫
Qp

ϕ(x)χp(ξx)dx, ξ ∈ Qp.

This means ϕ̂(ξ) ∈ D(Qp) and ϕ(x) = F−1[ϕ](x) =
∫
Qp

ϕ̂(ξ)χp(−ξx)dξ as the inverse Fourier transform.

Consider L2(Qp) as the set of measurable C-valued functions f on Qp such that

‖ f ‖L2(Qp)
=

( ∫
Qp
| f (x)|2dx

) 1
2

< ∞

which is evidently a Hilbert space with the inner product

〈 f , g〉 =
∫
Qp

f (x)g(x)dx, f , g ∈ L2(Qp),

and ‖ f ‖2
L2(Qp)

= 〈 f , f 〉.
This guarantees a linear isomorphism taking D(Qp) onto D(Qp). It can be uniquely extended to

a linear isomorphism of L2(Qp). Moreover, the Plancherel equality holds

〈 f , g〉 = 〈 f̂ , ĝ〉, f , g ∈ L2(Qp).

4.1. p-Adic Wavelet Theory

Throughout this section, we gather some facts related with the theory of p-adic wavelets which
is widely employed in so many applications. It is now hard to find an area of engineering where
wavelets are not applied. In 1910, Haar [58] initially presented the wavelet basis by an orthonormal
basis in L2(Qp) including dyadic translations and dilations of a single function; since then various
generalizations of it have been revealed in several results. It is interesting to know that it took almost a
century to create another wavelet function whose shifts and dilations would bring an orthogonal basis.
The intensive progression in wavelet theory initiated only in the 1990s. At that moment Meyer [59]
and Mallat [60,61] improved a scheme of structure for wavelet functions based on the concept of
multiresolution analysis (MRA); see, for instance, [62], Ch. 5, [63], § 2.1.
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Regarding with the theory of p-adic wavelets, it has a short background in comparison with that
in the real status. In 2002, Kozyrev [11] found a compactly supported p-adic wavelet basis, similar to
the real Haar basis, for L2(Qp). Kozyrev’s wavelet functions have the following structure:

ψk(x) = χp(p−1kx)Ω(|x|p), x ∈ Qp. (4)

where χp and Ω are the standard additive character of Qp and characteristic function of [0, 1],
respectively.

This wavelet basis (created by the shifts and dilations of the wavelet functions (4)) contains of the
wavelet functions

ψk;jn(x) = p−
j
2 χp(p−1k · (pjx− n))Ω(|pjx− n|p), x ∈ Qp (5)

where k ∈ Jp = {1, 2, . . . , p − 1}, j ∈ Z, and n is taken as an element of the m-direct product of
factor group

Qp/Zp =

{ −1

∑
i=a

ni pi
∣∣∣∣ ni = 0, 1, . . . , p− 1, a ∈ Z−

}
.

That is, n belongs to {x ∈ Qp : {x}p = x}.

4.2. Vladimirov’s Operator and p-Adic Lizorkin Spaces

Introduced by V.S. Vladimirov [6], pseudo-differential operator A (on the field of p-adic numbers)
in an open set O ⊂ Qp is given by

(Aϕ)(x) =
∫
Qp
A(ξ, x)ϕ̂(ξ)χp(−ξx)dξ, x ∈ O (6)

which acts on C-valued functions ϕ(x) of p-adic arguments x ∈ O. Here we assume that functions
ϕ(x) are extended by zero from the set O on whole space Qp, and ϕ̂(ξ) are their Fourier transforms
recalled previously. The function A(ξ, x), ξ ∈ Qp, x ∈ O is called symbol of the operator A.

In [64,65] Lizorkin presented spaces invariant under the real actions of fractional operators.
These spaces can be defined in p-adic case. In view of [25,66], the p-adic Lizorkin space of test functions
is described as follows:

Φ = Φ(Qp) = {φ : φ = F[ψ], ψ ∈ Ψ}.

such that
Ψ = Ψ(Qp) = {ψ ∈ D(Qp), ψ(0) = 0}.

Clearly, Ψ, Φ 6= ∅. Regarding the fact that Fourier transform is a linear isomorphism D(Qp) into
D(Qp), one can see that Ψ, Φ ∈ D(Qp). The space Φ(Qp) can be decorated with the topology of the
space D(Qp), which turns it into a complete space. The space Φ can be determined by the following
characterization:

φ ∈ Φ if and only if φ ∈ D(Qp) and ∫
Qp

φ(x)dx = 0.

In addition, the space Φ′ = Φ′(Qp) as the topological dual of Φ is said to be the Lizorkin space of
p-adic distributions (see also [25]).

The Vladimirov operator Dα (initially introduced by Taibleson) also is included in the class (6)
with symbol A(ξ) = |ξ|αp, i.e.,

(Dα f )(x) = F−1[| · |αpF[ f ](·)](x), f ∈ Φ′(Qp), (7)
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where α ∈ C. The formula (7) can be rewritten as a convolution of the following functions:

(Dα ϕ)(x) = κ−α(x) ∗ ϕ(x) = 〈κ−α(x), ϕ(x− ξ)〉, ϕ ∈ Φ′(Qp), α ∈ C

where the distribution κα ∈ Φ′(Qp) is called the Riesz kernel given by

κα(x) =



|x|α−1
p

Γp(α)
, if α 6= 0, 1,

δ(x), if α = 0,

p−1 − 1
log p

log |x|p, if α = 1,

x ∈ Qp

and Γp(α) =
1−pα−1

1−p−α is the Γ-function (for more details see [6]).
The domain of Dα is given by

M(Dα) = {ϕ ∈ L2(Qp) | Dα ϕ ∈ L2(Qp)}.

We remark that all the concepts as above can be reconsidered in multidimensional p-adic field Qn
p

which is not in our considerations in the current paper.

5. Solvability of the p-Adic Navier–Stokes Equation

This section deals with the main result of our paper. Namely, we will apply the wavelet and fixed
point theories to show the existence of solutions for our problem. Indeed, we study the existence of
solution of the p-adic pseudo-differential equation in [0, ∞) given as (1).

Let us assume there exists

u ∈ UI := C1(I,R) ∩ C(I,M(D1)) ∩ C(I,M(D2)),

for any interval I in terms of wavelet functions ψk;jn(x) with coefficients uk;jn(t), that is,

u(x, t) = ∑ uk;jn(t)ψk;jn(x), ϕk;jn := uk;jn(0) = 〈ϕ(x), ψk;jn(x)〉. (8)

Moreover,

∂u(x, t)
∂t

= ∑ u′k;jn(t)ψk;jn(x), Dα
xu(x, t) = ∑ pα(1−j)uk;jn(t)ψk;jn(x). (9)

On the other hand, taking into account that

[uDu](x, t) = ∑
ı∈J

Fı(t, û)ψı(x), û = (uı)ı, ı = (k, j, n) ∈ J := Jp ×Z×Qp/Zp, (10)

it implies that

Fı(t, û) = 〈[uDu](x, t), ψı(x)〉 = 〈 ∑
(k,j,n)∈J

p1−j|uk;jn(t)|2Ω(|pjx− n|p), ψı(x)〉 := Fı(û). (11)

Replacing (8), (9) and (10) in Equation (1) and regarding the action of Vladimirov operator on u we
derive the following infinite system:

u′ı(t) = Fı(û)− θ · p2(1−j)uı + Gı(t) := Fı(û) + Gı(t), (12)



the Journal of Entropy 2019, 21, 1129 10 of 20

where Gı(t) = 〈G(t, x), ψı(x)〉. Removing the index ı and fixing j yields the following equation

û′(t) = F (û)− θ · p2(1−j)û + G(t) := F(û) + G(t). (13)

Generally, the solution of this nonlinear differential equation cannot be presented explicitly but for the
special cases we have:

• If G(t, x) ≡ 0, then

Hı(û) :=
∫ duı

Fı(û)
= t + c,

and using the initial condition we see that c = Hı((ϕı)ı), that is, the solution of Equation (1) takes
the following form

u(x, t) = ∑
ı∈J

uı(t)ψı(x) where Hı(û(t)) = t +Hı(ϕ̂), û = (uı)ı, ϕ̂ = (ϕı)ı.

Furthermore, ifHı is invertible, then

u(x, t) = ∑
ı∈J

(H−1
ı (t +Hı(ϕ̂)))ıψı(x).

• If F(û) = Aû and G(t) = Bt then the solution is represented in the parametric form:

t =
∫
(Aτ + B)−1dτ + C, û = (

1
A
[τ − B

∫
(Aτ + B)−1dτ + BC])ı.

To find more cases of Equation (13) we refer the reader to see ([67], [Section 1.6.3]).
In the sequel, we focus on the solvability of Equation (13) in the general form.

6. Solvability of Infinite System (12) over the Sequence Space c0

Let us first convert the infinite system of differential equations (12) into the following infinite
system of integral equations

uı(t)− ϕı =
∫ t

0
Fı(s, uı1(s), uı2(s), . . .)ds + Gı(t), where Gı(t) =

∫ t

0
Gı(t)dt, ı ∈ J. (14)

The existence theory concerning the infinite systems of integral equations is satisfactorily developed
up to now and we are interested in study the system (14) in the Banach sequence space c0 containing
sequences of real numbers converging to zero. We recall that c0 is a closed subspace of c ⊂ `∞

as the space of convergent sequences. It turns out this space is very convenient and natural for
investigations of infinite systems both differential and integral equations. In what follows, we proceed
our study in the Banach space c0 including of real sequences converging to zero with the standard
norm ‖û‖c0 = {|uı| : ı ∈ J} for û = (uı)ı. Note that the index has been altered following our notation
and the subjected problem.

In the following we intend to apply the generalized theorem of Arzéla (see also [68]) which
describes a criterion of compactness in the space C(I, E) for the arbitrary interval I and the Banach
space E.

Theorem 1. A bounded subset U of the space C(I, E) is relatively compact if and only if all functions belonging
to U are equicontinuous on I and the set U(t) := {u(t) : u ∈ U} is relatively compact in E for each t ∈ I.
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It is worth mentioning that a bounded subset U of c0 is relatively compact if and only if

lim
|ı|→∞

[
sup
u∈U

[max{|u| : ı ≤ }]
]
= 0.

Suppose that GI := maxt∈I |G(t)| < ∞ and the interval I = [0, T] for T > 0 is given. To investigate
the solvability of nonlinear pseudo-differential equation (1) it only needs to focus on the existence of
û(t) from the system (14). To do this, let us first present the following well-known fixed point result.

In what follows, system (14) will be investigated under the following hypotheses.

(i) The functions Fı are given on the set I ×R∞ and take real values (ı ∈ J). Further, the operator
F̃ is defined on the space I × c0 in the following way:

(t, û) 7−→ (F̃ û)(t) = (Fı1(t, û),Fı2(t, û), . . .)

which maps the space I × c0 into c0 and is such that the class of all functions {(F̃ û)(t)}t∈I is
equicontinuous at every point of the space c0.

(ii) There exist nonnegative functions αı(t) and βı(t) defined, integrable and uniformly bounded
on I and such that

∫ T
0 βı(s)ds < 1. Furthermore, the function sequence (

∫ t
0 αı(s)ds) converges

monotonically to zero at each point t ∈ I while the function sequence (
∫ t

0 βı(s)ds) is
non-increasing at each point t ∈ I and the following estimate is satisfied:

|Fı(t, uı1 , uı2 , . . .)| ≤ αı(t) + βı(t) · sup{|u| : ı ≤ }

for each t ∈ I, ı ∈ J and for each û = (uı)ı ∈ c0.
(iii) The functions Gı + ϕı : I → R are continuous on I and the sequence (|Gı(t) + ϕı|)ı converges

monotonically to zero at each point t ∈ I.

In the following we recall the well-known Schauder fixed point theorem which is crucial to
present our result.

Theorem 2 (Schauder Fixed Point Theorem ([69], [Theorem 4.1.1])). Let U be a nonempty and convex
subset of a normed space E. Let T be a continuous mapping of U into a compact set K ⊂ U. Then T has a
fixed point.

Now we can formulate our main result.

Theorem 3. Under the assumptions (i)-(iii), the infinite system (14) has at least one solution û(t) = (uı(t))ı

such that û(t) ∈ c0 for each t ∈ I.

Proof. Indicate by S the subset of space C(I, c0) including all functions û(t) = (uı(t))ı so that

sup{|u(t)| : ı ≤ } ≤ aı(t) + bı(t)

for ı ∈ J and t ∈ I, where ≤ in index is the usual partial order in J, and aı(t), bı(t) are defined in the
following way:

aı(t) =

∫ t
0 αı(s)ds

(1−
∫ t

0 βı(s)ds)
, bı(t) =

sup{|Gı(s) + ϕı| : 0 ≤ s ≤ t}
(1−

∫ t
0 βı(s)ds)

,

for ı ∈ J.
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Remark that the functions aı(t) and bı(t) are nondecreasing functions on the interval I and
non-increasing sequences. Besides, from the assumptions, it follows that the functional sequences
(aı(t)) and (bı(t)) converge uniformly on I to the function vanishing identically on I.

Let us assume the operator Γ defined on the space C(I, c0) as follows:

(Γû)(t) = ((Γû)ı(t)) =
(

ϕı +
∫ t

0
Fı(s, uı1(s), uı2(s), . . .)ds + Gı(t)

)
.

Notice that the operator Γ maps the set S into itself. Indeed, fix arbitrarily ı and û(t) ∈ S . Then for
 ≥ ı, we get

|(Γû)(t)| ≤ |G(t) + ϕ|+
∣∣∣∣ ∫ t

0
F(s, uı1(s), uı2(s), . . .)ds

∣∣∣∣
≤ |Gı(t) + ϕı|+

∫ t

0
[α(s) + β (s) · sup{|uı(s)| :  ≤ ı}]ds

≤ |Gı(t) + ϕı|+
∫ t

0
α(s)ds +

∫ t

0
β (s)[a(s) + b(s)]ds

≤ |Gı(t) + ϕı|+
∫ t

0
αı(s)ds +

∫ t

0
βı(s)[aı(s) + bı(s)]ds

≤ sup{|Gı(s) + ϕı| : 0 ≤ s ≤ t}+
∫ t

0
αı(s)ds + (aı(t) + bı(t))

∫ t

0
βı(s)ds

≤ aı(t) + bı(t).

Now we prove that the operator Γ is continuous on the set S .
Consider ε > 0 arbitrarily fixed and û0 ∈ S . Then, taking into account the equicontinuity of

the family of functions revealed in assumption (i) let us take δ = δ(û0, ε), i.e., for û ∈ S such that
‖û− û0‖c0 ≤ δ we derive ‖(F̃ û)(t)− (F̃ û0)(t)‖c0 ≤ ε for each t ∈ I. Moving forward,

‖(Γû)(t)− (Γû0)(t)‖c0 = max{|(Γû)ı(t)− (Γû0)ı(t)| : ı ∈ J}

≤ max
{ ∫ t

0
|Fı(s, uı1(s), uı2(s), . . .)− Fı(s, u0

ı1(s), u0
ı2(s), . . .)|ds : ı ∈ J

}
≤ Tε,

which implies the desired claim.
Now, let us take the set S1 = ΓS . Recall that this set contains equicontinuous functions on I.

In fact, taking an arbitrary û = (uı)ı ∈ S , and bringing in mind our hypotheses, we conclude

|(Γû)ı(t)− (Γû)ı(s)| ≤ |Gı(t)− Gı(s)|+
∣∣∣∣ ∫ t

s
Fı(τ, uı1 (τ), uı2 (τ), . . .)dτ

∣∣∣∣
≤ |Gı(t)− Gı(s)|+

∣∣∣∣ ∫ t

s
[αı(τ) + βı(τ) · sup{|u(τ)| : ı ≤ }]dτ

∣∣∣∣
≤ |Gı(t)− Gı(s)|+

∣∣∣∣ ∫ t

s
αı(τ)dτ

∣∣∣∣+ ∣∣∣∣ ∫ t

s
βı(τ) · sup{|u(τ)| : ı ≤ }dτ

∣∣∣∣
≤ |Gı(t)− Gı(s)|+ |t− s| sup{αı(t) : t ∈ I}+

∣∣∣∣ ∫ t

s
βı(τ) · [aı(τ) + bı(τ)]dτ

∣∣∣∣
≤ |Gı(t)− Gı(s)|+ |t− s|[sup{αı(t) : t ∈ I}+ sup{βı(t) · [aı(t) + bı(t)] : t ∈ I}].

Since the function sequences (αı(t)), (βı(t)), (aı(t)), and (bı(t)) are uniformly bounded on I and the
function sequence (Gı(t) + ϕı) is equicontinuous on I, from the above estimation, we conclude that
the set S1 = ΓS is equicontinuous on I.

Suppose that S2 stands for ConvS1 (i.e., the closed convex hull of the set S1). Clearly, S2 is closed,
bounded, and equicontinuous on I. Furthermore, ΓS2 ⊂ S2 ⊂ S .
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From another point of view, for û ∈ S , we get

|(Γû)ı(t)| ≤ aı(t) + bı(t), ı ∈ J, t ∈ I.

Since the sequence (aı(t) + bı(t)) converges uniformly on I to the function vanishing identically on I,
we conclude that for each ε > 0, there exists an index ı0 such that |(Γû)ı(t)| ≤ ε, for each ı ≥ ı0 and
for any t ∈ I. Therefore, by virtue of the criterion of compactness in the space c0 as mentioned before,
we infer that for each t ∈ I, the set S1(t) is relatively compact in the space c0. The above arguments
allow us to deduce that the set S2 is relatively compact in the space C(I, c0). Besides, the closedness of
S2 yields that it is compact. Hence, keeping in mind that Γ transforms continuously the set S2 into
itself, we result (by the Schauder fixed-point principle) that the operator Γ has a fixed point in the set
S2 being a solution of our problem. This completes the proof.

Remark 1. In Theorem 3, if for some M > 0

|Fı(t, uı1(t), uı2(t), . . .)− Fı(t, vı1(t), vı2(t), . . .)| ≤ M < T−1, ı ∈ J, t ∈ I, (15)

then one can easily utilize the Banach contraction principle and find the unique solution for the subjected system.

Theorem 3 implies the following result immediately.

Theorem 4. Suppose that all the conditions of Theorem 3 and (15) are satisfied. Then the problem (1) has a
unique solution in UI .

7. Adomian Decomposition Method (ADM)

In this section we give standard description of the ADM to find the solution of Equation (1) in
which we proved its existence in the last section. Consider the general equation

Lu + Ru + Nu = g (16)

where u is the function subjected to be found, L is the linear differential operator of higher order
which is simply invertible. Suppose that its inverse is L−1 and it will be an integral operator, N is the
nonlinear operator, R is the remaining linear part and g is a given function (source). Taking L−1 to
both sides of (16) we get:

L−1(Lu + Ru + Nu = g) =⇒ L−1Lu = L−1g−L−1N(u)−L−1R(u),

hence,

u− φ = L−1g−L−1N(u)−L−1R(u),

where φ is chosen from the initial conditions or from the boundary conditions or both, it depends on
how we select differential operator that solve the given problem. The ADM considers that solution u
of the functional equation can be decomposed into infinite series

u =
∞

∑
n=0

un

and the nonlinear term N(u) can be expressed as infinite series Nu = ∑∞
n=0 An where the An’s are the

Adomian polynomials, which depend upon u0, u1, . . . , un. We recall that the Adomian polynomials
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An’s are first constructed by Adomian in 1992, he gave a general formula to determine the values
of An’s:

An =

[
1
n!

dn

dλn N(
n

∑
i=0

λiui)

]
λ=0

.

Therefore, Equation (16) takes the following form:

∞

∑
n=0

un = φ + L−1g−L−1
∞

∑
n=0

An −L−1
∞

∑
n=0

R(un). (17)

Now from Equation (17), we can derive the solution algorithm as follows:

u0 = φ + L−1g, un+1 = −L−1(An + R(un)), n = 0, 1, 2, . . . . (18)

Given u0, the other terms of u can be defined, respectively. Hence, the existing solution u of
Equation (16) can be determined by the series of recursive sequence un. To do this, let us rewrite the
nonlinear differential equation (13) as below

û′(t) = F(û) + G(t). (19)

Assuming û = ∑∞
n=0 ûn, and applying ADM we obtain

û0 = φ +
∫

G(t)dt, ûn+1 = −L−1(An), An =

[
1
n!

dn

dλn F(
n

∑
i=0

λiûi)

]
λ=0

, n = 0, 1, 2, . . . . (20)

where φ would be specified by the initial condition in (8). Moreover, the convergence of Adomian’s
decomposition method is discussed in the Appendix A.

Since we have no information about the form of G(t, x) and the initial condition of the problem (1),
we present a model to see how ADM works.

Example 1. In Equation (1), let us suppose the non-homogeneity term G(t, x) = ts ln |x|p, s 6= −1, and the
initial condition u(0, x) = ϕ(x) := Ω(|x|p) which is the refinable function.

To formulate the function G in terms of basis ψk;jn, using the symbol ξ := pjx− n we arrive at

Gk;jn(t) = 〈G(t, x), ψk;jn(x)〉 =
∫
Qp

ts ln |x|p · ψk;jn(x)dx

= ts p
−3j

2

∫
Qp

ln(|p−j(ξ + n)|p) ·Ω(|ξ|p) · χp(p−1kξ)dξ

= ts p
−3j

2

∫
Qp

ln(pj max{|ξ|p, |n|p}) ·Ω(|ξ|p) · χp(p−1kξ)dξ

= ts p
−3j

2 (j ln p + ln |n|p)
∫
Qp

Ω(|ξ|p) · χp(p−1kξ)dξ.

For the case k = 0 we get

G0;jn(t) = ts p
−3j

2 ln p · (j− ordp(n)),

and, otherwise, for the case 1 ≤ k ≤ p− 1, we have Gk;jn(t) = 0.
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On the other hand,

ϕk;jn = 〈ϕ(x), ψk;jn(x)〉 =
∫
Qp

Ω(|x|p) · ψk;jn(x)dx

= p
−3j

2

∫
Qp

Ω(|p−j(ξ + n)|p) ·Ω(|ξ|p) · χp(p−1kξ)dξ

= p
−3j

2

∫
Qp

Ω(pj max{|ξ|p, |n|p}) ·Ω(|ξ|p) · χp(p−1kξ)dξ

where k = 0, 1, 2, . . . , p− 1 and n ∈ Qp/Zp. Considering |n|p = p−γ for some integer γ ≤ −1 together with
the fact that Ω(|ξ|p) 6= 0 if and only ξ ∈ Sr for some r ≤ 0, we obtain

ϕk;jn = p
−3j

2 Ω(pj−γ) ∑
r≤0

∫
Sr

χp(p−1kξ)dξ

= p
−3j

2 Ω(pj−γ) ∑
r≤0

( ∫
Br

χp(p−1kξ)dξ −
∫

Br−1

χp(p−1kξ)dξ

)
.

If k = 0 then

ϕ0;jn = p
−3j

2 Ω(pj−γ) = p
−3j

2 Ω(pj−ordp(n)).

Otherwise, for the case 1 ≤ k ≤ p− 1, using the fact that

∫
Br

χp(ξx)dx =


pr, |ξ|p ≤ p−r,

0, |ξ|p ≥ p−r+1, r ∈ Z,

we see that

ϕk;jn = p
−3j

2 Ω(pj−ordp(n))

(
− p−1 + ∑

r≤−1
(pr − pr−1)

)
= 0.

On the other hand, looking at (11) one can see that

Fı(û) = ∑
ı′∈J

fı(ı′) · |uı′ |2, ı′ := (k′, j′, n′), ı := (k, j, n)

where

fı(ı′) =
∫
Qp

p1−j′Ω(|pj′x− n′|p)ψı(x)dx.

Hence,

F(û) =
(

∑
ı′∈J

fı(ı′) · |uı′ |2
)

ı
− θ · p2(1−j)û.

Now, we are ready to apply ADM as follows.

û0 = (u0,ı)ı = φ +
∫

G(t)dt =


φ +

ts+1

s + 1
p
−3j

2 ln p · (j− ordp(n)), k = 0,

0, 1 ≤ k ≤ p− 1.
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ûn+1 = −L−1(An), An =

[
1
n!

dn

dλn F(
n

∑
i=0

λiûi)

]
λ=0

, n = 0, 1, 2, . . . . (21)

The first three terms of An’s are

A0 =

[
1
0!

d0

dλ0 F(λ
0û0)

]
λ=0

= F(û0)

=

(
∑

(0,j′ ,n′)
fı(0, j′, n′) ·

∣∣∣∣φ +
ts+1

s + 1
p
−3j′

2 ln p · (j′ − ordp(n′))
∣∣∣∣2)

ı
− θ · p2(1−j) û0,

A1 =

[
1
1!

d
dλ

F(
1

∑
i=0

λiûi)

]
λ=0

= û1F
′(û0) = −2(

∫
A0(t)dt)

(
∑

(0,j′ ,n′)
fı(0, j′, n′) ·

(
φ +

ts+1

s + 1
p
−3j′

2 ln p · (j′ − ordp(n′))
)

×
(

ts p
−3j′

2 ln p · (j′ − ordp(n′))
))

ı
−
(

θ · p2(1−j)
)

ı
,

A2 =

[
1
2!

d2

dλ2F(
2

∑
i=0

λiûi)

]
λ=0

=
û2

1
2!

F′′(û0) + û2F
′(û0), · · ·

We recall that the ADM is analogous to find the Taylor’s series expansion for the nonlinear function F(û) around
the initial function û0. Following this way and finding the Adomian polynomials An, from (21) we get the
solution as form of û = ∑∞

n=0 ûn. Moreover, using the value of ϕk;jn as initial value, the constant φ would
be determined.

8. Concluding Remarks

The use of tree-like (ultrametric) geometry is the promising direction in modeling of fluids’
transport through capillary networks in porous disordered media. Such geometry approximates fractal
(and multi-fractal) structures in Geo-conduits.

Theory of linear dynamical equations (especially, p-adic) is well developed and its application
to geophysics (see [36]) did not demand essential mathematical efforts. However, as well as in
Euclidean geophysical modeling, the basic ultrametric dynamical equations are nonlinear. One of such
equations, an analog of the Navier–Stokes equation, was derived in recent paper [38]. Its study posed
a variety of new problems. This study is especially complicated in the absence of the general theory of
nonlinear (pseudo-)differential equations on p-adic spaces; just the first steps in this direction were
done in articles [37,43]. The present paper is the important step towards establishing theory p-adic
Navier–Stokes equation.

Fractal and multifractal mathematical models are widely used for diagnostic of
hydrocarbon-reservoirs stratigraphic patterns anisotropy (see, e.g., [44,45]). The concrete “on
field applications” are based on software; one of the promising complexes of diagnostic programs was
developed by the research group of K. Oleschko. This complex was actively used in realization of
the projects for Mexican oil-industry, e.g., the project SENER-CONACYT-Hidrocarburos, Yacimiento
petrolero como un reactor fractal. Development of ultrametric models for oil transport plays the
important role in mathematical justification of application of (multi-)fractal models for Mexican
Petroleum Industry.
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Appendix A. (Convergence of Adomian’s Decomposition Method)

The convergence of ADM has been investigated by various authors. One significant fact is that the
series solution of Adomian’s decomposition technique often converges very fast to the exact solution,
if there is only one, and to one of the solutions, if several exist, tending the general term of the series
solution to zero very fast, as 1/(mq)!, for m terms and the qth order of the linear operator L (see [66,70]).

Suppose the Hilbert space H = L2(I1 × I2) defined by the set of applications

u : I1 × I2 → R, with
∫

I1×I2

u2(s, t)dsdt < ∞.

In Equation (16) let us consider the operator Tu = Ru + Nu, be hemicontinuous and satisfy the
following hypothesis:

(a) 〈T(u)− T(v), u− v〉 ≥ k‖u− v‖2, k > 0, ∀u, v ∈ H;
(b) ∀M > 0, ∃C(M) > 0, ‖u‖ ≤ M, ‖v‖ ≤ M⇒ 〈T(u)− T(v), w〉 ≤ C(M)‖u− v‖‖w‖, ∀w ∈ H.

If the above assumptions are fulfilled, the Adomian’s method is convergent (see [71–73]).
Replacing Tu := F(u) + G, the following are sufficient conditions of convergence of ADM to the
Equation (19),

(c) 〈F(u)− F(v), u− v〉 ≥ k‖u− v‖2, k > 0, ∀u, v ∈ H;
(d) ∀M > 0, ∃C(M) > 0, ‖u‖ ≤ M, ‖v‖ ≤ M⇒ 〈F(u)− F(v), w〉 ≤ C(M)‖u− v‖‖w‖, ∀w ∈ H.
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