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Abstract: Dimensionality reduction has always been a major problem for handling huge
dimensionality datasets. Due to the utilization of labeled data, supervised dimensionality reduction
methods such as Linear Discriminant Analysis tend achieve better classification performance
compared with unsupervised methods. However, supervised methods need sufficient labeled data
in order to achieve satisfying results. Therefore, semi-supervised learning (SSL) methods can be a
practical selection rather than utilizing labeled data. In this paper, we develop a novel SSL method
by extending anchor graph regularization (AGR) for dimensionality reduction. In detail, the AGR
is an accelerating semi-supervised learning method to propagate the class labels to unlabeled data.
However, it cannot handle new incoming samples. We thereby improve AGR by adding kernel
regression on the basic objective function of AGR. Therefore, the proposed method can not only
estimate the class labels of unlabeled data but also achieve dimensionality reduction. Extensive
simulations on several benchmark datasets are conducted, and the simulation results verify the
effectiveness for the proposed work.

Keywords: kernel regression; semi-supervised learning; dimensionality reduction; anchor
graph regularization

1. Introduction

Dimensionality reduction is an important issue when handing high-dimensional data in many
real-world applications, such as image classification, text recognition, etc. In general, dimensionality
reduction is achieved by finding a linear or nonlinear projection matrix that casts the original
high-dimensional data into a low-dimensional subspace so that the computational complexity can
be reduced and the key intrinsic information can be preserved [1–10]. Principal component analysis
(PCA) and linear discriminant analysis (LDA) [11] are two of the most widely-used methods for
dimensionality reduction. PCA is achieved by finding a projection matrix along the maximum variance
of the dataset with the best reconstruction. While LDA is utilized to search for the optimal direction
ensuring that the dataset in the reduced subspace can maximize the between-class scatter while
minimizing the within-class scatter. As LDA is a supervised approach, it generally outperforms PCA
by giving sufficient labeled information.

A key problem is that obtaining a large amount of labeled data is time-consuming and expensive.
On the other hand, unlabeled data may be abundant in some real world applications. Therefore,
semi-supervised learning (SSL) approaches have become increasingly important in the area of pattern
recognition and machine learning [1,2,4,12–14]. Over the past decades, according to the manifold
or clustering assumptions—i.e., nearby data likely have the same labels [1,2,4]—graph based SSL is
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one of the most popular methods in the aspect of SSL, which includes the manifold regularization
(MR) [3], learning with local and global consistency (LGC) [2] and Gaussian fields and harmonic
functions (GFHF) [1] methods. All of these utilize labeled and unlabeled sets to formulate a graph for
approximating the geometry of data manifolds [5].

The above graph-based SSL can be usually divided into two categorizations: The first is the
inductive learning method and the second is the transductive learning one. The transductive learning
methods aim to propagate the labeled information via a graph [1,2,4], so that the labels of an unlabeled
set are estimated. However, a key problem for transductive learning methods is that they cannot
estimate the class labels of new incoming data, therefore suffering from the out-of-sample problem.
In constrast, the inductive learning methods, known as MR [3] and Semi-supervised Discriminant
Analysis (SDA) [5], aim to study a decision function for classification on the original data space, so
that they can reduce the dimensionality as well as naturally solve out-of-sample problems.

It can be noted that the graph in SSL tends to be a k nearest neighborhood (kNN) based graph that
is first to find the k-neighborhoods of each data [15–17] and then define a weight matrix measuring
the similarity between any pair-wise data [1,2,4,18–21]. However, kNN graph has a key limit in that
it cannot be scalable to a large-scale dataset, as the computational complexity for searching the k
neighborhoods of data is O

(
kn2), which is not linear with n. To solve this problem, Liu et al. [22,23]

proposed an efficient anchor graph (AGR), where each data point is first to find the k neighborhoods
of anchor points, then the graph is constructed by the inner product of coefficients between the data
and anchors, through which the class labels can be inferred from anchors to the whole dataset. As a
result, the computational complexity can be greatly reduced. While there are different ways to build
the adjacency matrix S in AGR [24–26], we argue that most of them are developed intuitively and lack
a probability explanation. In addition, AGR cannot directly infer the class labels of incoming data.

In this paper, we aim to enhance AGR by solving the above problems. From the element concept
idea of AGR, we point that the anchors should have the same probability distribution to those of
data points, as the anchors refer to the data that can roughly approximate the distribution of data
points. Based on this assumption, we then analyze S from the stochastic view and further extend it
to be doubly-stochastic. As a result, the distribution of anchors is the same to those of data points,
and the updated S can be treated as a transition matrix, where each value in S can be viewed as a
transition probability value between any data point and anchor point. Benefiting from S, we then
develop a sub-graph regularized framework for SSL. The new sub-graph is constructed by S in an
efficient way and can preserve the geometry of data structure. Accordingly, an SSL strategy based on
such a sub-graph is also developed, which is first to infer the labels of anchors and then to calculate
those of the training data. The is quite different from conventional graph-based SSL, which is directly
to infer the class labels of datasets on the whole graph and may result in a huge computational cost if
the dataset is large-scale. However, this SSL strategy is efficient and suitable for handling a large-scale
dataset. The experiments on extensive benchmark datasets show the effectiveness and efficiency of the
proposed SSL method.

The main contributions of this paper are given as follows:

(1) We develop a doubly-stochastic S that measures the similarity between data points and anchors.
The new updated S has probability means and can be viewed as transition probability between
data points and anchors. In addition, the proposed S is also a stochastic extension to the ones
in AGR.

(2) We develop a sub-graph regularized framework for SSL. The new sub-graph is constructed by S
in an efficient way and can preserve the geometry of the data manifold.

(3) We also adopt a linear predictor for inferring the class labels of new incoming data, which can
handle out-of-sample problems. In addition, the computational complexity of this linear predictor
is linear with the number of anchors, and hence is efficient.
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The organization of the paper is as follows: In Section 2, basic notations and reviews for SSL are
provided; in Section 3, the proposed model for graph construction and SSL are developed. In Section 4,
we conduct extensive simulations, and give our final conclusions in Section 5.

2. Notations and Preliminary Work

2.1. Notations

Let X = [Xl , Xu] ∈ Rd×(l+u) be the data matrix, where d presents the feature number, l and
u are the number of labeled and unlabeled sets, respectively, so that Xl and Xu are respectively
the labeled and unlabeled sets, Y = [y1, y2, . . . , yl+u] ∈ Rc×(l+u) be the one hot labels of data,
F = [ f1, f2, . . . , fl+u] ∈ Rc×(l+u) is the predicted label matrix satisfying 0 ≤ fij ≤ 1.

2.2. Review of Graph Based Semi-Supervised Learning

We will review the prior graph based SSL methods. Two well-known methods for SSL include
LGC [1] and GFHF [2]. The objective of LGC and GFHF can be given as:

gL (F) = 1
2 ∑l+u

i,j=1

∥∥∥∥ fi√
Dii
− f j√

Djj

∥∥∥∥2

F
Wij + λ ∑l+u

i=1 ‖ fi − yi‖2
F

gG (F) = 1
2 ∑l+u

i,j=1

∥∥ fi − f j
∥∥2

FWij + λ∞ ∑l
i=1 ‖ fi − yi‖2

F

(1)

where λ is a balancing parameter that controls the trade off between the label fitness and the manifold
smoothness. λ∞ is a large value such that ∑l

i=1 || fi − yi||2F = 0, or fi = yi, ∀i = 1, 2, ..., l.

2.3. Anchor Graph Regularization

Anchor graph regularization (AGR) is an efficient graph based learning method for large-scale
SSL. In detail, let A = {a1, a2, . . . am} ∈ Rd×m be the anchor point set, G = {g1, g2, . . . gm} ∈ Rc×m be
the label matrix of A, Z ∈ Rm×n be the weight matrix measuring the similarity between each xj and ai
with constraints Zij ≥ 0 and ∑m

i=1 Zij = 1, which is usually formulated by the kernel weights or the
local reconstructed strategy making the computational complexity for both two strategies linear with
the data number. Then, the label matrix F can be estimated as:

f j = ∑m
i=1 giZij, (2)

so that AGR is to minimize the following objective function:

J (G) = ∑l
j=1
∥∥Gzj − yj

∥∥2
F +

γ
2 ∑n

i,j=1 Wa
ij

∥∥Gzi − Gzj
∥∥2

F
= ‖GZl −Yl‖2

F + γTr
(
GZ (I −Wa) ZTGT)

= ‖GZl −Yl‖2
F + γTr

(
GLrGT) , (3)

where the first term is the loss function and the second term is the manifold regularized term, Wa =

ZT∆−1Z ∈ Rn×n is the anchor graph, and ∆ ∈ Rm×m is a diagonal matrix with each element satisfying
∆ii = ∑n

j=1 Zij. It can be easily proven that Wa is doubly-stochastic, hence it has probability meaning.
In addition, given two data points xi and xj with common anchor points, it follows Wa

ij > 0; otherwise
Wa

ij = 0. This indicates that the data points with common anchor points have similar semantic concepts

hence Wa can characterize the semantic structure of datasets. Lr = Z (I −Wa) ZT ∈ Rm×m is the
reduced Laplacian matrix, Zl ∈ Rm×l is formed by the first l columns of Z. Here, we can see that
although AGR is performed with a regularization term on all data points, it is equivalent to being
regularized on anchor points with a reduced Laplacian matrix Lr. Finally, the labels of data points can
be inferred from those of anchor points, where the computational complexity can be reduced to O (n).
Therefore, both graph construction and the regularized procedure in AGR are efficient and scalable to
a large-scale dataset.
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3. A Sub-Graph Regularized Framework for Efficient Semi-Supervised Learning

3.1. Analysis of Anchor Graph Construction

The key point for anchor graph construction is to define the weight matrix for measuring the
similarity between each data point and anchor data. A typical way is to use kernel regression [22]:

Sij =
Kδ

(
xi, bj

)
∑s∈〈i〉 Kδ (xi, bs)

∀s ∈ 〈i〉 (4)

where δ is the bandwidth of Gaussian function and 〈i〉 denotes the indices of the k neighborhood
anchors of xi. Obviously, we have ST1q = 1n, where 1n ∈ Rn×1 and 1q ∈ Rq×1 is the column vectors
with n and q ones, respectively, so that the sum of each column of S is equal to 1. This means Sij can
be viewed as a probability value P

(
bi|xj

)
, which represents the transferred probability from xj to bj.

Then, following the Bayes rule, we have:

P (bi) =∑n
j=1 P

(
xj
)

P
(
bi|xj

)
≈ 1

n
P
(
bi|xj

)
(5)

where P
(

xj
)
≈ 1/n follows a uniform distribution based on the strong law of large number n→ ∞.

In addition, since the anchors are also sampled from the dataset, we can further assume P (bi) also
follows a uniform distribution, i.e., P (bi) = 1/q. With these assumptions, we have:{

P (bi) = 1/q, P
(

xj
)
= 1/n

P (bi) = ∑n
j=1 P

(
xj
)

P
(
bi|xj

)}
⇒ ∑n

j=1 P
(
bi|xj

)
= n

q ⇒ Si.1n = σ

(6)

where Si is the i-th row of S and σ = n/q is a fixed value so that S1n = (n/q) 1q=σ1q. We thereby
have two constraints on S, i.e., ST1q = 1n and S1n=σ1q (the advantages will be shown in the next
subsection). Our goal is to calculate a weight matrix S that follows the above constraints so that S has
clear stochastic meaning.

Fortunately, this can be simply achieved by iteratively normalizing S both in row and column, i.e.,

S0 Pr()−−→ S1 Pc()−−→ S1 Pr()−−→ S2 Pc()−−→ S2 → · · · (7)

where Pc(S) = S∆−1
c and Pr(S) = ∆−1

r S, ∆c = diag(1S) ∈ R(l+u)×(l+u) and ∆r = diag(S1) ∈ Rq×q.
Acutally, the above iterative procedure is equivalent to solving the following optimization problem:

minS ‖S− S0‖2
F s.t. S ≥ 0, ST1q = 1n, S1n = σ1q (8)

where S0 is the initial S as calculated in Equation (4). Equation (8) involves an instance of quadratic
programming (QP), which can be divided into two convex sub-problems:

minS ‖S− S0‖2
F s.t. S ≥ 0, ST1q = 1n (9)

minS ‖S− S0‖2
F s.t. S ≥ 0, S1n = σ1q. (10)

By the above derivations, the initial QP problem in Equation (8) is tackled by successively
alternating between two sub-problems in Equations (9) and (10). This alternate optimization procedure
will converge due to Von-Neumann’s lemma [27,28]. In addition, Von-Neumann’s lemma guarantees
that alternately solving the sub-problems in Equations (9) and (10) with the current solution is
theoretically guaranteed to converge to the global optima of Equation (8).
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3.2. Sub-Graph Construction

We have now obtained q anchors and the coefficient sj of each data xj. The weight matrix S reflects
the affinities between data points and anchors, i.e., X ≈ BS. If we further assume such affinities in
the original high-dimensional dataset can be preserved in the low-dimensional class labels, then we
have F ≈ ZS, where Z = [z1, z2, . . . , zq] ∈ Rc×q represents the class labels of anchors B. This indicates
that the class labels of the dataset can be easily obtained by F = ZS, given that the class labels of
anchors have already been inferred. Since the number of anchors is smaller than that of the dataset,
the computational cost for calculating Z can be much lower than directly calculating F in certain
conventional graph-based SSL methods. We thereby present an efficient method for semi-supervised
learning, in which we aim to develop a sub-graph regularized (SGR) framework for semi-supervised
learning by utilizing the information of anchors.

Here, in order to develop our proposed sub-graph SSL method, we need to first construct a
sub-graph on the set of anchors and define the adjacency matrix to measure the similarity between
any two anchors. There are many approaches to construct the graph by utilizing the anchors, such
as conventional kNN graph [1,18,20,21]. However, intuitively, we will design the adjacency matrix
Wd ∈ Rq×q by using S as follows:

Wd =
1
σ

SST . (11)

It can be easily proven that Wd1q = (1/σ)SST1q = (1/σ)S1n = 1q. This indicates Wd is a
doubly-stochastic matrix. Therefore, the above graph construction can be theoretically derived by
a probabilistic means. More straightforward, it can be easily noted that Wd in Equation (11) is
an inner product of S with each element Wd

ij = sr
i , where sr

i sr
j
T and sr

j are the i-th and j-th rows
of S = {sr

1, sr
2, . . . , sr

q}. This indicates that the rows of S are denoted as the representations of
anchors. In addition, given bi and bj share more common data points choosing them as anchors,
their corresponding sr

i and sr
j will be similar and Wd

ij will become a large value; To the constrast, Wd
ij

will be equal to 0, if bi and bj do not share any data points. Therefore Wd derived in Equation (11) can
be viewed as an adjacency matrix to measure the similarity between any two anchors.

3.3. Efficient Semi-Supervised Learning via Sub-Graph Construction

With the above graph construction, we then develop our sub-graph model for efficient
semi-supervised learning. Since the number of anchors is much smaller than that of the dataset,
our goal is first to estimate the labels of anchors Z from labeled data via the sub-graph model, and then
to calculate those of unlabeled samples by the weight matrix. Here, we first give the objective function
of the proposed sub-graph regularized framework for calculating the class labels of anchors as follows:

The first term in Equation (12) is to measure the smoothness of estimated labels on the graph,
while the second term is to measure how the estimated labels are consistent original labels, and the
third one is a Tikhonov regularization term to avoid the singularity of possible solutions. ηA and ηI are
the parameters balancing the tradeoff of the three terms. By conducting the derivation of J (Z) with
regard to Z, we can calculate the class labels for anchors as follows:

Z∗ = YUST
(

SUST + ηA I + ηI Ld
)−1

(12)

where U is a diagonal matrix where the first l and the remaining u element are 1 and 0, respectively, Ld

is the graph Laplacian matrix of Wd. Following Equation (13), we can observe that key computations
for Z∗ are the inverse of SlST

l + ηI Ld + ηA I, where the complexity is O
(
q3). Note that q � l + u,

calculating Z can be much smaller than directly calculating F as in LGC and GFHF. Finally, the class
labels of the dataset can be calculated by

F = Z∗S = YUST
(

SUST + ηI Ld + ηA I
)−1

S. (13)
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The basic steps of the proposed SGR are in Algorithm 1.

Algorithm 1: The proposed SGR

1 Input: Data X ∈ RD×(l+u), label matrix Y ∈ Rc×(l+u), the number of anchors q and other
parameters.

2 From S as Equation (8).
3 Form sub-graph weight matrix as SST in Equation (11).

4 Estimate the label matrix of anchors Z∗ = YUST
(

SUST + ηI Ld + ηA I
)−1

as in Equation (12).

5 Estimate the label matrix of dataset by F = Z∗S.
6 Output: The predicted label matrix of anchors and dataset Z ∈ Rc×q, F ∈ Rc×(l+u),respectively.

3.4. Out-of-Sample Extension via Kernel Regression

The proposed SGR can be used to estimate the labels of unlabeled data. It cannot directly infer
the labels of new data. One way to handle such problems is to find a linear projective model by
regressioning anchors B on Z, i.e.,:

V = arg min
V,b

∥∥∥VT B + bTe− Z
∥∥∥2

F
+ γ ‖Z‖2

F (14)

where V ∈ Rd×c is the projection and b is the bias term. Though this linearization assumption
Z=VT B + bTe provides an effective and efficient solution to the out-of-sample problem. However it is
not able to fit the nonlinear distribution. Therefore, we solve the above problem in two ways: 1) We
combine the objective function of SGR and the regression term to form a unified framework, so that
the class labels of Z, the projection V, and the bias b can be simultaneously calculated; 2) we utilize the
kernel trick to search a nonlinear projection. Specifically, we give the objective function as:

J (V, Z, b) = minV,Z,b ∑l
j=1
∥∥Zsj − yj

∥∥2
F + ηA ‖V‖2

F

+ηR
∥∥VT ϕ (X) + bTe− Z

∥∥2
F

+ηI ∑
q
i,j=1 Wd

ij

∥∥zi − zj
∥∥2

F.

(15)

It should be noted that ϕ (B) is only implicit and not available. To calculate the optimal V, we
have to involve some restrictions. In detail, let V have a linear combination of ϕ (B), i.e., V = ϕ (B) A,
where A ∈ Rq×c is the coefficient for V, then:

J (V, Z, b) = minV,Z,b ∑l
j=1
∥∥Zsj − yj

∥∥2
F + ηATr

(
ATKA

)
+ηR

∥∥ATK + bTe− Z
∥∥2

F
+ηI ∑

q
i,j=1 Wd

ij

∥∥zi − zj
∥∥2

F

(16)

where K represents the kernel matrix and we can select Gaussian kernel. By setting the derivatives of
Equation (16), if follows: 

b =
(

1qZT − 1qKA
)/

1q1T
q

A =
(

KLcKT + ηK
)−1

KLcZT

Z = YUST
(

SUST + ηI Ld + ηRLr
)−1

(17)
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where η = ηI/ηR, Lc = I − 1q
T1q/1q1q

T is to subtract the mean of all data, Lr = Lc −
LcKT(KLcKT + η I

)−1KLc. Here, denote x as a new coming data and xk as its kernel representation, its
projected data t can be given t = VTxk + b and the label of x is estimated as:

ct = arg maxit (i) (18)

One toy model example for verifying out-of-sample extensions can be given in Figure 1. In
this toy example, we annotate two datasets as labeled sets in each class. We then infer the labels in
the region {(x, y) |x ∈ [−2, 2], y ∈ [−2, 2]} by out-of-sample extension both in the linear version and
kernel version. The experiment results show that the decision boundary learned by the kernel version
is satisfied, since they are both consistent with the data manifold. While the linear version fails to
handle the task, due to the two-cycle dataset following a nonlinear distribution.

Boundary

Unlabeled

Unlabeled

Labeled

Labeled

(a) Contour lines of decision boundary for
linear version

2

-2

1-1.5

-1

-0.5 0

0

0.5
-1

1

1.5

0

0.5

1

(b) Contour surface of decision region for
linear version

Boundary

Unlabeled

Unlabeled

Labeled

Labeled

(c) Contour lines of decision boundary for
kernel version

2
-1

-2

1-1.5

-1

-0.5 0

0

0.5
-1

1

1.5

0

1

(d) Contour surface of decision region for
kernel version

Figure 1. Out-of-sample extension: two-cycle dataset in {(x, y) |x ∈ [−2, 2], y ∈ [−2, 2]}. (a) and (c) the
contour lines of the decision boundary; (b) and (d) the contour surface is the estimated label values
in the region. In this experiment, the figures in the upper row represent the results by using a linear
prediction model Z = VT B + bTe, while those on the bottom row represent the results by using a kernel
based prediction model Z = VT ϕ(B) + bTe. Clearly, the kernel prediction model is much better than
the linear prediction model since the two-cycle dataset follows a nonlinear distribution.
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Note that the proposed method includes three stages of training: (1) initialize the anchors by
k-means; (2) construct the sub-graph wd; (3) perform SSL. Here, the computational cost of k-means
in the first stage is O (q (l + u)), while the one for sub-graph construction and SSL strategy in the
second and third stage are Wd is O (q (l + u)) and O

(
q3 + (l + u)q

)
, respectively. The summary of the

computational complexity is in Table 1, from which we can see that if we use a fixed q (q � l + u)
anchors for large scale dataset, the computational complexity of proposed SGR scales linearly with
l + u, which indicates the proposed SGR is suitable for handling large-scale data.

Table 1. The computational complexity of different stages. Semi-supervised learning (SSL).

The Proposed
Method

The First Stage
(Initialization)

The Second Stage
(The Proposed Model)

The Third Stage
(SSL)

Totals (Considering Large-Scale Data
q � l + u)

Computational
Complexity O (q (l + u)) O (q (l + u)) O

(
q3 + q (l + u)

) O (q (l + u)) + O (q (l + u)) +
O
(
q3 + q (l + u)

)
≈ O

(
q (l + u) + q3)

It should be noted a recent work, [29], has proposed another SSL method based coupled graph
Laplacian regularization, which is similar to our proposed work. The main advantages for our
proposed work compared to [29] can be issued as follows: (1) The proposed constructed graph is
doubly-stochastic, so that the constructed graph Laplacian is normalized in each row or column. For
the coupled graph Laplacian rigorization, their constructed graph may not be doubly-stochastic; (2)
the proposed work can directly handle out-of-sample problems by projecting the newly-coming data
on the projection matrix so that the class membership of newly-coming data can be inferred. While for
the coupled graph Laplacian regularization, it does not consider this point.

4. Experiments

4.1. Toy Examples for Synthetic Datasets

We will first show the iterative approach of the proposed method can adaptively reduce the bias of
a data manifold, where a dataset of two classes with noises is generated with a half-moon distribution
in each class. Here, we use a kernel version of the proposed method to learn the classification model to
handle such nonlinear distribution. Figure 2 shows the decision surfaces and boundaries obtained
by the proposed method during the iterations. From Figure 2, we can observe that for the two-moon
dataset, the results converge fast by only using four iterations. In Figure 2, we can observe that by
initially treating each local regression term equal, the boundary learned by the proposed method
cannot well separate the two classes as there are many mis-classified data points. However, during
the iterative rewrighted process, the converged boundary in Figure 2 after four iterations can be more
and more accurate and distinctive due to the reason that the biases caused by the noisy data are
seriously reduced.
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(a) One iteration (b) Two iterations

Figure 2. Cont.

(c) Three iterations (d) Four iterations

Figure 2. Gray image of reduced space learned by the proposed method: two-moon dataset.

4.2. Description of Dataset

In this section, we will utilize six real-world datasets for verification. The six datasets are the
Extended Yale-B, Carnegie Mellon University Pose, Illumination and Expression (CMU-PIE), Columbia
Object Image Library 100 (COIL-100), Eidgenössische Technische Hochschule 80 (ETH80), U. S. Post
Station (USPS) digit image and Chinese Academy of Sciences, Institute of Automation, Hand-Written
Digit Base (CASIA-HWDB) datasets. For each dataset, we only select 5%, 10%, 15%, and 20% of
the data points to formulate a labeled set randomly, 20% of the data to formulate a test set, and the
remaining ones to formulate an unlabeled set. The information of the data and sampled images can be
observed in Table 2 and Figure 3, respectively.
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(b) CMU-PIE
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Figure 3. Sample images of real-world datasets: Yale-B, Carnegie Mellon University Pose, Illumination
and Expression (CMU-PIE), Columbia Object Image Library 100 (COIL-100), Eidgenössische Technische
Hochschule 80 (ETH80), U. S. Post Station (USPS) digit image and Chinese Academy of Sciences,
Institute of Automation, Hand-Written Digit Base (CASIA-HWDB) datasets.

Table 2. Information of different datasets.

Dataset Database Type Sample Dim Class Train per Class Test per Class

Extended Yale-B [30] Face 16123 1024 38 80% 20%

CMU-PIE [31] Face 11,000 1024 68 80% 20%
COIL100 [32] Object 7200 1024 100 58 14

ETH80 [33] Object 3280 1024 80 33 8

USPS [34] Hand-written
digits 9298 256 10 800 remaining

CASIA-HWDB [35] Hand-written
letters 12456 256 52 200 remaining

4.3. Image Classification

We will show the effectiveness of the proposed SGR for image classification. The experiment
settings are as follows [36,37]: For most SSL methods, e.g., LGC, Special Label Propagation (SLP),
Linear Neighborhood Propagation (LNP), AGR, Efficient Anchor Graph Regularization (EAGR) and
MR, the parameter k for constructing the kNN graph is determined by five-fold cross validation, which
is chosen from 6 to 20. For LGC, LNP AGR, and EAGR, the regularized parameter is needed to set,
which is determined from

{
10−6, 10−3, 10−1, 1, 10, 103, 106

}
. The average accuracies of over 50 random

splits with changed numbers of labeled data are shown in Tables 3–8. From the classification results,
we have:
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Table 3. Classification accuracies of the Yale-B dataset.

Methods 5% Training Labeled 10% Training Labeled 15% Training Labeled 20% Training Labeled
Unlabeled Test Unlabeled Test Unlabeled Test Unlabeled Test

SVM 53.1 ± 1.1 52.7 ± 1.0 68.8 ± 2.0 67.7 ± 0.6 75.2 ± 1.1 73.7 ± 1.3 80.0 ± 1.8 78.8 ± 1.2

MR 59.0 ± 1.2 58.5 ± 1.3 70.3 ± 1.1 69.4 ± 0.5 76.4 ± 1.3 74.9 ± 1.5 80.7 ± 1.3 79.0 ± 1.1

LGC 64.7 ± 1.0 71.8 ± 1.1 76.4 ± 4.2 80.8 ± 1.0

SLP 65.6 ± 2.3 73.9 ± 1.0 78.0 ± 1.8 81.8 ± 1.0

LNP 64.9 ± 1.3 53.8 ± 2.7 72.0 ± 1.2 71.2 ± 0.4 78,0 ± 2.4 76.6 ± 2.1 81.6 ± 1.0 80.0 ± 1.4

AGR 66.6 ± 1.5 65.8 ± 1.3 74.3 ± 1.2 72.2 ± 0.4 78.1 ± 1.5 77.3 ± 1.7 83.0 ± 1.2 80.0 ± 4.5

EAGR 66.9 ± 0.8 66.5 ± 1.8 74.4 ± 1.1 73.2 ± 1.5 78.0 ± 1.5 77.2 ± 1.9 84.4 ± 2.4 83.6 ± 3.1

SGR 69.9 ± 0.4 67.2 ± 1.0 75.7 ± 1.1 74.0 ± 3.3 79.4 ± 1.0 78.3 ± 1.1 86.3 ± 2.5 82.8 ± 2.4

Table 4. Classification accuracies of the CMU-PIE dataset.

Methods 5% Training Labeled 10% Training Labeled 15% Training Labeled 20% Training Labeled
Unlabeled Test Unlabeled Test Unlabeled Test Unlabeled Test

SVM 42.5 ± 1.3 41.5 ± 1.1 56.8 ± 2.2 55.8 ± 1.5 64.6 ± 1.2 63.8 ± 1.8 69.3 ± 1.7 68.9 ± 1.2

MR 47.8 ± 1.1 46.7 ± 1.6 59.3 ± 1.8 58.8 ± 1.3 65.6 ± 1.6 64.5 ± 1.6 69.9 ± 1.4 69.1 ± 1.4

LGC 53.5 ± 1.6 60.3 ± 1.7 66.5 ± 2.8 70.5 ± 1.3

SLP 55.3 ± 1.9 63.4 ± 1.8 67.2 ± 1.9 70.9 ± 1.3

LNP 55.2 ± 1.2 54.8 ± 1.9 62.9 ± 1.5 61.8 ± 0.9 68,3 ± 2.7 67.3 ± 2.3 71.1 ± 1.2 71.0 ± 1.6

AGR 56.4 ± 1.4 55.3 ± 1.8 64.8 ± 1.3 64.7 ± 0.5 68.5 ± 2.1 66.9 ± 1.8 72.8 ± 1.7 71.3 ± 3.5

EAGR 57.2 ± 1.0 56.4 ± 1.6 64.4 ± 1.2 63.7 ± 1.9 68.4 ± 1.8 67.7 ± 2.3 73.1 ± 2.0 72.4 ± 2.7

SGR 59.0 ± 0.7 58.4 ± 1.3 65.6 ± 1.2 64.6 ± 1.9 69.8 ± 1.6 67.9 ± 1.6 75.0 ± 2.4 73.9 ± 2.3

Table 5. Classification accuracies of the COIL100 dataset.

Methods 5% Training Labeled 10% Training Labeled 15% Training Labeled 20% Training Labeled
Unlabeled Test Unlabeled Test Unlabeled Test Unlabeled Test

SVM 83.6 ± 0.9 83.2 ± 0.8 88.5 ± 0.8 86.6 ± 0.8 91.8 ± 0.8 91.4 ± 0.7 95.3 ± 0.8 94.5 ± 1.6

MR 83.7 ± 1.0 83.4 ± 0.9 89.0 ± 0.9 87.3 ± 0.9 92.1 ± 0.8 91.6 ± 0.9 95.3 ± 0.7 94.7 ± 1.3

LGC 85.5 ± 0.8 89.3 ± 0.9 92.4 ± 0.8 95.5 ± 0.6

SLP 86.4 ± 0.7 89.3 ± 0.9 92.8 ± 0.6 95.6 ± 0.8

LNP 86.5 ± 0.7 85.6 ± 0.7 89.6 ± 0.9 88.7 ± 0.7 92.9 ± 0.7 92.4 ± 0.8 95.8 ± 0.7 95.1 ± 1.3

AGR 86.5 ± 0.6 85.8 ± 0.9 90.9 ± 0.9 88.8 ± 0.8 93.3 ± 0.6 92.7 ± 0.9 95.8 ± 0.7 95.3 ± 1.4

EAGR 86.6 ± 0.7 85.7 ± 1.3 89.9 ± 0.9 89.0 ± 1.5 93.2 ± 0.6 92.7 ± 1.5 96.0 ± 0.7 95.2 ± 0.9

SGR 87.0 ± 0.6 86.7 ± 1.0 91.8 ± 0.9 89.7 ± 0.8 94.7 ± 0.6 93.2 ± 0.8 97.0 ± 0.6 95.6 ± 0.9

Table 6. Classification accuracies of the ETH80 dataset.

Methods 5% Training Labeled 10% Training Labeled 15% Training Labeled 20% Training Labeled
Unlabeled Test Unlabeled Test Unlabeled Test Unlabeled Test

SVM 61.1 ± 1.3 59.4 ± 0.3 71.1 ± 1.9 70.2 ± 2.0 75.9 ± 1.5 75.3 ± 3.1 78.9 ± 2.0 77.9 ± 2.5

MR 62.3 ± 0.8 60.0 ± 0.2 71.7 ± 2.0 71.0 ± 2.7 76.2 ± 1.0 75.3 ± 2.8 78.9 ± 1.9 78.3 ± 2.5

LGC 65.7 ± 1.4 73.5 ± 1.4 76.8 ± 1.5 79.0 ± 1.7

SLP 65.9 ± 1.5 73.9 ± 1.2 76.9 ± 1.6 79.3 ± 1.8

LNP 64.9 ± 0.9 62.2 ± 0.2 73.4 ± 2.0 71.4 ± 2.6 76.7 ± 1.1 76.0 ± 2.6 79.0 ± 1.8 78.5 ± 2.0

AGR 66.4 ± 1.6 65.1 ± 0.2 75.0 ± 1.7 72.2 ± 2.2 76.9 ± 1.7 76.1 ± 2.5 79.6 ± 2.0 78.9 ± 1.9

EAGR 68.2 ± 1.7 67.7 ± 2.1 74.9 ± 1.4 74.2 ± 1.9 77.3 ± 1.7 77.0 ± 1.9 80.0 ± 2.2 79.4 ± 2.8

SGR 69.4 ± 1.9 67.2 ± 0.1 74.0 ± 1.3 74.2 ± 2.2 77.5 ± 1.9 77.3 ± 1.8 79.8 ± 22 79.0 ± 2.2
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Table 7. Classification accuracies of the ETH80 dataset.

Methods 5% Training Labeled 10% Training Labeled 15% Training Labeled 20% Training Labeled
Unlabeled Test Unlabeled Test Unlabeled Test Unlabeled Test

SVM 71.7 ± 0.7 70.6 ± 1.5 77.9 ± 0.7 77.8 ± 0.2 91.9 ± 4.4 90.9 ± 4.2 96.1 ± 1.9 95.7 ± 0.9

MR 74.1 ± 0.7 73.0 ± 1.5 80.9 ± 0.8 79.8 ± 0.1 92.6 ± 3.4 91.7 ± 3.4 96.1 ± 2.2 95.0 ± 1.0

LGC 74.7 ± 0.7 87.1 ± 0.8 94.6 ± 3.3 96.5 ± 2.3

SLP 75.0 ± 0.5 89.7 ± 0.7 95.4 ± 3.0 96.5 ± 2.3

LNP 76.5 ± 0.6 74.8 ± 0.8 92.0 ± 0.7 90.8 ± 0.5 95.5 ± 3.4 95.0 ± 3.4 96.9 ± 2.5 96.5 ± 0.9

AGR 78.7 ± 0.6 76.1 ± 0.7 93.6 ± 0.7 92.6 ± 0.7 96.0 ± 2.4 95.8 ± 2.4 97.1 ± 2.8 96.7 ± 0.9

EAGR 79.9 ± 0.6 79.4 ± 1.2 93.6 ± 0.7 92.9 ± 1.1 96.3 ± 3.6 95.5 ± 3.5 97.2 ± 1.7 96.3 ± 2.2

SGR 80.7 ± 0.5 79.7 ± 0.7 95.0 ± 0.5 93.3 ± 0.8 97.2 ± 3.1 96.2 ± 3.1 97.4 ± 1.5 97.3 ± 0.7

(1) For almost all methods, the classification results increase given that the number of labeled data
increases. For instance, the results of SGR will increase 15% as the number of labeled data is increased
from 5% to 20% in most cases. This can almost get 17% increase in CASIA-HWDB dataset. In addition,
the classification results will not increase given the number of labeled samples are sufficient especially
in the cases of COIL100, USPS, and ETH80 datasets;

(2) The proposed SGR can outperform other methods in all cases. For instance, SGR can achieve
5%–9% superiority over SLP, LNP, and MR in almost all cases. Especially in the CASIA-HWDB dataset,
this improvement can even achieve 9%. AGR and EAGR can obtain competitive results as SGR by
tuning the parameters. However, the proposed SGR can automatically adjust them while achieving
satisfying results;

(3) The accuracies of the unlabeled set outperform those of the test set. This is because the testing
data are not utilized for training. However, the accuracies of the test set are still good showing that
SGR is able to handling the new incoming data.

Table 8. Classification accuracies of the CASIA-HWDB dataset.

Methods 5% Training Labeled 10% Training Labeled 15% Training Labeled 20% Training Labeled
Unlabeled Test Unlabeled Test Unlabeled Test Unlabeled Test

SVM 56.8 ± 5.4 55.8 ± 0.6 65.7 ± 0.6 64.0 ± 1.7 79.0 ± 0.5 78.2 ± 4.0 83.4 ± 1.8 82.1 ± 1.9

MR 58.7 ± 3.3 57.3 ± 0.5 73.0 ± 0.6 62.0 ± 1.4 79.4 ± 0.6 78.4 ± 2.7 86.6 ± 1.9 85.5 ± 1.5

LGC 63.1 ± 2.4 76.1 ± 0.4 80.7 ± 0.5 88.1 ± 1.4

SLP 63.4 ± 1.6 77.4 ± 0.4 85.3 ± 0.5 88.6 ± 1.7

LNP 66.5 ± 1.4 64.8 ± 0.6 78.5 ± 0.5 77.5 ± 0.7 85.9 ± 0.5 84.8 ± 1.7 89.2 ± 1.7 90.6 ± 8.2

AGR 72.0 ± 0.9 71.0 ± 0.6 80.9 ± 2.8 77.8 ± 0.6 87.2 ± 0.5 86.4 ± 1.6 91.8 ± 1.6 90.0 ± 4.1

EAGR 74.9 ± 0.7 74.4 ± 1.2 78.6 ± 3.3 78.0 ± 3.1 87.6 ± 0.4 87.2 ± 1.0 91.6 ± 1.8 91.2 ± 2.2

SGR 75.3 ± 0.7 73.6 ± 0.5 83.6 ± 2.2 80.3 ± 0.6 88.7 ± 0.3 86.5 ± 1.6 93.2 ± 1.7 91.7 ± 3.3

4.4. Parameter Analysis with Different Numbers of Anchors

In this subsection, we will verify the accuracies of SGR against different numbers of anchors.
In this study, we selected 5% data to formulate a labeled set and the remaining ones to formulate
an unlabeled set. Then, in Figure 4, we give the accuracy curve of SGR under different numbers of
anchors, where the candidate set is chosen from

√
n to 10

√
n.

From Figure 4, we can see that in ETH80 dataset, the classification results increase when the
number of anchors increase. However, the accuracies will not increase anymore given sufficient
number of anchors, such as 10

√
n. Here, 10

√
n is still much smaller compared with that of original

data. For other datasets, the classification accuracies have no change and are less sensitive to the
number of anchors.
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Figure 4. Classification accuracies over different numbers of anchors.

4.5. Image Visualization

In this subsection, we will demonstrate the visualization of the proposed method to show
its superiority. In this study, we choose the digit and letter images of the first five classes from
CASIA-HWDB dataset for experiment, where we randomly select 20 data and 80 data in each class to
formulate a labeled set and an unlabeled set, respectively. The rest are used to formulate testing data.
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We then project the test set on the 2D subspace by utilizing a 2D projection matrix for visualization.
Since the out-of-sample extension of the proposed SGR and MR are derived from the regression
problem, we perform PCA operator on the projection data of VTX to reduce its dimensionality into
two in order to handle the sub-manifold visualization problem. Then, the test data can be visualized
on 2D subspace. The experiment results are shown in Figures 5 and 6. From the experiment results, we
can observe that SGR can obtain the better performance especially in CASIA-HWDB digit image data.

(a) PCA (b) LPP

(c) LDA (d) SDA

(e) MR (f) SGR

Figure 5. Visualization performance of different methods: Five letters images from CASIA-HWDB:
Principal Component Analysis (PCA), Locality Preserving Projection (LPP), Linear Discriminant
Analysis (LDA), Semi-supervised Discriminant Analysis (SDA), Manifold Regularization (MR) and
Sub-Graph Regularization (SGR).
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(a) Pricipal Component Analysis (b) Locality Preserving Projection

(c) Linear Discriminant Analysis (d) Semi-supervised Discriminant Analysis

(e) Lap-RLS/L (f) SGR

Figure 6. Visualization performance of different methods: five digits images from CASIA-HWDB:
Principal Component Analysis (PCA), Locality Preserving Projection (LPP), Linear Discriminant
Analysis (LDA), Semi-supervised Discriminant Analysis (SDA), Manifold Regularization (MR) and
Sub-Graph Regularization (SGR).

5. Conclusions

In this paper, we proposed a sub-graph-based SSL for image classification. The main contributions
of the proposed work are as follows:
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(1) We developed a doubly-stochastic S that measures the similarity between data points and anchors.
The new updated S has probability means and can be viewed asa transition probability between
data points and anchors. In addition, the new sub-graph is constructed by S in an efficient way
and can preserve the geometry of data manifold. Simulation results verify the superiority of the
proposed SGR;

(2) We also adopt a linear predictor for inferring the labels of new incoming data, which can handle
out-of-sample problems. The computational complexity of this linear predictor is linear with the
number of anchors; hence it is efficient. This shows that SGR can handle a large-scale dataset,
which is quite practical;

From the above analysis, we can see that the main advantages for the proposed work is the
effectiveness for handling the classification problems and that it needs less computational complexity
for both graph construction and SSL. It can also handle out-of-sample problems based on a kernel
regression on anchors. However, it also suffers the drawback that the parameters are not adaptive. In
addition, the graph construction and SSL inference are in two different stages. Our future work can lie
in developing a unified framework for optimization with adaptive adjusted parameters.

While the proposed work mainly focuses on image classification, our future work can also lie in
handling other state-of-the-art applications, such as image retagging [38], and context classification in
the natural language processing field [39,40].
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