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Abstract: The Gaussian process is gaining increasing importance in different areas such as signal
processing, machine learning, robotics, control and aerospace and electronic systems, since it can
represent unknown system functions by posterior probability. This paper investigates multisensor
fusion in the setting of Gaussian process estimation for nonlinear dynamic systems. In order to
overcome the difficulty caused by the unknown nonlinear system models, we associate the transition
and measurement functions with the Gaussian process regression models, then the advantages of the
non-parametric feature of the Gaussian process can be fully extracted for state estimation. Next, based
on the Gaussian process filters, we propose two different fusion methods, centralized estimation
fusion and distributed estimation fusion, to utilize the multisensor measurement information.
Furthermore, the equivalence of the two proposed fusion methods is established by rigorous analysis.
Finally, numerical examples for nonlinear target tracking systems demonstrate the equivalence and
show that the multisensor estimation fusion performs better than the single sensor. Meanwhile,
the proposed fusion methods outperform the convex combination method and the relaxed Chebyshev
center covariance intersection fusion algorithm.

Keywords: multisensor estimation fusion; Gaussian process; nonlinear dynamic systems; data driven
modeling; target tracking; information fusion

1. Introduction

Estimation in nonlinear systems is extremely important because almost all practical systems
involve nonlinearities of one kind or another [1,2], such as target tracking, vehicle navigation, automatic
control and robotics [3,4]. In the case of nonlinearities, estimation cannot be obtained analytically
in general. Some methods based on exact parametric models and ideas of the Kalman filter (KF)
have been developed. The Extended Kalman filter (EKF) [5] was the most common application to
nonlinear systems, which simply linearizes all nonlinear functions via Taylor-series expansion and
substitutes Jacobian matrices for the linear transformations into the KF equations. The unscented
transformation was introduced to address the deficiencies of linearization, namely unscented Kalman
filters (UKF) [1], which provided a more direct and explicit mechanism for transforming mean and
covariance matrices. Under the Bayesian framework, particle filter (PF) was presented by constructing
the posterior probability density function of the state based on all available information in Reference [6].
However, for nonlinear systems, these methods were usually assumed that the nonlinear relationships
are known. Lack of modeling accuracy, including the identification of the noise and the model
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parameters, was inevitable [7]. In many applications, most real dynamic systems are difficult to obtain
the exact models and system noises due to the complexity of the target motion environment, therefore,
the parameterized estimation methods may be invalid.

To overcome the limitations of parametric models, researchers have recently employed so called
non-parametric methods like the Gaussian process [8] to learn models for dynamic systems. More
specifically, the functional representation needs to be learned from the training data before the filtering
prediction and update step [9]. Gaussian processes have been increasingly attracting the interests in
machine learning, signal processing, robotics, control and aerospace and electronic systems [10–12].
For example, Gaussian process models are used as the surrogate models for complex physics models
in Reference [13]. The advantages stemmed from the fact that Gaussian processes take both the noise
in the system and the uncertainty in the model into consideration [14]. In the context of modeling
the dynamic systems, Gaussian processes can be used as prior over the transition function and
measurement function. By analyzing the correlation among given training data, Gaussian process
models can provide the posterior distributions over functions through the combination of the prior and
the data. For the cases that ground truth data are unavailable or can only be determined approximately,
Gaussian process latent variable models were developed in References [15,16] and they were extended
to the setting of dynamical robotics systems in Reference [17]. In order to reduce the cubic complexity
of Gaussian process training for the fixed number of training points, sparse Gaussian processes were
developed (see e.g., [18–23]). K-optimality was used to improve the stability of the Gaussian process
prediction in Reference [24].

So far, Gaussian process models have been applied successfully to massive nonlinear dynamic
systems. Motivated by modeling human motion, learning nonlinear dynamical models with Gaussian
process was investigated in Reference [16]. Many filtering methods, such as the Gaussian process
extended Kalman filters (GP-EKF) [25], the Gaussian process unscented Kalman filters (GP-UKF) [26],
the Gaussian process particle filters (GP-PF) [27], GP-BayesFilters [14] and the Gaussian process
assumed density filters (GP-ADF) [7,10] were derived by incorporating the Gaussian process transition
model and Gaussian process measurement model into the classic filters. GP-ADF was an efficient form
of assumed density filtering (ADF) introduced in References [28–30] and propagated the full Gaussian
density [7]. Although Gaussian processes have been around for decades, they mainly focus on single
sensor systems.

With the rapid development of the sensor technology, computer science, communication
technology and information technology, multisensor systems are widely used in military and civil
fields [31–35]. Benefited from the application of multiple sensors, multisensor data fusion makes
more comprehensive and accurate decision by integrating the available information from multiple
sensors and has attracted lots of research interests. Generally speaking, the multisensor estimation
fusion mainly contains centralized estimation fusion and distributed estimation fusion. Centralized
estimation fusion is that a central processor receives all measurement data from sensors without
processing and uses them to estimate the state [36,37]. In general, many filtering algorithms in
single sensor system can be applied to the multisensor systems, since measurement value can be
stacked and regarded as one measurement. On the other hand, distributed estimation fusion has
several advantages in terms of reliability, survivability, communication bandwidth and computational
burdens [38–42], which make it desirable in real applications such as surveillance, tracking and
battle management. In the distributed setting, each local sensor deals with its own measurement
data and transmits the local state estimation to the fusion center for the purpose of more accurate
estimation fusion. So far, a variety of distributed fusion methods have been investigated for different
occasions, such as References [37,40,43–46]. A convex combination method was given to fuse the local
estimates in Reference [43]. For the unavailable cross correlation matrix problem, a relaxed Chebyshev
center covariance intersection (RCC-CI) algorithm was also provided to fuse the local estimates in
Reference [37]. A current review of distributed multisensor data fusion under unknown correlation can
be seen in Reference [47]. However, these multisensor estimation fusion methods are mainly based on
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the exact dynamic models or known nonlinear functions. For the cases in which accurate parametric
models are difficult to obtain, it is worth considering integrating Gaussian processes with multisensor
estimation fusion to improve the system’s performance.

In this paper, we focus on multisensor estimation fusion including the centralized and distributed
fusion methods with Gaussian process for nonlinear dynamic systems. Firstly, given the training
data, we learn the dynamic models with the Gaussian process and derive multisensor estimation
fusion methods based on the Gaussian process models for nonlinear dynamic systems, which can
avoid inappropriate parametric models and improve predictive ability. Combining with the single
senor GP-ADF and GP-UKF, respectively, the prediction step and update step of the multisensor
estimation fusion are provided. In general, it is hard to analyze the performance of the non-parametric
fusion methods. Since the Gaussian process fusion methods have analytic mean and covariance,
we show that the distributed estimation fusion is equivalent to the centralized estimation fusion with
the single sensor cross terms being full column rank. Numerical examples show that the equivalence
is satisfied under the condition and the multisensor estimation fusion performs better than the single
sensor. We also compare the proposed fusion methods with the RCC-CI [37] algorithm and the convex
combination method [43]. In the Gaussian process model setting, the simulation results show that the
multisensor estimation fusion methods outperform the RCC-CI algorithm and the convex combination
method, as far as the estimation accuracy is concerned.

This article also extends our earlier work [48]. Compared with the conference paper, the main
differences are as follows:

• Detailed proofs are provided.
• The enhancement of the multisensor fusion algorithm with GP-UKF is presented.
• Additional set of extensive experiments are carried out.
• The equivalence condition of Proposition 1 is analyzed.
• Comparison between GP-ADF fusion and GP-UKF is given.

The rest of the paper is organized as follows. In Section 2, the problem formulation and the
Gaussian process are introduced. In Section 3, the centralized estimation fusion and the distributed
estimation fusion methods are presented. In Section 4, simulations are provided to confirm our analysis.
Some conclusions are drawn in Section 5.

2. Preliminaries

2.1. Problem Formulation

In this paper, we consider the state estimation problem of a nonlinear dynamic system with
additive noise and N (N ≥ 2) sensor measurements. The multisensor nonlinear dynamic system with
state equation and N measurement equations (see Figure 1) is described as follows:

xk = h(xk−1) + wk, k = 0, 1, . . . , (1)

ym
k = gm(xk) + vm

k , m = 1, . . . , N, (2)

where xk ∈ RD is the state of the dynamic system at time k and ym
k ∈ R

lm is the measurement of the
mth sensor at time k, m = 1, . . . , N. h(xk) is the transition function of the state xk and gm(xk) is the
nonlinear measurement function of xk at the mth sensor. wk ∼ N(0, Qk) is a Gaussian system noise
and vm

k ∼ N(0, Rm
k ) is a Gaussian measurement noise, which is independent of each other.

Our goal is to estimate the state from all the available sensor measurement information. Gaussian
processes are regarded as the prior of the transition function h(xk−1) and the sensor measurement
function gm(xk), m = 1, . . . , N, respectively. Then we make inference about the posterior distribution of
the transition function and the sensor measurement function. The Gaussian process model represents
a powerful tool to make Bayesian inference about functions [49].
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Figure 1. Graphical structure for multisensor nonlinear dynamic systems.

2.2. Gaussian Processes

A Gaussian process is defined over functions, which is a generalization of the Gaussian probability
distribution [8]. It means that we should consider inference directly in function space. Also, it gives a
formal definition, “the Gaussian process is defined a collection of random variables, any finite number
of which have a joint Gaussian distribution,” in [8].

Similar to a Gaussian distribution, knowledge of both mean and covariance function can specify a
Gaussian process. The mean function m(x) and covariance function (also called a kernel) k(x, x′) of a
Gaussian process f (x) are defined as follows,

m(x) = E[ f (x)],

k(x, x′) = E[( f (x)−m(x))( f (x′)−m(x′))],

where E[·] denotes the expectation. Thus, we write the Gaussian process as

f (x) ∼ GP(m(x), k(x, x′)).

Unless stated otherwise, a prior mean function is usually assumed to be 0. The choice of the covariance
functions depends on the application [14]. In this paper, we employ the most commonly-used squared
exponential (SE) kernel in machine learning, which is the prototypical stationary covariance function
and useful for modeling particularly smooth functions. It is defined as

Cov( f (x), f (x′)) = k(x, x′)

= α2exp{−1
2
(x− x′)TΛ−1(x− x′)}, (3)

where parameter α2 represents the variance of the function f that controls the uncertainty of predictions
in areas of less training sample density and parameter Λ is a diagonal matrix of the characteristic
length-scales of the SE kernel. Other commonly employed kernel functions can be seen in Reference [8].

A Gaussian process implies a distribution over functions based upon the obtained training data.
Assume that we have obtained a set of training data X = {X, y}. X and y are made up of multiple
samples drawn from the following standard Gaussian process regression model

y = f (x) + ε, ε ∼ N (0, σ2
ε ), (4)
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where f : RD → R and f (x) ∼ GP , N denotes the normalized Gaussian probability density function.
Note that Gaussian process regression uses the fact that any finite set of training data and testing data
of a Gaussian process are jointly Gaussian distributed. Let θ = {α2, Λ, σ2

ε }, called the hyper-parameters
of the Gaussian process. Using the evidence maximization method [8,50], we obtain a point estimate

θ̂ = arg max
θ

logp(y | X, θ),

from the known training data [51]. We can solve the optimization problem with numerical optimization
techniques such as conjugate gradient ascent [8,14]. Next, we infer the posterior distribution over
function value f (x∗) from training data for each inputs x∗ ∈ RD. In addition, the test input x∗ can be
categorized into two classes, relying on whether it is uncertain or not. The corresponding predictive
distribution over f (x∗) will be presented as follows.

(1) Predictive Distribution over Univariate Function

Suppose that the training data is X = (X, y)={(xi, yi) : i = 1, . . . , n} , where xi is a D-dimensional
input vector, yi is a scalar output, and n is the number of training data. Next, two cases, deterministic
inputs and uncertain inputs, are considered.

• Deterministic Inputs

Conditioned on the training data and the deterministic test input x∗, the predictive distribution
over f (x∗) is a Gaussian with the mean

m f (x∗) = E[ f∗] = kT
∗ (K + σ2

ε I)−1y = kT
∗β, (5)

and the variance

σ2
f (x∗) = Var f [ f∗] = k∗∗ − kT

∗ (K + σ2
ε I)−1k∗, (6)

where Var f [·] represents the variance with respect to f ,

k∗ := k(X, x∗),

k∗∗ := k(x∗, x∗),

β := (K + σ2
ε I)−1y,

and K is the kernel matrix with each element satisfying Kij = k(xi, xj). The uncertainty of prediction is
characterized by the variance σ2

f (x∗). More details can be seen in Reference [8].

• Uncertain Inputs

When the test input is uncertain, namely x∗ has a probability distribution, the prediction problem
is relatively difficult. Let us consider the predictive distribution of f (x∗) for the uncertain input
x∗ ∼ N (µ, Σ). According to the results in Reference [7] (or reviewing References [52,53]), we introduce
the predictive distribution over the function value as

p( f (x∗)|µ, Σ) =
∫

p( f (x∗)|x∗)p(x∗|µ, Σ)dx∗, (7)
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where the mean and variance of the distribution p( f (x∗)|x∗) are provided with Equations (5) and (6),
respectively. Based on the conditional expectation and variance formulae, it yields the mean µ∗ and
variance σ2

∗ of the distribution p( f (x∗)|µ, Σ) in closed form. In particular, we have

µ∗ = Ex∗ [E f ( f (x∗)|x∗)|µ, Σ]

= Ex∗ [m f (x∗)|µ, Σ]

=
∫

m f (x∗)N (x∗|µ, Σ)dx∗

= βTl, (8)

and

σ2
∗ = Ex∗ [m f (x∗)

2|µ, Σ] +Ex∗ [σ
2
f (x∗)|µ, Σ]

−Ex∗ [m f (x∗)|µ, Σ]2

= βTL̃β + α2 − tr((K + σ2
ε I)−1L̃)− (µ∗)

2. (9)

Note that l in Equation (8) is from l = [l1, . . . , ln]T,

lj =
∫

k f (xj, x∗)p(x∗)dx∗ = α2|ΣΛ−1 + I|−
1
2

× exp{−1
2
(xj − µ)T(Σ + Λ)−1(xj − µ)}.

tr(·) represents the trace in Equation (9) and we have

L̃ij =
k f (xi, µ)k f (xj, µ)

|2ΣΛ−1 + I| 12

× exp{(z̃ij − µ)T(Σ +
1
2

Λ)−1ΣΛ−1(z̃ij − µ)},

and

z̃ij :=
1
2
(xi + xj).

In general, the predictive distribution in Equation (7) cannot be analytically calculated since it
leads to a non-Gaussian distribution, if a Gaussian distribution is mapped through a nonlinear function.
Using moment-matching method, the distribution p( f (x∗)|µ, Σ) can be approximated by the Gaussian
distribution N (µ∗, σ2

∗).

(2) Predictive Distribution over Multivariate Function

For the model (4), let us turn to the multiple output case that f : RD → RE, f ∼ GP . Following
the results in References [7,51], we need to train E Gaussian process regression models independently.
The ath model is learned from the training data [X, ya], ya = [ya

1, . . . , ya
n]

T, a = 1, . . . , E, where ya
j is the

ath element of yj. It implies that any two targeted dimensions are conditionally independent given
the input.

For any deterministic input x∗, the mean and variance of each target dimension are obtained by
Equations (5) and (6). The predictive mean of f (x∗) is a vector stacked by E targeted dimension mean,
and the corresponding covariance is a diagonal matrix whose diagonal element is the variance of each
targeted dimension.

With the uncertain input x∗ ∼ N (µ, Σ), the predictive mean µ∗ of f (x∗) also is the stacked
E predictive mean µa

∗ given by Equation (8), a = 1, . . . , E. Unlike predicting at deterministic
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inputs, targeted dimensions are dependent due to the uncertain input. Denote f ∗a = fa(x∗) and
the corresponding predictive covariance matrix is given by

Σ∗ | µ, Σ

=

 Var[ f ∗1 |µ, Σ] . . . Cov[ f ∗1 , f ∗E |µ, Σ]
...

. . .
...

Cov[ f ∗E , f ∗1 |µ, Σ] . . . Var[ f ∗E |µ, Σ]

 . (10)

It is obvious that the predictive covariance is no longer a diagonal matrix. Using Equation (9),
we can obtain the diagonal element of covariance matrix (10). For each a, b ∈ {1, . . . , E},
the off-diagonal elements satisfy

Cov[ f ∗a , f ∗b |µ, Σ] = E f ,x∗ [ fa(x∗) fb(x∗)|µ, Σ]− µa
∗µ

b
∗.

Given x∗, fa(x∗) and fb(x∗) are independent, then we have

E f ,x∗ [ f ∗a f ∗b |µ, Σ]

=
∫ ∫

f ∗a f ∗b p( fa, fb|x∗)p(x∗|µ, Σ)d f dx∗ (11)

= βT
a

∫
ka

f (X, x∗)kb
f (x∗, X)p(x∗|µ, Σ)dx∗βb,

where βa, βb can be similarly obtained in Equation (5). For notational simplicity, define

L :=
∫

ka
f (X, x∗)kb

f (x∗, X)p(x∗|µ, Σ)dx∗,

where

Lij = α2
aα2

b|(Λ
−1
a + Λ−1

b )Σ + I|−
1
2

× exp{−1
2
(xi − xj)

T(Λa + Λb)
−1(xi − xj)}

× exp{−1
2
(zij − µ)TR−1(zij − µ)},

R := (Λ−1
a + Λ−1

b )−1 + Σ,

zij := Λb(Λa + Λb)
−1xi + Λa(Λa + Λb)

−1xj.

Thus, we also approximate the distribution p( f (x∗)|µ, Σ) with the Gaussian distribution
N (µ∗, Σ∗). More details can be found in Reference [51].

3. Multisensor Estimation Fusion

In this section, an essential prerequisite is that the transition function (1) and the measurement
functions (2) are either not known or no longer accessible. Thus, we model the latent functions with
Gaussian processes. For the N-sensor dynamic systems (1) and (2), suppose that we have obtained
some training data of the target state and sensor measurement. In the following, we discuss the
centralized and distributed estimation fusion methods to estimate the state from a sequence of noisy
sensor measurements.
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3.1. Centralized Estimation Fusion

First, we consider the centralized estimation fusion method. To facilitate fusion, we stack the
multisensor measurement information as follows

yk = [(y1
k)

T, . . . , (yN
k )T]T,

g(xk) = [(g1(xk))
T, . . . , (gN(xk))

T]T, (12)

vk = [(v1
k)

T, . . . , (vN
k )T]T.

Thus the dynamic system (1) and (2) can be rewritten as

xk = h(xk−1) + wk, (13)

yk = g(xk) + vk, (14)

where the covariance of the noise vk is given by

Cov(vk) =Σk = diag(Σ1
k , . . . , ΣN

k ),

Cov(vm
k ) =Σm

k , m = 1, . . . , N.

Considering the Gaussian process dynamic system setup, two Gaussian process models can be
trained using evidence maximization. GPh models the mapping xk−1 7→ xk, RD → RD and GP g

models the mapping xk 7→ yk, RD → RN∗E.
As we know, the key of the estimation is to recursively infer the posterior distribution over the state

xk of the dynamic system (13)–(14), which are based on all the sensor measurements y1:k = {yτ}k
τ=1,

including the prediction step and the update step. In particular, the prediction step uses the posterior
distribution from the previous time step to produce a predictive distribution of the state at the current
time step. In the update step, the current predictive distribution is combined with current measurement
information to refine the posterior distribution at the current time step. Next, centralized estimation
fusion methods with GP-ADF and GP-UKF are presented, respectively.

(1) Fusion with GP-ADF

Note that some approximation methods are required to obtain an analytic posterior distribution
for the nonlinear dynamic systems. In particular, for the Gaussian process dynamic system, it is
easy to make some Gaussian approximation to the posterior distribution. GP-ADF exploits the fact
that the true moments of the Gaussian process predictive distribution can be computed in closed
form. The predictive distribution is approximated by a Gaussian with the exact predictive mean and
covariance [7]. Based on the following lemma, we present the centralized estimation fusion method
with GP-ADF.

Lemma 1. For the Gaussian process dynamic system (13)–(14), the posterior distribution of the state xk can be
approximated by the Gaussian distributionN (µe

k, Ce
k), in which the mean µe

k and covariance Ce
k are given as [7]:

µe
k = µ

p
k + Cxkyk (C

y
k)
−1(yk − µ

y
k), (15)

Ce
k = Cp

k − Cxkyk (C
y
k)
−1CT

xkyk
, (16)
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where

µ
p
k = E[xk|y1:k−1],

Cp
k = Cov(xk|y1:k−1),

µ
y
k = E[yk|y1:k−1],

Cy
k = Cov(yk|y1:k−1),

Cxkyk = Cov(xk, yk|y1:k−1).

(17)

Remark 1. Since GP-ADF algorithm [7] is a state estimation method in the single sensor Gaussian process
dynamic system, it is applicable to the multisensor system with all the sensor measurements stacked into a
vector. Therefore, Equation (15) and Equation (16) are called the centralized estimation fusion method with
GP-ADF here.

Then, let us present the prediction step and update step of the above fusion method in detail.

• Prediction Step

First, this step needs to use the previous posterior distribution p(xk−1|y1:k−1) ≈ N (µe
k−1, Ce

k−1)

to produce a current predictive distribution p(xk|y1:k−1). We write the predictive distribution as

p(xk|y1:k−1) =
∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1,

and p(xk|xk−1) is a Gaussian distribution due to h ∼ GP and wk ∼ N (0, Σwk ). From this, an analogy
with Equation (7) yields the mean µ

p
k and the variance Cp

k of the state xk conditioned on the
measurement y1:k−1. In particular,

µ
p
k = E(xk|y1:k−1)

= E[h(xk−1)|y1:k−1] (18)

= Exk−1 [Eh(h(xk−1)|xk−1)|y1:k−1].

µ
p
k is a D-dimension mean vector and the computation of every target dimension can be seen in

Equation (8). The corresponding covariance matrix

Cp
k = Cov(h(xk−1)|y1:k−1) + Cov(wk)

= Σh + Σwk , (19)

where Σwk is the covariance matrix of transition noise obtained by the evidence maximization method,
and the computation of Σh can be seen in Equation (10).

• Update Step

Next, we approximate the joint distribution p(xk, yk|y1:k−1) with a joint GaussianN (µk, Ck), where

µk =

[
µ

p
k

µ
y
k

]
, Ck =

[
Cp

k Cxkyk

CT
xkyk

Cy
k

]
.

Note that we are not aiming at approximating the distribution p(xk|y1:k) directly. To obtain the joint
approximation Gaussian distribution, we use the Gaussian distribution N (µ

y
k , Cy

k) to approximate the
distribution p(yk|y1:k−1), which can be done in a same way to the prediction step due to

p(yk|y1:k−1) =
∫

p(yk|xk)p(xk|y1:k−1)dxk.
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On the other hand, the cross term satisfies

Cxk ,yk = Exk ,g[xk(yk)
T|y1:k−1]− µ

p
k (µ

y
k)

T.

For the unknown term Exk ,g[xk(yk)
T|y1:k−1], we have

Exk ,gã [xkyã
k|y1:k−1] = Exk ,gã [xkgã(xk)|y1:k−1]

=
∫

xk

[ n

∑
i=1

βã
i kgã(xk, xi)

]
p(xk)dxk

=
n

∑
i=1

βã
i

∫
xkc1N (xk|xi, Λã)N (xk|µ

p
k , Cp

k )dxk

=c1(c2)
−1

n

∑
i=1

βã
i ψ(xi, µ

p
k ), (20)

where ã = 1, 2, . . . , N ∗ E, c−1
1 is the normalization constant of the unnormalized SE kernel, ψ(xi, µ

p
k )

is the mean of a new Gaussian distribution that is the product of two Gaussian density functions
and c−1

2 is the normalization constant of the new Gaussian distribution. Consequently, from the joint
distribution p(xk, yk|y1:k−1), we obtain the posterior distribution p(xk|y1:k) ≈ N (µe

k, Ce
k) with the

mean and variance as Equations (15) and (16), respectively.

Remark 2. From Equations (15) and (16), we can see that the centralized fusion method with GP-ADF is
similar to the unified optimal linear estimation fusion [40,54]. The difference is that the computational way
of µ

p
k , Cp

k , µ
y
k ,Cy

k and Cxkyk and they are mainly based on the training data due to the nonparametric dynamic
system model.

(2) Fusion with GP-UKF

Following the single sensor GP-UKF (see e.g., References [14,26]), we present the prediction step
and update step of the GP-UKF fusion.

• Prediction Step

At time k− 1, based on the unscented transform [1], we obtain Xk−1 containing 2D + 1 points
through the mean µe

k−1 and covariance Ce
k−1. Using the GP prediction model, the transformed set is

given by

X̄ [i]
k = GP [µ]

h (X [i]
k−1), f or i = 1, . . . , 2D + 1, (21)

and the process noise is computed as

Qk = GP
[Σ]
h (µe

k−1), (22)

where GP [µ]
h and GP [Σ]

h are the mean and covariance models with respect to the Gaussian process GPh.
The predictive mean and covariance are

µ
p
k =

2D+1

∑
i=1

W[i]X̄ [i]
k , (23)

Cp
k =

2D+1

∑
i=1

W[i](X̄ [i]
k − µ

p
k )(X̄

[i]
k − µ

p
k )

T + Qk, (24)
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where W[i] is the weight generated in the unscented transform. Using the predictive mean µ
p
k

and covariance Cp
k , we obtain X̂ [i]

k through the unscented transform. Thus, based on the GP
observation model,

Ŷ [i]
k = GP [µ]

g (X̂ [i]
k ) f or i = 1, . . . , 2D + 1, (25)

and the observation noise matrix is determined by

Rk = GP
[Σ]
g (X̂ [i]

k ). (26)

Then the predicted observation and innovation covariance are calculated by

ŷk =
2D+1

∑
i=1

W[i]Ŷ [i]
k , (27)

Sk =
2D+1

∑
i=1

W[i](Ŷ [i]
k − ŷk)(Ŷ

[i]
k − ŷk)

T + Rk. (28)

Meanwhile, the cross covariance is given by

Cxkyk =
2D+1

∑
i=1

W[i](X̂ [i]
k − µ

p
k )(Ŷ

[i]
k − ŷk)

T (29)

• Update Step

Finally, the update can be obtained by the following equations:

µe
k = µ

p
k + Cxkyk S−1

k (yk − ŷk), (30)

Ce
k = Cp

k − Cxkyk S−1
k CT

xkyk
. (31)

Remark 3. Note that GP-ADF propagates the full Gaussian density by exploiting specific properties of Gaussian
process models [7]. GP-UKF maps the sigma points through the Gaussian process models instead of the parametric
functions and the distributions are described by finite-sample approximations. In contrast to GP-UKF, GP-ADF
is consistent and moment preserving [7]. In addition GP-EKF requires linearization of the nonlinear prediction
and observation models in order to propagate the state and observation, respectively [14]. GP-PF needs to
perform one Gaussian process mean and variance computation per particle and has very high computational cost.
For more details about these single sensor filtering methods, it can be seen in [7,14], and so forth. Due to the
linearization loss of GP-EKF and high computational cost of GP-PF, we do not consider them and only introduce
the multisensor estimation fusion with GP-ADF and GP-UKF in this paper.

3.2. Distributed Estimation Fusion

In this subsection, we mainly present the distributed estimation fusion with GP-ADF. For the
dynamic systems (1) and (2), assume that there is a prior on initial state x0 and each local sensor sends
its estimation to the fusion center. Thus, the posterior distribution of mth local state estimation is a
Gaussian distribution N (µem

k , Cem
k ), where µem

k and Cem
k are calculated as follows

µem
k = µ

pm
k + Cxkym

k
(Cym

k )−1(ym
k − µ

ym
k ), (32)

Cem
k = Cpm

k − Cxkym
k
(Cym

k )−1CT
xkym

k
, (33)
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with

µ
pm
k = E[xk|ym

1:k−1],

Cpm
k = Cov(xk|ym

1:k−1),

µ
ym
k = E[ym

k |y
m
1:k−1],

Cym
k = Cov(ym

k |y
m
1:k−1),

Cxkym
k
= Cov(xk, ym

k |y
m
1:k−1).

(34)

Then, the local posterior mean and covariance are transmitted to the fusion center to yield the
posterior distribution of global state estimation.

In general, the centralized estimation fusion method with directly fusing raw data has better
fusion performance than the distributed estimation fusion method based on the processed data.
However, in some cases, the distributed estimation fusion is equivalent to the centralized estimation
fusion. In particular, in what follows, we propose a distributed estimation fusion method and prove
that the distributed estimation fusion method is equivalent to the above centralized estimation fusion
method when all cross terms Cxkym

k
, m = 1, . . . , N, have full column rank.

Proposition 1. Assume that all cross terms Cxkym
k

, m = 1, . . . , N are full column rank, the distributed
estimation fusion is equivalent to the centralized estimation fusion as follows

µe
k = µ

p
k + Cxkyk

N

∑
m=1

(Cy
k)
−1(m)(µ

ym
k − µ

y
k(m))

+ Cxkyk

N

∑
m=1

(Cy
k)
−1(m)Cym

k C+
xkym

k
(µem

k − µ
pm
k ), (35)

where

µ
y
k = (µ

y
k(1), . . . , µ

y
k(N)),

µ
y
k(m) = E(ym

k |y1:k−1),

and
(Cy

k)
−1 = [(Cy

k)
−1(1), (Cy

k)
−1(2), . . . , (Cy

k)
−1(N)]

is an appropriate partition of matrix (Cy
k)
−1 such that Equation (35) holds. The superscript “+" stands

for pseudoinverse.

Proof. According to Equation (15), the mean of centralized fused state is given by

µe
k = µ

p
k + Cxkyk (C

y
k)
−1(yk − µ

y
k) (36)

= µ
p
k − Cxkyk (C

y
k)
−1µ

y
k + Cxkyk (C

y
k)
−1yk (37)

= µ
p
k − Cxkyk (C

y
k)
−1µ

y
k + Cxkyk

N

∑
m=1

(Cy
k)
−1(m)ym

k . (38)

Based on the assumption that all Cxkym
k

have full column rank, we obtain

C+
xkym

k
Cxkym

k
= I, m = 1, . . . , N. (39)
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Thus, combining Equations (37) and (38) and Equation (39) yields

Cxkyk (C
y
k)
−1yk

=Cxkyk

N

∑
m=1

(Cy
k)
−1(m)ym

k

=Cxkyk

N

∑
m=1

(Cy
k)
−1(m)Cym

k C+
xkym

k
Cxkym

k
(Cym

k )−1ym
k . (40)

In order to obtain the centralized estimation mean, that is, fuse the mean of local sensor state
estimation at the fusion center, we use Equations (32) and (40) to eliminate yk from Equation (36).
From Equation (32), we have

Cxkym
k
(Cym

k )−1ym
k

=µem
k − µ

pm
k + Cxkym

k
(Cym

k )−1µ
ym
k . (41)

Thus, substituting Equation (41) into Equation (40) and recalling Equations (36)–(38), we have

µe
k = µ

p
k − Cxkyk (C

y
k)
−1µ

y
k

+ Cxkyk

N

∑
m=1

(Cy
k)
−1(m)Cym

k C+
xkym

k

× (µem
k − µ

pm
k + Cxkym

k
(Cym

k )−1µ
ym
k )

= µ
p
k + Cxkyk

N

∑
m=1

(Cy
k)
−1(m)(µ

ym
k − µ

y
k(m))

+ Cxkyk

N

∑
m=1

(Cy
k)
−1(m)Cym

k C+
xkym

k
(µem

k − µ
pm
k ).

Therefore, we obtain the state mean of the distributed estimation fusion.

Remark 4. The proposed distributed estimation fusion formula is equivalent to the centralized estimation
fusion, therefore, the two fusion methods have the same fusion performance. However, distributed estimation
fusion is more desirable in real applications in terms of reliability, survivability, communication bandwidth
and computational burdens. From Equation (35), we can see that µ

p
k , Cp

k , µ
y
k , Cy

k , Cxkyk can be calculated in
advance and the terms µ

pm
k , µ

ym
k , µem

k , Cym
k , Cxkym

k
need to be transmitted by local sensors in real time.

Remark 5. From the update step (30) of the centralized estimation fusion with GP-UKF, the distributed
estimation fusion method (35) is also suitable for the GP-UKF. Since the detailed description and proof for the
distributed GP-UKF fusion are similar to Proposition 1, we omit the results. Note that the distributed GP-UKF
fusion is different from the distributed GP-ADF fusion in the prediction step.

4. Numerical Examples

In this section, we assess the performance of our fusion methods with two different examples.

4.1. 1D Example

We consider the nonlinear dynamic system with two sensor measurements as follows:

xk+1 = 0.5xk +
25xk

1 + x2
k
+ wk, wk ∼ N (0, σ2) (42)

ym
k = 5 sin(2xk + zm) + vm

k , vm
k ∼ N (0, 0.12), m = 1, 2, (43)
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where zm, m = 1, 2 are given by z1 = 0 and z2 = π
4 , respectively. This nonlinear system is popularly

used in many papers (see References [7,10]) to measure the performance of nonlinear filters. We regard
the first 200 samples as the training data and use the rest 50 samples called testing data to test the
fusion methods. Assume that the x−200 is a Gaussian distribution with prior mean µ−200 = 0 and
variance σ2

−200 = 1.52. The estimation performance of the single sensor and multisensor fusion is
evaluated by the average Mahalanobis distances that are also used in Reference [7]. The Mahalanobis
distance, which is defined between the ground truth and the filtered mean, is as follows:

Maha =
√
(xk − x̂k)T(Ce

k)
−1(xk − x̂k), (44)

where Ce
k is the estimated covariance. For the Mahalanobis distance, lower values indicate better

performance [7]. Figures 2 and 3 show the average Mahalanobis distances of the single filter with
GP-ADF and GP-UKF, and the fusion methods after 1000 independent runs. Figure 4 shows the
average Mahalanobis distances for different system noises.

According to the average Mahalanobis distances in Figures 2 and 3, we can see that the estimation
performance of Sensor 2 is better than that of Sensor 1. Furthermore, the multisensor estimation fusion
methods perform better than the single sensor filters with GP-ADF and GP-UKF, respectively. Thus
the effectiveness and advantages of the multisensor estimation fusion with Gaussian process can be
observed. In addition, GP-ADF fusion performs better than GP-UKF fusion for the system noise σ2 = 1
and GP-UKF fusion performs better than GP-ADF fusion for the system noise σ2 = 2. It means that
GP-ADF fusion and GP-UKF fusion have their comparative advantages for different system noises.
It suggests that GP-ADF fusion may be a better choice for the small system noise and GP-UKF fusion
may be worth considering for the relatively large system noise. From Figure 4, we can see that the
proposed fusion methods enjoy better performance for different system noises. It demonstrates the
consistence of our fusion methods for different system noises.
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Figure 2. The average Mahalanobis distances of the single sensor and multisensor fusion with σ2 = 1.
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Figure 4. The average Mahalanobis distances for different system noises σ2.

4.2. 2D Nonlinear Dynamic System

In this subsection, we elaborate the performance of the fusion methods with GP-ADF and GP-UKF,
and we consider the example with constant turn motion model in target tracking. The root mean
square error (RMSE) is used as the estimation performance measure. It is defined as follows:

RMSEk =

√√√√ 1
M

M

∑
j=1
‖xj

k − x̂j
k‖

2
2, (45)

where M is the total number of simulation runs, xj
k is the true simulated state for the jth simulation,

and x̂j
k is the estimated state value for the jth simulation at time k, j = 1, . . . , M. The lower the value of

the RMSE is, the better the performance of corresponding method is.
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4.2.1. Experimental Setup

We consider the constant turn motion model with two sensors as follows:

xk+1 = Fxk + wk, wk ∼ N (0, Qk), (46)

ym
k =

[√
(xk(1)− zm(1))2 + (xk(2)− zm(2))2

arctan xk(2)−zm(2)
xk(1)−zm(1)

]
+ vm

k ,

vm
k ∼ N (0, Rk), m = 1, 2, (47)

where the state transition matrix F is given by

F =

[
cos Ω sin Ω
−sin Ω cos Ω

]

with angular velocity Ω, the covariance matrix of transition noise satisfies

Qk =

[
5 0
0 5

]
,

and the covariance matrix of measurement noise is

Rk =

[
52 0
0 ( 0.1∗π

180 )2

]
.

The sensor positions are given by z1 = [−200, 200]T and z2 = [200,−200]T, respectively.
We use the transition function (46) and measurement functions (47) to simulate a group of data.

The values of angular velocity Ω are given by Ω = 2π
90 rad/s and Ω = 0.5 rad/s, respectively, which

correspond to the small turn motion model and large turn motion model. The first κ samples are
regarded as the training data and the rest 50 samples called testing data are used to test the fusion
methods. The {xτ , y1

τ , y2
τ}−1

τ=−κ are the true simulated state and two-sensor observations used to
train the models. Assume that the x−κ is a Gaussian distribution with the prior mean µ−κ = [0, 0]T

and the identity matrix variance S−κ = I. The initial value of filtering for each sensor is set as the
Cartesian coordinate transformation value based on the Polar coordinate observation with a random
perturbation for each dimension. We use the random perturbation N(10, 1) for the κ = 300 training
data case and N(20, 1) for the κ = 30, 60 training data cases, respectively. The initial value of fusion
filtering is the mean of the initial values of all sensors. Based on the available observation information,
the outputs of GP-ADF and GP-UKF for each single sensor are the mean and covariance terms µ

pm
k ,

Cpm
k , µem

k , Cem
k , µ

ym
k ,Cym

k , Cxkym
k

. The distributed fusion methods, the RCC-CI algorithm [37] and the
convex combination method [43], are also used as a comparison with our distributed fusion method.
The RCC-CI algorithm and the convex combination method directly use the estimated mean and
covariance matrix to fuse the estimated results. Our methods take full advantages of the results of the
single sensor Gaussian process filters such as the cross term Cxkym

k
which is easily obtained. Note that

all of the fusion methods are based on the local estimates that are distilled from the measurements.
Thus, the comparison is fair from the available observation information. The simulation results of
the RCC-CI algorithm are based on the YALMIP toolbox [55]. We compare the fusion methods with
the RCC-CI algorithm and the convex combination method by RMSE after M = 1000 independent
simulation runs. Meanwhile, we also compare the computation time of the multisensor estimation
fusion methods with the RCC-CI algorithm and the convex combination method. The ratio of full rank,
defined as the percentage of full column rank of the cross term Cxkym

k
for the single sensor filtering at

every time step after M = 1000 independent runs, is used to test the condition of equivalence. If the
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ratio of full rank is less than 100%, the condition is broken. The simulations are done under Matlab
(MathWorks, Inc., Natick, MA, USA) R2018b with ThinkPad W540.

Figure 5 describes the ratios of full column rank in the single sensor case for testing data with
κ = 300 training data and Ω = 2π

90 , 0.5 rad/s. The RMSEs for Ω = 2π
90 , 0.5 rad/s in the case of κ = 300

training data are depicted in Figures 6 and 7, respectively. The average computation time of these
fusion methods for Ω = 2π

90 , 0.5 rad/s in the case of κ = 300 training data after 1000 independent
simulation runs are depicted in Figures 8 and 9, respectively. The diamond line represents the RMSE
of the centralized estimation fusion with GP-ADF (CMF-GP-ADF) and the star line represents the
distributed estimation fusion with GP-ADF (DMF-GP-ADF). The circle line represents the RMSE of the
centralized estimation fusion with GP-UKF (CMF-GP-UKF) and the x line represents the distributed
estimation fusion with GP-UKF (DMF-GP-UKF). The upper triangle line represents the RMSE of the
RCC-CI fusion algorithm with GP-ADF (RCC-CI-GP-ADF) and the lower triangle line represents the
RMSE of the RCC-CI fusion algorithm with GP-UKF (RCC-CI-GP-UKF). The square line represents
the RMSE of the convex combination method, that is, covariance weight, with GP-ADF (CW-GP-ADF)
and the + line represents the RMSE of the convex combination method with GP-UKF (CW-GP-UKF).
At the same time, solid line is used for the single sensor GP-ADF filter and dash-dotted line is used for
the single GP-UKF filter. Similarly, the ratios of full column rank in the single sensor case for testing
data with κ = 30, 60 training data and Ω = 2π

90 rad/s are depicted in Figures 10 and 11, respectively.
The RMSEs for Ω = 2π

90 rad/s in the case of κ = 30, 60 training data are depicted in Figures 12 and 13,
respectively. The average computation time of these fusion methods for testing data with κ = 30, 60
training data and Ω = 2π

90 rad/s after 1000 independent simulation runs are depicted in Figures 14
and 15, respectively.

4.2.2. Experimental Analysis

We divide the experimental analysis into two cases, that is, the equivalence condition is satisfied
or not. Some phenomena and analysis are described as follows:

Case 1: the equivalence condition is satisfied.

• From Figure 5, we can see that the ratios of full rank are all equal to 100%. It means that the
cross terms of the single sensor filters are all full column rank for the κ = 300 training data case
and thus the equivalence condition of centralized fusion and distributed fusion is satisfied in
Proposition 1. Meanwhile, from Figures 6 and 7, the RMSE of the distributed estimation fusion is
the same as that of the centralized estimation fusion based on GP-ADF and GP-UKF, respectively.
It demonstrates the equivalence between the centralized estimation fusion and the distributed
estimation fusion in Proposition 1 under the condition of full column rank.

• From Figures 6 and 7, it can be seen that the RMSE of the multisensor estimation fusion method
is lower than that of the single sensor filtering. It shows that the multisensor fusion improves the
estimation accuracy.

• In addition, the RMSE of multisensor estimation fusion method is lower than that of the RCC-CI
algorithm and the convex combination method. It implies the effectiveness of the fusion methods
based on Gaussian processes. The possible reason is that our estimation fusion methods extract
more extra correlation information, and the RCC-CI algorithm and the convex combination
method only use the local estimates with mean and covariance.

• Compared Figure 6 with Figure 7, we can find that our methods do well in the different angular
velocity cases, i.e., the small turn motion model and large turn motion model. It confirms that our
fusion methods have fine applicability with better performance.

• From Figures 8 and 9, we can find that the computation time of the distributed estimation fusion
is less than that of the centralized estimation fusion. It demonstrates the superiority of the
distributed estimation fusion under the same fusion performance. The computation time of the
proposed fusion methods is much less than that of the RCC-CI algorithm. The possible reason is



Entropy 2019, 21, 1126 18 of 26

due to solve a optimization problem for the RCC-CI algorithm. The convex combination method
takes the least computation time, since it directly uses the weight combination with covariance.
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Figure 5. The ratios of full column rank of the cross term Cxkym
k

in the single sensor case for testing data
with κ = 300 training data and Ω = 2π

90 rad/s, 0.5 rad/s.
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Case 2: the equivalence condition is not satisfied.

• From Figures 10 and 11, it can be seen that the ratios of full rank are both less than 100% for the
single sensor GP-UKF case with κ = 30 and κ = 60 training data. Thus, the equivalence between
the centralized and distributed estimation fusion with GP-UKF is broken in Figures 12 and 13,
respectively. The reason may be that the Gaussian models are relatively inaccurate with less
training data, which can be known from the comparison with Figures 6, 12 and 13 for the same
methods. At the same time, the finite-sample approximation of GP-UKF seriously depends on the
Gaussian process models and the computation way of the cross terms is the sum about rank-one
matrices for GP-UKF. However, the equivalence is still satisfied for the GP-ADF fusion. It implies
GP-ADF is more stable than GP-UKF, which is also referred to in Reference [7].

• We can also see that the performance of GP-UKF fusion is better than that of GP-ADF fusion
with κ = 300 training data from Figure 6 and a little worse with κ = 30, 60 training data from
Figures 12 and 13. Meanwhile, from Figures 8, 14 and 15, the average computation time of
GP-UKF fusion is less than that of GP-ADF fusion with κ = 300 training data and is contrary
with κ = 30, 60 training data. It may inspire us that the GP-UKF fusion is suitable for the enough
training data case and GP-ADF fusion does well in the small number of training data case for the
turn motion systems.

In a word, distributed estimation fusion with GP-ADF is more stable, and has a better performance
in the case of the small number of training data. If we have enough training data, GP-UKF fusion may
be the better choice.



Entropy 2019, 21, 1126 21 of 26

0 10 20 30 40 50

time step k

0.88

0.9

0.92

0.94

0.96

0.98

1

p
e
rc

e
n
ta

g
e
 o

f 
fu

ll 
ra

n
k
 (

%
)

Sensor1-GP-ADF

Sensor2-GP-ADF

Sensor1-GP-UKF

Sensor2-GP-UKF
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Figure 14. Average computation time of the three fusion methods for testing data with κ = 30 training
data and Ω = 2π

90 rad/s.
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Figure 15. Average computation time of the three fusion methods for testing data with κ = 60 training
data and Ω = 2π

90 rad/s.

5. Conclusions

In the context of this paper, the property matters if the real system does not closely follow idealized
models or a parametric model cannot easily be determined for nonlinear systems. A non-parametric
method, the Gaussian process, is introduced to learn models from training data, since it takes both
model uncertainty and sensor measurement noise into account. In order to estimate the state of the
multisensor nonlinear dynamic systems, we have used the Gaussian process models as the prior
of the transition and measurement function of the dynamic system. Then the transition function
and measurement function have been trained with Gaussian processes, respectively. Based on
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the Gaussian process models for all available local sensor measurements, we have developed two
fusion methods, centralized estimation fusion and distributed estimation fusion, with GP-ADF and
GP-UKF, respectively. Taking full advantage of the nature of the Gaussian process, the equivalence
between centralized estimation fusion and distributed estimation fusion has been derived under
mild conditions. Simulations show that the equivalence is satisfied under given conditions and the
multisensor estimation fusion performs better than the single sensor filters. Compared with the
RCC-CI algorithm, the multisensor estimation fusion methods not only have higher accuracy, but also
require less computation time. The estimation performance of multisensor estimation fusion methods
is also better than that of the convex combination method. Future work may involve state initialization,
Gaussian process latent variable models without ground truth states, multiple model fusion with
different Gaussian processes for maneuvering target tracking and validate the methods with the real
sensor data.
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