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Abstract: It is still an open issue to measure uncertainty of the basic probability assignment function
under Dempster-Shafer theory framework, which is the foundation and preliminary work for conflict
degree measurement and combination of evidences. This paper proposes an improved belief entropy
to measure uncertainty of the basic probability assignment based on Deng entropy and the belief
interval, which takes the belief function and the plausibility function as the lower bound and the
upper bound, respectively. Specifically, the center and the span of the belief interval are employed
to define the total uncertainty degree. It can be proved that the improved belief entropy will be
degenerated to Shannon entropy when the the basic probability assignment is Bayesian. The results
of numerical examples and a case study show that its efficiency and flexibility are better compared
with previous uncertainty measures.
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1. Introduction

Uncertainty results from both the objective world and human’s subjective cognition, that is
aleatory uncertainty and epistemic uncertainty [1]. The aleatory uncertainty is mainly caused by
variance and randomness, which is closely associated with probability. Hence, the aleatory is
ineluctable. The epistemic stems from the lack of knowledge. With the improvement of people’s
knowledge level, the epistemic uncertainty can be reduced to some extent. Usually, uncertainty will
cause negative effects and consequences for decision makers who attempt to take some principles to
avoid risk [2,3]. Handling and reducing uncertainty hidden in information have always been a difficult
problem to be resolved in various fields. Nevertheless, the measurement of uncertainty is of vital
importance because quantifying the uncertain degree of certain information is the foundation and
prerequisite before further information processing and fusing [4,5].

A physical quantity, called entropy, was initially proposed by Clausius to measure uncertainty in
statistical thermodynamics [6]. Then, Shannon entropy [7] developed by Shannon was extended to
solve the problem of measuring uncertainty under the probability theory and was proved effective
for handling the uncertainty in some application systems [8–10]. Nevertheless, it does not produce
desired results when measuring uncertainty of basic probability assignment (BPA) in Dempster-Shafer
(D-S) theory that was put forward by Dempster [11] and then developed by Shafer [12]. The theory has
proved to have significant advantages in representing, processing and fusing uncertain information or

Entropy 2019, 21, 1122; doi:10.3390/e21111122 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-6974-0731
http://www.mdpi.com/1099-4300/21/11/1122?type=check_update&version=1
http://dx.doi.org/10.3390/e21111122
http://www.mdpi.com/journal/entropy


Entropy 2019, 21, 1122 2 of 16

data by assigning a probability to the subsets of a set comprising multiple solutions rather than to each
of the individual solution [13,14] and has been accepted as de facto standard in many fields [15–34],
such as risk assessment [16–19], fault diagnosis [20–23], pattern classification [24–27], knowledge
reasoning [28,29], and sensors’ network analysis [30].

Measuring uncertainty of BPA in the framework of D-S theory is always an open issue.
Many efforts have been made to extend Shannon Entropy to measure uncertainty of BPA. There
are two main perspectives for measuring uncertainty, namely discord [35,36] and non-specificity [37].
For the former, “Confusion” [38], “Dissonance” [39] and “Strife” [40] were introduced to measure
or quantify uncertainty. In terms of the latter, a generalized Hartley entropy originally proposed by
Dubois and Prade was employed to represent it [37]. Yager [39] and Korner [41] gave their definitions
and methods to measure non-specificity. These methods only consider either discord or non-specificity
when measuring uncertainty. However, a mass function is a generalized probability assigned on
the power set of the frame of discernment (FOD) and a focal element of the FOD contains one or
more events [42]. Hence, discord and non-specificity should be incorporated together to measure
the uncertainty of BPA. In this way, Deng entropy [43] is put forward by taking total non-specificity
and discord into consideration simultaneously based on Shannon entropy and attracts plenty of
attentions [21,44,45].

The belief interval also provides a new insight to measure the uncertainty of BPA [46], which takes
the belief function and the plausibility function as the lower bound and the upper bound, respectively.
Based on the belief interval, a distance-based total uncertainty measurement was proposed [47] by
Yang and Han under D-S theory framework. The average distance between the belief interval of
each singleton and the most uncertain case is used to represent the total uncertainty degree. Then,
Deng et al. [48] gave an improved method by calculating the distance between the belief interval and
the so-called most uncertain interval to define the uncertainty measurement. Although this method
makes up some deficiencies of conventional methods, it does not degenerate into Shannon entropy
when the BPA is Bayesian. This is counterintuitive because D-S theory is considered as a generation of
probability theory. Pan and Deng [46] proposed a new belief entropy to measure uncertainty of BPA
considering belief function and plausibility function while ignoring the span of belief interval, which
contains more information and variance. Wang and Song [49] provided an uncertainty measure AU
which considers the imprecision of the belief interval. AU is more sensitive to the change of belief
structures and has no computational burden. However, the monotonicity which is a crucial property
of an uncertainty measure of AU is violated.

In this paper, an improved belief entropy is proposed based on Deng entropy and the belief
interval. The improved belief entropy takes advantage of the central value and the span of the belief
interval. It replaces the BPA in Deng entropy with the central value of the belief interval and adds
a correction factor associated with the span of the belief interval which represents the imprecision of
the belief interval. Several numerical examples and a case study about fault diagnose are employed to
verify the effectiveness and applicability of the improved belief entropy.

The rest of this paper is organized as follows. Preliminaries of D-S theory and uncertainty measure
are briefly introduced in Section 2. In Section 3, an improved belief entropy is proposed based on the
belief interval and Deng entropy. Section 4 gives some numerical examples to verify the efficiency and
flexibility of the improved belief entropy. In Section 5, a case study of fault diagnose is presented to
show the applicability. Finally, conclusions are summarized in Section 6.

2. Preliminaries

2.1. D-S Theory

Several preliminaries are briefly illustrated [4,50].
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Let Θ be a nonempty finite set of events or propositions that are mutually exclusive and exhaustive.
Θ called frame of discernment (FOD) is defined as follows:

Θ = {θ1, θ2, ..., θi, ..., θN}. (1)

2Θ called the power set of Θ is represented as:

2Θ = {∅, {θ1}, {θ2}, ..., {θi}, ..., {θN}, ...{θ1, θ2, ..., θi}, ..., {Θ}}. (2)

where ∅ denotes the empty set. Each element in the power set Θ is called a hypothesis or proposition.
In the FOD Θ, a mass function also called BPA or the belief structure is defined as follows:

m : 2Θ → [0, 1]. (3)

BPA should meet the following conditions:

m(∅) = 0, ∑
A∈2Θ

m(A) = 1. (4)

A is called a focal element when m(A) > 0 and the set of all focal elements and their corresponding
BPAs compose a body of evidences (BOEs). m(A) represents how strongly the evidence supports the
proposition A.

The belief function and plausibility function are defined as follows, respectively:

Bel(A) = ∑
∅ 6=B⊆A

m(B), Pl(A) = ∑
B∩A 6=∅

m(B). (5)

It is obvious that ∀A ⊆ Θ, Bel(A) <Pl(A). Bel(A) and Pl(A) represent the lower and the upper
boundary of the degree that the evidence supports A. [Bel(A), Pl(A)] is considered as the belief
interval for A.

In D-S theory, two evidences, denoted as m1 and m2, can be combined according to Dempster’s
rule of combination [11,12] as follows:

m(A) = (m1 ⊕m2)(A) =
1

1− k ∑
B∩C=A

m1(B)m2(C). (6)

where k is called the conflict coefficient which measures the degree of conflict of m1 and m2. If k = 0,
it means that there is no conflict between m1 and m2. If k = 1, there is an absolute conflict. In other
words, the greater k is, the higher the degree of conflict is. k is defined as follows:

k = ∑
B∩C=∅

m1(B)m2(C). (7)

2.2. Shannon Entropy and Derivatives for D-S Framework

Shannon entropy, also known as information entropy and proposed by Shannon in 1948, is closely
associated with uncertainty. Shannon referred to the concept of thermal entropy, which is a physical
quantity indicating the degree of chaos of molecular states in thermodynamics. He thought that there
was a close link between information volume and uncertainty, and then defined information entropy
as follows:

Hs = −
N

∑
i=1

pi logb pi. (8)
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where Hs denotes Shannon entropy (information entropy), N is the number of basic states, and pi
meets ∑N

i=1 pi = 1. b is assigned a value of 2 when the unit of information is bit. Then, Shannon
entropy can be expressed as follows:

Hs = −
N

∑
i=1

pi log2 pi. (9)

Great information entropy will contain more complexity and uncertainty in information so
Shannon entropy succeeds in handling the problem of measuring uncertainty of information under the
framework of probability theory to a large extent. Nevertheless, there are still some limitations [48].
The concept of entropy is also an open issue under the framework of D-S theory. Definitions of some
typical uncertainty measures of D-S theory are briefly described as follows:

Dubois and Prade’s weighted Hartley entropy is shown as follows [37]:

HDP(m) = − ∑
A⊆2Θ

m(A) log(|A|). (10)

where A is a focal element of Θ and |A| is the cardinality of A.
Höhle’s confusion measure is shown as follows [38]:

HH(A) = − ∑
A⊆2Θ

m(A) log(Bel(A)). (11)

The dissonance measure of Yager is defined as follows [39]:

HY(A) = − ∑
A⊆2Θ

m(A) log(Pl(A)). (12)

The discord measure of Klir and Ramer is defined as follows [35]:

HKR(A) = − ∑
A⊆2Θ

m(A) log ∑
B⊆2Θ

m(B)
|A ∩ B|
|B| . (13)

where |B| is the cardinality of B, which is also a focal element of Θ.
Klir and Parviz gave their strife measure of entropy. It is defined as follows [40]:

HKP(A) = − ∑
A⊆2Θ

m(A) log ∑
B⊆2Θ

m(B)
|A ∩ B|
|A| . (14)

George and Pal proposed a method called conflict measure for entropy [51]:

HGP(A) = ∑
A⊆2Θ

m(A) log ∑
B⊆2Θ

m(B)(1− |A ∩ B|
|A ∪ B| ). (15)

where |A ∩ B| and |A ∪ B| represent the cardinality of A ∩ B and A ∪ B, respectively.

2.3. Deng Entropy

For mass functions, a new uncertainty measure called Deng entropy under D-S framework was
defined as follows [43]:

Ed(m) = − ∑
A⊆2Θ

m(A) log2
m(A)

2|A| − 1
. (16)

As shown in the above definition, Deng entropy is similar to the classical Shannon entropy in
form. However, the mass function of each focal element is divided by a term (2|A| − 1), which means
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the scale of the focal element A. If each focal element is assigned only one element, Deng entropy will
be degenerated to Shannon entropy as follows:

Ed(m) = − ∑
A⊆2Θ

m(A) log2
m(A)

2|A| − 1
= − ∑

A⊆2Θ

m(A) log2 m(A). (17)

3. the Improved Belief Entropy

By reviewing the relative literatures, we conclude that the mass function, the belief function
and the plausibility function are applicable to the mainstream measurement of uncertainty.
Here, the belief interval [Bel(A), Pl(A)], which contains more information of D-S framework is often
overlooked. There are only several articles about uncertainty measurement mentioning the belief
interval [5,46,47,49,50,52]. In this article, an improved belief entropy involving the belief interval is
proposed based on Deng entropy and the belief interval, defined as follows:

Hinter(m) =−
n

∑
i=1

Bel(θi) + Pl(θi)

2
log2(

Bel(θi) + Pl(θi)

2
e−(Pl(A)−Bel(A)))

− ∑
A 6=θi ,A⊆2Θ

m(A) log2(
m(A)

2|A| − 1
e−(Pl(A)−Bel(A))).

(18)

The improved belief entropy proposed in this article has two improvements over Deng entropy.
First, the mass function m(A) is used in Deng entropy while it is replaced by the central value of the
belief interval [46]. Pl(A) and Bel(A) are the lower limit function and upper limit function of the
probability to which proposition A is supported [53]. The belief interval has higher accuracy than
the mass function in illustrating how strongly the evidence supports A under a strict D-S framework.
For simplicity, the mean of Pl(A) and Bel(A) is employed to discretize the belief interval for computing.
Additionally, a coefficient e−(Pl(A)−Bel(A)) is added to the measurement of non-specificity of the belief
structure. The non-specificity of the belief interval can be quantified by its imprecision degree, which
is related to the span of the belief interval [49]. Additionally, the properties proposed by Klir and
Wierman [54] for total uncertainty measurement of the improved belief entropy are explored as follows:

Probabilistic consistency: If all the focal elements of a BPA are singletons, then m(x) = Bel(x) =
Pl(x) for ∀x ∈ 2Θ. Obviously, the improved belief entropy will be degenerated to Shannon entropy.
Hence, the probabilistic consistency property is verified.

Set consistency: Set consistency requires that H(m) = log(|a|) whenever m is categorical with
focal element a, i.e., m(a) = 1. For the improved belief entropy, when m(a) = 1:

Hinter(m) = log2(2|A| − 1) ≥ log2(|A|). (19)

where |A| is the cardinality of a. Therefore, the belief entropy is not set consistent.
Range: The range property requires that for any BPA mX in X, 0 ≤ H(mX) ≤ log2(|X|). A simple

counter example is employed:
Let Θ = {θ1, θ2, θ3, θ4} be the FOD, for a mass function m(θ1, θ2) = 0.5, m(θ3) = 0.1, m(θ2) = 0.1,

and m(Θ) = 0.3. Then,

Bel(θ1) = 0, Pl(θ1) = 0.8, Bel(θ1, θ2) = 0.6, Pl(θ1, θ2) = 0.9,

Bel(θ3) = 0.1, Pl(θ3) = 0.6, Bel(θ2) = 0.1, Pl(θ2) = 0.9,

Hinter = −0.4log2(0.4e−0.8)− 0.5log2(0.5e−0.8)− 0.25log2(0.25e−0.3)

−0.5log2(
0.3
7

e−0.3)− 0.3log2
0.3
7

= 5.5479, log23 = 1.5850 < 5.5479.

Obviously, the improved belief entropy does not satisfy the property range.
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Subadditivity: To investigate whether the improved belief entropy verifies the subadditivity,
we take the following example:

Let X×Y be the product space of the sets X = {x1, x2, x3} and Y = {y1, y2}. The marginal BPAs
on X×Y with masses is as follows:

m({z11, z12, z21}) = 0.2, m({z31, z32}) = 0.3, m({z21}) = 0.1, m(X×Y) = 0.4.

where zij = (xi, yi), the marginal BPAs on X and Y are m1 and m2:

m1(x1, x2) = 0.2, m1(x3) = 0.3, m1(x2) = 0.1, m1(X) = 0.4, m2(y1) = 0.1, m2(Y) = 0.9.

Therefore,

Bel(x1) = 0, Pl(x1) = 0.6, Bel(x1, x2) = 0.3, Pl(x1, x2) = 0.9, Bel(x3) = 0.3, Pl(x3) = 0.7, Bel(x2) = 0.1,

Pl(x2) = 0.7, Bel(y1) = 0.1, Pl(y1) = 1, Bel({z11, z12, z21}) = 0.3, Pl({z11, z12, z21}) = 0.7,

Bel({z11}) = Bel({z12}) = Bel({z22}) = Bel({z31}) = Bel({z32}) = 0, Bel({z31, z32}) = 0.3,

Pl({z11}) = Pl({z12}) = 0.6, Pl({z31}) = Pl({z32}) = 0.7, Pl({z31, z32}) = 0.7, Bel({z21}) = 0.1,

Pl({z21}) = 0.7, Pl({z22}) = 0.4, Hinter(m1) + Hinter(m2) = 8.8473, Hinter(m) = 8.8729.

It is obvious that Hinter(m1) + Hinter(m2) < Hinter(m). Hence, the property subadditivity is
not satisfied.

Additivity: To verify the property additivity, the notation of the last example is employed.
Let X× Y be the product space of the sets X = {x1, x2, x3} and Y = {y1, y2}. The marginal BPAs on
X×Y with masses is as follows:

m1(x1, x2) = 0.2, m1(x3) = 0.3, m1(x2) = 0.1, m1(X) = 0.4, m2(y1) = 0.1, m2(Y) = 0.9.

The following BPA m′ = m1 × m2 on X × Y is built. The marginal BPAs of m′ are m1 and m2,
which are noninteractive. The masses of m′ are as follows:

m′({z11, z12, z21}) = 0.2, m′({z31, z32}) = 0.3, m′({z21}) = 0.1, m′(X×Y) = 0.4.

where zij = (xi, yi). It can be calculated:

Hinter(m1) + Hinter(m2) = 8.8473, Hinter(m′) = 8.8729.

The result that Hinter(m1) + Hinter(m2) < Hinter(m′) shows that the property additivity is not
satisfied. In summary, the improved entropy satisfies probabilistic consistency and set consistency but
does not satisfy property range, additivity and subadditivity. It is true that these five requirements are
helpful to identify whether a definition of the belief entropy makes sense. However, they are not the
only criteria for judging rationality and effectiveness of a measurement of belief entropy. On the one
hand, these requirements are motivated by the properties of Shannon entropy, which is not entirely
applicable for D-S theory framework and there is no uniform definition of uncertainty measurement in
D-S theory currently. It should be tolerable that there are very few measurements of uncertainty under
D-S framework satisfying all the requirements. They deserve the opportunity to be tested in practice
and it is true of the improved belief entropy in this paper. On the other hand, the properties of the belief
entropy should keep pace with the times. It was twenty years ago that Klir and Wierman proposed
these five requirements. Since then, there are significant increments in research on measurements of
uncertainty in D-S theory. Some shortcomings in the properties of Klir and Wierman were stated by
Radim and Prakash [55] and they proposed a list of six desired properties of entropy for D-S theory,
which are different from those of Klir and Wierman. None of the existing definitions satisfy these
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six properties except itself. Hence, the properties of measurements of uncertainty in D-S theory need
further research.

4. Numerical Examples

In this section, several examples are employed to show the efficiency of the improved
belief entropy.

4.1. Example 1

Let Θ = {θ1, θ2, ..., θn} be the FOD. There is a vacuous BPA m(Θ) = 1 under the FOD. It is
obvious that:

Bel(Θ) = Pl(Θ) = 1.

The associated Shannon entropy and the improved belief entropy of the FOD are as follows:

Hs(m) = −1× log21 = 0, Hinter = −1× log2(2n − 1)−1 = log2(2n − 1).

Again, the above results verify that the improved belief entropy will deteriorate to Shannon
entropy when there is only a single element in the vacuous BPA. Hinter > Hs if n > 1 and Hinter → n
when n → +∞. The result which is the same as Deng entropy is logical because uncertainty will
increase as the number of elements in the vacuous BPA increases. It can also be seen that there are
limitations of the application of Shannon entropy in D-S theory.

4.2. Example 2

Given a FOD Θ = {θ1, θ2, θ3, θ4, θ5}, m(θi) = 0.2 for i = 1, 2, 3, 4, 5. Then, Bel(θi) = Bl(θi) = 0.2
for i = 1, 2, 3, 4, 5. The associated Shannon entropy and the improved belief entropy of the FOD are
as follows:

Hs(m) = −0.2× log20.2× 5 = 2.3219,

Hinter(m) = −0.2 + 0.2
2

log2(
0.2 + 0.2
2(21 − 1)

e−(0.2−0.2)2
)× 5 = 2.3219.

It is obvious that Shannon entropy is equal to the improved belief entropy in this example, which
verifies that the improved belief entropy is probability consistent if BPA is Bayesian.

4.3. Example 3

Let m be a belief structure in Θ = {a, b, c, d}; there are two cases of BPAs in this FOD: m1({a, b}) =
0.4, m1({c, d}) = 0.6 and m2({a, c}) = 0.4,m2({b, c}) = 0.6. The result with Deng Entropy is as
follows [4]:

Ed(m1) = −0.4log2
0.4

22 − 1
− 0.6log2

0.6
22 − 1

= 2.5559,

Ed(m2) = −0.4log2
0.4

22 − 1
− 0.6log2

0.6
22 − 1

= 2.5559.

The limitations of Deng entropy are transparent because the result calculated by Deng entropy is
counterintuitive. The mass values of the two BPAs are the same, while the FOD of the first BPA m1

consists of four events a, b, c, d and m2 consists of three events a, b, c. Intuitively, the uncertainty of m2

should be less than m1. However, the result that Deng entropy of both BPAs is equivalent illustrates
that Deng entropy does not recognize the difference between m1 and m2.
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With the improved belief entropy, the result is calculated as follows:

Hinter(m1) = −0.4log2(0.2e−0.4)− 0.6log2(0.3e−0.6)− 0.4log2
0.4
3
− 0.6log20.2 = 5.9696,

Hinter(m2) = −0.2log2(0.2e−0.4)− 0.3log2(0.3e−0.6)− 0.5log2(0.5e−1)

−0.4log2(0.4e−0.6)− 0.6log2(0.6e−0.4) = 5.8303.

The experimental results show that the improved belief entropy of m2 is less than m1. It can be
concluded that the improved belief entropy can effectively measure the difference between these two
BPAs by taking more reliable information implied in different BPAs into consideration.

4.4. Example 4

Let FOD Θ be {θ1, θ2} and assume that there are two BPAs m1 and m2 over Θ:

m1({θ2}) = 0.8, m1({θ1, θ2}) = 0.2, m2({θ1}) = 0.2, m2({θ2}) = 0.8.

A comparative experiment is conducted. Another uncertainty measure SU also based on the
belief interval is introduced [49]. The definition of SU is shown as follows:

Let m be a BPA defined on the FOD Θ = {θ1, θ2, ..., θi, ..., θN}. The total uncertainty degree of m
can be expressed by

SU(m) =
n

∑
i=1

[−Bel({θi}) + Pl({θi})
2

log2
Bel({θi}) + Pl({θi})

2
+

Bel({θi})− Pl({θi})
2

].

For m1:

[Belm1({θ1}), Plm1({θ1})] = [0, 0.2],

[Belm1({θ2}), Plm1({θ2})] = [0.8, 1],

[Belm1({θ1, θ2}), Plm1({θ1, θ2})] = [1, 1].

For m2:

[Belm2({θ1}), Plm2({θ1})] = [0.2, 0.2],

[Belm2({θ2}), Plm2({θ2})] = [0.8, 0.8],

[Belm2({θ1, θ2}), Plm2({θ1, θ2})] = [1, 1].

Thus,
∀A ⊆ Θ : [Belm1(A), Plm1(A)] ⊇ [Belm2(A), Plm2(A)]

The results are as follows:

SU(m1) = −
0 + 0.2

2
log2

0 + 0.2
2

+
0.2− 0

2
+ (−0.8 + 1

2
log2

0.8 + 1
2

) = 0.6690,

SU(m2) = −0.2log20.2− 0.8log20.8 = 0.7219.

It is obvious that SU(m1) < SU(m2). This result shows that the monotonicity defined by
Abellan [56] between m1 and m2 is violated by the uncertainty measure SU. The property of
monotonicity is defined as follows:

There is an uncertainty measure UM and two arbitrary BPAs m1 and m2 over the FOD Θ.
UM satisfies the property monotonicity if

∀A ⊆ Θ : [Belm1(A), Plm1(A)] ⊆ [Belm2(A), Plm2(A)]. (20)
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UM(m1) ≤ UM(m2) exists.
With the improved belief entropy, the result of the example above is calculated as follows:

Hinter(m1) = −0.1log2(0.4e−0.2)− 0.9log2(0.9e−0.2)− 0.2log2
0.2
3

= 1.5389,

Hinter(m2) = −0.2log20.2− 0.8log20.8 = 0.7219.

The result that Hinter(m1) > Hinter(m2) shows the improved belief entropy performs better than
SU over this example in terms of the property monotonicity. The rigorous proof of the property
monotonicity need further research.

4.5. Example 5

There is a FOD Θ = {1, 2, ..., 14, 15} with 15 elements. The BPA of Θ is as follows:

m({7}) = 0.05, m({3, 4, 5}) = 0.05, m({A}) = 0.8, m({Θ}) = 0.1.

The number of elements in the proposition A changes from 1 to 14. To verify the advantages
of the improved belief entropy, another eight uncertainty measures are introduced for comparison:
Deng entropy [43], Höhle’s confusion measure [38], Yager’s dissonance measure [39], Dubois and
Prade’s weighted Hartley entropy [37], Klir and Ramer’s discord measure [35], Klir and Parviz’s strife
measure [40], George and Pal’s conflict measure [51], Pan and Zhou’s measure [50] and Zhou et al.’s
measure [4].

The experimental results are shown in Table 1 and the results of these uncertainty measures
are plotted in Figure 1. To make it more visible and understandable, the results of the methods
in [35,37–40,51] are extracted and plotted in Figure 2. These curves can be divided into two categories.
The first category includes Höhle’s confusion measure, Yager’s dissonance measure, Klir and Ramer’s
discord measure, Klir and Parviz’s strife measure, and George and Pal’s conflict measure. They are on
a downward trend with the rising of the element number of A or flat, which is counterintuitive because
these measurements only measure the discord uncertainty while ignore the non-specificity uncertainty.
The other category consists of Deng entropy, Pan and Zhou’s measure, Dubois and Prade’s weighted
Hartley entropy and the improved belief entropy proposed in this paper. What they have in common
is that they are on a rising trend with the increment of the element number in A. These methods also
take non-specificity into consideration so their results are rational. However, Dubois and Prade’s
weighted Hartley entropy only considers non-specificity while ignoring discord uncertainty. Deng
entropy fails to detect the BPAs of which an element belongs to different focal elements. Pan and
Zhou’s method applies the pignistic transformation and the plausibility transformation while they
have deficiencies and limitations in D-S theory. Compared with Zhou et al.’s measure, which is a fairly
comprehensive uncertainty measure of BPA, the improved belief entropy follows the same trend.
Therefore, the improved belief entropy is relatively more effective and reasonable compared with other
uncertainty measures under D-S theory framework, both considering the central value and the span of
the belief interval.



Entropy 2019, 21, 1122 10 of 16

Table 1. The results of different uncertainty measures.

Cases Pan and
Zhou Yager Deng

Entropy
Dubois

and Prade Höhle Klir and
Ramer

Klir and
Parviz

George
and Pal Zhou et al. The Improved

Belief Entropy

A = {1} 1.9757 0.3952 2.6623 0.4699 1.0219 6.4419 3.3804 0.3317 2.5180 5.9870
A = {1, 2} 2.3362 0.3952 3.9303 1.2699 1.0219 5.6419 3.2956 0.3210 3.7090 9.2881

A = {1, 2, 3} 2.5232 0.1997 4.9082 1.7379 1.0219 4.2823 2.9709 0.2943 4.6100 11.2461
A = {1, 2, 3, 4} 2.7085 0.1997 5.7878 2.0699 1.0219 3.6863 2.8132 0.2677 5.4127 12.9904

A = {1, 2, 3, 4, 5} 2.8749 0.1997 6.6256 2.3274 1.0219 3.2946 2.7121 0.2410 6.1736 14.6352
A = {1, 2,..., 6} 3.0516 0.0074 7.4441 2.5379 1.0219 2.4888 2.4992 0.2250 6.9151 16.3330
A = {1, 2,..., 7} 3.0647 0.0074 8.2532 2.7158 1.0219 2.4562 2.5198 0.2219 7.6473 17.9447
A = {1, 2,..., 8} 3.2042 0.0074 9.0578 2.8699 1.0219 2.4230 2.5336 0.2170 8.3749 19.6287
A = {1, 2,..., 9} 3.3300 0.0074 9.8600 3.0059 1.0219 2.3898 2.5431 0.2108 9.1002 21.3103
A = {1, 2,..., 10} 3.4445 0.0074 10.6612 3.1275 1.0219 2.3568 2.5494 0.2037 9.8244 22.9908
A = {1, 2,..., 11} 3.5497 0.0074 11.4617 3.2375 1.0219 2.3241 2.5536 0.1959 10.5480 24.6708
A = {1, 2,..., 12} 3.6469 0.0074 12.2620 3.3379 1.0219 2.2920 2.5562 0.1877 11.2714 26.3504
A = {1, 2,..., 13} 3.7374 0.0074 13.0622 3.4303 1.0219 2.2605 2.5577 0.1791 11.9946 28.0300
A = {1, 2,..., 14} 3.8219 0.0074 13.8622 3.5158 1.0219 2.2296 2.5582 0.1701 12.7177 29.7094

Figure 1. Comparison among different uncertainty measures (Pan and Zhou [50], Yager [39],
Deng Entropy [43], Dubois and Prade [37], Höhle [38], Klir and Ramer [35], Klir and Parviz [40],
George and Pal [51], Zhou et al. [4], and Improved entropy).

Figure 2. Comparison among different uncertainty measures (Yager [39], Dubois and Prade [37],
Höhle [38], Klir and Ramer [35], Klir and Parviz [40], and George and Pal [51]).
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5. Application

To verify the effectiveness and the applicability of the improved belief entropy in practice, the case
study in [57] and the fault diagnosis method in [44] are employed in this part. The difference is that
this paper represents Deng entropy applied in [44] with the improved belief entropy for comparison.

The problem is described as follows. There are three fault types denoted as F1, F2, and F3. The FOD
is Θ = {F1, F2, F3}. Three sensor reports of the diagnostic result are listed in Table 2. With Dempster’s
rule of combination in Equation (6), the combination result is shown in Table 3. It can be seen that it is
difficult to judge which fault type has occurred because the BPA of F1 and F2 after combination is very
close. Dempster’s rule of combination does not play a part in this case.

Table 2. BPAs of the sensors report.

Sensors Report {F1} {F2} {F2,F3} Θ

E1 : m1(·) 0.60 0.10 0.10 0.20
E2 : m2(·) 0.05 0.80 0.05 0.10
E3 : m3(·) 0.70 0.10 0.10 0.10

Table 3. Fused results of the sensors report (Dempster’s rule of combination).

F1 F2 F2,F3 Θ

Fused Results 0.4519 0.5048 0.0336 0.0096

To solve this problem, a fault diagnosed method based on Deng entropy [44] is put forward.
The uncertainty or reliability of sensor data will be modeled as a weight of each BPA, which is defined
as follows:

w(i) = ws(i)× wd(i). (21)

where ws(i) means the static reliability and wd(i) represents the dynamic reliability. ws(i) of each BOE
is listed in Table 4. wd(i) is defined as follows:

wd(i) = Crd(i)× Ed(mi)

max{Ed(mi)}
. (22)

where Crd(i) is the credibility degree of Ei. Ed(mi) is the Deng entropy of Ei. max{Ed(mi)} represents
the maximum of all the Ed(mi). Crd(i) and Ed(mi) of three BOEs are shown in Table 4. Details can be
found in the work of Yuan et al. [44]. The ultimate weight of each BOE based on the improved belief
entropy Hinter(mi) proposed in this paper is defined as follows:

w(i) = ws(i)× Crd(i)× max{Hinter(mi)}
Hinter(mi)

. (23)

Table 4. ws(i), Crd(i), Ed(i) of three BOEs.

E1 E2 E3

ws(i) 1.0000 0.2040 1.0000
Crd(i) 1.0000 0.5523 0.9660
Ed(i) 2.2909 1.3819 1.7960

It can be seen that Equation (23) is a little different from that in [44]. Intuitively, a piece of evidence
with less uncertainty should be endowed with higher weight, which is consistent with the principle of
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the entropy weight method. Therefore, the method in [44] is modified and replaced with Equation (23).
The improved belief entropy of each BOE is shown as follows:

Hinter(m1) =−
n

∑
i=1

Bel1(θi) + Pl1(θi)

2
log2(

Bel1(θi) + Pl1(θi)

2
e−(Pl1(A)−Bel1(A)))

− ∑
A 6=θi ,A⊆2Θ

m(A) log2(
m(A)

2|A| − 1
e−(Pl1(A)−Bel1(A)))

= −0.7 log2 (0.7e−0.2)− 0.25 log2 (0.25e−0.3)− 0.15 log2 (0.15e−0.3)

− 0.1 log2 (
0.1
3

e−0.2)− 0.2 log2
0.2
7

= 3.1912,

Hinter(m2) =−
n

∑
i=1

Bel2(θi) + Pl2(θi)

2
log2(

Bel2(θi) + Pl2(θi)

2
e−(Pl2(A)−Bel2(A)))

− ∑
A 6=θi ,A⊆2Θ

m(A) log2(
m(A)

2|A| − 1
e−(Pl2(A)−Bel2(A)))

= −0.1 log2 (0.1e−0.1)− 0.875 log2 (0.875e−0.15)− 0.075 log2 (0.075e−0.15)

− 0.05 log2 (
0.05

3
e−0.1)− 0.1 log2

0.1
7

= 1.9165,

Hinter(m3) =−
n

∑
i=1

Bel3(θi) + Pl3(θi)

2
log2(

Bel3(θi) + Pl3(θi)

2
e−(Pl3(A)−Bel3(A)))

− ∑
A 6=θi ,A⊆2Θ

m(A) log2(
m(A)

2|A| − 1
e−(Pl3(A)−Bel3(A)))

= −0.75 log2 (0.75e−0.1)− 0.2 log2 (0.2e−0.2)− 0.1 log2 0.1e−0.2 − 0.1 log2 (
0.1
3

e−0.1)

− 0.1 log2
0.1
7

= 2.4207.

The weight of each BOE based on the improved belief entropy is calculated as follows:

w(1) = ws(1)× Crd(1)× Hinter(m1)

Hinter(m1)
= 1× 1× 3.1912

3.1912
= 1,

w(2) = ws(2)× Crd(2)× Hinter(m1)

Hinter(m2)
= 0.2040× 0.5523× 3.1912

1.9165
= 0.1876,

w(3) = ws(3)× Crd(3)× Hinter(m1)

Hinter(m3)
= 1× 0.9660× 3.1912

2.4207
= 1.2735.

The final weight of each BOE after normalization is shown as follows:

w′(1) =
w(1)

w(1) + w(2) + w(3)
= 0.4063,

w′(2) =
w(2)

w(1) + w(2) + w(3)
= 0.0762,

w′(3) =
w(3)

w(1) + w(2) + w(3)
= 0.5175.
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The BPA of each proposition is modified by the final weight as follows:

m({F1}) = 0.4063× 0.6 + 0.0762× 0.05 + 0.5175× 0.7 = 0.6099,

m({F2}) = 0.4063× 0.1 + 0.0762× 0.8 + 0.5175× 0.1 = 0.1533,

m({F2, F3}) = 0.4063× 0.1 + 0.0762× 0.05 + 0.5175× 0.10 = 0.0962,

m(Θ) = 0.4063× 0.2 + 0.0762× 0.10 + 0.5175× 0.10 = 0.1406.

The fused result of the weighted BPA with the Dempster’s rule of combination is calculated
as follows:

m′′({F1}) = (m⊕m)⊕m(({F1}) = 0.8763,

m′′({F2}) = (m⊕m)⊕m(({F2}) = 0.0961,

m′′({F2, F3}) = (m⊕m)⊕m(({F2, F3}) = 0.0219,

m′′(Θ) = (m⊕m)⊕m(Θ) = 0.0057.

The fused results with the improved belief entropy based on Dempster’s rule of combination are
compared with several other methods, as shown in Table 5. Intuitively, F1 should be the fault type
that occurred because both E1 and E3 have relatively strong support to F1 (0.60 and 0.70) while E2 may
come from an abnormal sensor compared with other two BOEs. The support of F1 with Yuan et al.’s
method based on the improved belief entropy is as high as Fan et al.’s method, Yuan et al.’s method
and Zhou et al.’s method and the result is that F1 is the fault type occurred. This case study verifies the
applicability of the improved belief entropy.

Table 5. The comparison of the fused results among different methods.

Methods {F1} {F2} {F2, F3} {Θ}

Dempster’s rule of combination [11,12] 0.4519 0.5048 0.0336 0.0096
Fan et al.’s method [57] 0.8119 0.1096 0.0526 0.0259

Yuan et al.’s method [44] 0.8948 0.0739 0.0241 0.0072
Zhou et al.’s method [58] 0.8951 0.0738 0.0240 0.0071

The improved belief entropy 0.8763 0.0961 0.0219 0.0057

6. Conclusions

The measurement of uncertainty under D-S theory framework is still an open issue. An improved
belief entropy, which takes the central value and the span of the belief interval into consideration
together when defining the uncertainty measure of BPA, is proposed based on Deng entropy and
the belief interval in this paper. Importantly, as an uncertainty measure of BPA, it will degenerate
to Shannon entropy when BPA is Bayesian, which is consistent with previous methods. Several
numerical examples are conducted to verify the efficiency and flexibility of the improved belief entropy.
The results of these examples show that the improved belief entropy performs better compared with
other methods. To verify the applicability, a case study about fault diagnose is employed. The improved
belief entropy will provide an insight to measure uncertainty in various fields (e.g., decision making,
risk analysis, and pattern recognition) and further information processing. Although this study shows
promising results, some limitations are worth consideration. First, the formula of the improved belief
entropy is relatively complex, which leads to a high computational burden when faced with a large
amount of evidences. Second, some critical properties (e.g., monotonicity) of the improved belief
entropy are not proved by the study. Given the limitations of this study, future research is necessary to
simplify the formula and investigate the critical properties of the improved belief entropy.
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