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Abstract: This paper proposes a method that maps the coupling strength of an arbitrary number of 
signals D, D ≥ 2, into a single time series. It is motivated by the inability of multiscale entropy to 
jointly analyze more than two signals. The coupling strength is determined using the copula density 
defined over a [0 1]D copula domain. The copula domain is decomposed into the Voronoi regions, 
with volumes inversely proportional to the dependency level (coupling strength) of the observed 
joint signals. A stream of dependency levels, ordered in time, creates a new time series that shows 
the fluctuation of the signals’ coupling strength along the time axis. The composite multiscale 
entropy (CMSE) is then applied to three signals, systolic blood pressure (SBP), pulse interval (PI), 
and body temperature (tB), simultaneously recorded from rats exposed to different ambient 
temperatures (tA). The obtained results are consistent with the results from the classical studies, and 
the method itself offers more levels of freedom than the classical analysis.  

Keywords: copula density; dependency structures; Voronoi decomposition; multiscale entropy; 
ambient temperature; telemetry; systolic blood pressure; pulse interval; thermoregulation; 
vasopressin  

 

1. Introduction 

Approximate [1,2] and sample entropies [3], ApEn and SampEn, have been intensively 
implemented in a range of scientific fields to quantify the unpredictability of time series fluctuations. 
Contributions that apply ApEn and SampEn are measured by thousands [4], confirming their 
significance. The cross entropies—XApEn and XSampEn—are designed to measure a level of 
asynchrony of two parallel time series [3,5,6]. Descriptions of (cross) entropy concepts can be found 
in numerous articles, but a recent comprehensive review [7] provides an excellent tutorial with the 
guidelines aimed to help the research society to understand ApEn and SampEn and to apply them 
correctly [7].  

Multiscale entropy (MSE) [8,9], based on SampEn, investigates the changes in complexity caused 
by a change of the time scale. Composite MSE (CMSE) performs an additional averaging, thus solving 
the problem of decreased reliability induced by temporal scaling [10,11]. A comprehensive study of 
fixed and variable thresholds at different scales also presents an excellent review of the MSE 
improvements [12].  

The benefits offered by entropy are explored in cardiovascular data analysis. Entropy was 
implemented to determine the cardiac variability [13], the complexity changes in cardiovascular 
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disease [14], a level of deterministic chaos of heart rate variability (HRV) [9], HRV complexity in 
diabetes patients [15], in heart failure [16], in stress, [17,18] or in different aging and gender groups 
[19,20], while multiscale cross-entropy was applied for health monitoring systems [11]. 

SampEn- or ApEn-based entropy estimates are designed for one signal, or at most for two signals 
(cross-entropy), but biomedical studies often require an analysis of three or more simultaneously 
recorded signals.  

We propose a method that maps levels of interaction of two or more time series into a single 
signal. Levels of interaction are assessed using the copula density [21]. The transformation from the 
probabilistic copula domain to the beat-to-beat time domain is performed by Voronoi decomposition.  

The method is applied to multivariate time series that comprises three simultaneously recorded 
signals: systolic blood pressure (SBP), pulse interval (PI), and body temperature (tB) recorded at 
different ambient temperatures (tA). It is well known that thermoregulation can affect cardiovascular 
homeostasis [22]. Analysis of heart rate (HR) and SBP in the spectral domain has shown that changes 
of ambient temperature modulate vasomotion in the skin blood vessels, reflected in the very-low-
frequency range of SBP and reflex changes in HR spectra [23,24]. Thermoregulation is complex and 
involves autonomic, cardiovascular, respiratory as well as a metabolic adaptation [25–28]. The key 
corrector of blood pressure is the baroreceptor reflex (BRR). The disfunction of BRR is the hallmark 
of cardiovascular diseases with a bad clinical prognosis. Thus, evaluating its functioning is important 
not only for the diagnosis and prognosis of cardiovascular diseases but also for the evaluation of 
treatment.  

The aims of this study are:  

1. To propose a method that enables an application of multiscale entropy to an arbitrary number 
of signals and to analyze the outcome;  

2. To compare the results of the classical multiscale method and the proposed method when 
applicable, i.e., in a case of two-dimensional signals;  

3. To test whether the proposed method recognizes the changes of dependency level (coupling 
strength, level of interaction) of joint multivariate signals in different biomedical experiments. 

The paper is organized as follows: the experimental setting for signal acquisition is explained in 
Section 2.1, together with surrogate signals and artificially generated control signals. The signal pre-
processing that ensures the reliability of the results is explained in Section 2.2. Section 2.3. shows the 
mathematical tools assembled to create the proposed method: it gives an introduction to the copula 
theory, it outlines copula advantages and applications, and it discusses the various procedures for 
density estimation to justify the preference of Voronoi decomposition.  

Section 3.1. shows the basic statistical analysis of the experimental SBP, PI, and tB signals. For 
the sake of comparison, this section includes the outcomes of classical (X)SampEn and CMSE entropy 
analysis. Section 3.2. introduces the new signal, created by the proposed method, for a two-
dimensional case (SBP and PI mapped into the new D = 2 signal) and a three-dimensional case (SBP, 
PI, and tB mapped into the new D = 3 signal). In both cases, the SBP-PI offset (delay) is taken into 
account ranging from 0 to 5 beats [29]. The wide sense stationarity of the created signals is checked 
and the correction proposed. The signals’ statistical properties, in terms of skewness and kurtosis, are 
estimated and discussed. In Section 3.3., the entropy parameters are analyzed and the proper ones 
that ensure the reliable estimates are selected. Then, the results of experiments performed to justify 
the consistency with the classical methods (in cases when the comparison is possible) are presented. 
The results showing that the method recognizes the changes in the level of signal interaction in 
various experimental environments are presented as well. The results are discussed in Section 4 with 
respect to the aims of this paper. The same section gives the conclusion and the possibilities for 
further method applications.  

A brief description of well-known entropy concepts—ApEn, SampEn, MSE, and CMSE—is 
included in the Appendix. 

2. Materials and Methods  
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2.1. Experimental Setting and Signal Acquisition 

All experimental procedures conformed to Directive 2010/63/EU National Animal Welfare Act 
2009/6/RS and Rule Book 2010/RS. The protocol was approved by the University of Belgrade Ethics 
review board (license n°323-07-10519/2013-05/2). 

Adult male Wistar outbred rats, weighing 300–350 g, housed under control laboratory 
conditions (temperature—22 ± 2 °C; relative humidity: 60–70%; lighting: 12:12 h light-dark cycle) with 
food (0.2% NaCl) and tap water ad libitum were used in experimentation. Vasopressin selective 
antagonists of V1a or V2 receptors were injected via cannula chronically positioned in the lateral 
cerebral ventricle of the rat. The concomitant measurement of blood pressure waveforms (BP) and 
body temperature was performed using TL11M2-PA-C50-PX-DSI equipment implanted into the 
abdominal aorta. The measurements were performed at the neutral ambient temperature (NT), 27 
rats at tA = 22 ± 2 °C, and the increased ambient temperature (HT), 28 rats at tA = 34 ± 2 °C. The four 
rats recorded at the low temperature (LT), tA = 12 ± 2 °C, were included as an illustrative example. 
There are five subgroups in NT and HT groups: control group, V1a-100 ng, V1a-500 ng, V2-100 ng, 
and V2-500 ng. The experimental timeline is shown in Figure 1.  

Signal
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Figure 1. The experimental timeline and the signal subgroups. The high temperature (HT) experiment 
includes 28 animals exposed to 34 ± 2 °C ambient temperature; the neutral temperature (NT) 
experiment includes 27 animals exposed to 22 ± 2 °C ambient temperature; ten animals from each 
group were controls (CONT), the others got V1a and V2 antagonists, either 100 ng or 500 ng; the low 
temperature (LT) experiment contains four control animals exposed to 12 ± 2 °C ambient temperature; 
it is included as an illustration. . 

The experimental environment includes two types of control signals. The first controls are 
isodistributional surrogate data [30,31]. Surrogate data are derived from the experimental time series 
by randomizing the property that needs to be tested, keeping the other signal attributes intact. Thus, 
isodistributional surrogates randomly permute the signal to destroy the orderliness that is checked 
by entropy analysis. The signal distribution function remains unchanged. The second controls are 
artificially generated signals—a series of independent and identically distributed (i.i.d.) samples with 
Gaussian distribution and with exponential distribution. Gaussian signals possess a unique property 
in which linear independency implies statistical independency [32], and that it is an asymptotic 
distribution of the sum of i.i.d. samples (with some constraints) [32], an issue important for the 
multiscale entropy coarse-graining. Signals with exponential distribution are often implemented 
when there is a need to test the signals with large variance. 

2.2. Signal Pre-Processing 
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Arterial blood pressure (BP) and body temperature signals were acquired using a sampling 
frequency of 1000 Hz. Systolic blood pressure (SBP) and pulse interval (PI) time series were derived 
from the BP waveforms as the local maxima and as the intervals between the successive maximal BP 
positive changes, respectively. The samples from the body temperature signals were taken 
simultaneously with SBP to create body temperature beat-to-beat time series tB. Artifacts were 
detected semi-automatically using the filter [33] adjusted to the signals recorded from the laboratory 
rats. A visual examination was then performed to find the residual errors. A very low signal 
component (trend) was removed by a high-pass filter designed for biomedical time series [34], thus 
ensuring SBP, PI, and tB signal stationarity. All the signals were cut to the length of the shortest time 
series, n = 14,405 samples. The time series X1 = SBP, X2 = PI and X3 = tB jointly create a single three-
dimensional signal (D = 3). Its samples X1k, X2k, and X3k, k = 1,…, N create points in the three-
dimensional signal space. 

2.3. Copula Density, Voronoi Regions and Dependency Time Series 

A copula is a mathematical concept that provides a multidimensional probability density 
function, where density reflects the level of signal interaction (dependency, coupling). It is introduced 
in 1959 [21] as a multivariate distribution function with marginals uniformly distributed on [0 1]D. If 
X1, …, XD are the source signals with joint distribution function H and univariate marginal 
distribution functions F1,…, FD, then copula C is defined as [21]: 𝐻(𝑋 , … , 𝑋 ) = 𝐶 𝐹 (𝑋 ), … , 𝐹 (𝑋 )  (1) 

and vice versa:  𝐶(𝑈 , … 𝑈 ) = 𝐻 𝐹 (𝑈 ), … , 𝐹 (𝑈 ) . (2) 

Sklar’s theorem [21] states that any D-dimensional joint distribution H with arbitrary univariate 
marginals could be decomposed into D independent uniform marginal distributions, bound together 
by a new joint distribution function C, called copula.  

The concept of the copula is based on the classical transformation of a random variable. Any 
continuous variable 𝑋   with a distribution function  𝐹  (𝑋 ) and density  𝑓  (𝑋 )  =   ( )  , 𝑖 =1, … , 𝐷  can be transformed using a monotone function 𝑈  = 𝜑  (𝑋  ). The result is a variable 𝑈   with 
a probability density function [32]  𝑢 (𝑈  ) =  (  )| (  (  ))/  | , 𝑋  =  𝜑  (𝑈  ).  The transformation 

function 𝜑  (𝑋 )  that creates a copula is the distribution function 𝐹 (𝑋  ) of the signal 𝑋  , i.e., 𝜑  (𝑋  ) =  𝐹 (𝑋 ). The new variable 𝑈  is then defined in [0, 1], as the following holds: 0 ≤ 𝐹 (𝑋  ) ≤1. It can be easily shown that the probability density function (PDF) of the new variable 𝑈  is uniform:  𝑢 (𝑈  ) =  𝑓 (𝑋  )|𝑑(𝐹 (𝑋  ))/𝑑𝑋  | =  𝑓 (𝑋  ) 𝑓 (𝑋  ) = 1. (3) 

The transformation of a random variable using its distribution function is known as probability 
integral transform, PI-transform, or PIT [35], and it is a core of the copula theory. It should be noted 
that the distribution function of a continuous variable, by definition, monotonically increases so the 
denominator in Equation (3) is positive, comprising just a single term. 

The copula has been intensively used for the analysis and prediction of financial time series and 
the prediction of insurance risk [36–39], in hydrology and climate analysis [40–42] and 
communications [43]. Medical applications include aortic regurgitation study [44] and diagnostic 
classifiers for neuropsychiatric disorders [45]. A possibility to use a bivariate copula to analyze the 
cardiovascular dependency structures was introduced in [46] and pharmacologically validated by 
blocking the feedback paths using Scopolamine, Atenolol, Prazosin, and Hexamethonium. It was 
shown that Frank's copula is the most appropriate to quantify the level of dependency of 
cardiovascular signals.  

Copula density 𝑐(𝑈) = ( ,⋯, )⋯  is used to visualize the intensity of signal coupling. The 

regions of increased copula density indicate the regions where the dependency of the signal samples 
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increases. The difference between a classical bivariate probability density function (PDF) and the 
corresponding copula density of SBP and PI signals is that PDF shows the distribution of amplitude 
levels, while copula density shows the distribution of coupling strength between these amplitudes, 
regardless of the absolute amplitude values. An illustration of this difference is shown in Figure 2. 
SBP and PI signals and their probability integral transformed (PIT) counterparts are separated in 
time, first by two heartbeats (SBPk is coupled with PIk + 2, k = 1, 2, …, N−2), and then by ten heartbeats 
(SBPk is coupled with PIk + 10, k = 1, 2, …, N−10). The copula density in panel b exhibits a distinct linear 
positive coupling structure that follows the known physiological relationships [47]. The copula 
density in panel d shows almost uniform distribution as the time offset between SBP and PI signals 
is sufficiently large to attenuate their mutual dependency. Contrary to copula density, the joint 
probability density functions are almost the same in both cases (panels a and c). The temporal 
separation of SBP and PI signals does not alter the mutual relationship of signal amplitudes, but it 
significantly alters the intensity of signal coupling.  

 

Figure 2. Bivariate probability density function (PDF) of SBP and PI signals and copula density of 
probability integral transformed (PIT) signals; (a) and (b): the offset between PI and SBP is equal to 
two beats; (c) and (d): the offset between PI and SBP is equal to ten beats; note that the PDFs in (a) 
and (c) are almost the same in spite of different SBP-PI offsets, while the copula density exhibits a 
strong positive dependency when offset is small (b), and a lack of dependency when offset is large (d). 

The advantages of copula are numerous. Copula density visualizes the dependency structures 
of the observed signals, and it quantifies the signal coupling strength (“copula parameter”). It 
captures both linear and nonlinear relationships between the signals. It can quantify the intensity of 
signal coupling within the different regions of the copula domain, and, in particular, it can model the 
tail dependencies of the signals.  

Such a visualization, in a case of SBP-PI signals, cannot be achieved by other methods: the 
Oxford method, the oldest and the referent procedure for the evaluation of the baroreceptor reflex, 
uses increasing doses of short-acting vasoconstrictors (e.g., phenylephrine) and vasodilators (e.g., 
nitroprusside) to trigger heart deceleration of acceleration. The SBP and PI relationship is plotted as 
a fitted sigmoid curve. It is an invasive method, and it does not show spontaneous BRR. The most 
acknowledged among the non-invasive approaches is the sequence method, with the visualization 
that shows the scatterplot of the signal points that are elements of BRR sequences (i.e., the scatterplot 
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contains a subset of all signal points). The method quantifies the spontaneous BRR operating range 
and set point [48], but the visualization is similar to the classical probability density function.  

The time offset (delay) between SBP and PI signals is important for the signal coupling, and it 
depends on species. It was shown [49] that the delay of 0, 1, and 2 beats is the most appropriate for 
humans, while the delays of 3, 4 and 5 beats are appropriate for rats [29] and mice [47]. In [50], it was 
shown that, in laboratory rats, the highest level of comonotonic behavior of pulse interval and systolic 
blood pressure is observed at time lags 0, 3, and 4 beats, while a strong counter-monotonic behavior 
occurs at time lags of 1 and 2 beats.  

Copula density is a probabilistic quantity. To convert it into a time series, to each point in the 
time domain, an appropriate density (dependency level) 𝐷𝐿  should be assigned, thus creating a 
dependency signal 𝐷𝐿 , 𝑘 = 1, … , 𝑁. 

A trivial way to estimate a copula density is to create a D-dimensional histogram. The obtained 𝐷𝐿  signal would be discrete, as the points within the same histogram bins would get the same value. 
An increased number of histogram bins would increase the number of discrete signal levels, but the 
estimation reliability would decrease.  

Density estimation based on Markov chains [51] creates a stochastic matrix of “transition 
probabilities”—scaled distances—between the points, with the steady-state probabilities 
proportional to the required distribution. The method is computationally inefficient in 
multidimensional space, except for the short time series.  

A D-dimensional sphere (or cube) around a particular signal point defines a local density 
according to the number of encircled neighbors. The procedure is efficient, but the neighboring 
spheres overlap inducing the bias, and the result depends on the sphere diameter (i.e., threshold) 
choice.  

The chosen approach expresses the sample density proportionally to the non-overlapping free 
space surrounding the sample. Such a concept has long been known as the Voronoi region. It can be 
traced back to the scholars from the 17th and 18th centuries, but it was re-discovered, analyzed, and 
its applications outlined at the beginning of the 20th century [52].  

The concept is simple: Let A be the set of all points in a [0 1]D copula space. Let 𝑈 = [𝑈 , … , 𝑈 ], 𝑘 = 1, … , 𝑁 be a D-dimensional point from a PI-transformed multivariate time 
series. Then, the Voronoi region 𝑅  around the point 𝑈  comprises all the points from A that are 
closer to the particular point 𝑈  then to any other point 𝑈 , 𝑗 = 1, … , 𝑁, 𝑗 ≠ 𝑘. More formally,  𝑅 = {𝑎 ∈ 𝐴 | 𝑑(𝑎, 𝑈 )  ≤ 𝑑 𝑎, 𝑈 , ∀ 𝑗 ≠ 𝑘}. (4) 

A classical Euclidean distance is typically chosen for the distance 𝑑(𝑎,  𝑈 ) , but any other 
distance measure can be used as well, resulting in different Voronoi decompositions.  

Figure 3 shows examples of the Voronoi regions in two and three dimensions. The line segments 
that separate particular Voronoi cells 𝑅  and 𝑅  in the left panel of Figure 3 are the sets of the points 𝑎 ∈ 𝐴  that are equidistant to the points 𝑈  and 𝑈 , i.e., 𝑑(𝑎,  𝑈 ) = 𝑑 𝑎, 𝑈 . The Voronoi vertex 𝑎 ∈𝐴  in the same panel is the point equidistant to three (or more) time series points, e.g., 𝑑(𝑎,  𝑈 ) =𝑑 𝑎,  𝑈 = 𝑑(𝑎,  𝑈 ). The right panel (D = 3) also shows Voronoi lines and vertices, but, in the [0 1]3 
domain, this is more difficult to visualize. Uncolored Voronoi regions are either unbounded, or the 
boundaries are outside the [0 1]D space. These regions are cut to fit the [0 1]D space.  

A series of surface areas in two-dimensional Voronoi regions and a series of volumes in three-
dimensional Voronoi regions are a good foundation to quantify the dependency level and to form 
the time series 𝐷𝐿 , 𝑘 = 1, … , 𝑁, as:  

(a) The surface/volume of 𝑅  is inversely proportional to the dependency level of the point 𝑈 . An 
increased density of dependency structures in [0 1]D space implies a decrease of available space 
between the points.  

(b) The region 𝑅  is shaped like the best distance separation of the point 𝑈 , so its surface/volume 
is unambiguously calculated and unique, without a necessity to include any thresholds.  
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The drawback of the method is that a change of distance measure changes the shape of regions. 
We have opted for Euclidian distance as a classical approach for distance measurement, widely used 
in a wide range of applications. 

  
(a) (b) 

Figure 3. Voronoi region (polytope) and the corresponding signal points. (a) An example of Voronoi 
cells in a two-dimensional plane (D = 2); (b) An example of Voronoi polyhedrons in three dimensions 
(D = 3). The uncolored cells/polyhedrons both in (a) and (b) are cut to fit the [0 1]D space.  

3. Results 

3.1. Source Signal Analysis 

The total number of SBP-PI-tB signal triplets is equal to 59. The basic statistical parameters, 
shown as a control, are presented in Table 1. Results in Table 1 show no significant changes in 
statistical parameters of SBP, PI, and tB signals. An earlier study [26] revealed that V1a antagonists 
increase body temperature. The differences might be the outcome of different measurement 
procedures: in this study, the temperature is measured using a telemetric probe in the abdominal 
aorta, while, in [26], the temperature was measured rectally.  

Table 1. Statistical parameters of the source data (mean ± standard deviation). 

Ambient Temperature (°C) Drug SBP  (mmHg) PI (ms) tB (°C) 

NT 
22 ± 2 

Control 112.81 ± 19.54 179.22 ± 33.22 38.07 ± 0.29 
V1a, 100 mg 115.62 ± 12.17 173.74 ± 20.69 38.42 ± 0.10 
V1a, 500 mg  110.28 ± 15.35 184.77 ± 28.39 38.05 ± 0.10 
V2, 100 mg 119.98 ± 16.53 184.79 ± 38.30 38.54 ± 0.38 
V2, 500 mg 108.61 ± 14.79 176.16 ± 4.04 38.33 ± 0.41 

HT 
34 ± 2 

Control 107.26 ± 4.19 188.63 ± 8.95 38.27 ± 0.34 
V1a, 100 mg 107.90 ± 10.52 197.08 ± 21.63 38.52 ± 0.26 
V1a, 500 mg  110.40 ± 10.07 177.21 ± 16.34 38.57 ± 0.57 
V2, 100 mg 113.26 ± 15.41 193.14 ± 30.65 38.01 ± 0.37 
V2, 500 mg 114.28 ± 6.14 184.23 ± 12.97 38.33 ± 0.47 

LT 
12 ± 2 

Control 115.22 ± 5.23 164.54 ± 24.31 37.51 ± 0.43 

Note: Results are presented as mean ± standard deviation; SBP: systolic blood pressure; PI: pulse interval;  
tB: body temperature; NT: neutral temperature; HT: high temperature; LT: low temperature.  

Figure 4 shows the results of the classical entropy analysis, performed for the sake of 
comparison. The left panels show the CMSE of the signals recorded from control animals at different 
ambient temperatures. The middle panels show the effect of drugs at the neutral temperature. The 
left panels show the effects of drugs at a high temperature. Each signal is accompanied by ten 
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isodistributional surrogate signals, generated by a random temporal permutation of the signal 
samples [30,31].  

The first three rows in Figure 4 show the classical composite multiscale entropy analysis of a 
single-dimensional time series, SBP, PI, and tB, respectively. The last row shows multiscale SBP-PI 
cross-entropy that can be compared to the multiscale entropy of the new signals.  

 

Figure 4. Composite multiscale entropy estimated from the source signals. From top to bottom, 
entropy was applied to SBP, PI, tB signals, and SBP-PI signal pairs. Left panels: entropy of the control 
signals at different ambient temperatures; middle panels: effects of antagonists at neutral 
temperature; right panels: effects of antagonists at high temperature. Results are presented as a mean 
± SE (standard error). 

3.2. Properties of the Dependency Time Series 

The created time series are new signals, so their statistical properties need to be checked before 
entropy analysis. 

Mapping the signals into the dependency time series takes into account the delay (offset) 
between the PI and SBP signals. The time delay (offset) 𝐷𝐸𝐿 = 0, ⋯ , 5 [beats] applied to each pair of 
SBP-PI signals resulted in six two-dimensional (2D) time series  (𝑆𝐵𝑃 , 𝑃𝐼 ) , and six three-
dimensional (3D) time series (𝑆𝐵𝑃 , 𝑃𝐼 , 𝑡 ), 𝑘 = 1, … , 𝑁 − 𝐷𝐸𝐿. The total of 354 SBP-PI pairs 
and 354 SBP-PI-tB triplets were converted into two-dimensional and three-dimensional Voronoi cell 
time series. An average percentage of Voronoi cells that had to be cut to fit the [0 1]D space was 2.68% 
for two-dimensional, and 16.26% for three-dimensional signals (cf. Figure 3). Additionally, 11 signal 
points (0.0002 %) were too close to the vertices of the [0 1l3 cube to generate the three-dimensional 
polyhedrons, so they were managed manually.  

Examples of Voronoi cell time series are shown in Figure 5. 
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Figure 5. Samples of Voronoi cells time series. (a) two-dimensional signals (SBP and PI interaction, D 
= 2); (b) three-dimensional signals (SBP, PI and tB interaction, D = 3). 

A wide sense stationarity (WSS) test [53] is then applied, as the stationarity is an obligatory 

prerequisite for entropy estimation [7,38]. The test checks the stationarity of the first and the second 

statistical moments. The three-dimensional Voronoi cells time series failed the second-moment test. 
Figure 6 shows the negative effects of non-stationarity: a three-dimensional non-stationary 

Voronoi cell time series is cut into 14 successive segments, each one comprising n = 1000 signal points. 
Then, mean, variance, and entropy were estimated from each segment and plotted in Figure 6a. 
Figure 6b shows the same parameters but estimated from the two-dimensional stationary Voronoi 
cells time series.  

The difference between two- and three- dimensional signals is a consequence of coverage. The 
number of signal points in two-dimensional space is sufficient to ensure good coverage. The same 
points are sparsely and unevenly scattered in three-dimensional space, so the estimation is unreliable, 
resulting in different values obtained from the different sections of the same signal.  

a) b)

c) d)

 

Figure 6. SampEn, mean and variance of a time series. Note the high variability of entropy estimated 
in the different segments of three-dimensional Voronoi cells time series (a) (SBP, PI and tB interaction, 
D = 3), smoothed by logarithm; (c) two-dimensional Voronoi cells time series (SBP and PI interaction, 
D = 2) are stationary (b) as well as the signal created from the interaction of three exponentially 
distributed random signals, D = 3 (d).  
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Panel d in Figure 6 shows the results from artificially generated time series with exponentially 
distributed samples. It is a usual control example of a signal with large, but time-invariant, variance. 
It passed the stationarity test and the parameters estimated from it are constant in each segment.  

Taking a logarithm is a procedure that ensures the stationarity of the second moment. A negative 
logarithm corresponds to the inverse of the Voronoi cell volume, and it is proportional to the local 
sample density. It is always positive as the inverse of any Voronoi cell volume in [0 1]D domain is 
greater than 1. Panel c of Figure 6 is a visual confirmation of a successful test outcome.  

The dependency level time series, DL, is finally defined as the negative logarithm of the Voronoi 
cell time series. The number of signal points (N = 14,400) ensures the signal stationarity at least in the 
wide sense for two-dimensional (D = 2) and three-dimensional (D = 3) signals.  

The statistical properties of the new signals—probability density function, skewness, and 
kurtosis—are shown in Figures 7 and 8. 

a) b)

 
Figure 7. Empirical probability density function of the created signals, averaged over 10 control rats 
at neutral temperature (NT). (a) two-dimensional signals (SBP and PI interaction, D = 2); (b) three-
dimensional signals (SBP, PI and tB interaction, D = 3). The SBP-PI offset (DELAY) is equal to 0 beats. 
Results are presented as a mean ± SE (standard error). 

b)a)

c) d)

 
Figure 8. Skewness (panels (a) and (c)) and kurtosis (panels (b) and (d)) for different SBP-PI offset 
(DELAY), averaged over all 59 created signals; panels (a) and (b): two-dimensional signals (SBP and 
PI interaction, D = 2); panels (c) and (d): three-dimensional signals (SBP, PI, and tB interaction, D = 3); 
results are presented as a mean ± SE. 
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Empirical probability density functions for different scaling levels are plotted in Figure 7. Signals 
are normalized and centered so the changes of mean and variance due to the convolution are not 
visible. There is no significant difference in the estimated probability density functions for the scaling 
levels greater than five. 

Skewness is a third statistical moment that shows a level of signal asymmetry around the mean. 
The skewness of the two-dimensional dependency signal (SBP and PI interaction) is presented in 
Figure 8a). It is positive, with a right tail exhibited, indicating the existence of signals with a strong 
dependency level between systolic blood pressure and a pulse interval. The positive skewness 
increases with the increasing offset (delay) DEL between SBP in PI. It is in accordance with [29] that 
located the dominant SBP-PI relationships at offset of 3, 4, and 5 beats.  

The skewness of the three-dimensional dependency signal (SBP, PI, and tB interaction) is 
presented in Figure 8b). It is close to zero—slightly negative—so the level of the dependency between 
the three signals is almost symmetric. It may indicate that the inclusion of body temperature into the 
new signal attenuates the SBP-PI signal coupling. The increase of the SBP-PI offset (delay) DEL results 
in the increased skewness shifted closer to zero, towards the positive values, again in accordance 
with [29].  

Kurtosis measures the intensity of probability density function “tails”. It is shown in Figure 8b 
for two-dimensional signals (SBP and PI interaction) and in Figure 8d for three-dimensional signals 
(SBP, PI, and tB interaction). The tails of dependency signals are heavy if compared to Gaussian 
distribution, indicating an increased number of signals with very high and very low dependency 
levels. It is expected, due to the high variance of three-dimensional dependency signals. The intensity 
of tails increases with the increased SBP-PI offset DEL, and it also increases with an increase of scale. 
This is also expected, as scaling convolves the probability density functions of the components that 
are coarse-grained. The convolution emphasizes the tail parts of the distribution in spite of the 
normalization, as the convolved samples are not Gaussian.  

3.3. Entropy Analysis of the Dependency Time Series 

Entropy is a parametric method, with parameters determined to ensure its reliable estimation. 
The statistical analysis from Section 3.2, however, is insufficient to provide the guidelines for entropy 
parameter selection for the new dependency time series.  

It has already been pointed out [18,54–59] that the threshold (filter) r (cf. Equation (A3)) is one 
of the major causes of inconsistency in entropy estimation and that its choice is related to the series 
length N. Thus, the threshold and length profiles of the dependency time series are plotted in Figure 
9. Although the multiscale entropy is defined on the SampEn basis, the figure also includes ApEn as 
the worst-case example.  

In a multiscale entropy approach, the time series length step-wise decreases with the increased 
scaling level. Maximal series length of our signals is equal to n = 14,400. If the scaling level is equal to 
15, then the minimal series length would be equal to n = 960. Panels a and c of Figure 9 show the 
threshold profile of ApEn and SampEn for the maximal and for the minimal lengths. Stable results are 
achieved for threshold r = 0.3 [18].  

The length profile is plotted in panels b and d for the typical threshold value r = 0.15 and the 
chosen threshold value r = 0.3. It can be seen that the results are not consistent for lengths below n = 
900, so the choice of 15 scaling levels is justified.  

Figures 10–15 show the main result of the composite multiscale entropy study of dependency 
level signals, with the scaling level set to 15, and the threshold level set to r = 0.3. These results are 
discussed in Section 4.  
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Figure 9. Threshold profile (panels (a) and (c)) and length profile (panels (b) and (d)) of a single 
subject; vertical dashed lines mark the chosen threshold r = 0.3 in panels (a) and (c) and minimal series 
length n = 960 (the highest scale) in panels (b) and (d); upper panels: two-dimensional signals (SBP 
and PI interaction, D = 2); lower panels: three-dimensional signals (SBP, PI and tB interaction, D = 3 . 

Figure 10a presents CSME estimated from the dependency level signals of control rats at 
different ambient temperatures, for two-dimensional signals (SBP and PI interaction, D = 2). Each 
signal is accompanied by 10 isodistributional surrogates (the estimated entropy is averaged). These 
results can be compared to the results of the classical entropy analysis shown in Figure 6j. The figure 
also presents CSME estimated from the artificially generated two-dimensional signals with Gaussian 
distribution. Figure 10b shows the same entropies but estimated from the three-dimensional signals. 

The aim of Figure 11 is to show whether the CMSE estimated from the signals of control rats at 
different ambient temperatures can distinguish different temporal offsets (DEL) between the SBP and 
PI. Such an analysis cannot be performed by classical entropy study.  

 
Figure 10. Comparison of CSME estimates for signals recorded from control animals at high ambient 
temperature (HT), low temperature (LT) and neutral temperature (NT). (a) two-dimensional signals 
(SBP and PI interaction, D = 2); (b) three-dimensional signals (SBP, PI and tB interaction, D = 3). Delay 
(offset) of SBP-PI signals was set to DEL = 0 beats. Signals are accompanied by the control surrogate 
study and by the artificial two- and three- dimensional Gaussian signals. Results are presented as a 
mean ± SE. 
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Figure 11. Composite multiscale entropy CMSE with SBP-PI offset (DELAY) as a parameter, 
estimated from control animals exposed to neutral temperature (NT, panels (a) and (d)), high 
temperature (HT, panels (b) and (e)), and low temperature (LT, panels (c) and (f)). Upper panels (a), 
(b), (c): two-dimensional signals (SBP and PI interaction, D = 2); lower panels (d), (e), (f): three-
dimensional signals (SBP, PI and tB interaction, D = 3). Results are presented as a mean ± SE. 
Statistically significant difference (p < 0.05) between the lowest and highest offsets, DEL = 0 and 5, are 
observed for the scale greater than 5 in panels (a), (b), (c), and (e).  

Differences between experimental groups were analyzed by a Mann–Whitney U-test. Statistical 
significance was considered at p < 0.05. 

Figure 12 presents the entropy estimates after the administration of vasopressin antagonists at 
neutral ambient temperature, for two different SBP-PI temporal offsets (delays), DEL = 0, and DEL = 
3. Figure 13 presents the same entropy estimates but at the high ambient temperature. Both Figures 
12 and 13 are accompanied by isodistributional surrogate data controls. The purpose of these two 
figures is to investigate whether CMSE can distinguish the V1a and V2 antagonist administration if 
compared to the control case (without the drugs). The two-dimensional cases can be compared to the 
classical entropy study shown in Figure 4.  

The purpose of Figure 14 is to check whether the proposed entropy can distinguish the signals 
after administering the different doses of V1a and V2 antagonists. The same experiments are repeated 
separating the signals according to the SBP-PI offset (delay), and these results are presented as 
supplementary data.  

(a) (b) 



Entropy 2019, 21, 1103 14 of 21 

 

(c) (d) 

Figure 12. Composite multiscale entropy CMSE estimated from rats exposed to vasopressin 
antagonists at neutral temperature (NT). Panels (a) and (c): SBP-PI offset (delay) is set to DEL=0; 
panels (b) and (d):: SBP-PI offset (delay) is set to DEL=3; Upper panels (a) and (b): two-dimensional 
signals (SBP and PI interaction, D=2); lower panels (c) and (d): three-dimensional signals (SBP, PI and 
tB interaction, D=3). Results are presented as a mean ± SE. 

(a) (b) 

(c) (d) 

Figure 13. Composite multiscale entropy CMSE estimated from rats exposed to vasopressin 
antagonists at high temperature (HT). Panels (a) and (c): SBP-PI offset (delay) is set to DEL=0; panels 
(b) and (d):: SBP-PI offset (delay) is set to DEL=3; Upper panels (a) and (b): two-dimensional signals 
(SBP and PI interaction, D=2); lower panels (c) and (d): three-dimensional signals (SBP, PI and tB 
interaction, D=3). Results are presented as a mean ± SE. 
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(a) (b) 

  
(c) (d) 

Figure 14. Effects of V1a and V2 antagonist dosage. Panels (a) and (b): two-dimensional signals (SBP 
and PI interaction, D = 2); panels (c) and (d): three-dimensional signals (SBP, PI and tB interaction, D 
= 3). Panels (a) and (c):: V1a antagonist; panels (b) and (d):: V2 antagonist. Results are presented as a  

4. Discussion 

The first aim of our study is to create a single time series that reflects the level of interaction 
between the arbitrary number of simultaneously recorded signals. It is accomplished by 
mathematical tools: copula density captures the level of signal interaction, and the Voronoi 
decomposition maps the interaction levels into the temporal signal.  

Figure 10a shows that the CMS entropy of two-dimensional SBP-PI dependency signal decreases 
at high ambient temperature. The classical CMSE analysis provided the same result (Figure 4, panel 
j). The high ambient temperature in this experiment exceeds the boundary set to 29.5 °C [60], inducing 
heat dissipation in rats such as vasodilatation, evaporation, sweating, panting and affecting the blood 
vessel circulatory strain [60]. The existence of the dominant component reduces the influence of the 
other mechanism, the signals and their mutual interactions become less complex, and the entropy 
decreases. On the other hand, neutral and low ambient temperatures in our experiments are within 
the normal boundaries, and entropy estimates overlap, both in the proposed and classical entropy 
estimates—Figures 10a and 4j—respectively.  

An administration of V2-500ng significantly decreases the multiscale entropy of a two-
dimensional SBP-PI dependency signal, both at neutral (Figure 12a,b) and at high ambient 
temperature (Figure 13a,b). Additionally, V1a-500 significantly increases the entropy of a two-
dimensional SBP-PI dependency signal, signals at high temperatures (Figure 13a,b). These analyses 
were performed at the particular offsets (delays) between SBP and PI signals. The results correspond 
to the spectral analysis of the signals after V1a and V2 antagonist administration: it was shown [27] 
that V2-500 ng administration increases the low-frequency signal component of the SBP signal; the 
signal becomes smoother, the number of repetitive patterns increases, and the signal becomes more 
predictive so the entropy decreases. On the other hand, V1a-500 ng increases the high-frequency 
signal component [27], the signal, and its interactions become more turbulent and the entropy 
increases.  

While spectral analysis separates high and low signal components, a classical cross-entropy 
observes the signal as a whole. The template matching procedure (cf. Equation (A3)) averages all the 
temporal SBP and PI positions, so different offsets (delays) of SBP-PI signals cannot be distinguished. 
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Panels k and l of Figure 4 show that classical SBP-PI cross-entropy does slightly decrease after V2-
500 ng administration, but without the statistical significance, especially at the neutral temperature 
(Figure 4k).  

It is consistent with the second aim of our contribution: the proposed analysis corresponds to 
the classical two-dimensional entropy results and with the results of spectral analysis. In cases when 
the consistency is not statistically significant, the possible explanation is that the classical entropy 
observes the complete signal, while the proposed method includes signals separated according to the 
SBP-PI signal offset.  

When the body temperature time series is included to create three-dimensional SBP-PI-tB 
dependency signals, the entropy decreases and differences caused by ambient temperature are 
attenuated (Figure 10b). It should be noted (Figure 4g, h, and j) that signal tB is a low-entropy signal. 
However, the significant entropy decrease induced by V2-500 ng is preserved in three-dimensional 
signals, but only at the high temperatures and DEL = 0 (Figure 13c).  

The proposed method can make a distinction between the different SBP-PI offsets (delays), as 
shown in Figure 11. Regardless of the ambient temperature, the entropy of the two-dimensional 
dependency signals at DEL = 5 is significantly lower than at DEL = 0. It corresponds to [29], as the 
SBP-PI dependency in rats is the greatest for delays of 3, 4, and 5 beats. When three-dimensional 
signals are observed, the significant decrease of entropy for DEL = 5 occurs at high ambient 
temperatures only.  

The proposed entropy can distinguish the signals after administering the different doses of V1a 
and V2 antagonists. It is shown in Figure 14. The distinction is statistically significant for the two-
dimensional SBP-PI dependency signal, regardless of antagonist and ambient temperature, and for 
three-dimensional signals after V2 administration. V1a administration induces a statistically 
significant difference in three-dimensional SBP-PI-tB dependency signal at the neutral temperature, 
and only for a couple of scaling levels.  

Figure 14 presents the entropy estimates averaged over all the signals. The Supplementary data 
comprise Figures S1 and S2, where the dosages are separated according to the SBP-PI offset (delay). 

The entropy of the artificial two- and three-dimensional Gaussian control signals is shown in 
Figure 10, but not repeated in the subsequent figures as it is always the same. The entropy of the 
surrogate data converges towards the Gaussian, but never reaches it: although the surrogate signals 
can be regarded as streams of i.i.d. random variables, their distribution remains equal to the 
distribution of the original dependency signals.  

4. Conclusions 

The signal framework created in this contribution provides a possibility for an easy analysis of 
signal dependency structures mapped into a single time series. The estimated entropies of two-
dimensional dependency signals correspond to the classical cross-entropy and spectral analysis. The 
method can recognize entropy changes at different temperature levels, at different SBP-PI offsets, at 
different administered V1a and V2 dosages. The recognition of these differences is not random: the 
surrogate data analysis destroys the temporal coupling of the observed dependency signals, yielding 
in all cases entropy estimates that are almost identical and that approach (but do not reach) the 
entropy of Gaussian time series. 

This method can be applied to any multivariate signals. It is necessary to conduct a deep analysis 
to find the minimal signal length that provides reliable results for the arbitrary number of signals and 
to check the possibility of applying other analytical tools besides the entropy. A comparative study 
of the various mapping procedure (Voronoi cells, eigenvalues of the transition matrix, classical 
multidimensional histograms) should be performed. Further analysis on coupling the cardiovascular 
data with a body and ambient temperature could reveal more adverse effects, an issue that could be 
extremely important regarding the climatic changes.  

Supplementary Materials: The following are available online at www.mdpi.com/1099-4300/21/11/1103/s1, 
Figure S1: Effects of V1a antagonists at different time offsets between SBP and PI. Upper panels: two-
dimensional signals (SBP and PI interaction, D = 2); lower panels: three-dimensional signals (SBP, PI 
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and tB interaction, D = 3). Left panels: Neutral temperature. Right panels: High temperature. Figure 
S2 Effects of V2 antagonists at different time offsets between SBP and PI. Upper panels: two-
dimensional signals (SBP and PI interaction, D = 2); lower panels: three-dimensional signals (SBP, PI 
and tB interaction, D = 3). Left panels: Neutral temperature. Right panels: High temperature. 
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Appendix. Entropy Concepts in Brief 

Approximate entropy, ApEn [1], and sample entropy, SampEn [3], are tools that determine the 
regularity of a time series 𝑥 𝑋 , 𝑘 = 1, … , 𝑁 , based on the existence of similar patterns of 
increasing length [7]. Their cross (X) variants measure a level of asynchrony of two time series, 𝑥 𝑋 , 𝑘 = 1, … , 𝑁  and 𝑥 𝑋 , 𝑗 = 1, … , 𝑁  [7], with a notable difference that XSampEn is a 
symmetric measure, while XApEn is not [7]. Before analysis, the time series should be normalized 
and centered, a procedure known as z-normalization or standard scaling. Signal stationarity is an 
important prerequisite; otherwise, a threshold concept would be useless and the results would be 
unreliable [7,18,54]. 

The general X-entropy estimation starts with partitioning the time series into the overlapping 
vectors of length m:  

• Template 𝑋( ) = 𝑥 , 𝑥 , , … , 𝑥 , , 𝑘 = 1,2, … , 𝑁 − 𝑚 + 𝑧; 
• Follower 𝑋( ) = 𝑥 , 𝑥 , , … , 𝑥 , , 𝑗 = 1,2, … , 𝑁 − 𝑚 + 𝑧; 
• 𝑧 = 1 for  (𝑋)𝐴𝑝𝐸𝑛0 for (𝑋)𝑆𝑎𝑚𝑝𝐸𝑛 . (A1) 

Vector distance is defined as the maximal absolute difference of the signal samples: 𝑑1 𝑋( ), 𝑋( ) =  max,…, 𝑥 , − 𝑥 , , 𝑘, 𝑗 = 1,2, … , 𝑁 − 𝑚 + 𝑧. (A2) 

The vectors are similar if the distance is less than or equal to the predefined threshold r. A 
probability that the time series 𝑋  is similar to the given template 𝑋( ) is estimated as:  �̂�( )(𝑟) = Pr 𝑑1 𝑋( ), 𝑋( ) ≤ 𝑟|𝑋( ) = 𝑋( ), 𝑋( )  ∈  𝑋 , 𝑟 > 0 = 

= 1𝑁 − 𝑚 + 𝑧 · I 𝑑1 𝑋( ), 𝑋( ) ≤ 𝑟 . (A3) 

In Equation (A3) “^” denotes an estimate, while I{·} is an indicator function that enables a 
compact symbolic presentation of the counting process. It is equal to 1 if  𝑑1 𝑋( ), 𝑋( ) ≤ 𝑟 ; 
otherwise, it is equal to zero. The value (1-z) eliminates the self-matching for SampEn.  

To calculate ApEn and SampEn, it is sufficient to replace 𝑥  , 𝑋 ,  𝑋( ), and  𝑋( ) in Equations 
(A1), (A2), and (A3) with 𝑥  , 𝑋 ,  𝑋( ) and  𝑋( ). For SampEn, it is also necessary to subtract the 
self-matching in (A3). A negative logarithm of the estimated probability �̂�( )(𝑟) corresponds [61] to 
the information content stored in the similarity of the template 𝑋( ) to the complete time series 𝑋 . 
Arithmetic averaging over all the templates yields, for (X)ApEn: 
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𝛷( )(𝑟, 𝑁) = 1𝑁 − 𝑚 + 1 · log �̂�( )(𝑟) . (A4) 

In the (X)SampEn approach, the summation and logarithm change the order:  

𝛹( )(𝑟, 𝑁) = log �̂�( )(𝑟) . (A5) 

The complete procedure is repeated for the vector length equal to m + 1, and with the quantity 
z in (A1), (A2), and (A3) fixed to zero. Then, (X)ApEn and (X)SampEn are calculated as:  𝑋𝐴𝑝𝐸𝑛(𝑚, 𝑟, 𝑁) =  𝛷( )(𝑟, 𝑁) − 𝛷( )(𝑟, 𝑁); 𝑋𝑆𝑎𝑚𝑝𝐸𝑛(𝑛, 𝑟, 𝑁) =  𝛹( )(𝑟, 𝑁) − 𝛹( )(𝑟, 𝑁). (A6) 

Multiscale entropy (MSE) [8,9] and its composite improvement CMSE [10–12] are based on 
SampEn estimation repeated over the time series with increasingly coarser time resolution. The coarse 
graining (or downsampling) of the time series 𝑋 = {𝑥 } is performed as follows:  

𝑥 , ,( ) = 𝑥·
( )·  ,

𝑗 = 1, … , 𝑓𝑖𝑥(𝑁 ),⁄  𝑙 = 1, … , ,      𝑥 ,() =  𝑥·
( )· = 𝑥 , ,()  

(A7) 

CMSE and MSE are evaluated as follows: 

𝐶𝑀𝑆𝐸(, 𝑚, 𝑟, 𝑁) = 𝑆𝑎𝑚𝑝𝐸𝑛(𝑥 ,() , 𝑚, 𝑟, 𝑁 , 
𝑀𝑆𝐸(, 𝑚, 𝑟, 𝑁) = 𝑆𝑎𝑚𝑝𝐸𝑛 (𝑥() , 𝑚, 𝑟, 𝑁). 

(A8) 
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