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Abstract: Playing the Cournot duopoly in the quantum domain can lead to the optimal strategy profile
in the case of maximally correlated actions of the players. However, that result can be obtained if the
fact that the players play the quantum game is common knowledge among the players. Our purpose
is to determine reasonable game outcomes when players’ perceptions about what game is actually
played are limited. To this end, we consider a collection consisting of the classical and quantum
games that specifies how each player views the game and how each player views the other players’
perceptions of the game. We show that a slight change in how the players perceive the game may
considerably affect the result of the game and, in the case of maximally correlated strategies, may vary
from the inefficient Nash equilibrium outcome in the classical Cournot duopoly to the Pareto optimal
outcome. We complete our work by investigating in the same way the Bertrand duopoly model.

Keywords: quantum duopoly; quantum game; game with unawareness

1. Introduction

Quantum game theory [1] unites game theory with quantum mechanics. It is an interdisciplinary
research field that assumes games to be played with the use of objects that behave according
to the postulates of quantum mechanics. So far, there have been studied refinements of Nash
equilibria in quantum games (e.g., evolutionarily stable strategies [2–5] or extensive-form games [6–8],
correlated equilibria [9–11], repeated games [12,13], and also problems concerning cooperative games
theory [14,15]. New ideas are still proposed. Studying quantum games with limited perception (with
unawareness) [16,17] is one of the latest trends. Limited perception in games enables us to describe
situations in which a player has his own view about the game and views how other players are
considering the game. Regarding quantum games, the notion of unawareness provides us with the
tools to consider problems in which some of the players perceive quantum games, whereas the other
players may think they play the classical game.

The aim of this paper is to bring together the notions of game with unawareness and the notion of
quantum duopoly. We shall introduce an element of unawareness to quantum versions of Cournot
and Bertrand duopoly already studied by us in papers [18,19]. In particular, we shall consider cases
in which players play the quantum duopoly game; however, some of the players may not realize
that fact or the players may be aware of playing the quantum game, but at the same time may find
that the other player views the classical game. Our investigation also covers higher-order iteration
of awareness of the players, for example, one of the players considers the quantum game, finds that
the other player plays the quantum game, and also finds that the other player finds that the player
is considering the classical game. We shall show that the result of the game strictly depends on the
sequence of viewpoints of the players.

To make the paper self-contained, we give the important preliminaries from theory of games with
unawareness based on [20]. Then, we recall the idea of quantum duopoly introduced in [21].
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2. Preliminaries

This section is based on the work in [20]. The work in [16] gives the reader comparable
preliminaries on games with unawareness.

2.1. Normal form Games with Unawareness

Let G = (N, (Si)i∈N , (ui)i∈N) be a normal-form game. This is the game played by the players
and considered by the modeler. The concept of games with unawareness assumes that a player may
not be aware of the full description of G. Therefore, Gv = (Nv, ((Si)v)i∈Nv , ((ui)v)i∈Nv) denotes how
player v’s views the game for v ∈ N. That is, the player v ∈ N views the set of players, the sets of
players’ strategies, and the payoff functions as Nv, (Si)v and (ui)v, respectively. In general, each player
also considers how each of the other players views the game. Formally, given a finite sequence of
players v = (i1, . . . , in), there is associated a game Gv = (Nv, ((Si)v)i∈Nv , ((ui)v)i∈Nv). The game
Gv describes the situation in which player i1 considers that player i2 considers that . . . player in is
considering the game Gv. A sequence v is called a view. The empty sequence v = ∅ is assumed to
be the modeler’s view, i.e., G∅ = G. We denote an action profile ∏i∈Nv si in Gv, where si ∈ (Si)v

by (s)v. The concatenation of two views v̄ = (i1, . . . , in) followed by ṽ = (j1, . . . , jn) is defined as
v = v̄ˆṽ = (i1, . . . , in, j1, . . . , jn). The set of all potential views is V =

⋃∞
n=0 N(n) where N(n) = ∏n

j=1 N

and N(0) = ∅.

Definition 1. A collection {Gv}v∈V where V ⊂ V is a collection of finite sequences of players is called
a normal-form game with unawareness (in a weak sense), and the collection of views V is called its set of relevant
views if {Gv}v∈V and V satisfy the following conditions.

1. For every v ∈ V ,
vˆv ∈ V if and only if v ∈ Nv. (1)

2. For every vˆṽ ∈ V ,

v ∈ V , ∅ 6= Nvˆṽ ⊂ Nv, ∅ 6= (Si)vˆṽ ⊂ (Si)v for all i ∈ Nvˆṽ. (2)

3. If vˆvˆv̄ ∈ V , then
vˆvˆvˆv̄ ∈ V and Gvˆvˆv̄ = Gvˆvˆvˆv̄. (3)

The first property indicates what views are relevant. If the set of players N1 seen by player 1 does
not contain player 3, i.e., 3 /∈ N1, the view 1ˆ3 what player 1 thinks that player 3 is considering is not
relevant for player 1. Therefore, 1ˆ3 /∈ V .

The second property states that if player 1 thinks that player 2 is considering a player or a strategy
as a part of the game, he/she takes those elements into account in the game considered by himself.

The third property say that if player 1 finds a game G1, he/she also finds that he/she has that
perception, i.e., G1ˆ1 = G1.

Games of the form Gv that correspond to some views and the game G∅ of the modeler may differ
in the number of players. As the payoffs results from strategies chosen by all the players, the payoffs
in Gv may not be uniquely determined. The fourth property indicates that the payoffs in the restricted
game are the payoffs in the game with more players by adding some strategy profiles of these players.
In other words, a restricted game cannot imply new payoffs.

2.2. Extended Nash Equilibrium

A Nash equilibrium [22] is a basic solution concept in a normal-form game.
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Definition 2. A strategy profile s∗ = (s1, s2, . . . , sn) is a Nash equilibrium if for each player i ∈ {1, . . . , n}
and each strategy si of player i

ui(s∗) ≥ ui(si, s∗−i), (4)

where s∗−i := (sj)j 6=i.

The first step in defining the notion of Nash-type equilibrium for a normal-form game with
unawareness is to redefine the notion of strategy profile.

Definition 3. Let {Gv}v∈V be a normal-form game with unawareness. An extended strategy profile (ESP) in
{Gv}v∈V is a collection of strategy combinations {(σ)v}v∈V , where (σ)v is a strategy profile in the game Gv

such that for every vˆvˆv̄ ∈ V holds

(σv)v = (σv)vˆv as well as (σ)vˆvˆv̄ = (σ)vˆvˆvˆv̄. (5)

As an illustration of Equation (5), let us consider the game G12—the game that player 1 finds that
player 2 is considering. If player 1 thinks that player 2 chooses strategy (σ2)12 in G12, he/she must
assume the same strategy in G1, which is the game that he/she considers, i.e., (σ2)1 = (σ2)12.

The next step is an extension of rationalizability from normal-form games to the games with
unawareness.

Definition 4. An extended strategy profile {(σ)v}v∈V in a game with unawareness is called extended
rationalizable if for every vˆv ∈ V strategy (σv)v is a best reply to (σ−v)vˆv in Gvˆv.

Let us consider a normal-form game with unawareness {Gv}v∈V . Given a relevant view v ∈ V ,
the views as seen from v are defined to be Vv = {ṽ ∈ V : vˆṽ ∈ V}. Then, the game with unawareness
as seen from v is defined by {Gvˆṽ}ṽ∈Vv .

Definition 5. An extended strategy profile {(σ)v}v∈V in a game with unawareness is called an extended Nash
equilibrium (ENE) if it is rationalizable and for all v, v̄ ∈ V , such that

{Gvˆṽ}ṽ∈Vv = {Gv̄ˆṽ}ṽ∈V v̄ (6)

the following is satisfied; (σ)v = (σ)v̄.

Definition 5 requires that each strategy of the profile is a best reply to the other strategies of that
profile. According to Definition 4, the strategy (σ2)1 of player 2 in the game of player 1 is a best reply
to player 1’s strategy (σ1)12 in the game G12. Moreover, (σ1)12 is a best reply to strategy (σ2)121.

The following proposition [20] proves that ENE coincides with the standard Nash equilibrium
for normal-form games if all views share the same perception of the game. Therefore, it is useful for
determining extended Nash equilibria.

Proposition 1. Let G be a normal-form game and let {Gv}v∈V be a normal-form game with unawareness such
that, for some v ∈ V , the equation Gvˆv̄ = G holds for every v̄ such that vˆv̄ ∈ V . Let σ be a strategy profile in
G. Then,

1. σ is rationalizable for G if and only if (σ)v = σ is part of an extended rationalizable profile in {Gv}v∈V .
2. σ is a Nash equilibrium for G if and only if (σ)v = σ is part of on an extended Nash equilibrium for

{Gv}v∈V and this ENE satisfies (σ)v = (σ)vˆv̄.

Remark 1. We see from Equations (3) and (5) that, for every vˆvˆv̄ ∈ V , a normal-form game Gvˆvˆv̄ and a
strategy profile (σ)vˆvˆv̄ determine the games and profiles in the form Gvˆvˆ...ˆvˆv̄ and (σ)vˆvˆ...ˆvˆv̄, respectively,
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for example, G121 determines G122...21. Therefore, in general, a game with unawareness {Gv}v∈V and an
extended strategy profile {(σ)v}v∈V are defined by {Gv}v∈N∪{∅} and {(σ)v}v∈N∪{∅}, respectively, where

N = {v ∈ V | v = (i1, . . . , in) with ik 6= ik+1 for all k}. (7)

Then, we get {Gv}v∈V from {Gv}v∈N∪{∅} by setting Gṽ = Gv for v = (i1, . . . , in) ∈ N and

ṽ = (i1, . . . , ik, ik, ik+1, . . . , in) ∈ V . (8)

3. Quantum Cournot’s Duopoly

The Li–Du–Massar (LDM) protocol [21] is a quantum scheme for duopoly problems. It can be
treated as a minimal quantum model of a two-player strategic-form game of continuum of strategies.
The LDM model creates a correlation of players’ strategies that enables the players to reach an optimal
Nash equilibrium result. It is not possible when the players play Cournot’s duopoly in the classical way.

3.1. Classical Case

Cournot’s duopoly is one of the earliest economic models of competition between two players [23].
Each player offers a quantity of a homogeneous product which affects the price of the product and his
gain. The price of the product is a decreasing function that depends on the total quantity. Formally,
the Cournot duopoly can be seen as a strategic form game (N, (Si)i∈N , (ui)i∈N) with the components
defined as follows:

1. the set of players is N = {1, 2},
2. the strategy set of player i is Si = [0, ∞),
3. player i’s payoff function ui is given by formula

ui(q1, q2) = qiP(q1, q2)− cqi, q1, q2 ∈ [0, ∞), (9)

where P(q1, q2) represents the price of the product,

P(q1, q2) =

{
a− q1 − q2 if q1 + q2 < a,

0 if q1 + q2 ≥ a,
(10)

and a marginal cost c satisfies a > c > 0.
The game so defined has exactly one Nash equilibrium (q∗1 , q∗2) = ((a− c)/3, (a− c)/3) with

the payoff equal to (a − c)2/9 for each player. One can check that the Nash equilibrium in the
Cournot competition is not Pareto optimal. The players can benefit from playing strategy profile
(q1, q2) = ((a− c)/4, (a− c)/4)) and get (a− c)2/8.

3.2. Quantum Case

The Li–Du–Massar quantum approach to the Cournot duopoly [21] (see [19] for more details)
proceeds as follows. Let |00〉 be the initial state and J(γ) = e−γ(a†

1 a†
2−a1a2) be a unitary operator.

The parameters γ ≥ 0 and a†
i (ai) represent the creation (annihilation) operator of electromagnetic

field i. The player i’s strategies are unitary operators of the form

Di(xi) = exi(a†
i −ai)/

√
2, xi ∈ [0, ∞), i = 1, 2. (11)

Then, the operator J(γ) and the strategy profile D1(x1)⊗ D2(x2) determine the final state |Ψf〉,

|Ψf〉 = J†(γ)(D1(x1)⊗ D2(x2))J(γ)|00〉. (12)
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The quantity qi (in the case of Bertrand duopoly it is the price pi) is then obtained by acting the
measurement operator Xi =

(
a†

i + ai
)

/
√

2 on the state |Ψf〉. The result is

〈Ψf|X1|Ψf〉 = x1 cosh γ + x2 sinh γ,

〈Ψf|X2|Ψf〉 = x2 cosh γ + x1 sinh γ.
(13)

After normalization of (13), done by setting

xi 7→ D
( xi

eγ

)
, (14)

the resulting quantities become

q1 =
x1 cosh γ + x2 sinh γ

eγ
, q2 =

x2 cosh γ + x1 sinh γ

eγ
. (15)

We get the quantum approach to the classical Cournot duopoly by substituting Equation (15) into
Equation (9),

u1(2)(x1, x2, γ) =

{
q1(2)(a− c− (x1 + x2)) if (x1 + x2) < a,

−cq1(2) if (x1 + x2) ≥ a.
(16)

From Equation (11), the strategies of player i are identified with choosing xi ∈ [0, ∞). Furthermore,
Equation (15) shows that the scheme correlates the players’ strategies and the higher the value of γ,
the stronger correlation between x1 and x2.

4. Quantum Cournot Duopoly with Unawareness

In [16,17], we pointed out that the concept of games with unawareness can be useful when the fact
of playing a quantum game is not common knowledge among the players. This may be the case when
the players are far away from each other, and a third party is obliged to prepare the game (classical
or quantum) . After the third party prepares the quantum game, he/she sends the message to the
players to inform them that they play the quantum game, and not the classical one. When the players
receive the message, player i ∈ {1, 2} perceives the game as being quantum, i.e., Gi = ΓQ. However,
this fact is not common knowledge among players 1 and 2. Player 2 finds that player 1 is considering
the quantum game, i.e., G21 = ΓQ, if player 1 confirms he/she received the message from the third
party. Similarly, player 1 receiving a message from player 2 will learn that player 2 is considering
the quantum game, G12 = ΓQ. Two examples of possible scenarios for exchanging players’ messages
are shown in Figure 1. The two methods determine games with unawareness that are described by
collections of games {Ga

v} and {Gb
v},

Ga
v =

{
ΓQ if v ∈ {1, 2, 12, 21, 121}
ΓC otherwise,

Gb
v =

{
ΓQ if v ∈ {1, 2, 12, 21, 121, 212}
ΓC otherwise.

(17)

In what follows, we show that the order in which the players send messages to each other has
a significant impact on the rational result of the game. It can be seen by comparing extended Nash
equilibria in the games {Ga

v} and {Gb
v}.
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Figure 1. Two examples of exchanging messages by the players: (a) messages sent sequentially,
(b) messages sent simultaneously

Recall that (σc
1 , σc

2) = ((a − c)/3, (a − c)/3) is the unique Nash equilibrium in the classical
Cournot duopoly. By Proposition 1, the strategy profile ((a− c)/3, (a− c)/3) is part of an ENE for

v ∈ {1212, 12121, 212, 2121, . . . }. (18)

This means that

(σ)1212 = (σ)12121 = (σ)212 = (σ)2121 = (σ)21212 =

(
a− c

3
,

a− c
3

)
. (19)

Let us now determine the strategy profile (σ)121. By Definition 3,

(σ2)121 = (σ2)1212 =
a− c

3
. (20)

According to Definition 4, Alice’s strategy (σ1)121 is a best reply to (σ2)121 = (a− c)/3 in the
game G121 = ΓQ. Substituting (a− c)/3 into Equation (16), we deduce that

(σ1)121 =
1
6
(a− c)(2− tanh γ). (21)

As a result,

(σ)121 =

(
1
6
(a− c)(2− tanh γ),

a− c
3

)
. (22)

Similarly,

(σ1)12 = (σ1)121 =
1
6
(a− c)(2− tanh γ). (23)

As (σ2)12 is a best reply to (σ1)12 = (σ1)121 = (1/6)k(2− tanh γ), we conclude that

(σ2)12 =
1

12
(a− c)

(
4− tanh γ + (tanh γ)2

)
. (24)
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In the case of (σ)1 = (σ1, σ2)1, we have (σ2)1 = (σ2)12 given by Equation (24). Now, player 1’s
best reply to (σ2)12 in the game G1 = ΓQ is

(σ1)1 =
1

24
(a− c)

(
8− 3 tanh γ− (tanh γ)3

)
. (25)

In the same manner, we can see that the strategy profile (σ)2 seen by player 2 is given by

(σ)2 =

(
1
6
(a− c)(2− tanh γ),

1
12

(a− c)
(

4− tanh γ + (tanh γ)2
))

. (26)

The strategy profile that is actually played by the players corresponds to (σ)∅ = (σ1, σ2)∅.
As (σ1)∅ = (σ1)1 and (σ2)∅ = (σ2)2, we conclude that

(σ)∅ = (σ)1

=

(
1

24
(a− c)

(
8− 3 tanh γ− (tanh γ)3

)
,

1
12

(a− c)
(

4− tanh γ + (tanh γ)2
))

. (27)

The result (σ)∅ of {Ga
v} implies

u1((σ)∅, γ) =
e2γ(6 + 7e2γ + 3e4γ)2(a− c)2

72(1 + e2γ)5 −−−→
γ→∞

(a− c)2

8
, (28)

u2((σ)∅, γ) =
6 + 11e2γ + 12e4γ + 3e6γ

6 + 13e2γ + 10e4γ + 3e6γ
· u1((σ)∅, γ) −−−→

γ→∞

(a− c)2

8
. (29)

The analysis, which is similar to that of {Ga
v}, shows that the result of playing an extended Nash

equilibrium in {Gb
v} is

(σ)∅ =

(
1
24

(a− c)
(

8− 3 tanh γ− (tanh γ)3
)

,
1

24
(a− c)

(
8− 3 tanh γ− (tanh γ)3

))
. (30)

Then profile (30) implies the payoffs

u1((σ)∅, γ) = u2((σ)∅, γ) (31)

=
e2γ(3 + 3e2γ + 2e4γ)(3 + 6e2γ + 6e4γ + e6γ)(a− c)2

18(1 + e2γ)6 −−−→
γ→∞

(a− c)2

9
. (32)

5. General Framework

The way of finding an extended Nash equilibria in {Ga
v} and {Gb

v}, given by Equation (17), can
be generalized to any two-person game with unawareness in which higher-order iteration of the
awareness of players 1 and 2 is associated with the same games.

Proposition 2. Let {Gv}v∈V be a two-person game with unawareness and brv
i (·) be a best reply correspondence

of player i in the game Gv. Let A and B be normal-form games, such that for some v̄ ∈ V1 = {1, 12, 121, . . . }
and ṽ ∈ V2 = {2, 21, 212, . . . } we have Gv̄ˆv = A and Gṽˆv = B for every v̄ˆv ∈ V1, ṽˆv ∈ V2.

A strategy profile (σ1, σ2)∅ in an extended Nash equilibrium {(σ1, σ2)}v∈V of {Gv}v∈V satisfies

(σ1)∅ ∈ br1
1 ◦ br12

2 ◦ br121
1 ◦ · · · ◦ brv̄

i (σ
A
−i) (33)

(σ2)∅ ∈ br2
2 ◦ br21

1 ◦ br212
2 ◦ · · · ◦ brṽ

j (σ
B
−j), (34)

for some Nash equilibria (σA
1 , σA

2 ) and (σB
1 , σB

2 ) of A and B, respectively (provided that the Nash equilibria of A
and B exist).
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Proof. By Proposition 1, Nash equilibrium strategies for A and B are parts of ENE starting from
views v̄ˆv ∈ V1 and ṽˆv ∈ V2, respectively. By the definition of ENE, (σ1)∅ = (σ1)1 is a best reply to
(σ2)1 = (σ2)12. If (σ2)12ˆv = σA

2 , then
(σ1)∅ ∈ br1

1(σ
A
2 ), (35)

which ends the proof. Otherwise, (σ2)12 is a best reply to (σ1)12. Now, if (σ1)12ˆv = σA
1 , then (σ2)12 ∈

br12
2 (σA

1 ), and therefore
(σ1)∅ ∈ br1

1(br12
2 (σA

1 )). (36)

Continuing in this way, we arrive at the conclusion that (σi)v̄ is a best reply to (σ−i)v̄ˆi.
By assumption, (σ−i)v̄ˆi = σA

−i. As a result, (σi)v̄ ∈ brv̄
i (σ

A
−i), and, together with the previous steps,

(σ1)∅ ∈ br1
1(br12

2 (. . . (brv̄
i ((σ−i)v̄ˆi))). (37)

An immediate consequence of Proposition 2 is an explicit formula for computing the result of an
ENE in a wide class of the Cournot duopoly with unawareness.

Proposition 3. Let ΓQ be the quantum Cournot duopoly and ΓC be its classical counterpart (γ = 0). Let
{Gv}v∈V be a game with unawareness, where

Gv =

{
ΓQ if v ∈ {1, 12, . . . , v̄} ∪ {2, 21, . . . , ṽ},
ΓC otherwise,

(38)

and v̄ ∈ V1, ṽ ∈ V2.
The strategy profile (σ1, σ2)∅ in an extended Nash equilibrium {(σ1, σ2)}v∈V of {Gv}v∈V and is of

the form
(σ1, σ2)∅ = (xn

1 , xm
2 ) , (39)

where

xy
i =

(a− c)
(

3 +
(
− 1

2

)y
tanh γ(1 + tanh γ)y

)
3(3 + tanh γ)

(40)

and n and m are the lengths of the sequences v̄ and ṽ, respectively.

Proof. We prove the result for player 1. The proof is conducted by induction on the length of
v̄ ∈ V1. First, we prove that Equation (40) holds for |v̄| = 0. Then, {Gv}v∈V1 = {ΓC} and (x0

1, x0
2) =

((a − c)/3, (a − c)/3). It follows from Proposition 1 the result (σ1, σ2)∅ predicted by an ENE in
{ΓC} is a Nash equilibrium in ΓC. The Cournot duopoly game has the unique Nash equilibrium
((a− c)/3, (a− c)/3) (see, for example, [24]). As a result, Formula (40) is true for y = 0.

Assume by induction that Equation (40) holds for n. We will prove that it holds for n + 1.
Let us consider {Gv}v∈V1 with |v̄| = n + 1. As Gv = ΓQ for v ∈ {1, 12, . . . , v̄}, it follows from
Proposition 2 that

(σ1)∅ = (σ1)1 = br1
1 ◦ br12

2 ◦ · · · ◦ brv̄
i

(
a− c

3

)
. (41)

The best reply correspondence associated with ΓQ is a function bri : [0, ∞)→ [0, ∞),

brv
i (x) =

1
2
(a− c− x− x tanh γ), v ∈ {1, 2, . . . , v̄}. (42)
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Note that (σ1)∅ = br1
1(ξ), where ξ = br12

2 ◦ · · · ◦ brv̄
i ((a− c)/3). By the induction hypothesis, ξ is

given by the right-hand side of Equation (40). As a result,

(σ1)∅ = br1

 (a− c)
(

3 +
(
− 1

2

)n
tanh γ(1 + tanh γ)n

)
3(3 + tanh γ)


=

1
2

a− c−
(a− c)

(
3 +

(
− 1

2

)n
tanh γ(1 + tanh γ)n

)
3(3 + tanh γ)

(1 + tanh γ)

 (43)

=

(a− c)
(

3 +
(
− 1

2

)n+1
tanh γ(1 + tanh γ)n+1

)
3(3 + tanh γ)

, (44)

which is what we needed to show.

Remark 2. Note that for γ = 0, each element of the collection {Gv} given by Equation (38) is the classical
Cournot duopoly game (in other words,playing the classical game is common knowledge among the players).
The strategy xy

i takes into account that case, i.e., xy
i is equal to the classical Nash equilibrium strategy (a− c)/3

for γ = 0. Note also that xy
i ≤ (a− c)/3 for every γ ∈ [0, ∞). This means that the players playing according

to (xm
i , xn

i ).

As an application of Proposition 3, we reconsider the example given by Equation (17).

Example 1. Let us consider {Ga
v} and {Gb

v} given by Equation (17). Then, in terms of Equation (38),
v̄ = 121, ṽ = 21 in the case of {Ga

v} and v̄ = 121, ṽ = 212 in {Gb
v}. According to Lemma 3, the actual strategy

profile played in games {Ga
v} and {Gb

v} is (σ1, σ2)∅ =
(

x3
1, x2

2
)

and (σ1, σ2)∅ =
(
x3

1, x3
2
)
, respectively, where

x3
i =

1
24

(a− c)
(

8− 3 tanh γ− (tanh γ)3
)

, x2
i =

1
12

(a− c)
(

4− tanh γ + (tanh γ)2
)

. (45)

As shown in Figure 2, the result of the game varies depending on the strategy profile
(
x3

1, x2
2
)

and
(
x3

1, x3
2
)
.

In the first case, the resulting payoff converges to the Pareto optimal outcome (a− c)2/8, as γ increases to
infinity. The second case implies the equilibrium outcome goes to (a− c)2/9, as γ goes to infinity.

0 1 2 3 4
γ

0.115

0.120

0.125

0.130

ui((x1
3,x2

3))

u1((x1
3,x2

2))

u2((x1
3,x2

2))

Figure 2. The extended Nash equilibrium (ENE) payoffs (for a− c = 1) associated with the profiles(
x3

1, x3
2
)

and
(

x3
1, x2

2
)

depending on the value of γ.
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6. Bertrand Price Competition

The Bertrand model [25] was proposed as an alternative to the Cournot model [23]. In the Bertrand
model of competition, two players compete in the price of a homogeneous product. The firm with
a lower price captures the entire market. If both firms charge the same price, they split the market
equally. To be more specific, it is assumed that the payoff function ui of player i ∈ {1, 2} is a function
of prices p1 and p2 determined by player 1 and 2, respectively. Moreover, we assume that each firm
has the same marginal cost c such that 0 ≤ c < a. Then, the payoff function of player 1 is

u1(p1, p2) =


(p1 − c)(a− p1) if p1 < p2 and p1 ≤ a,
1
2 (p1 − c)(a− p1) if p1 = p2 and p1 ≤ a,

0 otherwise.

(46)

Similarly, the payoff function of player 2 is

u2(p1, p2) =


(p2 − c)(a− p2) if p2 < p1 and p2 ≤ a,
1
2 (p2 − c)(a− p2) if p1 = p2 and p2 ≤ a,

0 otherwise.

(47)

The game defined by Equations (46) and (47) has the unique Nash equilibrium (p∗1 , p∗2) = (c, c)
that arises from intersection of best reply functions β1(p2) and β2(p1),

β1(p2) =


{p1|p1 > p2} if p2 < c,

{p1|p1 ≥ c} if p2 = c,

∅ if c < p2 ≤ a+c
2 ,{ a+c

2
}

if p2 > a+c
2 ,

β2(p1) =


{p2|p2 > p1} if p1 < c,

{p2|p2 ≥ c} if p1 = c,

∅ if c < p1 ≤ a+c
2 ,{ a+c

2
}

if p1 > a+c
2 .

(48)

The equilibrium implies the payoff of 0 for both players.
According to the quantum model introduced in [21], the normalized players’ prices p1 and p2 are

determined as functions pi : [0, ∞)3 → [0, ∞) of x1, x2 and a fixed entanglement parameter γ ∈ [0, ∞),{
p1(x1, x2, γ) = x1 cosh γ+x2 sinh γ

eγ ,

p2(x1, x2, γ) = x2 cosh γ+x1 sinh γ
eγ .

(49)

uQ
1 (x1, x2, γ) =


(p1(x1, x2, γ)− c)(a− p1(x1, x2, γ)) if x1 < x2 and p1(x1, x2, γ) ≤ a,
1
2 (p1(x1, x2, γ)− c)(a− p1(x1, x2, γ)) if x1 = x2 and x1 ≤ a,

0 otherwise,

(50)

uQ
2 (x1, x2, γ) =


(p2(x1, x2, γ)− c)(a− p2(x1, x2, γ)) if x2 < x1 and p2(x1, x2, γ) ≤ a,
1
2 (p2(x1, x2, γ)− c)(a− p2(x1, x2, γ)) if x1 = x2 and x2 ≤ a,

0 otherwise.

(51)
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To determine extended Nash equilibria in a Bertrand duopoly example with unawareness,
presented below, we need to find a player’s best reply to x = c. We describe the result in the
form of the following lemma.

Lemma 1. Denote by ΓB
C and ΓB

Q the Bertrand duopoly examples given by Equations (46) and (47) and (50)
and (51), respectively. The set of player i’s best reply to x = c is [c, ∞) in the games ΓB

C and ΓB
Q.

Proof. If x2 < c, then player 1 gets a negative payoff by choosing x1 ≤ x2. Indeed,

p1(x1, x2, γ) =
x1 cosh γ + x2 sinh γ

eγ
− c <

c cosh γ + c sinh γ

eγ
− c = 0 (52)

and
a− p1(x1, x2, γ) = a− x1 cosh γ + x2 sinh γ

eγ
> a− c > 0. (53)

Therefore, according to Equation (50), it is optimal for player 1 to take x1 > x2 and get the payoff
of 0. Similarly, if x2 = c, then x1 < x2 yields player 1 a negative payoff. For this reason, player 1’s best
reply is x1 ≥ c, for which he/she obtains 0.

Example 2. Consider {Gv}v∈V with the components defined as follows,

Gv =

{
ΓB

Q if v ∈ {∅, 1},
ΓB

C otherwise.
(54)

The collection {Gv}v∈V describes the case where player 1 is fully aware of playing the quantum game ΓB
Q,

whereas player 2 is completely unaware of playing ΓB
Q. Moreover, player 1 finds that player 2 is considering the

classical game ΓB
C. Therefore, it is reasonable to think that player 1 is in a better strategic position than player 2.

To find an extended Nash equilibrium, we first note that

G2 = G12 = G21 = G121 = · · · = ΓB
C. (55)

By Proposition 1, an extended Nash equilibrium satisfies

(σ)2 = (σ)12 = (σ)21 = (σ)121 = · · · = (c, c).

According to Proposition 3, (σ1)∅ = (σ1)1 = br1(c). Therefore, by Lemma 1, (σ1)1 ∈ [c, ∞).
To sum up, the result implied by a possible Nash equilibrium in the game given by Equation (54) is

(σ1, σ2)∅ ∈ {(x1, c) : x1 ≥ c}. (56)

The payoffs for players 1 and 2 corresponding to Equation (56) are illustrated in Figure 3, and
they are given by the following formulas:

u1(x1, c, γ) = 0, (57)

u2(x1, c, γ) =

{
(x1−c) sinh γ((a−c) cosh γ+(a−x1) sinh γ)

e−2γ if c ≤ x1 ≤ a + (a− c) coth γ,

0 otherwise,
(58)

where the form of piecewise function (58) follows from the fact that p2(x1, c, γ) ≤ a if and only if
x1 ≤ a + (a− c) coth γ. Thus, player 2 gets a positive payoff as long as x1 ∈ (c, a + (a− c) coth γ).
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In particular, he/she may obtain the monopoly payoff (a− c)2/4. Indeed, from the first subfunction
of (51) it may be concluded that

p2(x1, x2, γ) =
a + c

2
. (59)

maximizes uQ
2 (x1, x2, γ). From equation

p2(x1, c, γ) =
c cosh γ + x1 sinh γ

eγ
=

a + c
2

(60)

we obtain
x1 =

1
2
(a + c + (a− c) coth γ). (61)

Therefore, if, in the equilibrium (56), player 1 chooses x1 given by Equation (61), player 2 gets

u2

(
1
2
(a + c + (a− c) coth γ), c, γ

)
=

1
4
(a− c)2. (62)

2 4 6 8 10 12
x2

0.05

0.10

0.15

0.20

0.25

u2(x1 , c, γ)

γ = 0.1

γ = 0.2

γ = 0.8

γ = 100

Figure 3. The payoff of player 2 corresponding to Equation (56) for fixed entanglement parameters γ

and a− c = 1.

7. Conclusions

Our research has shown that a rational result in the quantum duopolies depends on whether
the players play the quantum game is common knowledge or not. The Pareto optimal outcome
(a − c)2/8 is achievable in the quantum Cournot duopoly with maximally correlated strategies if
each player knows that he/she plays the quantum game, but he/she also has to know that the other
player perceives the quantum game, and each player i finds that the other player finds that player i is
considering the quantum game and so on. In case players’ perceptions are limited characteristics of
the equilibrium payoff outcome varies depending on the level of awareness of the players. We have
shown that an asymmetric distribution of players’ unawareness may be beneficial to the players in the
quantum Cournot duopoly game, whereas rational strategies of equally unaware players imply the
inefficient equilibrium outcome (a− c)2/9.

The notion of game with unawareness finds also application in the quantum Bertrand duopoly.
The example used in the paper indicates that the equilibrium result is more unified in the game with
unawareness than in the case in which playing the quantum Bertrand duopoly is common knowledge.
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