
entropy

Article

Dynamical Sampling with Langevin
Normalization Flows

Minghao Gu 1 , Shiliang Sun 1,2,* and Yan Liu 3

1 School of Computer Science and Technology, East China Normal University, 3663 North Zhongshan Road,
Shanghai 200241, China; guminghao1081@gmail.com

2 Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 201804, China
3 School of Data Science and Engineering, East China Normal University, 3663 North Zhongshan Road,

Shanghai 200241, China; yliu@cc.ecnu.edu.cn
* Correspondence: slsun@cs.ecnu.edu.cn

Received: 7 October 2019; Accepted: 6 November 2019; Published: 10 November 2019
����������
�������

Abstract: In Bayesian machine learning, sampling methods provide the asymptotically unbiased
estimation for the inference of the complex probability distributions, where Markov chain Monte
Carlo (MCMC) is one of the most popular sampling methods. However, MCMC can lead to high
autocorrelation of samples or poor performances in some complex distributions. In this paper,
we introduce Langevin diffusions to normalization flows to construct a brand-new dynamical
sampling method. We propose the modified Kullback-Leibler divergence as the loss function to train
the sampler, which ensures that the samples generated from the proposed method can converge to the
target distribution. Since the gradient function of the target distribution is used during the process of
calculating the modified Kullback-Leibler, which makes the integral of the modified Kullback-Leibler
intractable. We utilize the Monte Carlo estimator to approximate this integral. We also discuss the
situation when the target distribution is unnormalized. We illustrate the properties and performances
of the proposed method on varieties of complex distributions and real datasets. The experiments
indicate that the proposed method not only takes the advantage of the flexibility of neural networks
but also utilizes the property of rapid convergence to the target distribution of the dynamics system
and demonstrate superior performances competing with dynamics based MCMC samplers.

Keywords: Normalization flows; Langevin diffusions; Langevin normalization flows; Monte
Carlo sampling

1. Introduction

In machine learning, Bayesian inference [1] and Bayesian optimization [2], complex probabilistic
models typically require the calculation of intractable and high-dimension integrals. For example,
for a classification task, we need to predict the class of instances. We assume that p(y∗|x∗,D) =∫

p(y∗|x∗, θ)p(θ|D)dθ is the prediction model, where x∗ represents the instance, y∗ represents the class,
D represents the data, p(y∗|x∗, θ) is the likelihood function and p(θ|D) is the posterior distribution.
When the probabilistic model becomes complex, this integral is intractable. Generally, two kinds of
methods are used to approximate the integral, which are Markov chain Monte Carlo (MCMC) [3,4] and
variational inference (VI) [5,6]. MCMC is a powerful framework, which is widely used to deal with
the complex and intractable probabilistic models [7–9]. MCMC methods approximate the complex
probability distributions by a large number of samples which are sampled from a Markov chain
iteratively. They serve as a fundamental approach in probabilistic inference, which provides the
asymptotically unbiased estimation for the probabilistic models, while VI gives the deterministic
approximation for the target distributions [10].

Entropy 2019, 21, 1096; doi:10.3390/e21111096 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0000-000-000X
http://www.mdpi.com/1099-4300/21/11/1096?type=check_update&version=1
http://dx.doi.org/10.3390/e21111096
http://www.mdpi.com/journal/entropy

Entropy 2019, 21, 1096 2 of 21

Recent MCMC methods can be divided into two aspects. One class of the MCMC methods is slice
sampling [11] and the other one is dynamical sampling [12,13]. The main problem of the slice sampler
is that when sampling from the distributions with high dimensions, solving the slice interval can
be very difficult. Utilizing the dynamics system to construct an efficient Markov chain is commonly
employed [14–16]. Hamiltonian Monte Carlo (HMC) [14] is one of the dynamics based methods, which
has multiple attractive properties concerning rapid explorations of the state space and high acceptance
rate of the samples. HMC exploits Hamiltonian dynamics to construct efficient Markov chain Monte
Carlo, which has become increasingly popular in machine learning and statistics. Since HMC uses the
gradient information of the target distribution, it can explore the state space much more efficiently than
the random-walk proposals [17], which ensures the rapid convergence of the sampler. Since it has the
property of volume conservation, HMC is able to propose large moves with a higher acceptance rate.

HMC and its further developments [18–23] exploit the gradient information of the target
distribution to explore the state space. Nevertheless, since the step size of the leapfrog is difficult to
choose, there exists the correlation between neighbor samples and thus the high autocorrelation may
occur. Though we can enlarge the step size of the leapfrog, it will waste a lot of computation resources.
Moreover, they tend to fail when the target distributions are multi-modal [21,24–26]. These MCMC
methods usually fail to move from one mode to another because such a move requires passing through
low probability regions. These places have large boundary gradients which prevent samplers from
traveling through the modes. Therefore, designing an effective sampler for multi-modal distributions
has remained a significant challenge.

The disadvantages of the current methods motivate us to design a powerful sampler which can
have not only low autocorrelation but also accurate estimation for the target distribution. In this paper,
a new sampling method called Langevin normalization flows Monte Carlo (NFLMC) is proposed.
We introduce Langevin diffusions to the normalization flows (NFs) [27] to construct a new sampler.
The main idea of this method is to train a variational distribution to approximate the target distribution,
whose parameters are determined by the neural networks. With the idea of Langevin diffusions, we
design new transformation functions for NFs which have the properties of rapid convergence to
the target distribution and better approximation to the target distributions. Since we exploit the
gradient information of the target distributions, the calculation of the integrals of the Kullback-Leibler
(KL) divergence is intractable. So we use the Monte Carlo estimator to calculate the KL divergence.
However, the KL divergence calculated by Monte Carlo estimator may be negative in the process
of training, which would mislead the final results, so we propose a new loss function to train the
NFLMC sampler.

The main contributions of this paper can be summarized as follows. (1) We introduce Langevin
diffusions to normalization flows to construct a novel Monte Carlo sampler. (2) We propose the modified
KL divergence as the loss function to train the sampler, which ensures that the proposed method
can converge to the target distribution. (3) The proposed method achieves better performances in
multi-modal sampling and varieties of complex distributions. (4) we do not need the Metropolis-Hasting
procedure [28] to adjust the sampler compared with MCMC samplers. (5) A number of experiments verify
the theoretical results and practical value. We apply the proposed method to varieties of distributions and
supervised classification tasks using Bayesian logistic regression. The proposed method is compared with
state-of-the-art dynamics based MCMC methods [24,29,30] in the autocorrelation rate and convergence
speed. The experiments demonstrate that the NFLMC method has a superior performance in sampling
complex posterior distributions.

The rest of this article is organized as follows. In Section 2, we review the preliminary of our study,
including the introduction of variational inference with normalization flows and Langevin diffusions.
In Section 3, we introduce our Langevin normalization flows and describe the transformation functions.
In Section 4, we propose the Langevin normalization flows Monte Carlo sampler. Experiments and
analysis are given in Section 5. In Section 6, we conclude this paper and discuss the future work.

Entropy 2019, 21, 1096 3 of 21

2. Preliminary

2.1. Normalization Flows

The normalization flows [27] were first introduced to deal with the flexible and complex posterior
distributions in the context of variational inference. It is a powerful approach to generate arbitrary
posterior distributions utilizing a sequence of invertible transformation. In other words, the initial
density will transform to a valid probability distribution through iteratively applying the normalization
flows. Given the observed data x, the normalization flows start with an initial variable z0 generated
from a simple distribution q, which has the analytical probability density and then repeatedly apply
an invertible transformation function fθ which is parameterized by θ. After a sequence of iterations, a
complex and flexible distribution of zT will be obtained. It takes the form as follows:

z0 ∼ q(z0|x), zt ∼ fθ(zt−1|x), ∀t = 1 . . . T. (1)

Since the Jacobian determinant of each transformation fθ can be calculated, we can obtain the
final distribution πuT through the following equation.

ln [πuT (zT |x)] = ln [q(z0|x)]−
T

∑
t=1

ln
(

det
∣∣∣∣ ∂zt

∂zt−1

∣∣∣∣) . (2)

To make Equation (2) tractable, the Jacobian determinant of each transformation function fθ

should be carefully designed to satisfy two main properties. First, the transformation function fθ is
easy to invert. Second, the Jacobian determinant should be tractable. We assume that z0 comes from a
simple distribution q(z0|x) and zT = fθ(z0). When calculating the probability of zT in Equation (2),
we need to calculate the Jacobian determinant and use f−1(zT) to calculate z0. So the transformation
function fθ should be easy to invert and the Jacobian determinant should be tractable. Generally, the
invertible transformation function fθ with known Jacobian determinant [27] is defined as:

fθ(zt−1) = zt−1 + mh(wTzt−1 + b), (3)

where h(·) represents the nonlinear function, m = [m1, m2, . . . , mn] and w = [w1, w2, . . . , wn] are
parameter vectors and b is the scalar and n is the dimension of the parameter vectors. So mh(wTzt−1 +

b) can be viewed as a multi-layer perceptron with one hidden layer and a single unit, which is
demonstrated in Figure 1.

(1)z

()nz

(2)z

(1)w

(2)w

()nw

() ()i i

i

w z b

b

()h 

(1)y

(2)y

()ny

(1)m

(2)m

()nm

Input Layer Hidden Layer Output Layer

Figure 1. The multi-layer perceptron with one hidden layer and a single unit.

Entropy 2019, 21, 1096 4 of 21

Real-valued non-volume preserving (RNVP) [31] develops a new transformation function, which
makes the model more flexible. The main idea of RNVP is that coupling layers are used to construct
the normalization flows. Assume that x is the original variable. The coupling layers can be defined as:

y1:d = x1:d

yd+1:D = xd+1:D � exp(s(x1:d)) + t(x1:d),
(4)

where function s represents the scale and t represents the translation. Both of them are neural networks.
RNVP provides a more powerful and flexible posterior distribution for density estimation.

Recently, neural density estimators are widely used in the approximation of data distributions [32,33]
and variational inference [27]. NFs and their further studies performs very well in modeling images,
videos and audio [31,34–37].

2.2. Langevin Diffusions

Langevin dynamics is a common method to model molecular dynamics systems. A D-dimension
Langevin diffusions are a time based stochastic process x = (xt), t ≥ 0 with stochastic sample paths,
which can be defined as a solution to the stochastic differential equation taking the form as follows:

dxt = b(xt)dt + σ(xt)dWt, (5)

where b(x) represents the drift vector, σ(x) represents the volatility matrix and W = (Wt) , t ≥ 0
represents a standard Wiener process [38]. Equation (5) gives the evolution of a random variable
under Langevin diffusions but when it comes to the evolution of the probability density function,
the diffusions should be described by Fokker-Planck equation [39]. We assume that u(x, t) represents
the evolution of the probability density function, x = [x1, x2, . . . , xD]

T and V(x) = σ(x)σ(x)T. We set
bi(x) to be the i-th term of the vector b(x) and Vij(x) to be the i-th row and the j-th column’s term of
the matrix V(x). So the Fokker-Planck equation can be defined as follows:

∂

∂t
u(x, t) =−

D

∑
i=1

∂

∂xi
[bi(x)u(x, t)] +

1
2

D

∑
i=1,j=1

∂2

∂xi∂xj
[Vij(x)u(x, t)]. (6)

If we have u(x, t) = πg(x), ∀t ∈ T, then this process is stationary and πg can be viewed as
the stationary distribution of the diffusion, which means that if xt ∼ πg(x), then xt+ε ∼ πg(x),
∀ ε > 0 [40]. Langevin diffusion with stationary distribution πg can be defined by the stochastic
differential equation [23]:

dxt =
1
2
∇lnπg(xt)dt + dWt. (7)

The setting of b, σ and u(x, t) in Equation (7) makes ∂u
∂t = 0, which suggests that the invariant

measure of Langevin diffusion is related to πg(x) [40].
Generally, solving the stochastic differential equations exactly is intractable. Since stochastic

differential equations usually have strong coupling and nonlinearity, it is difficult to calculate the
exact expression of its solution. So it is necessary to utilize the numerical discretization methods to
approximate the solution to stochastic differential equations. Euler-Maruyama discretization [41]
is one of the common approaches to obtain the approximate solution to the stochastic differential
equation, which takes the form as:

xt+1 = xt −
ε2

2
∇xlnπg(xt) + εzt, (8)

where zt ∼ N (z|0, I) and ε represents the step size.

Entropy 2019, 21, 1096 5 of 21

It is noted that Langevin diffusions take advantage of the gradient information of the target
distribution. The gradient information makes Langevin diffusions explore the state space efficiently.
What’s more, Langevin diffusions contain the Wiener process that can be viewed as the random work.
The random work helps to explore the state space extensively. The idea of Langevin diffusions are
widely used in MCMC methods. Metropolis adjusted Langevin algorithm (MALA) [40] is one of the
applications of Langevin diffusions. The main idea of MALA is to give the proposed state through
Langevin diffusions, whose equation is given in Equation (8). MALA exploits the Metropolis-Hasting
correction [28] to satisfy the detailed balance [42], which ensures that the samples generated from
Langevin diffusions will converge to the target distribution. It is the gradient information of the
target distribution that accelerates the convergence rate to the stationary distribution of MCMC.
Although MALA do provide an efficient way for MCMC to sample from the target distribution, the
autocorrelation among samples remains high.

Since NFs provide a more powerful and flexible posterior distribution for density estimation
and MALA achieves rapid convergence to the target distribution, we maintain their advantages to
develop a new sampler with appropriate training strategy, which can accurately sample from the target
distribution with low autocorrelation.

3. Langevin Normalization Flows

3.1. Main Idea

Normalization flows [27,31] approximate the target distributions through a series of transformation
functions. In order to approximate the target distributions efficiently and accurately, we utilize the
information of the target distributions. Through exploiting the advantages of efficient exploration of
Langevin diffusions, we propose a new normalization flow which is called Langevin normalization
flows (NFL). We redesign the transformation functions through the gradient information of the target
distribution, which helps us to approximate the target distributions precisely and efficiently.

Constructing the Langevin normalization flows has to satisfy two primary conditions. The first
one is that the update of each step of the transformation function should be approximately invertible.
The second one is that the determinant of the Jacobian and the inverse Jacobian of the transformation
function must be tractable. In this way, we can ensure that the distribution obtained through the flows
is able to converge to the target distribution.

We then describe the details of our proposed transformation functions for a single Langevin step.
We assume that x1:D is the initial sample, where D is the number of the dimension of the sample.
We first update a half of the sample. The transformation functions are as follows:

y1:d = x1:d,
yd+1:D = (xd+1:D − ε2

2 ∇U(x1:D)d+1:D + ε · exp(σ(x1:d)))

�exp(S(x1:d)) + T(x1:d),
(9)

where σ(x) can be viewed as the Wiener process in Langevin diffusions. S(x) represents the logarithmic
scale of the sample which is able to rescale the position of the sample. T(x) is the shift of the sample.
σ(x), S(x) and T(x) are all controlled by the neural networks, where Wσ, WS and WT are their
parameters. U is the energy function of the probability density function. In addition, ε represents the
step size of the Langevin diffusions. It is noted that in Equation (9), we first utilize Langevin diffusions
to generate samples and then we use neural networks to further adjust the samples. Since we only
update xd+1:D and y1:D is the intermediate variable, x1:d should be updated then. It takes the form as:

zd+1:D = yd+1:D,
z1:d = (y1:d − ε2

2 ∇U(y1:D)1:d + ε · exp(σ(yd+1:D)))

�exp(S(yd+1:D)) + T(yd+1:D),
(10)

Entropy 2019, 21, 1096 6 of 21

where z1:D represents the final obtained state after applying the above transformation functions to
y1:D. The advantage of dividing x into two part is that Equation (9) generates yd+1 and affects only
xd+1 while Equation (10) generates z1:d and affects only y1:d. At the same time, the determinant of the
Jacobian is tractable, which relies on the fact that:

∂(fb ◦ fa)

∂αT
a

(αa) =
fa

∂αT
a
(αa) ·

fb

∂αT
b
(αb = fa(αa)),

det(A · B) = det(A) · det(B).

The Jacobian matrices of these transformation functions are as follows:

∂ fθ

∂x
=

[
I1:d 0

∂yd+1:D
∂xT

1:d

∂yd+1:D
∂xT

d+1:D

]
,

∂ fθ

∂y
=

[
∂z1:d
∂yT

1:d

∂zd+1:D
∂yT

d+1:D

0 Id+1:D

]
.

It is noted that the Jacobian matrices of the transformation functions are upper triangular matrix
and lower triangular matrix respectively, which simplify the calculation of the Jacobian determinants.
In order to calculate the logarithmic probability of the transformation distribution, we need the help of
inverse transformation functions and the inverse logarithmic Jacobian determinants. The logarithmic
probability can be computed as follows.

πu(x) = q(f−1
θ (x))det

∣∣∣∣∣∂ f−1
θ

∂x

∣∣∣∣∣ , (11)

where q represents the initial distribution. The inverse transformation functions f−1
θ take the form as:

yd+1:D = zd+1:D,
y1:d = (z1:d − T(yd+1:D))� exp(−Syd+1:D))

−ε · exp(σ(yd+1:D)) +
ε2

2 · ∇U((t1, yd+1:D))1:d,
t1 = (z1:d − T(yd+1:D))� exp(−S(yd+1:D))− ε · exp(σ(yd+1:D).

(12)

It is noted that Equation (12) is approximately invertible. Since we introduce gradient information
to the transformation functions, the inverse transformation function f−1

θ is difficult to obtain.
For instance, in Equation (12), z1:D is known and we wish to use z1:D to calculate y1:D. Although
we can easily obtain yd+1:D through the first equation of Equation (12), when it comes to calculating
y1:d, we have to calculate ∇U(y1:D)1:d to update y1:d. However achieving the closed-form solution for
y1:d = ε2

2 · ∇U(y1:D)1:d + const is difficult especially when the gradient function is complex, where
const = (z1:d − T(yd+1:D)) � exp(−S(yd+1:D)) − ε · exp(σ(yd+1:D)). In order to calculate y1:d, we
have additionally introduced a variable t1 in the process of calculating the inverse transformation
function. We set y1:D in ∇U(y1:D)1:d to be (t1, yd+1:D) and we calculate t1 without using gradient
information. Finally we update y1:d through ∇U((t1, yd+1:D))1:d. The error of this approximation is
ε2

2 [∇U(y1:D)1:d −∇U((t1, yd+1:D))1:d] which depends on the product of ε2

2 and ∇U((ξ, yd+1:D)), ξ ∈
(y1:d, t1). This approach is also exploited in the calculation of x1:D, which takes the form as:

x1:d = y1:d,
xd+1:D = (yd+1:D − T(x1:d))� exp(−S(x1:d))

−ε · exp(σ(x1:d)) +
ε2

2 · ∇U((x1:d, t2))d+1:D,
t2 = (yd+1:D − T(x1:d))� exp(−S(x1:d))− ε · exp(σ(x1:d)).

(13)

Entropy 2019, 21, 1096 7 of 21

In order to calculate the logarithmic probability of the transformation distribution, we have to
compute the inverse logarithmic Jacobian determinants. The final formulas are defined as follows:

ln

∣∣∣∣∣∂ f−1
θ

∂z

∣∣∣∣∣ =ln|exp(−S(yd+1:D)) +
ε2

2
· ∇∇U((t1, yd+1:D))1:d � exp(−S(yd+1:D))|,

ln

∣∣∣∣∣∂ f−1
θ

∂y

∣∣∣∣∣ =ln|exp(−S(y1:d)) +
ε2

2
· ∇∇U((x1:d, t2))d+1:D � exp(−S(y1:d))|.

(14)

Particularly, we introduce Langevin diffusions to normalization flows to construct the
transformation function. Since the Langevin diffusions exploit the gradient of the target distribution,
the transformation function is able to explore the state space efficiently.

Hamiltonian dynamics introduce the auxiliary momentum variable to explore the state space
efficiently. Through the transformation of the energy over potential energy and kinetic energy, the total
energy remains unchanged. Since the change of the state is associated with the transformation of the
energy, designing normalization flows which are based on Hamiltonian dynamics becomes complex,
which will be our future work.

3.2. Difference between Normalization Flows and Langevin Normalization Flows

There are two main differences between normalization flows and Langevin normalization flows.
First, NFL cooperates with Langevin diffusions to construct an efficient and accurate approximation
for the target distributions competing with the normalization flows. Second, when approximating the
target distribution, the normalization flows are trained to minimize KL(q|p), where q represents the
approximation distribution and p represents the target distribution. Since the transformation function
is invertible, the integral of KL(q|p) can be calculated precisely. However, for NFL, the transformation
functions demonstrated in Equations (12) and (13) are only approximately invertible because of the
usage of the gradient information of the target distribution. Since the precise value of KL(q|p) cannot
be obtained through integration, Monte Carlo estimation is used to calculate KL(q|p).

4. Dynamical Sampling Using Langevin Normalization Flows

Probabilistic inference involving multi-modal distributions is very difficult for dynamics based
MCMC samplers. Besides, samples generated from these samplers are still highly auto-correlated.
In order to solve these problems, we develop a new Monte Carlo sampler using Langevin normalization
flows which are called Langevin normalization flows Monte Carlo (NFLMC). Given the target
distribution and the initial distribution, NFLMC learns the parameters of the conversion of the
initial distribution to the target distribution of the sampler. In the following subsections, we begin
to describe the main idea of the method and then we introduce how our method works. Finally, we
give the loss function of the training procedure and the algorithm. When the value of loss function
converges, NFLMC can precisely sample from the target distribution.

4.1. Main Idea

The procedure of NFLMC is elaborated here. Assume that the target distribution is denoted
as πt, the initial distribution is denoted as πq, θ represents the parameters of the transformation
functions, πu represents the transformation distribution and Ls represents the Langevin step length.
First, we generate N samples X = {x(t)}N

t=0, x ∈ RD from πq and initialize the parameters θ in the
transformation functions. For each sample x ∈ X, the update equation takes the form as:{

x1:d = x1:d,
xd+1:D = xd+1:D − ε2

2 ∇U(x1:D)d+1:D + ε · exp(σ(x1:d)).
(15)

Entropy 2019, 21, 1096 8 of 21

We repeatedly utilize Equation (15) Ls times to update xd+1:D, where ε is the step size of Langevin
diffusions, ∇U(x1:D)d+1:D is the gradient of the energy function of the target distribution. It is noted
that the second term in Equation (15) is similar with Equation (8). After applying Ls steps of Langevin
diffusions, we rescale xd+1:D through Equation (9) and we obtain y1:D which is a half update of x1:D.
We then update x1:d which takes the form as:{

yd+1:D = yd+1:D,
y1:d = y1:d − ε2

2 ∇U(y1:D)1:d + ε · exp(σ(yd+1:D)).
(16)

We also repeatedly utilize Equation (16) Ls times to update x1:d. After that we rescale x1:d through
Equation (10) and finally we obtain z1:D = fθ(x1:D), where we define the transformation function as fθ .
Now we gain the samples z1:D, z1:D ∼ πu. In order to optimize the parameters θ in fθ to close to the
target distribution. Through minimizing KL(πu|πt), we are able to obtain the optimal parameters of
fθ . Since the integral of KL(πu|πt) for Langevin normalization flow is intractable, we use the Monte
Carlo integral to calculate KL(πu|πt). The objective function is as follows:

min
θ

KL(πu|πt) =
1
N

min
θ

N

∑
i=1,x(i)∼πu

ln
πu

(
x(i)
)

πt

(
x(i)
) . (17)

As Equation (17) shows, we need the samples generated from πu and the probability of each
sample to calculate the loss function. Since we have already had z1:D generated from πu, we only need
to calculate the logarithmic probability for πu(z1:D) which takes the form as:

ln [πu(z1:D)] = ln
[
πq(f−1

θ (z1:D))
]
+ ln

(
det

∣∣∣∣∣ ∂ f−1
θ

∂z1:D

∣∣∣∣∣
)

, (18)

where f−1
θ is the inverse transformation function which can be calculated through Equation (12) and

Equation (13). Since the update of x1:D is divided into two parts, the calculation of ln
(

det
∣∣∣∣ ∂ f−1

θ
∂z1:D

∣∣∣∣)
takes the form as:

ln

(
det

∣∣∣∣∣ ∂ f−1
θ

∂z1:D

∣∣∣∣∣
)

= ln

(
det

∣∣∣∣∣∂ f−1
θ

∂z1:d

∣∣∣∣∣
)
+ ln

(
det

∣∣∣∣∣ ∂ f−1
θ

∂zd+1:D

∣∣∣∣∣
)

, (19)

where ln
(

det
∣∣∣∣ ∂ f−1

θ
∂z1:d

∣∣∣∣) and ln
(

det
∣∣∣∣ ∂ f−1

θ
∂zd+1:D

∣∣∣∣) can be written as:

ln

∣∣∣∣∣∂ f−1
θ

∂z1:d

∣∣∣∣∣ =ln|exp(−S(zd+1:D)) +
ε2

2
· ∇∇U((t1, zd+1:D))1:d � exp(−S(zd+1:D))|,

ln

∣∣∣∣∣ ∂ f−1
θ

∂zd+1:D

∣∣∣∣∣ =ln|exp(−S(z1:d)) +
ε2

2
· ∇∇U((y1:d, t2))d+1:D � exp(−S(y1:d))|,

(20)

where y1:d, t1 and t2 can be calculated through Equations (12) and (13).
However, in the progress of optimizing Equation (17), we find that the KL divergence may not be

strictly non-negative because of the Monte Carlo integral, so we introduce a new objective function to
overcome this problem. The detailed content is discussed in the next subsection.

4.2. Loss Function of the Training Procedure

As we have already discussed the transformation function in Langevin normalization flows, we
do need a criterion to ensure that the final transformation distribution πu will converge to the target

Entropy 2019, 21, 1096 9 of 21

distribution πt. In order to train the parameters θ which control the function σ, S and T, we choose
to minimize KL(πu|πt) as the loss function to guarantee that πu will be the expected distribution.
Specifically, we take the advantage of Monte Carlo sampling to calculate the integral in KL divergence.
Although the KL divergence is non-negative in theory, Monte Carlo integral may cause the abnormal
of the result which means that the KL divergence is negative. In that case, minimizing Equation (17)
will enable the loss to be smaller and thus the transformation distribution will not converge to the
correct direction. To address this problem, we propose a new loss function which is defined as follows:

Lπu→πt(θ) =
∫

πu(x)
(

ln
πu(x)
πt(x)

)2

dx = Eπu

[(
ln

πu(x)
πt(x)

)2
]

. (21)

Since we have Eπu

[(
ln πu(x)

πt(x)

)2
]
≥ E2

πu

[
ln πu(x)

πt(x)

]
, it is reasonable for us to minimize

Eπu

[(
ln πu(x)

πt(x)

)2
]

to achieve the purpose of minimizing the KL divergence.

4.3. Unnormalized Probability Distributions

In Bayesian machine learning, we generally require sampling from the posterior distribution to
approximate the complex probabilistic modal. Since p(θ|D) ∝ p(D|θ)p(θ), the posterior distribution
is an unnormalized distribution. So, we discuss the unnormalized probability distributions in this
section. We assume that the unnormalized probability distribution punt(x) equals to πt(x)Z, where
Z is the true normalization constant and πt is the probability density function. After utilizing the
Equation (21), we observe that:

Lπu→punt(θ) =
∫

πu(x)ln2 πu(x)
πt(x)

dx + ln2Z ·
∫

πu(x)dx

+ 2lnZ ·
∫

πu(x)ln
πu(x)
πt(x)

dx.
(22)

It is noted that the third term 2lnZ ·
∫

πu(x)ln πu(x)
πt(x) dx in Equation (22) can be simplified as:

2lnZ ·
∫

πu(x)ln
πu(x)
πt(x)

dx = 2lnZ ·KL(πu|πt). (23)

The object of the optimization is to minimize the loss function Lπu→punt , which is equivalent to

minimize
∫

πu(x)ln2 πu(x)
πt(x) dx and 2lnZ ·KL(πu|πt), for ln2Z is a constant. Since the KL divergence

is nonnegative, if Z ∈ (0, 1), then 2lnZ ·KL(πu|πt) is negative. Minimizing 2lnZ ·KL(πu|πt) is to
maximizing KL(πu|πt), which will mislead the direction of the optimization.

So as to solve this problem, we introduce a scale parameter γ. We assume punt(x) = πt(x)Z
γ , so the

loss function can be written as:

Lπu→punt(θ) =
∫

πu(x)ln2 πu(x)
πt(x)

dx + ln2 Z
γ
·
∫

πu(x)dx + 2ln
Z
γ
·
∫

πu(x)ln
πu(x)
πt(x)

dx

=
1
N

N

∑
x(i) ∼πu

ln2
πu

(
x(i)
)

πt

(
x(i)
) + 2ln

Z
γ
· 1

N

N

∑
x(i) ∼πu

ln
πu

(
x(i)
)

πt

(
x(i)
) + ln2 Z

γ

=Eπu

[
ln2 πu(x)

πt(x)

]
+ 2ln

Z
γ
·Eπu(x)

[
ln

πu(x)
πt(x)

]
+ ln2 Z

γ
.

(24)

As Equation (24) hinted, the function is composed of three terms. The first term is the same as
Equation (21). The second term is the scaling term and the last term is a constant term. If γ = Z, then

Entropy 2019, 21, 1096 10 of 21

we recover the Equation (21). If γ < Z, then 2ln Z
γ ·Eπu

[
ln πu

πt

]
is nonnegative, which not only ensures

that the loss function will optimize towards the right direction but also cooperates with the information
of KL divergence. In addition, the parameter γ is able to control the force of the optimization of KL
divergence.

Furthermore, it is noted that the gradient of the loss function is:

∇θLπu→punt(θ) =2
N

∑
i=1,x(i) ∼πu

ln
πu

(
x(i)
)

πt

(
x(i)
)∇θ

ln
πu

(
x(i)
)

πt

(
x(i)
)
+ 2ln

Z
γ
·

N

∑
i=1,x(i) ∼πu

∇θ

ln
πu

(
x(i)
)

πt

(
x(i)
)
, (25)

where 2 ∑N
i=1,x(i) ∼πu

ln
πu(x(i))
πt(x(i))

∇θ

[
ln

πu(x(i))
πt(x(i))

]
gives the importance weight ln

πu(x(i))
πt(x(i))

for

∇θ

[
ln

πu(x(i))
πt(x(i))

]
, for each sample x(i), so it can be viewed as the rescale of the gradient of the

KL divergence, which proves the correctness of the loss function. The complete algorithm is given in
Algorithm 1.

Algorithm 1 Training NFLMC

Input: target distribution πt, step size ε, learning rate β, scale parameter γ, Langevin step length
Ls, number of iterations Kiters, sample number N, the initial distribution πq, the transformation
distribution πu, the energy function U, the gradient of energy function ∇U and the second order
gradient ∇∇U.

Output: the parameters θ = (Wσ, WS, WT) of the sampler.
Initializing the parameters θ of the neural network.
for k = 1 to Kiters do

Sample N samples from the proposal distribution πq.
x ∼ πq, X = {x(n)}N

n=1
for i = 1 to Ls do

xd+1:D = xd+1:D − ε2

2 ∇U(x1:D)d+1:D + ε · exp(σ(x1:d))

Obtaining y1:D through Equation (9).
for i = 1 to Ls do

x1:d = y1:d − ε2

2 ∇U(y1:D)1:d + ε · exp(σ(yd+1:D))

Obtaining z1:D through Equation (10).
Calculating the loss Lπu→punt(θ) through Equation (24).
Obtaining lnπu by using Equation (18).

Lπu→punt(θ) =
1
N ∑N

n=1

(
ln

γπu(z(n))
punt(z(n))

)2

Calculating ∇θ Lπu→punt(θ) through Equation (25).
Updating θ in the transformation functions.
θ = θ − β∇θ Lπu→punt(θ)

In practice, there are several important points to note about the implementation of Algorithm 1.
First, the proposal distribution πq should be a simple distribution which is easy to analyze. We suggest
to use the Gaussian distribution as the proposal distribution. Second, the number of the samples N
should be set to a large value. In our experiments, we set N = 8000. Third, the scale parameter γ

can be estimated through importance sampling. γ = ∑x∼q(x)
Zπt
q(x) , where Zπt represents the target

distribution and q(x) represents the proposal distribution. We have built a demo program which is
available at: https://github.com/Emcc81/NFLMC.

5. Applicability of NFLMC

In this section, we will demonstrate the performance of NFLMC. We present a detailed analysis of
our trained sampler on varieties of target distributions. First, we will compare the proposed sampler

https://github.com/Emcc81/NFLMC

Entropy 2019, 21, 1096 11 of 21

with RNVP and HMC on five different distributions which are composed of the ring (the ring-shaped
density), the ill-conditioned Gaussian, the strongly correlated Gaussian, the Gaussian funnel and
the rough Well. After that, we present the results on two multi-modal distributions. Finally, we
demonstrate the results on a task from machine learning —Bayesian logistic regression.

All our experiments are conducted on a standard computer with eight Nvidia RTX2080Ti GPUs.
The nodes of each layer of the neural networks are set to be 512 with ReLU as the activation function.
The number of the layer of the neural networks is set to be 3. Langevin steps are set to be 2 to 5.
The number of transformation functions is set to be 8. The learning rate is set to be 0.05. The maximum
iteration is set to be 10,000. We estimate scale parameter γ through importance sampling. Now, we
introduce the performance index which will be used in the following parts.

Effective sample size—The variance of a Monte Carlo sampler is determined by its effective
sample size (ESS) [14] which is defined as:

ESS = N/(1 + 2×
M

∑
s=1

ρ(s)), (26)

where N represents the total sampling number, M is set to be 30 in our experiments and ρ(s) represents
the s-step autocorrelation. Autocorrelation is an index which considers the correlation between two
samples. Let X be a set of samples and t be the number of iteration (t is an integer). Then Xt is the
sample at time t of X. The definition of the autocorrelation between time s and t is:

R(s, t) =
E[(Xt − µt)(Xs − µs)]

σtσs
, (27)

where E is the expected value operator. Autocorrelation can measure the correlation between two
nearby samples. If the value of autocorrelation is high, the samples are far from independent and
vice versa.

Maximum mean discrepancy—The difference between samples drawn from two distributions
can be measured as maximum mean discrepancy (MMD) [43] which is defined as follows:

MMD2[X, Y] =
1

M2

M

∑
i,j=1

k(xi, xj)−
2

MN

M,N

∑
i,j=1

k(xi, yj) +
1

N2

N

∑
i,j=1

k(yi, yj), (28)

where M represents the sample number in X, N represents the sample number in Y and k represents
the kernel function. Through MMD, we can analyze the convergence speed of the proposed methods.

5.1. Varieties of Unimodal Distributions

Since RNVP performs well in density estimation, we utilize the loss function proposed in
Equation (21) to train RNVP to sample from the target distribution. This kind of method is called
the naive normalization flows Monte Carlo (NNFMC). We then compare the NFLMC with NNFMC
and HMC on convergence rate and autocorrelation, respectively. In each experiment, we set the same
learning rate for NFLMC and NNFMC. The initial distributions are all set to be the standard normal
distribution. We next introduce the distributions used in the experiment.

Ring: The ring shaped target density. The analytic form of the energy function of the ring is:

U(x) = (
√

x2
1+x2

2−2)2

0.32 .
Ill-conditioned Gaussian: Gaussian distribution with diagonal covariance spaced log-linearly

between 10−2 and 102.
Strongly correlated Gaussian: We rotate a diagonal Gaussian with variances [102, 10−2] by π

4 . This
is an extreme version of an example from Brooks [14].

Rough well: A similar example from Sohl-Dickstein et al. [44] and its energy function is:
U(x) = 1

2 xTx + η ∑i cos(xi
η). We set η = 10−2.

Entropy 2019, 21, 1096 12 of 21

Gaussian funnel: We conduct our experiment on a 2-D funnel, whose energy function takes the

form as: U(x) = 1
2

[(x1
σ

)2
+

x2
2

exp(x1)
+ ln (2π · exp(x1))

]
and we set σ = 1.0.

As Figure 2 illustrates, our method performs better in all these distributions in terms of
convergence rate. In ill conditioned Gaussian, rough well, Gaussian funnel and strongly corrected
Gaussian with µ = [0, 0], NFLMC gains fast convergence, which indicates that the Langevin diffusions
do help the normalization flows to find the correct direction. In strongly corrected Gaussian with
µ = [10, 10], NNFMC is unable to converge to the target distribution, since the loss remains high
during the training procedure. It is the utilization of gradient information of the target distribution
that aids NFLMC to converge the target distribution rapidly.

In ring-shaped distribution, NNFMC has a significant fluctuation in the process of training, while
NFLMC converges rapidly during the training procedure, which shows the stability of NFLMC. Since
the loss of NNFMC has large fluctuation, we carefully tune the learning rate for NNFMC. As Figure 3
illustrates, NFLMC converges to the target distribution more quickly than NNFMC. Besides, NNFMC
has a large error while NFLMC is able to sample from the target distribution precisely.

So what causes the large fluctuation of NNFMC? We think that the lack of strong guidance
when exploring the state space makes NNFMC difficult to converge. Since the initial distribution
is a standard normal distribution, samples from the initial distribution have large distance with the
samples of ring-shaped distribution. So it is challenging for NNFMC to explore state space and the
value of the loss function has large fluctuation. In order to verify this thought, we enlarge the size

of the ring distribution whose energy function has the form: U(x) =
(
√

x2
1+x2

2−3)2

0.32 and we observe
that NNFMC fails to sample from this distribution while NFLMC can still converge to the target
distribution. As Figure 3 shows, NNFMC cannot find the target distribution, while NFLMC still
performs well, for NFLMC utilizes the gradient information of the target distribution.

We then compare our method with HMC in terms of the autocorrelation on five different
distributions.

Figure 4 demonstrates that NFLMC obtains better performance in autocorrelation, which indicates
that NFLMC overcomes the defects of the MCMC samplers. HMC (0.05) and HMC (0.1) represent the
HMC sampler with different step size.

5.2. Mixtures of Gaussian Distributions

We conduct our second experiment on two multi-modal distributions where we consider
two simple 2-D mixtures of Gaussian distributions (MOG) whose probability density function are
analytically available. First, we consider a MOG whose modes have the same probability and then we
consider a MOG whose modes have different probabilities and further distance. The first distribution
is defined as: p(x) = 1

2N (x|µ, I) + 1
2N (x| − µ, I), where µ = (2.5,−2.5). The second distribution is

defined as: p(x) = 0.88N (x|µ, I) + 0.12N (x| − µ, I), where µ = (4,−4). The experiment settings is
the same with Tripuraneni et al. [24]. The purpose of the experiments is to sample points which are
i.i.d. distributed in multi-modal distributions correctly.

We compare HMC [14], MHMC [24], MGHMC [30] and NICE-MC [29] against NFLMC. First,
we compare the MMD of these methods and then averaged autocorrelation is used to compare the
performance of each method further. Each MCMC method is run 32 times and 20,000 iterations with
11,000 burn-in samples. The number of leap-frog steps is uniformly drawn from (100− l, 100 + l)
with l = 20, which is suggested by Livingstone et al. [45]. We set step size ε = 0.05 and the initiate
position x = (0, 0). The initial distribution for NFLMC is a Gaussian distribution with µ = [0, 0]
and diag(σ) = [2, 2]. As Figure 5 illustrates, NFLMC obtains excellent performance compared with
MHMC, HMC and MGHMC regarding MMD and autocorrelation. In addition, NFLMC has a smaller
variance of MMD compared with NICE-MC. However, when it comes to autocorrelation, NICE-MC
shows the huge fluctuation, while NFLMC remains steady, which manifests the stability of NFLMC.

Entropy 2019, 21, 1096 13 of 21

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Iterations (×100)

0

20

40

60

80

100

Lo
ss

NFLMC
NNFMC

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Iterations (×100)

0

50

100

150

200

250

Lo
ss

NFLMC
NNFMC

(b)

0 2 4 6 8
Iterations (×100)

2.2

2.4

2.6

2.8

3.0

3.2

Lo
ss

NFLMC
NNFMC

(c)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Iterations (×100)

41.0

41.5

42.0

42.5

43.0

43.5

Lo
ss

NFLMC
NNFMC

(d)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Iterations (×100)

0

10

20

30

40

Lo
ss

NFLMC
NNFMC

(e)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Iterations (×100)

0

50

100

150

200

250

300

Lo
ss NFLMC

NNFMC

(f)

Figure 2. The comparison of normalization flows Monte Carlo (NFLMC) and naive normalization
flows Monte Carlo sampler (NNFMC) on six different distributions. The abscissa represents the number
of iterations and the ordinate represents the value of loss in training procedure. (a) The performance
of NFLMC and NNFMC on ring. (b) The performance of NFLMC and NNFMC on ill conditioned
Gaussian. (c) The performance of NFLMC and NNFMC on rough well. (d) The performance of NFLMC
and NNFMC on Gaussian funnel. (e) The performance of NFLMC and NNFMC on strongly correlated
Gaussian with µ = [0, 0]. (f) The performance of NFLMC and NNFMC on strongly correlated Gaussian
with µ = [10, 10].

Entropy 2019, 21, 1096 14 of 21

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Iterations (×100)

5

10

15

20

25

Lo
ss

NFLMC
NNFMC

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Iterations (×1000)

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

NFLMC
NNFMC

(b)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(c)

−2 −1 0 1 2

−2

−1

0

1

2

(d)

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

(e)

−3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

(f)

Figure 3. The performance of naive normalization flows Monte Carlo (NNFMC) and Langevin
normalization flows Monte Carlo (NFLMC) on two ring distributions. Specially, for the ring distributions
with large radius, we show the change of the loss with respect to iterations after 1000 iterations. (a) The
loss of NFLMC and NNFMC on a ring with small radius. (b) The loss of NFLMC and NNFMC on a
ring with large radius. (c) The scatter diagram of NNFMC on a ring with small radius. (d) The scatter
diagram of NFLMC on a ring with small radius. (e) The scatter diagram of NNLMC on a ring with large
radius. (f) The scatter diagram of NFLMC on a ring with large radius.

Entropy 2019, 21, 1096 15 of 21

0 5 10 15 20 25 30
Lag

0.0

0.2

0.4

0.6

0.8

1.0

A
ut
oc

or
re
la
tio

n

HMC(0.1)
HMC(0.05)
NFLMC

(a)

0 5 10 15 20 25 30
Lag

0.2

0.4

0.6

0.8

1.0

A
ut
oc

or
re
la
tio

n

HMC(0.1)
HMC(0.05)
NFLMC

(b)

0 5 10 15 20 25 30
Lag

0.0

0.2

0.4

0.6

0.8

1.0

A
ut
oc

or
re
la
tio

n

HMC(0.1)
HMC(0.05)
NFLMC

(c)

0 5 10 15 20 25 30
Lag

0.0

0.2

0.4

0.6

0.8

1.0
A
ut
oc

or
re
la
tio

n

HMC(0.1)
HMC(0.05)
NFLMC

(d)

0 5 10 15 20 25 30
Lag

0.0

0.2

0.4

0.6

0.8

1.0

A
ut
oc

or
re
la
tio

n

HMC(0.1)
HMC(0.05)
NFLMC

(e)

Figure 4. The comparison of Hamiltonian Monte Carlo (HMC) and NFLMC on the autocorrelation on
five different distributions. The abscissa represents the steps between the samples and the ordinate
represents the autocorrelation between samples. (a) The autocorrelation of HMC and NFLMC on ring.
(b) The autocorrelation of HMC and NFLMC on ill conditioned Gaussian. (c) The autocorrelation of
HMC and NFLMC on rough well. (d) The autocorrelation of HMC and NFLMC on Gaussian funnel.
(e) The autocorrelation of HMC and NFLMC on strongly correlated Gaussian with µ = [0, 0].

Entropy 2019, 21, 1096 16 of 21

2 4 6 8 10
Sample Numbers (×1000)

−2
0
2
4
6
8

10
12
14

M
ax

im
um

 M
ea

n
D

is
cr

ep
an

cy HMC
MHMC
MGHMC
NICE-MC
NFLMC

(a)

0 5 10 15 20
Lag

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

A
ut
oc
or
re
la
tio

n

HMC
MHMC
MGHMC
NICE-MC
NFLMC

(b)

2 4 6 8 10
Sample Numbers (×1000)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

M
ax

im
um

 M
ea

n
D
is
cr
ep

an
cy NICE-MC

NFLMC

(c)

Figure 5. The comparison of five different methods on maximum mean discrepancy (MMD) and
autocorrelation on Gaussian mixtures distribution. (a) The relationship between autocorrelation and
sample numbers. (b) The relationship between autocorrelation and lag. (c) The detailed comparison of
NFLMC and NICE-MC on MMD.

We then discuss the circumstance in which the modes are far from each other and with different
probabilities. When µ in MOG become larger, for instance, µ = (4,−4). In Hamiltonian dynamics,
there exists a significant force in this low probability regions which hinder samplers from jumping
out of the current mode. In other words, the gradients in boundary regions are tremendous and the
momentum will increasingly decrease until it changes its direction which makes HMC and MHMC
challenging to sample from the target distribution. So we compare NFLMC with parallel HMC
and NICE-MC. The scatter diagram of both parallel HMC and NFLMC is demonstrated in Figure 6.
We observe that parallel HMC can sample from the multi-modal distribution but it cannot precisely
estimate the probability of each mode.

Entropy 2019, 21, 1096 17 of 21

−6 −4 −2 0 2 4 6 8
x0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Pr
ob

ab
ili
ty

(a)

−8 −6 −4 −2 0 2 4 6 8
x0

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ili
ty

(b)

Figure 6. The performance of parallel HMC and NFLMC on the mixtures of Gaussian with different
probabilities of the modes. (a) The histogram of NFLMC on x0. (b) The histogram of parallel HMC on x0.

For parallel HMC, it seems that two modes have the same probability. However, the real
probability of each mode is π1 = 0.12, π2 = 0.88. As Figure 7 illustrates, compared with NICE-MC,
NFLMC converges quickly to the target distribution while gains the lower autocorrelation. It is the
fact that NFLMC takes advantage of the neural networks to explore the phase space, which results in
good performance.

0 5 10 15 20 25 30
Lag

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

A
ut
oc

or
re
la
tio

n

NICE-MC
NFLMC

(a)

2 4 6 8 10
Sample Numbers (×1000)

0.0

0.5

1.0

1.5

2.0

M
ax
im
um

 M
ea
n
D
is
cr
ep
an
cy NICE-MC

NFLMC

(b)

Figure 7. The performance of NFLMC and NICE-MC on the mixtures of Gaussians with different
probabilities of the modes. (a) The autocorrelation of the samples generated from NFLMC and
NICE-MC. (b) The change of MMD on NFLMC and NICE-MC.

5.3. Bayesian Logistic Regression

Logistic regression (LR) [46] is a traditional way for classification. Employing maximizing
the logistic likelihood function, we can get the optimized parameters. Through the parameters,
we can predict the class of the data. Bayesian logistic regression [47] is also a classic model for
classification which takes advantage of logistic sigmoid function as the likelihood function. For the
two-class classification, the likelihood function is defined as: p(t|w) = ∏N

n=1[1 − yn]1−tn , where
t = (t1, . . . , tN)

> and yn = p(C1|φn) = σ(w>φ). tn represents the category of the data and yn

represents the probability of the data belonging to one class. Through integrating the logistic function
on the posterior distribution, we can get the class of the data. However, sometimes the integral

Entropy 2019, 21, 1096 18 of 21

is difficult to calculate, variational Bayesian logistic regression (VBLR) substitute the real posterior
distribution to the variational distribution. Instead of using variational inference, we apply Monte
Carlo sampling technology to this model. Through sampling from the posterior distribution, the class
of the data can be estimated.

We evaluate our methods on nine real-world datasets from UCI repository [48]—Pima Indian
(Pi), Haberman (Ha), Blood (Bl), Immunotherapy (Im), Indian (In), Mammographic (Ma), Heart
(He), German (Ge) and Australian (Au) using Bayesian logistic regression. Feature dimensions are
from 3 to 25 and the data instances are from 306 to 1086. All datasets are normalized to have zero
mean value and unit variance. First, we set the standard normal distribution N (0, I) as the prior
distribution for the parameters. In each experiment, we run 9000 iterations with 1000 burn-in samples
for HMC. For NFLMC, we set the standard normal distribution as the initial distribution. We train the
NFLMC sampler until the value of loss function converges and then sampling 8000 samples using the
well-trained sampler. The maximum number of iterations is set to be 105. We set the step size ε = 0.001
and we run ten times to calculate the mean and the standard deviation.

Results regarding the accurate rate of prediction and area under the receiver operating
characteristic curve (AUC) [49] are summarized in Tables 1 and 2, respectively. The results show
that in these nine datasets, NFLMC yields good performance in accurate rate and AUC. In order to
further compare the quality of the samples, we calculate the mean of ESS of each dimension for both
HMC and NFLMC. We use 30 steps autocorrelation to calculate this value. Table 3 demonstrates that
NFLMC achieves higher ESS than HMC, which suggests that NFLMC has lower autocorrelation than
HMC for each dimension.

Table 1. Classification accuracy for variational Bayesian logistic regression (VBLR), logistic regression
(LR), HMC and NFLMC on nine different datasets.

DATA LR VBLR HMC NFLMC

HA 69.3 ± 0.2 69.3 ± 0.1 69.3 ± 0.2 69.4 ± 0.1
PI 76.6 ± 0.2 76.2 ± 0.1 76.6 ± 0.1 76.6± 0.1
MA 82.5 ± 0.3 83.1 ± 0.1 83.1 ± 0.1 83.1 ± 0.2
BL 76.0 ± 0.2 76.0 ± 0.2 76.0 ± 0.3 76.0 ± 0.1
IM 77.7 ± 0.3 77.75 ± 0.4 83.2 ± 0.2 83.3 ± 0.2
IN 75.8 ± 0.3 73.2 ± 0.2 73.2 ± 0.2 74.1 ± 0.2
HE 75.9 ± 0.2 75.9 ± 0.2 75.9 ± 0.2 75.9 ± 0.1
GE 71.5 ± 0.1 71.5 ± 0.1 72.5 ± 0.2 73.0 ± 0.1
AU 86.9 ± 0.2 87.6 ± 0.2 87.6 ± 0.2 87.7 ± 0.1

Table 2. Area under the receiver operating characteristic curve (AUC) for VBLR, LR, HMC and NFLMC
on nine different datasets.

DATA LR VBLR HMC NFLMC

HA 62.7 ± 0.1 63.2 ± 0.1 63.0 ± 0.2 63.2 ± 0.1
PI 79.2 ± 0.2 79.3 ± 0.1 79.3 ± 0.1 79.5 ± 0.1
MA 89.9 ± 0.1 89.8 ± 0.1 89.89 ± 0.1 89.9 ± 0.2
BL 73.5 ± 0.3 73.4 ± 0.3 74.4 ± 0.3 73.5 ± 0.2
IM 76.7 ± 0.3 78.5 ± 0.5 89.2 ± 0.2 89.3 ± 0.3
IN 73.2 ± 0.3 73.2 ± 0.2 72.4 ± 0.2 72.8 ± 0.4
HE 80.1 ± 0.2 81.3 ± 0.2 82.2 ± 0.3 84.8 ± 0.2
GE 74.7 ± 0.2 75.5 ± 0.2 76.7 ± 0.3 76.9 ± 0.1
AU 92.5 ± 0.2 93.9 ± 0.2 93.9 ± 0.3 94.0 ± 0.2

Entropy 2019, 21, 1096 19 of 21

Table 3. The mean of effective sample size of each dimension for HMC and NFLMC on nine
differen datasets.

DATA HMC NFLMC DATA HMC NFLMC

HA 107.69 2503.75 IN 408.87 3590.34
PI 73.08 3534.50 HE 1093.10 3200.00
MA 670.72 2570.69 GE 7.19 2842.92
BL 808.84 2824.87 AU 220.60 2538.25
IM 1879.78 1917.54

6. Discussion and Conclusions

In this study, we propose Langevin normalization flows and develop Langevin normalization
flows Monte Carlo, a novel scalable sampling algorithm which exploits the flexibility of the neural
networks and efficient exploration of Langevin diffusions. We design the appropriate loss function
to train the sampler to ensure that the sampler is able to converge to the target distribution. We also
discuss the unnormalized probability distributions and propose the appropriate loss function to these
distributions. The experiments conducted on synthetic and real datasets suggest that our method is
able to sample from the target distributions precisely and independently.

Although HMC has various advantages, it is difficult for us to design the model based on HMC,
because the auxiliary momentum variable should be carefully concerned in the transformation function
of NFs. In the future, we plan to design the neural network sampler based on Hamiltonian dynamics.

Author Contributions: Conceptualization, M.G. and S.S.; methodology, M.G. and S.S.; experiments, M.G. and
Y.L.; formal analysis, M.G.; writing–original draft preparation, M.G.; writing–review and editing, S.S. and Y.L.;
supervision, S.S.

Funding: This work is supported by the National Natural Science Foundation of China under Project 61673179
and the Strategic Priority Research Program of ECNU.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gunji, Y.P.; Murakami, H.; Tomaru, T.; Basios, V. Inverse Bayesian inference in swarming behaviour of
soldier crabs. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2018, 376, 1–17.

2. Imani, M.; Ghoreishi, S.F.; Allaire, D.; Braga-Neto, U.M. MFBO-SSM: Multi-fidelity Bayesian optimization
for fast inference in state-space models. In Proceedings of the AAAI Conference on Artificial Intelligence,
Honolulu, HI, USA, 27–28 January 2019; pp. 7858–7865.

3. Livingstone, S.; Girolami, M. Information-geometric Markov chain Monte Carlo methods using diffusions.
Entropy 2014, 16, 3074–3102.

4. Robert, C.P.; Casella, G. Monte Carlo Statistical Methods; Springer: Berlin/Heidelberg, Germany, 2013.
5. Altieri, N.; Duvenaud, D. Variational Inference with Gradient Flows. Available online: http://

approximateinference.org/accepted/AltieriDuvenaud2015.pdf (10 November 2015).
6. Blei, D.; Kucukelbir, A.; McAuliffe, J. Variational inference: a review for statisticians. J. Am. Stat. Assoc. 2017,

112, 859–887.
7. Hock, K.; Earle, K. Markov chain Monte Carlo used in parameter inference of magnetic resonance spectra.

Entropy 2016, 18, 57–69.
8. Seo, J.; Kim, Y. Approximated information analysis in Bayesian inference. Entropy 2015, 17, 1441–1451.
9. Imani, M.; Ghoreishi, S.F.; Braga-Neto, U.M. Bayesian control of large MDPs with unknown dynamics in

data-poor environments. In Proceedings of the Advances in Neural Information Processing Systems (NIPS
2018), Montreal, QC, Canada, 3–8 December 2018; pp. 8146–8156.

10. Sun, S. A review of deterministic approximate inference techniques for Bayesian machine learning. Neural
Comput. Appl. 2013, 23, 2039–2050.

11. Neal, R.M. Slice sampling. Ann. Stat. 2003, 31, 705–741.

http://approximateinference. org/accepted/AltieriDuvenaud2015. pdf
http://approximateinference. org/accepted/AltieriDuvenaud2015. pdf

Entropy 2019, 21, 1096 20 of 21

12. Li, Q.; Newton, K. Diffusion equation-assisted Markov chain Monte Carlo methods for the inverse radiative
transfer equation. Entropy 2019, 21, 291–315.

13. Skeel, R.; Fang, Y. Comparing Markov chain samplers for molecular simulation. Entropy 2017, 19, 561–576.
14. Brooks, S.; Gelman, A.; Jones, G.; Meng, X. Handbook of Markov chain Monte Carlo; CRC Press: Boca Raton, FL,

USA, 2011.
15. Hokman, M.D.; Gelman, A. The no-u-turn sampler: Adaptively setting path lengths in Hamiltonian Monte

Carlo. J. Mach. Learn. Res. 2014, 15, 1593–1623.
16. Wang, Z.; Mohamed, S.; Freitas, N. Adaptive Hamiltonian and Riemann manifold Monte Carlo. In

Proceedings of the International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013;
pp. 1462–1470.

17. Duane, S.; Kennedy, A.D.; Pendleton, B.J.; Roweth, D. Hybrid Monte Carlo. Phys. Lett. B 1987, 195, 216–222.
18. Celeux, G.; M.Hurn.; Robort, C.P. Computational and inferential difficulties with mixture posterior

distributions. J. Am. Stat. Assoc. 2000, 95, 957–970.
19. Neal, R.M. Annealed importance sampling. Stat. Comput. 2001, 11, 125–139.
20. Rudoy, D.; Wolfe, P.J. Monte Carlo methods for multi-modal distributions. In Proceedings of the Fortieth

Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 6–9 November 2006; pp.
2019–2023.

21. Sminchisescu, C.; Welling, M. Generalized darting Monte Carlo. In Proceedings of the Artificial Intelligence
and Statistics, San Juan, Puerto Rico, 21–24 March 2007; pp. 516–523.

22. Craiu, R.V. Learn from thy neighbor: parallel-chain and regional adaptive MCMC. J. Am. Stat. Assoc. 2009,
104, 1454–1466.

23. Girolami, M.; Calderhead, B. Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. R. Stat.
Soc. 2011, 73, 123–214.

24. Tripuraneni, N.; Rowland, M.; Ghahramani, Z.; Turner, R. Magnetic Hamiltonian Monte Carlo. In
Proceedings of the International Conference on Machine Learning, Sydney, NSW, Australia, 6–11 August
2017; pp. 3453–3461.

25. Ahn, S.; Chen, Y.; Welling, M. Distributed and adaptive darting Monte Carlo through regenerations. In
Proceedings of the Artificial Intelligence and Statistics, Scottsdale, AZ, USA, 29–30 April 2013; pp. 108–116.

26. Lan, S.; Streets, J.; Shahbaba, B. Wormhole Hamiltonian Monte Carlo. In Proceedings of the AAAI Conference
on Artificial Intelligence, Quebec City, QC, Canada, 27–31 July 2014; pp. 1953–1959.

27. Rezende, D.; Mohamed, S. Variational inference with normalizing flows. In Proceedings of the International
Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 1530–1538.

28. Hastings, W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970,
57, 97–109.

29. Song, J.; Zhao, S.; Ermon, S. A-nice-mc: Adversarial training for MCMC. In Proceedings of the Advances in
Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 5140–5150.

30. Zhang, Y.; Wang, X.; Chen, C.; Henao, R.; Fan, K.; Carin, L. Towards unifying Hamiltonian Monte Carlo and
slice sampling. In Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain,
5–10 December 2016; pp. 1741–1749.

31. Dinh, L.; Sohl-Dickstein, J.; Bengio, S. Density estimation using real NVP. arXiv 2016, arXiv:1605.08803.
32. Paige, B.; Wood, F. Inference networks for sequential Monte Carlo in graphical models. In Proceedings of the

International Conference on Machine Learning, New York City, NY, USA, 19–24 June 2016; pp. 3040–3049.
33. Papamakarios, G.; Murray, I. Fast ε-free inference of simulation models with Bayesian conditional density

estimation. In Advances in Neural Information Processing Systems; Barcelona, Spain, 5–10 December 2016;
pp. 1028–1036.

34. Ballé, J.; Laparra, V.; Simoncelli, E.P. Density modeling of images using a generalized normalization
transformation. arXiv 2015, arXiv:1511.06281.

35. Kingma, D.P.; Salimans, T.; Jozefowicz, R.; Chen, X.; Sutskever, I.; Welling, M. Improved variational inference
with inverse autoregressive flow. In Advances in Neural Information Processing Systems; Barcelona, Spain, 5–10
December 2016; pp. 4743–4751.

36. Dinh, L.; Krueger, D.; Bengio, Y. NICE: Non-linear independent components estimation. arXiv 2014,
arXiv:1410.8516.

Entropy 2019, 21, 1096 21 of 21

37. Oord, A.V.D.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.;
Kavukcuoglu, K. Wavenet: A generative model for raw audio. arXiv 2016, arXiv:1609.03499.

38. Durrett, R. Stochastic Calculus: A Practical Introduction; CRC Press: Boca Raton, FL, USA, 2018.
39. Øksendal, B. Stochastic differential equations. In Stochastic Differential Equations; Springer: Berlin/Heidelberg,

Germany, 2003.
40. Roberts, G.O.; Stramer, O. Langevin diffusions and Metropolis-Hastings algorithms. Methodol. Comput. Appl.

Probab. 2002, 4, 337–357.
41. Kloeden, P.E.; Platen, E. Numerical Solution of Stochastic Differential Equations; Springer: Berlin/Heidelberg,

Germany, 2013.
42. Martino, L.; Read, J. On the flexibility of the design of multiple try Metropolis schemes. Comput. Stat. 2013,

28, 2797–2823.
43. Roberts, G.O.; Stramer, O. A kernel two-sample test. J. Mach. Learn. Res. 2012, 13, 723–773.
44. Sohl-Dickstein, J.; Mudigonda, M.; DeWeese, M.R. Hamiltonian Monte Carlo without detailed balance.

In Proceedings of the International Conference on Machine Learning, Beijing, China, 21–26 June 2014;
pp. 719–726.

45. Livingstone, S.; Betancourt, M.; Byrne, S.; Girolami, M. On the geometric ergodicity of Hamiltonian Monte
Carlo. arXiv 2016, arXiv:1601.08057.

46. Freedman, D.A. Statistical Models: Theory and Practice; Cambridge University Press: Cambridge, UK, 2009.
47. MacKay, D.J.C. The evidence framework applied to classification networks. Neural Comput. 1992, 4, 720–736.
48. Dua, D.M.; Graff, C. UCI Machine Learning Repository. 2017. Available online: https://archive.ics.uci.edu/

ml/index.php (accessed on 10 November 2017).
49. Hanley, J.A.; McNeil, B.J. A method of comparing the areas under receiver operating characteristic curves

derived from the same cases. Radiology 1983, 148, 839–843.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminary
	Normalization Flows
	Langevin Diffusions

	Langevin Normalization Flows
	Main Idea
	Difference between Normalization Flows and Langevin Normalization Flows

	Dynamical Sampling Using Langevin Normalization Flows
	Main Idea
	Loss Function of the Training Procedure
	Unnormalized Probability Distributions

	Applicability of NFLMC
	Varieties of Unimodal Distributions
	Mixtures of Gaussian Distributions
	Bayesian Logistic Regression

	Discussion and Conclusions
	References

