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Abstract: This paper studies the causal relationship between Bitcoin and other investment assets. 
We first test Granger causality and then calculate transfer entropy as an information-theoretic 
approach. Unlike the Granger causality test, we discover that transfer entropy clearly identifies 
causal interdependency between Bitcoin and other assets, including gold, stocks, and the U.S. dollar. 
However, for symbolic transfer entropy, the dynamic rise–fall pattern in return series shows an 
asymmetric information flow from other assets to Bitcoin. Our results imply that the Bitcoin market 
actively interacts with major asset markets, and its long-term equilibrium, as a nascent market, 
gradually synchronizes with that of other investment assets. 
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1. Introduction 

The Bitcoin (we use a capital B, i.e., Bitcoin, to refer to the system, and a lowercase b, i.e., bitcoin, 
to refer to the unit of account [1]) market, which was valued only at 0.00076 U.S. dollar (henceforth, 
USD) per bitcoin in its beginnings, has grown to a market capitalization of 130 billion dollars at 
present. At the same time, drastic market falls and rises have led to concerns and controversies. 
Owing to the rapid growth in market capitalization and extreme price fluctuations, legislators and 
economists came up with a definition of what cryptocurrency is in an economic context. Considering 
its potential impact on marketplaces, we investigate the characteristics of cryptocurrency as an asset, 
which could give us clues about cryptocurrency and its role, e.g., as a hedging instrument or its 
diversification benefits. 

Bitcoin, which has the longest history and dominant market capitalization compared to the other 
cryptocurrencies, has been used in most of the literature as a representative for cryptocurrency. In 
particular, various studies have concurrently tried to characterize Bitcoin as a currency or 
commodity. Some have documented that the issuance and circulation system of Bitcoin guarantee its 
scarcity and lower the transaction costs in foreign exchanges [1,2]. Others have reported that Bitcoin 
could be used as an investment asset as a hedging or diversification tool and considerably reduce the 
risk of a portfolio [3,4]. However, the literature is inconclusive about its features, as Bitcoin has unique 
risk-return characteristics, and is volatile in a way that is unlike other assets [5,6]. For example, 
Yermack [7] argued that Bitcoin is neither a complementary currency nor a commodity. As such, 
there is a debate over the nature of Bitcoin that has yet to reach unanimous agreement. 

As an extension, Erdas and Caglar [8] identified that Bitcoin only has a limited causal relation 
with the S&P 500 Index, and not with other assets, such as Brent oil, the USD, and the Borsa Istanbul 
100 Index. Corelli [9] showed that only a few Asian currencies, such as the Thai baht and Taiwan 
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dollar, have causal links with Bitcoin. On the contrary, a causal interconnection, namely information 
flow, is well identified between Bitcoin and altcoins, where the cryptocurrency market itself seems to 
be relatively isolated from, or independent of, other assets [10,11]. 

This study aims to identify the causal relationship between Bitcoin and other investment assets. 
In causality tests, we discover that the information-theoretic approach clearly differs from the linear 
autoregressive approach. Our results present strong interconnections between Bitcoin and other 
assets, and suggest that the Bitcoin market actively interchanges information with other markets. 
Conversely, a symbolized dynamic rise–fall pattern reveals an information flow with an asymmetry 
from other investment assets to Bitcoin. In terms of the dynamic pattern in a return series, our 
findings imply that the nascent Bitcoin market potentially synchronizes with other asset markets that 
have more trading activities and less uncertainty [12–14]. 

The remainder of this paper is organized as follows: Section 2 describes data and methodology. 
Section 3 reveals the results, Section 4 discusses them, and Section 5 provides the conclusion. 

2. Materials and Methods  

2.1. Data 

Our data spanned five years, from January 2014 to December 2018, and we used daily log 
returns. The sample period started from the beginning of 2014 when Mt. Gox (the largest 
cryptocurrency exchange, handling about 70% to 80% of Bitcoin transactions by 2013) went bankrupt 
and the Bitcoin price collapsed [15]. The price of Bitcoin, in terms of USD per bitcoin, is provided by 
Quandl.com. Bitcoin exchange operates 24 hours a day, and thus we chose the closing price based on 
that disclosed at 19:00 EST when the relevant data were updated. The S&P 500 Index is the daily 
closing price provided by the Center for Research in Security Prices, and gold is the international 
gold daily closing price (in USD) provided by Goldprice.org. USD/EUR is the exchange rate provided 
by the Federal Reserve Bank. Table 1 summarizes the descriptive statistics in detail. 

Table 1. Descriptive statistics for daily log returns of Bitcoin, S&P 500, gold, and USD/EUR. 

 Min. Max. Mean Std. Skewness Kurtosis 
Bitcoin −0.27 0.25 8.96 × 10ିସ 3.85 × 10ିଶ −0.24 6.25 
S&P 500 −0.04 0.05 2.50 × 10ିସ 8.35 × 10ିଷ −0.50 3.79 
Gold −0.03 0.04 5.66 × 10ିହ 8.75 × 10ିଷ 0.15 1.83 
USD/EUR −0.03 0.03 −1.35 × 10ିସ 5.33 × 10ିଷ 0.11 2.52 

The number of observations is 1062 for all variables. Std., Min., and Max. are standard deviation, 
minimum and maximum values of each time series, respectively. 

Bitcoin has the smallest minimum and the largest maximum values among all the assets 
considered, thus suggesting extreme fluctuations in market returns. The kurtosis of Bitcoin is about 
two to three times larger than that of the S&P 500 and gold, and has the largest standard deviation in 
order of magnitude. These leptokurtic and fat-tailed natures further indicate that the proportion of 
extreme values in Bitcoin returns are quite high. In addition, negative skewness implies investors’ 
risk aversion attitude in the Bitcoin market as in the stock markets [16]. 

2.2. Granger Causality 

Let 𝑋௧ and 𝑌௧ be the two time series. Weiner [17] documented that 𝑌௧ is “Causing” 𝑋௧ if we 
are better off in predicting 𝑋௧ using information including 𝑌௧ than by using information about 𝑋௧ 
only. Especially, the Weiner–Granger causality numerically defines the concept of the causal 
relationship between the two variables [18]. In general, we define that 𝑌௧ “Granger causes“ 𝑋௧ to 
avoid confusion by using the term “Causality” itself when there is a statistically significant regression 
coefficient of 𝑌௧ . The Granger causality test assumes that the following specification in vector 
autoregression with lag 𝑝, denoted by VAR(𝑝), holds for two stationary time series, 𝑋௧ and 𝑌௧: 
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𝑋௧ = 𝛼 + ∑ 𝛽௜𝑌௧ି௜௣௜ୀଵ + ∑ 𝛾௝𝑋௧ି௝௣௝ୀଵ + 𝜖௧, (1) 
 

where 𝛼 denotes a constant term; 𝛽௜ presents a coefficient that quantifies the extent to which 𝑌௧ି௜ 
explains 𝑋௧; 𝛾௝ is an autoregressive coefficient that quantifies the extent to which 𝑋௧ି௝ explains 𝑋௧; 𝜖௧ indicates Gaussian white noise; and 𝑝 represents the largest lag order obtained from the Akaike 
Information Criterion (AIC), Hannan Quinn (HQ), Schwarz Criterion (SC), and Final Prediction Error 
(FPE) [19–21]. The null hypothesis, that is “𝑌௧ does not Granger cause 𝑋௧” is defined as follows: 𝐻଴ ∶ 𝛽ଵ = 𝛽ଶ = ⋯ = 𝛽௣ = 0. (2) 

 

2.3. Transfer Entropy 

Transfer entropy between two variables, e.g., 𝑋௧ and 𝑌௧ for 𝑋௧(௞) = {𝑋௧,𝑋௧ିଵ,⋯ ,𝑋௧ି௞} and 𝑌௧(௟) ={𝑌௧,𝑌௧ିଵ,⋯ ,𝑌௧ି௟}, can be expressed as follows [22]: 𝑇௒→௑ = 𝐻൫𝑋௧ାଵห𝑋௧(௞)൯ − 𝐻൫𝑋௧ାଵห𝑋௧(௞),𝑌௧(௟)൯, (3) 
 

where 𝐻(𝑋௧ାଵ|𝑋௧(௞))  denotes the degree of uncertainty for predicting 𝑋௧ାଵ  for a given 𝑋௧(௞)  and 𝐻(𝑋௧ାଵ|𝑋௧(௞),𝑌௧(௟)) stands for the degree of uncertainty for predicting 𝑋௧ାଵ for a given 𝑋௧(௞) and 𝑌௧(௟): 
Both are expressed by conditional entropy. Therefore, transfer entropy 𝑇௒→௑ can be considered to be 
an asymmetric measure that enables us to estimate the information flow transmitted from 𝑌௧(௟). 

We calculated transfer entropy through a histogram analysis, one of the most commonly used 
discretization methods. Specifically, we considered a histogram defined on equally-spaced intervals 
(also known as bins). For a random sample, using the mean squared error, the bin width was 
determined by selecting an appropriate number of bins in the sample range [23–25]. Then, we 
calculated the conditional entropy of the discrete random variables [26] and finally estimated transfer 
entropy. 

Next, we also considered symbolic time series analysis (STSA) as an alternative since it is 
common in various research fields, such as physics, information theory, and finance [27,28]. Based 
on the time-varying fluctuations in return series, STSA converts a real value into a series of symbols. 
First, every consecutive return was converted to binary numbers, i.e., 0s and 1s, reflecting the 
dynamic rise–fall pattern of the series. Subsequently, the binary numbers were transformed to a series 
of sequence bundles. Following Ahn et al. [28], we defined the size of a rolling window to quantify 
the sequence of binary numbers and then converted all of the corresponding sequence bundles into 
a new series of decimal numbers. Finally, transfer entropy could be obtained from the two decimal 
series. 

3. Results 

3.1. Granger Causality Test 

Table 2 shows the null hypothesis and results of the Granger causality test on the basis of the 
bivariate VAR(𝑝) model. Under the optimal lag order of 𝑝 = 1, the change of Bitcoin prices “Granger 
causes” the change of gold prices, but not the other way around. The change of S&P 500 and Bitcoin 
prices mutually “Granger caused” each other. However, regardless of lag orders, we could not find 
any significant causal link between Bitcoin and USD/EUR return series. We performed AIC, HQ, SC, 
and FPE before building up the VAR model and finally set the optimal lag order 𝑝 = 1. We also 
conducted the Granger causality test with lag order 𝑝 = 2 to examine the robustness of our results. 
We concluded that the change of lag orders does not have a significant effect on our results. 

Table 2. Granger causality tests. 

Null Hypothesis (𝑯𝟎) F-statistics (𝒑 = 𝟏) 
Gold ↛ Bitcoin 0.40 
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Bitcoin ↛ Gold  2.83* 
S&P 500 ↛ Bitcoin 
Bitcoin ↛ S&P 500 

 2.88* 
 3.24* 

USD/EUR ↛ Bitcoin 
Bitcoin ↛ USD/EUR  

0.84 0.08 
The notation “A ↛ B” denotes the null hypothesis that “A does not Granger cause B.” F-statistic is 
used and * indicates significance at the 10% level. 

3.2. Normality Test 

The VAR(𝑝) model requires the residuals to be Gaussian white noise. Thus, we performed a 
normality test on the residuals of the bivariate VAR(𝑝) model. Table 3 summarizes the normality test 
results. The test statistics of Jarque–Bera and kurtosis are all larger than the 1% critical value and that 
of skewness is larger than the 10% and 1% critical value for two residual series of each VAR(𝑝) model, 
i.e., 𝑀஻,ீ  and 𝑀஻,ௌ, respectively. As a result, we can reject the null hypothesis that the residuals of 
the VAR(𝑝) model are normally distributed. 

Table 3. Jarque–Bera, skewness, and kurtosis tests on the residuals of the bivariate VAR(𝑝) model. 

 
𝑯𝟎: Residuals are normally distributed 

Jarque–Bera Skewness Kurtosis 𝑀஻,ீ  2.49 × 10ଷ***  7.43* 2.48 × 10ଷ*** 𝑀஻,ௌ 2.81 × 10ଷ***   44.19*** 2.77 × 10ଷ*** 𝑀஻,௎ 2.64 × 10ଷ*** 2.96 2.64 × 10ଷ*** 
Jarque–Bera, skewness, and kurtosis were tested using χ2 statistics. * and *** indicate significance at 
the 10% and 1% levels, respectively. 𝑀௑,௒ is the residuals of the bivariate VAR(𝑝) model between the 
two asset returns, such as 𝑋 and 𝑌, where 𝐵, 𝐺, 𝑆, and 𝑈 represent Bitcoin, gold, S&P 500, and 
USD/EUR, respectively. 

3.3. Transfer Entropy 

Information flow could measure the hidden cause-effect between dynamic events [29]. We used 
transfer entropy to examine the causal relationship that is free from the assumption of linear 
autocorrelation between the two assets. Effective transfer entropy [30,31] is also considered to cope 
with the sample bias. Histogram-based transfer entropy presented mutual information flow, 
implying statistical interdependence between Bitcoin and all the other assets, as shown in Figure 1a. 
We estimated entropy with the bin width following Freedman–Diaconis [25] by setting 𝑘 = 𝑙 = 1, 
the same condition as in the Granger causality test. Because the size of bins, related to the number of 
possible states of the system, could affect the entropy (amount of information [32]), we further 
investigated the robustness of our results with 𝑘 = 𝑙 = 2. 

We then calculated the transfer entropy by symbolizing the patterns in the return series through 
applying STSA, which is robust and powerful in detecting causal link between the two variables 
having nonlinearities [33]. The results show causal dependencies between the assets, different from 
the histogram-based transfer entropy, as presented in Figure 1b. The transfer entropy using STSA 
estimated cause-effect of the dynamic rise–fall patterns in the return series, indicating that 
information about the return series of other investment assets has a relatively stronger effect on that 
of Bitcoin than the other way around. For STSA, we set the window size 𝑆 = 5, trading days a week. 
It is also robust with the results of 𝑆 = 3, 4, 6, 7. Furthermore, we set 𝑘 = 𝑙 = 1 and 𝑘 = 𝑙 = 2 for the 
same conditions as in the histogram-based transfer entropy and confirmed the robustness of our 
results. 
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(a)  (b)  

Figure 1. (a) Transfer entropy by histogram analysis; and (b) Transfer entropy by STSA (𝑆 = 5). We 
display the information flow between the assets. The arrow represents the causal link, and the number 
indicates the estimated value of transfer entropy (the value of effective transfer entropy is also 
denoted in parentheses). The arrows are colored differently for each value and statistical significance. 
The significance level was evaluated by bootstrapping the underlying Markov process [31,34]. * and 
*** indicate the significance at the 10% and 1% levels, respectively. 

4. Discussion 

Many studies have used the Granger causality test to measure causal relationships between 
various time series: price fluctuations in oil and gold markets [35] and contemporaneous effects 
between stock returns and foreign exchange rates [36]. Earlier studies have identified a causal link of 
Bitcoin with gold futures [37] and with stock markets, in particular the S&P 500, in major countries 
[8]. Notably, there is still no empirical evidence about a causal link between Bitcoin and fiat money 
(e.g., the USD) in commonwealth countries except for a few Asian countries, such as the Thai baht 
and Taiwan dollar [8,9]. Thus, our results are generally in line with the literature; Bitcoin has a limited 
causal link only with some investment assets, which is asymmetric, primarily from other assets to 
Bitcoin. 

However, as shown in Table 3, we need to pay extra attention when interpreting the results of 
Granger causality tests on the basis of the VAR(𝑝) model; Jarque–Bera, skewness, and kurtosis clearly 
indicate that the residuals do not have a normal distribution. Although the linear autoregressive 
assumption allows the Granger causality test to explain intuitively the cause-effect relationship 
between variables; it is too naïve to explain the interactions in complex systems. It is based on 
correlations, which refer to a second-order statistical relationship, and so it constrains its relevance 
to linear systems [38]. The Bitcoin market and each investment asset market are generally considered 
to be complex systems, and the VAR(𝑝) model used for the Granger causality test violates its basic 
assumption. 

Transfer entropy, on the contrary, does not assume linear autoregression between variables, 
which makes it possible to test causality between non-linearly interacting variables [39]. Therefore, it 
has been widely used in many places to set apart driving and responding elements of the system [40]. 
In particular, financial markets are complex systems that express collective phenomena on the basis 
of the interacting individual agents [41], so transfer entropy can better detect inter-causality than the 
Granger causality test. For example, Marschinski and Kantz [30] measured the transfer entropy 
between the Dow Jones and DAX index (German stock index) and showed that there is a statistical 
dependency between the two. Kwon and Yang [42] analyzed stock indices between countries and 
documented that the United States is the dominant source of the information flow. Specifically, Pele 
and Pele [43] analyzed intraday log return series of Bitcoin using several econometric models and 
concluded that the entropy-based Value at Risk forecast provides the best results compared to the 
GARCH-based classical forecasts. 
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As shown in Figure 1a, Bitcoin mutually exchanges information with other assets and hence 
could serve as a hedging instrument for commodity and financial assets [3,4]. Moreover, Bitcoin even 
interacts with currency and is regarded as a payment platform, which supports the role of currency 
having many conversions and real-time exchanges with conventional currencies [1]. In particular, 
considering the magnitude and the statistical significance level, the dependency between Bitcoin and 
the others is similar so that the assets potentially interrelate with each other: Other markets are 
mutually coupled with Bitcoin’s. In other words, Bitcoin is more likely to be an asset that actively 
passes on information than is an unreciprocated information respondent. 

Transfer entropy has been proposed to estimate the directionality of the coupling between 
dynamic systems [38], and a method such as symbolic transfer entropy is often used for reducing 
errors and bias correction of the numerical approximation. Figure 1b clearly exhibits that the other 
investment assets drive the Bitcoin market so that the symbolic pattern of the others at a given time 
influences that of Bitcoin’s. It further supports the hypothesis that a market with more trading 
activities (larger trading volume) and smaller uncertainty (less return volatility) is conducive to 
having a leading information discovery role than is a market with relatively smaller trading activities 
and more uncertainty [12–14]. In sum, the dynamic patterns of the return series reveal the dominance 
of the information discovery, and our results suggest that, in the long term, as a nascent market, the 
Bitcoin market potentially matures [44] and/or synchronizes with other investment assets. 

5. Conclusions 

This study analyzed the causal relationship between Bitcoin and three major investment assets. 
Unlike the linear autocorrelation approach, particularly the Granger causality test, histogram-based 
transfer entropy confirmed the existence of mutual information flow between Bitcoin and the other 
investment assets. STSA-based transfer entropy, however, revealed the asymmetric information flow 
mainly from major investment assets to Bitcoin. The results indicated that the Bitcoin market—
regarded as an isolated market—indeed, actively interacts with stock, commodity, and even foreign 
exchange markets. Transfer entropy, according to the symbolic rise–fall pattern in the return series, 
further implied that the nascent and immature Bitcoin market gradually synchronizes with other 
markets possessing investor trading experience. Additionally, this study offered evidence that 
supports Bitcoin as a complementary currency and a hedging instrument beyond a speculative asset. 
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