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Abstract: Thermodynamics is a theory of principles that permits a basic description of the macroscopic
properties of a rich variety of complex systems from traditional ones, such as crystalline solids, gases,
liquids, and thermal machines, to more intricate systems such as living organisms and black holes
to name a few. Physical quantities of interest, or equilibrium state variables, are linked together in
equations of state to give information on the studied system, including phase transitions, as energy
in the forms of work and heat, and/or matter are exchanged with its environment, thus generating
entropy. A more accurate description requires different frameworks, namely, statistical mechanics and
quantum physics to explore in depth the microscopic properties of physical systems and relate them
to their macroscopic properties. These frameworks also allow to go beyond equilibrium situations.
Given the notably increasing complexity of mathematical models to study realistic systems, and
their coupling to their environment that constrains their dynamics, both analytical approaches and
numerical methods that build on these models show limitations in scope or applicability. On the
other hand, machine learning, i.e., data-driven, methods prove to be increasingly efficient for the
study of complex quantum systems. Deep neural networks, in particular, have been successfully
applied to many-body quantum dynamics simulations and to quantum matter phase characterization.
In the present work, we show how to use a variational autoencoder (VAE)—a state-of-the-art tool in
the field of deep learning for the simulation of probability distributions of complex systems. More
precisely, we transform a quantum mechanical problem of many-body state reconstruction into a
statistical problem, suitable for VAE, by using informationally complete positive operator-valued
measure. We show, with the paradigmatic quantum Ising model in a transverse magnetic field,
that the ground-state physics, such as, e.g., magnetization and other mean values of observables,
of a whole class of quantum many-body systems can be reconstructed by using VAE learning of
tomographic data for different parameters of the Hamiltonian, and even if the system undergoes a
quantum phase transition. We also discuss challenges related to our approach as entropy calculations
pose particular difficulties.
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1. Introduction

The development of the dynamical theory of heat or classical equilibrium thermodynamics as
we know it was possible only with empirical data collection, processing, and analysis, which led,
through a phenomenological approach, to the definition of two fundamental physical concepts, the
actual pillars of the theory: energy and entropy [1]. It is with these two concepts that the laws (or
principles) of thermodynamics could be stated and the absolute temperature be given a first proper
definition. Though energy remains as fully enigmatic as entropy from the ontological viewpoint,
the latter concept is not completely understood from the physical viewpoint. This of course did not
preclude the success of equilibrium thermodynamics as evidenced not only by the development of
thermal sciences and engineering, but also because of its cognate fields that owe it, at least partly or as
an indirect consequence, their birth, from quantum physics to information theory.

Early attempts to refine and give thermodynamics solid grounds started with the development of
the kinetic theory of gases and of statistical physics, which in turn permitted studies of irreversible
processes with the development of nonequilibrium thermodynamics [2–6] and later on finite-time
thermodynamics [7–9], thus establishing closer ties between the concrete notion of irreversibility and
the more abstract entropy, notably with Boltzmann’s statistical definition [10] and Gibbs’ ensemble
theory [11]. Notwithstanding conceptual difficulties inherent to the foundations of statistical physics,
such as, e.g., irreversibility and the ergodic hypothesis [12,13], entropy acquired a meaningful statistical
character and the scope of its definitions could be extended beyond thermodynamics, thus paving the
way to information theory, as information content became a physical quantity per se, i.e., something
that can be measured [14]. Additionally, although quantum physics developed independently from
thermodynamics, it extended the scope of statistical physics with the introduction of quantum statistics,
led to the definition of the von Neumann entropy [15], and also introduced new problems related
to small, i.e., mesoscopic and nanoscopic systems [16,17], down to nuclear matter [18], where the
concepts of thermodynamic limit and ensuing standard definitions of thermodynamic quantities may
be put at odds.

Quantum physics problems that overlap with thermodynamics are typically classified into
different categories: ground state characterization [19], thermal state characterization at finite
temperature [20], the so-called eigenstate thermalization hypothesis [21–25], calculation of the
dynamics of either closed or open systems [26,27], state reconstruction from tomographic data [28], and
quantum system control, which, given the complexity for its implementation, requires the development
of new methods [29]. Among the rich variety of methods applicable to such problems, including,
e.g., mean-field approach [30], slave particle approach [31], dynamical mean-field theory [32],
nonperturbative methods based on functional integrals [33], we believe two large families of techniques
are of particular interest for numerical studies of many-body systems when strong correlations must be
accounted for: One is based on the quantum Monte Carlo (QMC) framework [34], which is powerful to
overcome the curse of dimensionality by using the stochastic estimation of high-dimensional integrals;
the other family encompasses methods that search solutions in the parametric set of functions, also
called ansatz. The most used ansatzes are based on different tensor network architectures [35,36]
as tensor network-based methods show state-of-the-art performance for the characterization of
one-dimensional strongly correlated quantum systems. One can solve either the ground-state
problem by using the variational matrix product state (MPS) ground state search [37] or a dynamical
problem using a time-evolving block decimation (TEBD) algorithm [38]. Quantum criticality of
one-dimensional systems also can be studied by using a more advanced architecture called multiscale
entanglement renormalization ansatz (MERA) [39]. The application of tensor networks is not restricted
to one-dimensional systems, and one can describe an open quantum dynamics [40], characterize the
numerical complexity of an open quantum dynamics [41,42], perform tomography of non-Markovian
quantum processes by using tensor networks [43,44], analyze properties of two dimensional quantum
lattices by using projected entangled pair states (PEPS) [45], or solve classical statistical physics
problems [46,47].
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The cross-fertilization of quantum physics and thermodynamics has benefited much from the
powerful quantum formalism and computational techniques; however, as thermodynamic concepts
evolved from intuitive/phenomenological definitions to classical-mechanics constructs, extended
with quantum physics and formalism when needed, thermodynamics, in spite of its undeniable
theoretical and practical successes, never managed to fully mature into a genuine fundamental
theory that firmly rests on strong basic postulates. On one hand, this led a growing number of
physicists to consider thermodynamics as incomplete, and on the other, to think quantum theory as
the underlying framework from which equilibrium and nonequilibrium thermodynamics emerge.
Quantum thermodynamics [48,49] is a fairly recent field of play, where new ideas are tested while
revisiting old problems related to cycles, engines, refrigerators, and entropy production, to name
a few [50,51]. Further, quantum technology is a burgeoning field at the interface of physics and
engineering, which seeks to develop devices able to harness quantum effects for computing and
secure communication purposes [52,53]. The wide scale development of such a kind of systems,
which irreversibly interact with an infinite environment, rests on the ability to properly simulate the
open quantum dynamics of their many-body properties and analyze coherence and dissipation at the
quantum level.

How fast quantum thermodynamics will progress is difficult to anticipate as there exist numerous
unsolved problems, especially those related to the proper characterization of the physical processes,
e.g., what qualifies as heat or work on ultrashort time and length scales, where averages become
irrelevant is unclear, and how the laws of thermodynamics may be systematically adapted still may be
debated. To mitigate risks of slow progress, one may resort to approaches that do not rely on models
of systems, but rather on data, the idea being to gain actual knowledge and understanding from data
irrespective of how complex the studied system is. Machine learning (ML) provides perfectly suited
tools for that purpose [54]. ML has a rather long history that can be dated back with the works of
Bayes (1763) on prior knowledge that can be used to calculate the probability of an event as formulated
by Laplace (1812). Much later (1913), Markov chains were proposed as a tool to describe sequences
of events, each being characterized by a probability of occurrence that depends on the actuality of
the previous event only. The main milestone is in 1950, with Turing’s machine that can learn [55],
shortly followed in 1951 by the first neural network machine [56]. Thanks to the huge increase in
computational power over the last two decades, ML is now used for a wide variety of problems [54],
and quantum machine learning now shows extraordinary potential for faster and more efficient than
ever treatment of complex quantum systems problems [57], one major challenge still residing in the
development of the hardware capable to harness and transform this potentiality into actual tool.

With the recent success in the field of deep learning, tools other than those based on tensor
networks work as well as an ansatz. Restricted Boltzmann machine has been successfully applied
as an ansatz to a ground state search, dynamics calculation, and quantum tomography [58–60], as
well as convolution neural network to the two-dimensional frustrated J1 − J2 model [61]. The deep
autoregressive model was applied very efficiently and elegantly to a ground state search of many-body
quantum system and to classical statistical physics as well [62,63]. It was also recently shown how
ML can establish and classify with high accuracy the chaotic or regular behavior of quantum billiards
models and XXZ spin chains [64]. Thus, it can be useful to transfer deep architectures from the field
of deep learning to the area of many-body quantum systems. A variational autoencoder (VAE) was
used for sampling from probability distributions of quantum states in [65]; in the present work, we
show that state-of-the-art generative architecture called conditional VAE can be applied to describe
the whole family of the ground states of a quantum many-body system. For that purpose, using
quantum tomography (albeit in an approximate fashion as discussed below) and reconstruction tools
developed in [66], we consider the paradigmatic Ising model in a transverse-field as an illustration of
the usefulness and efficiency of our approach. The use of VAE in such a problem is justified by the
simplicity of VAE training, as well as its expressibility [67].
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The article is organized as follows. In Section 2, we give a brief recap of the physics of the Ising
model in a transverse field. In Section 3, we develop our generative model in the framework of the
tensor network. Section 4 is devoted to the variational autoencoder architecture. The results are shown
and discussed in Section 5. The article ends with concluding remarks, followed a by a short series
of appendices.

2. Transverse-Field Ising Model

Among the rich variety of condensed matter systems, magnetic materials are a source of
many fruitful problems, whose studies and solutions inspired discussions and new models beyond
their immediate scope. The Kondo effect (existence of a minimum of electrical resistivity at low
temperature in metals due to the presence of magnetic impurities) is one such problem [68,69],
as it provides an excellent basis for studies of quantum criticality and absolute zero-temperature
phase transitions [70,71] and, also, on a more fundamental level, a concrete example of asymptotic
freedom [69]. Assuming infinite on-site repulsion, the single-impurity Anderson model [68,72]
was used to establish a correspondence between Hamiltonian language and path integral for the
development of nonperturbative methods in quantum field theory [73,74]. One other important model
is that of the Heisenberg Hamiltonian, defined for the study of ferromagnetic materials, and which,
assuming a crystal subjected to an external magnetic field B, reads [75] as

H = −∑
〈i,j〉

JijŜiŜj − h ·∑
j

Ŝj (1)

where, for ease of notations, we introduced h = gµBB, with g being the Landé factor and µB = eh̄/2me

being the Bohr magneton (e: elementary electric charge, and me: electron mass); Jij is a parameter
that characterizes the nearest-neighbors exchange interaction between electron spins on the crystal
sites i and j (the quantum spins Ŝi and Ŝj are vector operators whose components are proportional
to the Pauli matrices). For simplicity, one may consider Jij ≡ J constant. If J > 0, then the system is
ferromagnetic and if J < 0 the system is antiferromagnetic. Hereafter, we fix the electron’s magnetic
moment gµB = 1.

Although Equation (1) has a fairly simple form, the exact calculation of the partition function is

Z = Tr e−βH (2)

where β = 1/kBT is the inverse thermal energy, which is possible on the analytical level with the
mean-field approximation that simplifies the Hamiltonian (1), and also for one-dimensional systems,
one difficulty of the Heisenberg Hamiltonian being that the three components of a spin vector operator
do not commute. That said, Heisenberg’s Hamiltonian is very useful to, e.g., study spin frustration [76],
entanglement entropy [77], and also serve as a test case for density-matrix renormalization group
algorithms [78]. Under zero field, Heisenberg’s Hamiltonian is also a simplified form of the Hubbard
model at half-filling, thus including ferromagnetism in the scope of strongly correlated systems studies.

A particular, but very important, approximation of Heisenberg’s Hamiltonian, whose significance
lies in physics, especially for the study of critical phenomena, cannot be underestimated: the so-called
Ising model. In its initial formulation [79], Ising spins are N classical variables, which may take ±1 as
values and form a one-dimensional (1D) system characterized by free or periodic boundary conditions.
The classical partition function Z may be calculated analytically for the 1D Ising model, and quantities
such as the average total magnetization are obtained directly [80]:

M =
1
β

∂ ln Z
∂h

(3)
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In the present work, we consider a 1D quantum spin chain whose Hilbert space is given byH =
⊗N

i C2.
The system is described by the transverse-field Ising (TFI) Hamiltonian [81]:

H = −J ∑
〈i,j〉

σi
zσi+1

z + hx

N

∑
i=1

σi
x. (4)

where σi
α (α ≡ x, z) is the Pauli matrix for the α-component of the i-th spin in the chain, and hx is the

magnetic field applied in the transverse direction x. In this case, the spins are no longer the classical
Ising ones and the two terms that compose the Hamiltonian H do not commute, therefore requiring a
full quantum approach. An example of a real-world system that may be studied as a quantum Ising
chain is cobalt niobate (CoNb2O6); in this case, the spins that undergo the phase transition as the
transverse field varies are those of the Co2+ ions [82]. The spin states are denoted |+〉i and |−〉i at ion
site i. There are two possible ground states: when all N spins are in the state |+〉 or in the state |−〉,
i.e., when they are all aligned, which defines the ferromagnetic phase.

The phase transition from the ferromagnetic phase to the paramagnetic phase that we speak of
now is of a quantum nature, and not of a thermal nature, as here it is driven only by the external
magnetic field. More precisely, when the transverse field hx is applied with sufficient strength, the spins
align along the x direction, and the spin state at site i is given as the superposition (|+〉i + |−〉i) /

√
2,

which is nothing else but the eigenstate of the x-component of the spin. Therefore, in this particular
case, there is no need to raise the temperature of the system initially in the ferromagnetic phase beyond
the Curie temperature to make it a paramagnet: the many-body system remains in its ground state,
but its properties have changed. Further, note that unlike for the ferromagnetic phase, the quantum
paramagnetic phase has spin-inversion symmetry. An insightful discussion on quantum criticality can
be found in Reference [83].

Now, we briefly comment on the quantity β = 1/kBT in the context of quantum phase transitions,
which, strictly speaking, can only occur at temperature T = 0 K. In fact, close to the absolute zero,
where β→ ∞, their signatures can be observed as quantum fluctuations dominate thermal fluctuations
in the criticality region, where the quantum critical point lies. The imaginary time formalism [84],
where exp(−βH) is interpreted as an evolution operator, and the partition function Z as a path integral,
provides a way to map a quantum problem onto a classical one with the introduction of the imaginary
time β resulting from a Wick rotation in the complex plane, thus yielding one extra dimension to
the model. In classical thermodynamics, to observe a phase transition in a system requires that its
size (i.e., the number of constituents N) tends to infinity so that the order parameter is non-analytic
at the transition point; so, for the quantum transition, the thermodynamic limit entails the limit
β → ∞ also: the 1D TFI model is mapped onto an equivalent 2D classical Ising model [85]. The
imaginary time formalism permits implementation of classical Monte Carlo simulations to study
quantum systems. Further discussion, including the sign problem for the quantum spin-1/2 system, is
available in Reference [4].

We have chosen the transverse-field Ising model as an illustrative case for our study for several
reasons. First, as this system is 1-dimensional, we can apply an MPS variational ground state solver [37],
and therefore obtain the ground state solution in MPS representation. We can then perform fast and
exact sampling for generation of large data sets for the training of the VAE. Next, this model can be
solved analytically, which allows us to adequately benchmark our results. Finally, this model shows
a nontrivial behavior around the quantum phase transition point at hx = 1, and thus constitutes an
interesting example to apply a VAE.

3. Generative Model as a Quantum State

Many-body quantum physics is rich in high-dimensional problems. Often, however, with
increasing dimensionality, these become extremely difficult or impossible to solve. One solving
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method is through the reformulation of the quantum mechanical problem as a statistical problem,
when possible. This way, machine learning can be used to effectively solve such a problem, as
machine learning is a tool for the solving of high-dimensional statistical problems [86]. Probabilistic
interpretation allows for using powerful sampling-based methods that work efficiently with high
dimensional data.

An example of the reformulation of a quantum problem as a statistical problem is with
informationally complete (IC) positive-operator valued measures (POVMs) [87]. POVMs describe
the most general measurements of a quantum system. Each particular POVM is defined by a set
of positive semidefinite operators Mα, with the normalization condition ∑α Mα = 1, where 1 is the
identity operator. The fact that the POVM is informationally complete means that using measurement
outcomes one can reconstruct the state of a system with arbitrary accuracy.

The probability of measurement outcome for a quantum system with the density operator ρ is
governed by Born’s rule: P[α] = Tr($Mα), where {Mα} is a particular POVM and α is an outcome result.
In other words, any density matrix can be mapped on a mass function, although not all mass functions
can be mapped on a density matrix [88,89]. Some mass functions lead to non-positive semidefinite
“density matrices”, which is not physically allowed. As such, quantum theory is a constrained version
of probability theory. For a many-body system, these constraints can be very complicated, and direct
consideration of quantum theory as a constrained probability theory is not fruitful. However, if one can
access the samples of the IC POVM induced mass function, which is by definition physically allowed,
this mass function can be reconstructed using generative modeling [66,67]. Samples can be obtained
either by performing generalized measurements over the quantum system or by in silico simulation.

In the present work, we simulate measurements of the ground state of a spin chain with the TFI
Hamiltonian, Equation (4). As a local (one spin) IC POVM, we use the so-called symmetric IC POVM
for qubits (tetrahedral) POVM [90]:

Mα
tetra =

1
4
(1+ sασ) , α ∈ (0, 1, 2, 3), σ =

(
σx, σy, σz

)
,

s0 = (0, 0, 1), s1 =

(
2
√

2
3

, 0,−1
3

)
, s2 =

(
−
√

2
3

,

√
2
3

,−1
3

)
, s3 =

(
−
√

2
3

,−
√

2
3

,−1
3

)
. (5)

Note that the many-spin generalization of local IC POVM can easily be obtained by considering the
tensor product of local ones:

Mα1,...,αN
tetra = Mα1

tetra ⊗Mα2
tetra ⊗ · · · ⊗MαN

tetra. (6)

To simulate measurements outcome under the IC POVM described above, we implement the
following numerical scheme: First, we run a variational MPS ground state solver to obtain the ground
state of the TFI model in the MPS form:

Ωi1,i2,...,iN = ∑
β1,β2,...,βN−1

A1
i1β1

A2
β1i2β2

. . . AN
βN−1iN

(7)

where we use the tensor notation instead of the bra-ket notation for further simplicity, and we obtain
the MPS representation of IC POVM induced mass function:

P[α1, α2, . . . , αN ] = ∑
δ1,δ2,...,δN−1

πα1δ1 πδ1α2δ2 . . . πδN−1αN ,

πδn−1αnδn = π
βn−1β′n−1︸ ︷︷ ︸

multi−index δn−1

αn βnβ′n︸ ︷︷ ︸
multi−index δn

= [Mtetra]
αn
ij An

βn−1 jβn
[An]∗β′n−1iβ′n (8)

whose diagrammatic representation [35] is shown in Figure 1. Next, we produce a set of samples of
size M: {αi

1, αi
2, . . . , αi

N}M
i=1 from the given probability. The sampling can be efficiently implemented
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as shown in Appendix B. We call this set of samples (outcome measurements) a data set, which
may then be used to train a generative model p[α1, α2, . . . , αN |θ] to emulate the true mass function
P[α1, α2, . . . , αN ]. Here, θ is the set of parameters of the generative model, which is trained
by maximizing the logarithmic likelihood L(θ) = ∑M

i=1 log p[αi
1, αi

2, . . . , αi
N |θ] with respect to the

parameters θ [91]. The trained generative model fully characterizes a quantum state. The density
matrix is obtained by applying an inverse transformation to the mass function [92]:

$ = ∑
α1,α2,...,αN

p[α1, α2, . . . , αN |θ][Mα1
tetra]

−1 ⊗ [Mα2
tetra]

−1 ⊗ · · · ⊗ [MαN
tetra]

−1,

[Mα
tetra]

−1 = ∑
α′

T−1
αα′M

α′
tetra, (9)

Tαα′ = Tr
(

Mα
tetraMα′

tetra

)
,

the diagrammatic representation of which is given in Figure 2. Note that the summation included in
the density matrix representation is numerically intractable, but we can estimate it using samplings
from the generative model.

Figure 1. Tensor diagrams for (a) building blocks, (b) matrix product state (MPS) representation of
measurement outcome probability, and (c) its subtensor.

Figure 2. Tensor diagrams for (a) building blocks and (b) inverse transformation from a mass function
to a density matrix.

Our goal is to use a generative model as an effective representation of quantum states to calculate
the mean values of observables such as, e.g., two-point and higher-order correlation functions. An
explicit expression of the two-point correlation function obtained by sampling from the trained
generative model is shown in Figure 3. To obtain the ground state of the TFI model, we use a
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variational MPS ground state search, and we pick the bond dimension of MPS equal to 25 and perform
5 DMRG sweeps to get an approximate ground state in the MPS form. We use the variational MPS
solver provided by the mpnum toolbox [93].

Figure 3. Tensor diagrams representing calculation of two-point correlation function.

4. Variational Autoencoder Architecture

In our work, we use a conditional VAE [94] to represent quantum states. A conditional VAE is a
generative model expressed by the following probability distribution,

p[x|θ, h] =
∫

p[x|z, θ, h]p[z]dz, (10)

where x is the data we want to simulate; θ represents the VAE parameters, which can be tuned to get
the desired probability distribution over x; h is the condition; and z is a vector of latent variables. In
our case, x is the quantum measurement outcome in one-hot notation. A collection of measurement
outcomes is a matrix of size N× 4, where N is the number of particles in the chain and 4 is the number
of possible outcomes of the tetrahedral IC POVM, which is either [1000], [0100], [0010], or [0001]. h is
the external magnetic field. The probability distribution p[x|z, θ, h] can thus be written as

p[x|z, θ, h] =
N

∏
i=1

4

∏
j=1

πij(z, h, θ)xij , (11)

where πij(z, h, θ) is the neural network in our architecture, and, more precisely, πij is the probability of
the jth outcome of the POVM for the ith spin with ∑N

j=1 πij = 1 and πij ≥ 0. The quantity p[z] is the

prior distribution over latent variables, which is simply given by N (0, I) = 1√
2π

N exp
{
− 1

2 zTz
}

, with

I being the identical covariance matrix. We take the number of latent variables equal to the number of
spins, N. Essentially, we want to optimize our VAE so that its probability matches the probability of
the quantum measurement outcomes as closely as possible. This can be done using the well-known
maximum likelihood estimation:

θMLE = argmax
θ

M

∑
i=1

log(p[xi|θ, h]), (12)

where {xi}M
i=1 is the data set of outcome measurements. We cannot simply maximize this function

using, for example, a gradient descent method, due to the presence of hidden variables in the structure
of this function. However, we can overcome this problem by using the Evidence Lower Bound
(ELBO) [95] and the reparametrization trick shown in [96]. The detailed description of the procedure is
given in the Appendix A.
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Once trained, the VAE is a simple and efficient way to produce new samples from its probability
distribution. It can be done in three steps. First, we produce a sample from the prior distribution
p[z] = N (0, I). Next, we feed this sample and the external magnetic field value into the neural network
decoder πij(z, θ, h), which returns the matrix of probabilities. Finally, we sample from the matrix
of probability πij(z, θ, h) to generate “fake” outcome measurements. A visual representation of the
sampling method is shown in Figure 4.

Figure 4. Sampling scheme with the trained variational autoencoder (VAE).

In many problems, gradients of observables with respect to different model parameters yield
quantities of interest. For example, one may consider the magnetic differential susceptibility tensor
χij = ∂µi/∂hj. It can be done efficiently by using backpropagation through the VAE architecture but,
as samples from the VAE are discrete, a straightforward backpropagation is impossible. In recent
papers [97–99], a method called the Gumbel-softmax was introduced to overcome this difficulty
through continuous relaxation. The spirit, and therefore the physical meaning of the method, may
be understood with a short discussion of the so-called simulated annealing technique, which is often
used to solve discrete optimization problems. Broadly speaking, the simulated annealing rests on
the introduction of a parameter that acts as an artificial “temperature”, which varies continuously
to modify the state of the system in search of a global optimum. Starting from a given state, for
some values of the temperature, if the system mostly explores the neighboring states, moving among
them and possibly in the vicinity of the “better” ones, i.e., with lower energy, it may get and remain
close to a local optimum, or local energy minimum in the thermodynamic language; however, to
avoid remaining in a locally optimal region, “bad” moves leading to worse (i.e., higher energy) states
are useful to explore the temperature space more completely improving the chance to find a global
optimum or at least to be near it. To each move an energy variation, ∆E, is associated; it is the
continuous character of the fictitious temperature that makes the discrete problem continuous as the
probability exp(−∆E)/kBT of acceptance of a state is continuous. Although this approach has been
known for a long time [100], it remains topical and under active development [101,102]. The method
of continuous relaxation we use also exploits such an artificial temperature to make discrete samples
continuous.

The Gumbel-softmax trick, consists of three steps:

1. We calculate the matrix of log probabilities, taking element-wise logarithm of decoder network

output: log Π =


log π11 log π12 . . . log π1N
log π21 log π22 . . . log π2N
log π31 log π32 . . . log π3N
log π41 log π42 . . . log π4N

,

2. We generate a matrix of samples from the standard Gumbel distribution G and sum it up
element-wise with the matrix of log probabilities log Π: Z = log Π + G,

3. Finally, we take the softmax function of the result from the previous step: xfake
soft (T) =

softmax(Z/T), where T is a temperature of softmax. The softmax functions is defined by the

expression softmax(xij) =
exp(xij)

∑i exp(xij)
.
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The quantity xfake
soft (T) has a number of remarkable properties: first, it becomes an exact one-hot

sample when T → 0; second, we can backpropagate through soft samples for any T> 0. The method is
validated in the next section.

Before we proceed to the presentation and discussion of our results, and to better see the added
value of the VAE, it is instructive to compare MPS and VAE (NN) in terms of expressibility, i.e.,
“estimation of MPS states via incomplete local measurements” vs “VAE reconstruction”. As the state of
the system is assumed to be unknown, and some measurement outcomes are only known for different
magnetic fields, these outcomes are too few for exact tomography. Further, it is known that for a
given bond dimension d, the entangled entropy cannot be larger than log(d); in other words, the bond
dimension of MPS places an upper bound on the entangled entropy. Thus, the MPS representation
describes well only quantum states with low entangled entropy, i.e., quantum states which satisfy
the area law [103,104]. The situation with neural network quantum states (NQS) is different: there is
no such a restriction for NQS. Moreover, the existence of NQS with volume-law entanglement [105]
shows a promising development of new, and possibly powerful, NN-based approaches to representing
many-body quantum systems.

5. Results

Here, we show that the VAE trained on a set of preliminary measurements is capable to describe
the physics of the whole family of TFI models. We validate our results by comparing VAE-based
calculations with numerically exact calculations performed by variational MPS algorithm [35].
Additionally, to assess the capabilities of the VAE, we consider a spin chain with 32 spins. We
calculate the MPS representation of the ground state and extract information from it by performing
measurements over the state. The external field in the x-direction is varied from 0 to 2 with a step of
0.1. The VAE is trained on a data set (TFI measurement outcomes) consisting of 10.5 million samples in
total: 21 external fields hx with 500,000 samples per field.

To evaluate the VAE performance, we simply compare directly the numerically exact correlation
functions with those reconstructed with our VAE. Those of n = 1, . . . , 32, 〈σ1

z σn
z 〉, and 〈σ1

x σn
x 〉 are shown

in Figures 5 and 6, respectively, and we compare the numerically exact and the VAE-based average
magnetizations along x, given by 〈σn

x 〉 for each position of the spin along the chain, in Figure 7. We see
that the VAE captures well the physics of the one- and two-point correlation functions. Figure 8 shows
the total magnetizations, µx and µz, in the x and z directions, respectively, with µi =

1
N ∑N

j=1〈σ
j
i 〉, and

we see that the VAE is a tool well-suited for the description of the quantum phase transition and
also finite-size effects: whereas for the infinite TFI chain, i.e., in the thermodynamic limit, the phase
transition is observed at hx = 1, and the finite size of the system yields a shift of the critical point at
hx ≈ 0.9. Also note that in the T → 0 limit, the magnetization M defined in Equation (3) coincides
exactly with the magnetization µ defined above.

A backpropagation algorithm combined with the Gumbel-softmax trick may be used to evaluate
the derivative of an output over an input. We use this approach to calculate some elements of a
magnetic differential susceptibility tensor χij = ∂µi/∂hj, in particular, χxx and χzx shown in Figure 9.
The backpropagation-based magnetic differential susceptibility agrees well with the numerically
calculated one (central differences). The main advantage of the backpropagation-based calculation is
its numerical efficiency. The VAE may thus be trained with an arbitrary set of external parameters, i.e.,
not only hx, but also hy and hz, and yield the full differential susceptibility tensor.
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Figure 5. Two-point correlation function 〈σz
1 σz

n〉 for different values of external magnetic field hx.

Figure 6. Two-point correlation function 〈σx
1 σx

n 〉 for different values of external magnetic field hx.

Figure 7. Average magnetization per site along x for different values of external magnetic field hx.
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Figure 8. Total magnetization along x and z axes for different values of external magnetic field hx.
The location of the critical region is slightly shifted towards smaller values of hx due to the finite size of
the chain.

Figure 9. Backpropagation-based and numerical-based (central differences) values of χxx and χzx for
different values of external magnetic field hx. Both derivatives slightly fluctuate due to VAE error.

At this stage, we could conclude that the VAE is capable to describe the physics of one- and
two-point correlation functions, and therefore the TFI physics. However, notwithstanding the ability
of the VAE to yield correlation functions that fit well numerically-exact correlation functions, this is
not yet a full proof that it represents quantum states well. To address this point, we consider a small
spin chain (five spins with TFI Hamiltonian and an external magnetic field hx = 0.9) for which we
calculate both the exact mass function and that estimated from VAE samples. Figure 10 shows that the
VAE result again fits the numerically exact mass function with high accuracy. Further, we calculate the

Bhattacharyya coefficient [106]: BC(pvae, pexact) = ∑α pexact[α]

√
pvae[α]

pexact[α]
as a function of the external

magnetic field hx. Results reported in Figure 11 show that BC(pvae, pexact) > 0.99 over the whole hx

range, which thus proves that the VAE represents a quantum state well, at least for small spin chains.
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Figure 10. Comparison of two positive-operator valued measure (POVM)-induced mass functions
(P[α] = Tr(ρMα)) for a chain of size 5: numerically exact mass function and reconstructed from VAE
samples mass function. A sequence of indices α has been transformed into a single multi-index. Indices
have been ordered to put numerically exact probability in descending order. A good agreement
between the mass functions is observed.

0 . 0 0 . 4 0 . 8 1 . 2 1 . 6 2 . 00 . 9 9 0

0 . 9 9 2

0 . 9 9 4

0 . 9 9 6

0 . 9 9 8

1 . 0 0 0

BC
(p v

ae, 
p ex

act
)

h x
Figure 11. Dependence of the classical fidelity on the external magnetic field. A high predictive
accuracy is demonstrated for the whole set of fields.

The structure of the entanglement is an another interesting subject that we would like to validate.
The essence of entanglement between two parts of the chain, which is split into n left spins and N − n
right spins, can be described by the Réniy entropy of the left part of this chain: Sα = 1

1−α log Trρα
n,

where ρn is the density matrix of the first n spins in the chain. We estimate the Rényi entropy of order
2: S2 = − log(Trρ2), as it can be efficiently calculated from the matrix product representation of the
density matrix and from the VAE samples. However, as sample-based estimation of the entangled
entropy has a variance that grows exponentially with the number of spins, we consider a small spin
chain of size 10. A direct comparison between the numerically exact and the VAE-based entangled
entropies is shown for different values of n in Figure 12. For this particular case, the VAE clearly
overestimates the entangled entropy. This undesirable effect is indeed observed for all sizes of spin
chains, and even for the spin chain of size 5, for which we have an excellent agreement between the
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numerically exact mass function and the VAE-based result. The entropy S2 is sensitive to small errors
in the mass function, but it also appears that the primary method of state reconstruction used in the
present work has the following shortcomings.

0 2 4 6 8 1 00 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

n

 n u m e r i c a l l y  e x a c t  e n t r o p y
 e n t r o p y  e s t i m a t e d  f r o m  V A E  s a m p l e s

Figure 12. Comparison of the numerically exact Rényi entropy and that reconstructed from the VAE
samples for different values of n.

1. If one reconstructs a pure state, the VAE smooths the spectrum of the density matrix and
approximates the pure state by a slightly mixed state, as illustrated with a simple example
in Figure 13.

2. The VAE does not account the positivity constraints, which yields negative eigenvalues for the
density matrix. These negative eigenvalues even appear in the spectrum of the reduced density
matrix, as shown in Figure 13.
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n
Figure 13. Comparison of numerically exact spectra of density matrices and VAE-estimated spectra.
The ground state spectra of the spin chain of size 5 with an external magnetic field h = 0.9 is shown on
the right panel, and the spectra of the reduced density matrix (last 3 spins) are shown on the left panel.
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These drawbacks hinder a robust description of the entanglement structure. In addition to the
mismatch between the Rényi entropies (S2), the entropy of a reduced density matrix can be larger than
the entropy of the whole density matrix, which is erroneous. This particular issue, now identified, may
be resolved by introduction of a particular regularization term into the VAE loss. This is the object of
future work.

Finally, it is also instructive to comment on the memory costs of the use of either MPS or VAE,
which is somehow a tricky question, as it is unclear for any NN-based architecture what numbers of
layers and neurons per layer are needed because there is no criterion for NN, whereas for the MPS
and tensor networks, there is one. Thus, a direct comparison of NN architectures and tensor networks
(MPS, etc.) is certainly a difficult task, and in our opinion, likely an impossible one. At this stage, we
may say the following. For a given spin chain of size N and maximal entangled entropy between
subchains S = −Trρ log ρ, the MPS requires to store approximately 2N exp (2S) complex numbers; this
follows from the fact that one then considers N subtensors of size exp (S)× 2× exp (S), where exp (S)
is the typical (approximate) size of bond dimension. For a VAE, although it seems that there are no
entropic restrictions, the proper quantitative characterization of the “neural network” complexity of
a quantum state still is an open question (for tensor networks, it is the entangled entropy). A VAE
contains two neural networks: encoder and decoder. To store a feed-forward neural network, one
has to store ∑i li−1 × li + li real numbers, with li being the number of neurons in the layer number
i. In general, one may conclude that the MPS is preferable for low entangled states, and the VAE is
preferable for highly entangled states.

6. Conclusions

The thermodynamic study of complex many-body quantum systems still requires the
development of new methods, including those that may stem from machine learning. The quantum
Ising model, which is of particular importance for practical purposes [107,108], provides a rich
framework to test these new methods that are also useful to obtain deeper physical insight into
its nonequilibrium dynamics properties such as, e.g., quantum fluctuations propagation [109]. In the
present work, we studied the ability of a VAE to reconstruct the physics of quantum many-body
systems, using the transverse-field Ising model as a nontrivial example. We used the IC POVM to
map the quantum problem onto a probabilistic domain and vice versa. We trained the VAE on a
set of samples from the transformed quantum problem, and our numerical experiments show the
following results.

• For a large system (32 spins), the VAE’s reliability is verified by comparing one- and two-point
correlation functions.

• For small system (five spins), the VAE’s reliability is verified by direct comparison of
mass functions.

• The VAE can capture a quantum phase transition.
• The response functions (magnetic differential susceptibility tensor) can be obtained using

backpropagation through VAE.
• Despite the very good agreement between the VAE-based mass function and the true mass

function, the VAE shows limited performance with the determination of the entangled entropy.
This is point is the object of further development.

Our method can be extended to any other thermodynamic system by introduction of the
temperature as an external parameter, thereby considering also thermal phase transitions. As one can
calculate different thermodynamic quantities by applying backpropagation through VAE, a worthwhile
and highly complex system to study would be water under its difference phases, so as to test recent
new ideas and models [110,111].

Our code for our numerical experiments is available on the GitHub repository website [112].
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Abbreviations

The following abbreviations are used in this manuscript.

VAE Variational Autoencoder
MPS Matrix product state
TFI Transverse-field Ising
IC Informationally incomplete
POVM Positive-operator valued measure
ELBO Evidence lower bound
NN Neural network
KL Kullback–Leibler
DMRG Density matrix renormalization group

Appendix A. VAE: Training and Implementation Details

When training our VAE, we find the arg maximum of the logarithmic likelihood L(θ) w.r.t. its
parameters θ:

θMLE = argmax
θ

L(θ) = argmax
θ

log(p[x|θ, h]), (A1)

Equation (A1) cannot directly be evaluated, because of hidden variables in the structure of p[x|θ, h].
We can, however, simplify this problem by introducing a distribution over hidden variables z.
Remember that the probability distribution can be described as p[x|θ, h] =

∫
p[x|z, θ, h]p[z]dz, so

that the expression for the log likelihood becomes

L(θ) = log
(∫

p[x|z, θ, h]p[z]dz
)

. (A2)

We can then use a mathematical trick that might seem counterintuitive at first glance, but ultimately

becomes quite powerful. We multiply the function inside the integral by q[z|x,θ̃,h]
q[z|x,θ̃,h]

= 1, where q[z|x, θ̃, h]

is some arbitrary distribution that can be adjusted with θ̃, so that

L(θ) = log
(∫

p[x|z, θ, h]p[z]dz
)
= log

(∫ q[z|x, θ̃, h]
q[z|x, θ̃, h]

p[x|z, θ, h]p[z]dz
)

= log
(
Eq[z|x,θ̃,h]p[x|z, θ, h]

p[z]
q[z|x, θ̃, h]

)
(A3)

where the quantity E f [x] denotes the expectation value w.r.t some distribution f [x]. We can then use
Jensen’s inequality to show that

log
(
Eq[z|x,θ̃,h]p[x|z, θ, h]

p[z]
q[z|x, θ̃, h]

)
≥ Eq[z|x,θ̃,h] log

(
p[x|z, θ, h]

p[z]
q[z|x, θ̃, h]

)
. (A4)
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where the rhs of this inequality is the lower bound of the log likelihood, as it will always be greater
than or equal to the lower bound, and equality can always be achieved by a proper choice of q if it is in
a complex enough family.

Maximizing the lower bound is equivalent to maximizing the log likelihood. We can decompose
this lower bound term into two terms:

L(θ) ≥ ELBO(θ, θ̃) = Eq[z|x,θ̃,h] log (p[x|z, θ, h])−
∫

q[z|x, θ̃, h] log
q[z|x, θ̃, h]

p[z]
dz (A5)

Note that the second term is equivalent to the Kullback–Leibler divergence KL(q[z|x, θ̃, h] || p[z]).
In our case, we picked the particular distribution forms that reflect the structure of our problem:

p[x|z, θ, h] =
N

∏
i=1

4

∏
j=1

πij(z, θ, h)xij ,

q[z|x, θ̃, h] = N (µi(x, θ̃, h), Diag(σ2
i (x, θ̃, h))), (A6)

P[z] = N (0, I)

where µi and σi are given by the encoder neural network, and πij is given by the decoder neural
network, with ∑4

j=1 πij = 1 and πij ≥ 0, which can be achieved by applying the softmax funtion to the
output of the neural network. Now, we can use the reparametrization trick to change the variable in
the integral z = σj(x, θ̃, h)ε + µj(x, θ̃, h), where ε j ∼ N (0, I), to simplify this expression to

ELBO(θ, θ̃) =
N

∑
i=1

4

∑
j=1

xij
〈
log
(
πij(σi(x, θ̃, h)ε + µi(x, θ̃, h), θ, h)

)〉
ε j∼N (0,I)

−
N

∑
i=1

(
log σi(x, θ̃, h)−

σ2
i (x, θ̃, h) + µ2

i (x, θ̃, h)− 1
2

)
. (A7)

The first term is the cross-entropy, which pushes the probability distribution to be as close as
possible to the data. The second term is the regularizer, which forces the latent variable z not to diverge
too much from the normal distribution N (0, I), so that the VAE can be used to generate new data
once it is trained. Note that both xij and σi must be positive. Instead of adding a constraint to the
VAE, which would be difficult to do, we train the VAE for the variables Π = log π and ξ = 2 log σ.
Equation (A7) then becomes

ELBO(θ, θ̃) =
N

∑
i=1

4

∑
j=1

xij

〈
Πij(eξi(x,θ̃,h)/2ε + µi(x, θ̃, h), θ, h)

〉
ε j∼N (0,I)

−1
2

N

∑
i=1

(
ξi(x, θ̃, h)− eξi(x,θ̃,h) − µ2

i (x, θ̃, h) + 1
)

. (A8)

Now, ELBO(θ, θ̃) can be effectively optimized using gradient descent methods, averaging over
ε can be done by sampling. Generalizing to a data set of size M: {xk}M

k=1 can be easily done and is
shown by

ELBO(θ, θ̃) =
M

∑
k=1

N

∑
i=1

4

∑
j=1

xk
ij

〈
Πij(eξi(xk ,θ̃,h)/2ε + µi(xk, θ̃, h), θ, h)

〉
ε j∼N (0,I)

−1
2

M

∑
k=1

N

∑
i=1

(
ξi(xk, θ̃, h)− eξi(xk ,θ̃,h) − µ2

i (xk, θ̃, h) + 1
)

. (A9)

A visual representation of the VAE architecture is shown in Figure A1.
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Figure A1. Architecture of the variational autoencoder.

To solve the optimization problem, we use Adam optimizer [113] with standard parameters
(lr = 0.001, β1 = 0.9, β2 = 0.999). For the encoder and decoder, we use fully-connected neural
networks with two hidden layers and 256 neurons on each. We train the VAE using batches of size
100,000 samples and for 750 epochs.

Appendix B. Sampling from POVM-Induced Mass Function

The mass function induced by POVM P[α1, α2, . . . , αN ] has a form of matrix product state. Thus,
one can easily calculate any marginal mass function because a summation over any α can be done
locally. Any conditional mass functions can be also calculated by using marginal mass functions. Thus,
one can calculate chain decomposition of the whole mass function:

P[α1, α2, . . . , αN ] = P[αN ]P[αN−1|αN ]P[αN−2|αN−1, αN ] . . . P[α1|α2, . . . , αN ] (A10)

With this decomposition, one can produce a sample α̃N from P[αN ] first, then a sample α̃N−1 from
P[αN−1|α̃N ], and continue up to the end of the chain. The obtained set {α̃1, α̃2, . . . , α̃N} is a valid
sample from the mass function.
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