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Abstract: In this article, we introduce a new general family of distributions derived to the
truncated inverted Kumaraswamy distribution (on the unit interval), called the truncated inverted
Kumaraswamy generated family. Among its qualities, it is characterized with tractable functions,
has the ability to enhance the flexibility of a given distribution, and demonstrates nice statistical
properties, including competitive fits for various kinds of data. A particular focus is given on a
special member of the family defined with the exponential distribution as baseline, offering a new
three-parameter lifetime distribution. This new distribution has the advantage of having a hazard
rate function allowing monotonically increasing, decreasing, and upside-down bathtub shapes.
In full generality, important properties of the new family are determined, with an emphasis on the
entropy (Rényi and Shannon entropy). The estimation of the model parameters is established by the
maximum likelihood method. A numerical simulation study illustrates the nice performance of the
obtained estimates. Two practical data sets are then analyzed. We thus prove the potential of the new
model in terms of fitting, with favorable results in comparison to other modern parametric models of
the literature.

Keywords: inverted Kumaraswamy distribution; truncated distribution; moments; entropy;
maximum likelihood estimation; simulation; data analysis

MSC: 60E05; 62E15; 62F10

1. Introduction

The inverted Kumaraswamy distribution was introduced by [1], with the motivation to offer a
new flexible lifetime distribution with tractable distributional properties. As suggested by its name,
it corresponds to the distribution of the random variable V = (1−U)/U, where U follows the standard
Kumaraswamy distribution (more detail on the Kumaraswamy distribution can be found in the former
work of [2]). Thus, it is characterized by the cumulative density function (cdf) given by

G∗(x; a, b) =
[
1− (1 + x)−a]b , x > 0, (1)

with a, b > 0. Upon differentiation, the corresponding probability density function (pdf) is given by

g∗(x; a, b) = ab(1 + x)−a−1 [1− (1 + x)−a]b−1 , x > 0, (2)
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From an analytical point of view, it also corresponds to a special case of the exponentiated Lomax
distribution introduced by [3] (with λ = 1), having a great success in data analysis over the last decade.
Having in mind the aim to explore new statistical horizons, we aim to benefit from the qualities
of the inverted Kumaraswamy distribution to create a new general family of distributions. That is,
we propose to truncate the inverted Kumaraswamy distribution on the unit interval and to compose it
with a general cdf of a continuous distribution. Such a truncation technique has been employed with
success to define new general families from well-established distributions on the semi-interval (0,+∞).
See, for instance, [4] who introduced the truncated Fréchet-G family (by using the truncated Fréchet
distribution on (0, 1)), [5] who proposed the truncated Weibull-G family (by using the truncated
Weibull distribution on (0, 1)), and [6] who developed the truncated Burr-G family (by using the
truncated Burr distribution on (0, 1)). However, to the best of our knowledge, the consideration of the
truncated inverted Kumaraswamy distribution on (0, 1) in this setting remains new and motivates this
study. For the mathematical foundation, the cdf of the truncated inverted Kumaraswamy distribution
on (0, 1) is given by

R(x; a, b) =
G∗(x; a, b)− G∗(0; a, b)
G∗(1; a, b)− G∗(0; a, b)

=
1

(1− 2−a)b

[
1− (1 + x)−a]b , x ∈ (0, 1), (3)

Thus, the restriction on the support implies an adjustment on the normalization constant depending
on the two shape parameters a and b, which is now (1− 2−a)−b. Then, for any cdf of a continuous
distribution G(x; ξ), by a natural composition technique, we introduce the cdf given by

F(x; a, b, ξ) = R(G(x; ξ); a, b) =
1

(1− 2−a)b

[
1− (1 + G(x; ξ))−a]b , x ∈ R, (4)

defining the truncated inverted Kumaraswamy generated (TIK-G) family of distribution. One can
notice that the TIK-G family is defined with a simple cdf, offering a tractable alternative to other
families sometimes defined with sophisticated cdf. This study discusses the main distributional
and practical properties of the TIK-G family, with an emphasis on entropy, as well as its potential
of applicability. We also introduce a special member of the family defined with the exponential
distribution as baseline, forming a new three-parameter lifetime distribution called truncated inverted
Kumaraswamy exponential (TIKEx) distribution. Among its nice features, by the consideration of two
practical data sets, we show that the related model has better fits to 9 other well-established models,
proving the importance and interest of the TIK-G family of distribution in a data analysis setting.

The rest of the article is organized as follows. The main distributional functions related to the
TIK-G family are presented in Section 2, with discussion on special members of interest. Section 3 is
devoted to the mathematical properties of the TIK-G family, with a focus on the entropy. In Section 4,
the maximum likelihood method is employed to obtain the estimates of the model parameters.
In Section 5, we apply a special TIK model to two practical data sets, with fair comparison to other
well-established models. We provide a conclusion in Section 6.

2. The TIK-G Family

Here, we present the main functions related to TIK-G family, a short list of special members, with
discussion on the special member of the family defined with the exponential distribution as baseline.

2.1. Main Functions

We recall that the TIK-G family is defined by the cdf given by (4). The corresponding survival
function (sf) is given by

S(x; a, b, ξ) = 1− F(x; a, b, ξ) = 1− 1
(1− 2−a)b

[
1− (1 + G(x; ξ))−a]b , x ∈ R, (5)
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Upon differentiation of F(x; a, b, ξ) according to x, the corresponding pdf is given by

f (x; a, b, ξ) =
ab

(1− 2−a)b g(x; ξ)(1 + G(x; ξ))−a−1 [1− (1 + G(x; ξ))−a]b−1 , x ∈ R, (6)

where g(x; ξ) is the pdf corresponding to G(x; ξ).
The corresponding hazard rate function (hrf) is given by

h(x; a, b, ξ) =
f (x; a, b, ξ)

S(x; a, b, ξ)
=

abg(x; ξ)(1 + G(x; ξ))−a−1 [1− (1 + G(x; ξ))−a]
b−1

(1− 2−a)b − [1− (1 + G(x; ξ))−a]b
, x ∈ R, (7)

The corresponding cumulative hazard rate function (chrf) is given by

H(x; a, b, ξ) = − log[S(x; a, b, ξ)]

= b log(1− 2−a)− log
{
(1− 2−a)b −

[
1− (1 + G(x; ξ))−a]b

}
, x ∈ R, (8)

The corresponding quantile function (qf), say Q(u; a, b, ξ), is characterized by the equation
F(Q(u; a, b, ξ); a, b, ξ) = u, for u ∈ (0, 1). After some algebra, we obtain

Q(u; a, b, ξ) = QG

{[
1− u1/b(1− 2−a)

]−1/a
− 1; ξ

}
, u ∈ (0, 1), (9)

where QG(u; ξ) denotes the qf corresponding to G(x, ξ).
Among all the important quantities related to the qf, one can mention the median defined by

Med = Q(1/2; a, b, ξ) and the interquartile range defined by IQR = Q(3/4; a, b, ξ)−Q(1/4; a, b, ξ).
Upon differentiation of Q(u; a, b, ξ) according to u, the corresponding quantile density function

(qdf) is given by

q(u; a, b, ξ) =
1
ab

u1/b−1(1− 2−a)
[
1− u1/b(1− 2−a)

]−1/a−1
qG

{[
1− u1/b(1− 2−a)

]−1/a
− 1; ξ

}
,

u ∈ (0, 1), (10)

where qG(u; ξ) denotes the qdf corresponding to G(x, ξ).

2.2. The TIKEx Distribution

The TIKEx distribution is defined by the following cdf:

F(x; a, b, θ) =
1

(1− 2−a)b

[
1− (2− e−θx)−a

]b
, x > 0, (11)

It corresponds to the special member of the TIK-G family defined with the cdf of the exponential
distribution with parameter θ as baseline, i.e., ξ = θ and G(x; θ) = 1 − e−θx, x, θ > 0. Then,
it constitutes a new three-parameter lifetime distribution and will be the object of all the attentions in
the rest of study.

Remark 1. Let us notice that, by taking a = 1, the cdf given by (11) is reduced to

F(x; 1, b, θ) =

[
2(1− e−θx)

2− e−θx

]b

, x > 0, (12)

which corresponds to the exponentiated cdf of the Marshall-Olkin-G family introduced by [7] defined with
α = 1/2 and with the the cdf of the exponential distribution with parameter θ as baseline (or the M transformation
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of the exponential distribution introduced by [8]). To the best of our knowledge, it is new in the literature. Hence,
in our study, we consider a generalization of it thanks to the shape parameter a.

The corresponding pdf is given by

f (x; a, b, θ) =
ab

(1− 2−a)b θe−θx(2− e−θx)−a−1
[
1− (2− e−θx)−a

]b−1
, x > 0, (13)

The corresponding hrf and qf are, respectively, given by

h(x; a, b, θ) =
abθe−θx(2− e−θx)−a−1 [1− (2− e−θx)−a]b−1

(1− 2−a)b −
[
1− (2− e−θx)−a

]b , x > 0, (14)

and

Q(u; a, b, θ) = −1
θ

log
{

2−
[
1− u1/b(1− 2−a)

]−1/a
}

, u ∈ (0, 1), (15)

In particular, the median of the TIKEx distribution is given by Med = Q(1/2; a, b, θ).
In order to illustrate the flexibility of the shapes of f (x; a, b, θ) and h(x; a, b, θ), Figures 1 and 2

display the plots of f (x; a, b, θ) and h(x; a, b, θ), respectively, for some values of the parameters a, b,
and θ. We observe that the pdf is left skewed, reversed-J shaped, and approximately symmetrical,
while the hrf is increasing, decreasing, upside down, and bathtub shaped.
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Figure 1. Plots of some pdfs of the truncated inverted Kumaraswamy exponential (TIKEx) distribution.
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Figure 2. Plots of some hrfs of the TIKEx distribution.

3. Properties

This section is devoted to the most fundamental properties of the TIK-G family, with an emphasis
on the entropy. Also, the general properties are applied to the TIKEx distribution as illustration.

3.1. Some Series Expansions

The following result presents a series expansion for the pdf of the TIK-G family.

Proposition 1. For any γ ≥ 0, let us set

ψγ(x; ξ) = (γ + 1)g(x; ξ)SG(x; ξ)γ, (16)

where SG(x; ξ) = 1− G(x; ξ) is the sf corresponding to G(x; ξ). Then, for x such that G(x; ξ) ∈ (0, 1), we
can expand f (x; a, b, ξ) as

f (x; a, b, ξ) =
+∞

∑
k,`=0

uk,`ψ`(x; ξ), (17)

where

uk,` =
1

(1− 2−a)b

(
b
k

)(
−ak
`+ 1

)
(−1)k+`2−ak−`−1, (18)

with (v
u) = v(v− 1) . . . (v− u + 1)/u! is the generalized binomial coefficient.

Proof. The first step of the proof consists in providing a series expansion for the cdf F(x; a, b, ξ). Since
G(x; ξ) ∈ (0, 1), (1 + G(x; ξ))−a ∈ (0, 1), 1 + G(x; ξ) = 2− SG(x; ξ), and SG(x; ξ)/2 ∈ (0, 1), by the
application of the generalized binomial formula, we can write

F(x; a, b, ξ) =
1

(1− 2−a)b

[
1− (1 + G(x; ξ))−a]b

=
1

(1− 2−a)b

+∞

∑
k=0

(
b
k

)
(−1)k(1 + G(x; ξ))−ak

=
1

(1− 2−a)b

+∞

∑
k,`=0

(
b
k

)(
−ak
`

)
(−1)k+`2−ak−`SG(x; ξ)`, (19)

Upon differentiation according to x and a change of indexes, we get the desired result. The proof of
Proposition 1 is completed.
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Remark 2. By following the lines of the proof of Proposition 1, by applying the generalized binomial formula
for (1 + G(x; ξ))−ak as

(1 + G(x; ξ))−ak =
+∞

∑
`=0

(
−ak
`

)
G(x; ξ)`, (20)

we also have the following series expansion in terms of pdfs of the exponentiated-G family (see [9]):

f (x; a, b, ξ) =
+∞

∑
k,`=0

u∗k,`g`(x; ξ), (21)

where g`(x; ξ) = (`+ 1)g(x; ξ)G(x; ξ)` and

u∗k,` =
1

(1− 2−a)b

(
b
k

)(
−ak
`+ 1

)
(−1)k, (22)

Two different generalizations of Proposition 1 are given in Propositions 2 and 3.

Proposition 2. Let κ > 0. Then, for x such that G(x; ξ) ∈ (0, 1), we have the following series expansion:

f (x; a, b, ξ)F(x; a, b, ξ)κ =
+∞

∑
k,`=0

v(κ)k,` ψ`(x; ξ), (23)

where

v(κ)k,` =
1

κ + 1
1

(1− 2−a)b(κ+1)

(
b(κ + 1)

k

)(
−ak
`+ 1

)
(−1)k+`2−ak−`−1, (24)

Proof. Following the lines of the proof of Proposition 1, by replacing b by b(κ + 1), we get

F(x; a, b, ξ)κ+1 =
1

(1− 2−a)b(κ+1)

[
1− (1 + G(x; ξ))−a]b(κ+1)

=
1

(1− 2−a)b(κ+1)

+∞

∑
k,`=0

(
b(κ + 1)

k

)(
−ak
`

)
(−1)k+`2−ak−`SG(x; ξ)`, (25)

The series expansion of f (x; a, b, ξ)F(x; a, b, ξ)κ is obtained upon differentiation of F(x; a, b, ξ)κ+1

according to x and a change of indexes. The proof of Proposition 2 is completed.

Now, we propose an expansion for the exponentiated pdf of the TIK-G family.

Proposition 3. Let κ > 0. Then, for x such that G(x; ξ) ∈ (0, 1), we can expand f (x; a, b, ξ)κ as

f (x; a, b, ξ)κ =
+∞

∑
k,`=0

w(κ)
k,`

[
g(x; ξ)κ−1ψ`(x; ξ)

]
, (26)

where

w(κ)
k,` =

aκbκ

(1− 2−a)bκ

(
κ(b− 1)

k

)(
−ak− κ(a + 1)

`

)
(−1)k+`2−ak−κ(a+1)−` 1

`+ 1
, (27)

Proof. We have

f (x; a, b, ξ)κ =
aκbκ

(1− 2−a)bκ
g(x; ξ)κ(1 + G(x; ξ))−κ(a+1) [1− (1 + G(x; ξ))−a]κ(b−1) , x ∈ R, (28)
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Since G(x; ξ) ∈ (0, 1), (1 + G(x; ξ))−a ∈ (0, 1), 1 + G(x; ξ) = 2− SG(x; ξ), and SG(x; ξ)/2 ∈ (0, 1),
the generalized binomial formula gives

[
1− (1 + G(x; ξ))−a]κ(b−1)

=
+∞

∑
k=0

(
κ(b− 1)

k

)
(−1)k(1 + G(x; ξ))−ak, (29)

and

(1 + G(x; ξ))−ak−κ(a+1) =
+∞

∑
`=0

(
−ak− κ(a + 1)

`

)
2−ak−κ(a+1)−`(−1)`SG(x; ξ)`, (30)

Therefore, by putting the above equalities together, we get the desired result. The proof of Proposition 3
is completed.

To end this section, let us notice that, if G(x; ξ) is the cdf of the exponential distribution with
parameter θ, i.e., G(x; θ) = 1− e−θx, x, θ > 0, then, for any positive integer `, we have

ψ`(x; θ) = (`+ 1)g(x; ξ)SG(x; ξ)` = (`+ 1)θe−(`+1)θx, (31)

which is the pdf of the exponential distribution with parameter (`+ 1)θ. Also, for any positive real
number κ, we have

g(x; ξ)κ−1ψ`(x; θ) = (`+ 1)θκe−(κ+`)θx =
`+ 1
`+ κ

θκ−1ψ∗` (x; θ), (32)

where ψ∗` (x; θ) denotes the pdf of the exponential distribution with parameter (κ + `)θ. We thus take
advantage of the above results in this setting; the well-established distributional properties of the
exponential distribution are useful to determine those of the TIKEx distribution.

3.2. Critical Points of the pdf and hrf

The critical point(s) of f (x; a, b, ξ) is/are the solution(s) of the equation {log [ f (x; a, b, ξ)]}′ = 0
(the differentiation is according to x), with

log [ f (x; a, b, ξ)] = log(a) + log(b)− b log(1− 2−a) + log[g(x; ξ)]− (a + 1) log(1 + G(x; ξ))

+ (b− 1) log
[
1− (1 + G(x; ξ))−a] , (33)

implying that

{log [ f (x; a, b, ξ)]}′ = g(x; ξ)′

g(x; ξ)
− (a + 1)

g(x; ξ)

1 + G(x; ξ)
+ a(b− 1)

g(x; ξ)(1 + G(x; ξ))−a−1

1− (1 + G(x; ξ))−a , (34)

The nature of a critical point of f (x; a, b, ξ), say x∗, depends to the sign of λ∗ =

{log [ f (x; a, b, ξ)]}′′ |x=x∗ . The same approach can be applied to the critical point(s) of h(x; a, b, ξ);
it/they is/are given by the solution(s) of the equation {log [h(x; a, b, ξ)]}′ = 0, with

{log [h(x; a, b, ξ)]}′ = g(x; ξ)′

g(x; ξ)
− (a + 1)

g(x; ξ)

1 + G(x; ξ)
+ a(b− 1)

g(x; ξ)(1 + G(x; ξ))−a−1

1− (1 + G(x; ξ))−a

+ ab
g(x; ξ)(1 + G(x; ξ))−a−1 [1− (1 + G(x; ξ))−a]

b−1

(1− 2−a)b − [1− (1 + G(x; ξ))−a]b
, (35)

The nature of a critical point of h(x; a, b, ξ), say xo, depends to the sign of λo =

{log [h(x; a, b, ξ)]}′′ |x=xo .
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In the context of the TIKEx distribution, the critical point(s) of f (x; a, b, ξ) is/are the solution(s) of
the following equation according to x:

−(a + 1)
e−θx

2− e−θx + a(b− 1)
e−θx(2− e−θx)−a−1

1− (2− e−θx)−a = 1, (36)

and the critical point(s) of h(x; a, b, ξ) is/are the solution(s) of the following equation according to x:

−(a + 1)
e−θx

2− e−θx + a(b− 1)
e−θx(2− e−θx)−a−1

1− (2− e−θx)−a + ab
e−θx(2− e−θx)−a−1 [1− (2− e−θx)−a]b−1

(1− 2−a)b −
[
1− (2− e−θx)−a

]b = 1, (37)

Clearly, the nature of a critical point depends on a, b, and θ and no close form exists. For given values
of a, b, and θ, they can be determined numerically by using a mathematical software (R, Matlab,
Mathematica, Python. . . ). We refer the reader to Figures 1 and 2 for a graphical illustrations of these
critical points.

3.3. Moments

Hereafter, we consider a random variable X have the cdf of the TIK-G family given by (4).
By assuming that it exists, for any positive integer s, the s-moment of X is given by

µ′s = E(Xs) =
∫ +∞

−∞
xs f (x; a, b, ξ)dx, (38)

For given G(x; ξ), a and b, we can evaluate this integral numerically. From an analytical point of
view, Proposition 1 can be useful. Indeed, by assuming that the signs sum and integral can interchange,
we have

µ′s =
+∞

∑
k,`=0

uk,`

∫ +∞

−∞
xsψ`(x; ξ)dx, (39)

where uk,` is given by (18) and the integral term can be calculated in a simple way, depending on the
complexity of G(x; ξ). For instance, in the context of the TIKEx distribution, we have ξ = θ and

∫ +∞

−∞
xsψ`(x; θ)dx =

∫ +∞

0
xs(`+ 1)θe−(`+1)θxdx =

s!
(`+ 1)sθs , (40)

Hence, in this special case, we have

µ′s =
s!
θs

+∞

∑
k,`=0

uk,`
1

(`+ 1)s , (41)

The mean of X is given by µ = µ′1 = E(X) and the variance of X is given by σ2 = E[(X− µ)2] =

µ′2 − µ2. More generally, the s-th central moment of X, i.e., µs = E[(X− µ)s], can be deduced via the
binomial formula such as

µs =
s

∑
k=0

(
s
k

)
(−1)kµkµ′s−k or µs =

s

∑
k=0

(
s
k

)
(−1)s−kµs−kµ′k, (42)

Also, the s-th general coefficient of X is given by

Cs =
µs

σs , (43)
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For s = 1, we obtain C1, which is used to define the coefficient of variation of X as

CV =
1

C1
, (44)

This coefficient is an useful standardized measure of dispersion. For s = 3, Cs becomes the skewness
coefficient of X and for s = 4, it becomes the kurtosis coefficients of X, which are traditionally used to
evaluate the asymmetry and the peakedness of the corresponding distribution, respectively.

We end this subsection by giving numerical values of some central, dispersion, skewness, and
kurtosis parameters for the TIKEx distribution in Table 1.

From Table 1, for the considered values of the parameters, we see that the TIKEx distribution has
varying median, mean, and dispersion (with CV ∈ [0.89, 2]). Also, it is mainly right skewed (with
C3 ∈ [2, 5.9]) and shows high variation for the kurtosis coefficient (with C4 ∈ [12, 112]).

Table 1. The numerical values of the central parameters (Med and µ), some first moments (µ′2, µ′3 and
µ′4), variance σ2, skewness (C3), kurtosis (C4), and coefficient of variation (CV) of the TIKEx distribution
for some parameter values.

(a, b, θ) Med µ µ′2 µ′3 µ′4 σ2 C3 C4 CV

(0.5, 0.5, 0.5) 0.7309 0.9175 2.8803 15.6847 120.2783 2.0384 3.1958 19.4201 1.5559
(1.5, 0.5, 0.5) 0.1954 0.7433 2.1122 11.0235 83.0045 1.5596 3.6627 24.8965 1.6800
(2.5, 0.5, 0.5) 0.1128 0.5980 1.5117 7.4977 55.2596 1.1541 4.2044 32.3790 1.7964
(5.0, 0.5, 0.5) 0.0548 0.3507 0.6128 2.5498 17.4948 0.4898 5.8093 63.5770 1.9955
(0.5, 1.0, 0.5) 3.0081 1.5291 5.3943 30.5369 237.7203 3.0561 2.4223 12.5090 1.1432
(0.5, 0.5, 1.0) 0.3654 0.4587 0.7200 1.9605 7.5173 0.5096 3.1958 23.2365 1.5559
(1.0, 0.5, 1.0) 0.1541 0.4134 0.6187 1.6507 6.2740 0.4477 3.4198 25.7699 1.6184
(1.0, 0.5, 2.0) 0.0770 0.2067 0.1546 0.2063 0.3921 0.1119 3.4198 33.4255 1.6184
(5.0, 0.5, 2.0) 0.0137 0.0876 0.03830 0.0398 0.0683 0.0306 5.8093 79.7019 1.9955
(5.0, 0.5, 5.0) 0.0054 0.0350 0.0061 0.0025 0.0017 0.0048 5.8093 111.9517 1.9955
(5.0, 1.0, 5.0) 0.0122 0.0598 0.0117 0.0050 0.0034 0.0082 4.5217 97.2774 1.5136
(5.0, 3.0, 5.0) 0.0225 0.1229 0.0314 0.0146 0.0103 0.0163 3.2159 100.9527 1.0407
(5.0, 5.0, 5.0) 0.0258 0.1637 0.0482 0.0237 0.01707 0.0214 2.7876 111.0229 0.8945

3.4. Probability Weighted Moments

By assuming that it exists, for any positive integers s and t, the (s, t)-probability weighted moment
of X is given by

µ′s,t = E[XsF(X; a, b, ξ)t] =
∫ +∞

−∞
xs f (x; a, b, ξ)F(x; a, b, ξ)tdx, (45)

Again, for given G(x; ξ), a and b, this integral can be evaluated numerically. One can also use
Proposition 2 in the following manner. By assuming that the signs sum and integral can interchange,
we have

µ′s,t =
+∞

∑
k,`=0

v(t)k,`

∫ +∞

−∞
xsψ`(x; ξ)dx, (46)

where v(t)k,` is given by (24). In the context of the TIKEx distribution, we have

µ′s,t =
s!
θs

+∞

∑
k,`=0

v(t)k,`
1

(`+ 1)s , (47)

The probability weighted moments appear naturally in many applied areas, as those using order
statistics. We refer the reader to [10].
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3.5. Incomplete Moments

By assuming that it exists, for any positive integers s, the s-incomplete moment of X is given by

µ′s(y) = E(XsYy) =
∫ y

−∞
xs f (x; a, b, ξ)dx, (48)

where Yy is a random variable such that Yy = X if X ≤ y and Yy = 0 elsewhere. Owing to Proposition 1,
we can express µ′s(y) as

µ′s(y) =
+∞

∑
k,`=0

uk,`

∫ y

−∞
xsψ`(x; ξ)dx, (49)

For the special case of the TIKEx distribution, we have

µ′s(y) =
1
θs

+∞

∑
k,`=0

uk,`
1

(`+ 1)s γ(s + 1, (`+ 1)θy), (50)

where γ(a, x) =
∫ x

0 ya−1e−ydy is the lower incomplete gamma function.
Among the possible applications of the incomplete moments, we would like to mention the

Lorenz and Bonferroni curves using the first incomplete moment; they are, respectively, defined by

L(π) =
µ′1[Q(π; a, b, ξ)]

µ
, B(π) =

µ′1[Q(π; a, b, ξ)]

πµ
, π ∈ (0, 1), (51)

Numerous real life applications employed such curves. We refer the reader to [11] and [12], respectively.
Figure 3 shows the plots of these curves in the context of the TIKEx distribution for selected values of
parameters.
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Figure 3. Plots of the Lorenz and Bonferroni curves of the TIKEx distribution.

3.6. Entropy

The entropy of a random variable X is a measure of variation of the uncertainty: high entropy
means high uncertainty. The entropy plays a fundamental role in information theory, where several
entropy measures have been introduced. We refer the reader to the review of [13], and the references
therein. This subsection is devoted to two notable ones: the Rényi entropy and Shannon entropy.
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3.6.1. Rényi Entropy

The Rényi entropy of X is defined by

Iδ =
1

1− δ
log
{∫ +∞

−∞
f (x; a, b, ξ)δdx

}
, (52)

where δ > 0 and δ 6= 1. The former work and motivations can be found in [14]. Under some
configuration on G(x; ξ), a, b, and δ, it can be computed numerically. Also, owing to Proposition 3,
we can express Iδ as

Iδ =
1

1− δ
log

{
+∞

∑
k,`=0

w(δ)
k,`

∫ +∞

−∞
g(x; ξ)δ−1ψ`(x; ξ)dx

}
, (53)

where w(δ)
k,` is defined by (27). As example, for the TIKEx distribution, by using (32), we have

∫ +∞

−∞
g(x; θ)δ−1ψ`(x; θ)dx =

`+ 1
`+ δ

θδ−1
∫ +∞

0
ψ∗` (x; θ)dx =

`+ 1
`+ δ

θδ−1, (54)

implying that

Iδ = − log(θ) +
1

1− δ
log

{
+∞

∑
k,`=0

w(δ)
k,`

`+ 1
`+ δ

}
, (55)

Numerical values of the Rényi entropy for the TIKEx distribution for various values of the
parameters are documented in Table 2.

Table 2. Values of the Rényi entropy of the TIKEx distribution for some parameter values.

δ a b θ Rényi Entropy

0.5 0.5 0.5 0.5 −0.76558
0.5 1.0 0.5 0.5 −0.7256
0.5 5.0 0.5 0.5 −0.37040
0.5 5.0 1.0 0.5 −0.5772
0.5 5.0 5.0 0.5 −0.9030
0.5 5.0 5.0 1.0 −0.5564
0.5 5.0 5.0 5.0 0.2482
0.5 0.5 0.5 5.0 0.3857
0.5 2.0 0.5 5.0 0.5099
0.5 2.0 0.5 5.0 0.7808
2.0 2.0 1.0 0.5 0.6079
2.0 2.0 2.0 0.5 1.2298
2.0 2.0 5.0 0.5 1.6593
2.0 5.0 5.0 0.5 1.0207
2.0 5.0 5.0 2.0 −0.3655
2.0 5.0 5.0 5.0 −1.2818
5.0 5.0 5.0 1.0 0.3039
5.0 5.0 5.0 5.0 −6.1337

In Table 2, we observe that the Rényi entropy can take negative and positive values belonging
to the interval [−6.13, 1.66] for the considered values of δ, a, b, and θ. Thus, these parameters have a
strong effect on the Rényi entropy, showing different degrees of uncertainty.
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3.6.2. Shannon Entropy

The Shannon entropy of X is defined by

η = −E{log[ f (X; a, b, ξ)]} = −
∫ +∞

−∞
log[ f (x; a, b, ξ)] f (x; a, b, ξ)dx, (56)

It has been introduced by [15]. One can show that it is obtained by applying δ → 1 to the Rényi
entropy presented above. Another expression comes from the former definition. Indeed, by using the
expectation expression, we can write

η =− log(a)− log(b) + b log(1− 2−a)− E {log[g(X; ξ)]}+ (a + 1)E {log[1 + G(X; ξ)]}
− (b− 1)E

{
log
[
1− (1 + G(X; ξ))−a]} , (57)

We now propose a series expansion for η. Owing to Proposition 1, we have

E{log[g(X; ξ)]} =
+∞

∑
k,`=0

uk,`

∫ +∞

−∞
log[g(x; ξ)]ψ`(x; ξ)dx, (58)

Under some circumstance, the integral term can be determined. On the other hand, the series expansion
of the logarithmic function gives

E{log[1 + G(X; ξ)]} =
+∞

∑
k=1

(−1)k+1

k
E
[

G(X; ξ)k
]

, (59)

and, with the application of the generalized binomial formula in a second step,

E
{

log
[
1− (1 + G(X; ξ))−a]} = −

+∞

∑
k=1

1
k

E
[
(1 + G(X; ξ))−ak

]
= −

+∞

∑
k=1

+∞

∑
`=0

(
−ak
`

)
1
k

E
[

G(X; ξ)`
]

, (60)

For the expectations terms in the sums, one can notice that, for any positive integer κ, by Remark 2,

E [G(X; ξ)κ ] =
+∞

∑
k,`=0

u∗k,`

∫ +∞

−∞
G(x; ξ)κ g`(x; ξ)dx =

+∞

∑
k,`=0

u∗k,`
`+ 1

`+ κ + 1
, (61)

(one can also use Proposition 1, but with more developments in this case).
Some numerical values Shannon entropy for some values of the parameters are collected in

Table 3.

Table 3. Values of the Shannon entropy of the TIKEx distribution for some parameter values.

a b θ Shannon Entropy

2.0 5.0 0.5 1.8957
2.0 5.0 1.0 1.2025
2.0 5.0 3.0 0.1039
2.0 5.0 5.0 −0.4068
0.5 1.0 0.5 1.4128
1.0 1.0 0.5 1.3068
3.0 1.0 0.5 0.8544
5.0 1.0 0.5 0.4170
5.0 2.0 0.5 0.9045
5.0 5.0 0.5 1.3442
5.0 5.0 1.0 0.6510
5.0 5.0 3.0 −0.4475
5.0 5.0 5.0 −0.9583
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For the considered values of a, b, and θ in Table 3, the Shannon entropy takes its values into the
interval [−0.95, 1.9]. Thus, the amount of uncertainty is impacted by these parameters, showing the
richness of the TIKEx distribution in this sense.

4. Maximum Likelihood Estimation

This section focuses on the estimation of the TIK-G model parameters by the maximum likelihood
method.

4.1. Basics on the Maximum Likelihood Method

Let x1, . . . , xn be a random sample of size n of X. Then, the log-likelihood functions is defined by

`(a, b, ξ) =
n

∑
i=1

log [ f (xi; a, b, ξ)] = n log(a) + n log(b)− nb log(1− 2−a) +
n

∑
i=1

log[g(xi; ξ)]

− (a + 1)
n

∑
i=1

log(1 + G(xi; ξ)) + (b− 1)
n

∑
i=1

log
[
1− (1 + G(xi; ξ))−a] , (62)

Assuming that `(a, b, ξ) is differentiable according to a, b, and ξ, the maximum likelihood estimates
(MLEs) are given by the simultaneous solutions of the following equations: ∂`(a, b, ξ)/∂a = 0,
∂`(a, b, ξ)/∂b = 0 and ∂`(a, b, ξ)/∂ξ = 0, where

∂

∂a
`(a, b, ξ) =

n
a
− nb

log(2)2−a

1− 2−a −
n

∑
i=1

log(1 + G(xi; ξ)) + (b− 1)
n

∑
i=1

(1 + G(xi; ξ))−a log(1 + G(xi; ξ))

1− (1 + G(xi; ξ))−a , (63)

∂

∂b
`(a, b, ξ) =

n
b
− n log(1− 2−a) +

n

∑
i=1

log
[
1− (1 + G(xi; ξ))−a] , (64)

and, by setting gξ(x; ξ) = ∂g(x; ξ)/∂ξ and Gξ(x; ξ) = ∂G(x; ξ)/∂ξ,

∂

∂ξ
`(a, b, ξ) =

n

∑
i=1

gξ(xi; ξ)

g(xi; ξ)
− (a + 1)

n

∑
i=1

Gξ(xi; ξ)

1 + G(xi; ξ)
+ (b− 1)a

n

∑
i=1

Gξ(xi; ξ)(1 + G(xi; ξ))−a−1

1− (1 + G(xi; ξ))−a , (65)

Let us denote the MLES of a, b, and ξ by â, b̂, and ξ̂, respectively. Then, it follows from the equation
∂`(â, b̂, ξ̂)/∂b = 0 the following simple relation:

b̂ =

{
log(1− 2−â)− 1

n

n

∑
i=1

log
[
1− (1 + G(xi; ξ̂))−â

]}−1

, (66)

Under standard regularity conditions, all the well-established theoretical properties behind the MLEs
can be applied, allowing the construction of confidence interval and statistical tests, among others.
The complete theory can be found in [16].

To end this subsection, we would like to mention that, in the context of the TIKEx distribution,
i.e., ξ = θ and G(x; θ) = 1− e−θx, x, θ > 0, the above partial differential becomes

∂

∂a
`(a, b, θ) =

n
a
− nb

log(2)2−a

1− 2−a −
n

∑
i=1

log(2− e−θxi ) + (b− 1)
n

∑
i=1

(2− e−θxi )−a log(2− e−θxi )

1− (2− e−θxi )−a , (67)

∂

∂b
`(a, b, θ) =

n
b
− n log(1− 2−a) +

n

∑
i=1

log
[
1− (2− e−θxi )−a

]
, (68)
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and

∂

∂θ
`(a, b, θ) =

n
θ
−

n

∑
i=1

xi − (a + 1)
n

∑
i=1

xie−θxi

2− e−θxi
+ (b− 1)a

n

∑
i=1

xie−θxi (2− e−θxi )−a−1

1− (2− e−θxi )−a , (69)

4.2. Simulation

Here, we consider exclusively the TIKEx model. Let X be a random variable following the TIKEx
distribution with parameters a, b, and θ. We simulate values from X and, for each n = 50, 100, 200,
500, and 1000, we consider N = 1000 random samples of size n from X. This simulation is based on
the fact that, for any random variable A following the uniform distribution U (0, 1), xA = Q(A; a, b, θ)

following the TIKEx distribution with parameters a, b, and θ. We consider 8 sets of different parameters
with b fixed as b = 2. Then, the performance of the MLEs is evaluated by considering the mean of the
estimates (estimate) and the root-mean-squared error (RMSE), respectively defined by

Estimateφ =
1
N

N

∑
i=1

φ̂i, RMSEφ =

√√√√ 1
N

N

∑
i=1

(φ̂i − φ)2, (70)

where φ denotes a or b or θ and φ̂i denotes the corresponding MLE obtained by using the i-th random
sample. The numerical results, obtained by the use of the R software, are documented in Table 4.

Table 4. Simulations of the TIKEx model parameters with the maximum likelihood method for different
sets of values in order (a, θ, b) and fixed b = 2.

Set 1: (0.5, 0.5, 2) Set 2: (1.5, 0.5, 2) Set 3: (2, 0.5, 2) Set 4: (1.5, 1.5, 2)

n Estimates RMSEs Estimates RMSEs Estimates RMSEs Estimates RMSEs

50 0.872 1.632 1.029 1.780 1.213 2.046 1.213 2.160
0.485 0.122 0.563 0.157 0.595 0.202 1.535 0.442
2.201 0.716 2.099 0.962 2.015 0.624 1.988 0.789

100 0.794 1.093 1.202 1.384 1.475 1.486 1.533 1.291
0.490 0.092 0.525 0.117 0.562 0.150 1.562 0.333
2.164 0.499 1.970 0.374 1.973 0.443 2.129 0.501

200 0.670 0.901 1.360 1.248 1.477 1.224 1.385 1.205
0.497 0.073 0.513 0.104 0.535 0.097 1.513 0.275
2.087 0.335 1.994 0.286 1.894 0.315 1.975 0.367

500 0.419 0.609 1.098 0.996 1.885 0.936 1.225 0.910
0.503 0.042 0.524 0.073 0.506 0.072 1.549 0.186
1.981 0.222 1.895 0.249 1.959 0.221 1.946 0.262

1000 0.291 0.447 1.080 0.858 1.712 0.832 0.943 0.837
0.510 0.030 0.525 0.056 0.520 0.066 1.594 0.158
1.949 0.145 1.905 0.248 1.940 0.189 1.868 0.222

Set 5: (0.5, 1.5, 2) Set 6: (2, 1.5, 2) Set 7: (2, 2, 2) Set 8: (1.5, 2, 2)

n Estimates RMSEs Estimates RMSEs Estimates RMSEs Estimates RMSEs

50 1.020 2.135 1.869 1.913 1.829 2.128 1.329 2.259
1.514 0.409 1.609 0.492 2.155 0.703 2.094 0.641
2.425 1.204 2.041 0.559 2.144 0.839 2.060 0.607

100 1.056 1.303 1.747 1.598 2.403 1.607 1.617 1.389
1.451 0.275 1.622 0.421 1.965 0.512 2.047 0.454
2.259 0.555 2.002 0.442 2.138 0.470 2.154 0.457

200 0.621 0.887 1.840 1.218 1.778 1.061 1.340 1.004
1.487 0.218 1.573 0.296 2.089 0.387 2.059 0.339
2.052 0.321 2.009 0.345 1.980 0.303 1.992 0.314

500 0.645 0.616 1.744 0.852 2.015 0.811 1.449 0.714
1.484 0.125 1.560 0.192 2.005 0.272 2.031 0.240
2.069 0.259 1.968 0.219 2.013 0.205 1.998 0.208

1000 0.556 0.484 1.823 0.716 1.975 0.572 1.450 0.558
1.499 0.094 1.552 0.157 2.010 0.187 2.003 0.157
2.042 0.188 1.979 0.182 2.013 0.148 1.971 0.172
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From Table 4, we see that the RMSEs of the model parameters decrease as n increases, which is
consistent with the maximum likelihood method theory (see [16]).

5. Applications

This section provides an application to show how the TIKEx distribution can be applied in practice.
With this aim in mind, we compare the TIKEx model with those of the Weibull-exponential (WEx)
model (see [17]), Lomax-exponential (LEx) model (see [18]), gamma-exponentiated exponential (GEx)
model (see [19]), Burr III-exponential (BrEx) model (see [20]), Burr X-exponential (BXEx) model (see
[21]), standard exponential (Ex) model, standard two-parameter Weibull (W2) model, three-parameter
Weibull (W3) model (see [22]), and standard log-normal (LN) model.

The first data set The first data set is given by [23]. The data refers to the time between failures for
repairable items. The data are: 1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59, 0.74, 1.23, 0.94, 4.36, 0.40,
1.74, 4.73, 2.23, 0.45, 0.70, 1.06, 1.46, 0.30, 1.82, 2.37, 0.63, 1.23, 1.24, 1.97, 1.86, 1.17.

The second data set The second data set consists of 179 values of successive failure of the air
conditioning system. For the data and more detail, we refer the reader to [24,25].

First of all, we would like to mention that the coming data analyzes are performed by the use of
the R software. Table 5 shows first description of the data, revealing different natures, mainly on the
range, the skewness and kurtosis. Figure 4 presents the total test time (TTT) plots for the two data
sets. We can see that the curve in the first TTT plot is concave which indicates that the first data set is
related to an increasing failure rate. The curve in the second TTT plot is convex, indicating that the
second data set is related to a decreasing failure rate (see [26] for further detail on TTT plot). These
cases are covered by the TIKEx distribution, motivating its used (see Figure 2).

The MLEs of the model parameters are considered, the essential of the MLEs for the TIKEx model
can be found in the Section 4.1. For the first data set, Table 6 presents the MLEs for all the considered
models. Then, Table 7 presents some standard goodness-of-fit measures, including the AIC: Akaike
Information Criterion, BIC: Bayesian Information Criterion, A∗: Anderson–Darling statistic and W∗:
Cramer–von Mises statistic. Also, the minus log-likelihood for the estimated model is computed (− ˆ̀).
The lower the values of these measures, the better the fit. We complete them by providing the KS:
Kolmogorov–Smirnov statistic, along with its p-value.

For the second data sets, Table 8 gives the MLEs for all the considered models. Table 9 is the
analogue of Table 7 but for the second data set.

For the data set 1, all the estimated pdfs, superposed on the related histogram of the data, are
given in Figure 5. A simultaneous comparison of the estimated cdfs with the empirical cdf of the data
can be seen in Figure 6. Figures 7 and 8 are the same of Figures 5 and 6, respectively, but with an
individual treatment of the estimated functions.

Similarly, for the data set 2, the estimated pdfs and cdfs can be observed in Figures 9 and 10,
respectively. Figures 11 and 12 propose the same, respectively, but with an individual treatment of the
estimated functions.

Table 5. Descriptive statistics for the two data sets.

n Mean Median Standard Deviation Skewness Kurtosis

First data set 30 1.54 1.23 1.13 1.23 1.04
Second data set 179 89.13 51 105.56 2.21 5.64
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Figure 4. Total test time (TTT) plots for the first and second data sets, respectively.

Table 6. MLEs and their standard errors in parentheses for the first data set.

Model a b θ λ α β

TIKEx 40.5241 2.2765 0.0271 - - -
(2.7618) (0.6944) (0.0446) - - -

WEx - - - 0.1013 8.4803 1.3238
- - - (0.0470) (6.2815) (0.1776)

LEx 69.2568 11.1652 0.0755 - - -
(8.2345) (6.1143) (0.01261) - -

GEx - - - 0.9649 0.3993 1.1085
- - - (0.4346) (0.1894) (0.5843)

BrEx 38.7695 0.0365 5.2164 - - -
(9.9407) (0.1128) (1.2006) - - -

BXEx - - 0.4261 0.2399 - -
- - (0.0852) (0.0237) - -

Ex - - 0.6482 - - -
- - (0.1183) - - -

W2 - - - - 66.0352 43.2275
- - - - (4.44084) (3.51546)

W3 - - 0.0794 - 1.3441 1.7189
- - (0.0622) - (0.2322) (0.2767)

LN - - - - 0.1628 0.8014
- - - - (0.1463) (0.1033)

Table 7. Statistical measures for the first data set.

Model − ˆ̀ AIC BIC W∗ A∗ KS p-Value (KS)

TIKEx 39.6679 85.3358 89.5394 0.0174 0.1287 0.0631 0.9998
WEx 40.2139 86.4278 90.6314 0.0365 0.2729 0.0973 0.9388
LEx 40.3989 86.7978 91.0014 0.0353 0.2236 0.0864 0.9784
GEx 41.3196 88.6392 92.8428 0.0711 0.5068 0.1239 0.7459
BrEx 41.5335 89.0670 93.2706 0.0449 0.3360 0.1097 0.8631
BXEx 42.9933 89.9866 92.7890 0.1187 0.8107 0.1649 0.3877

Ex 43.5300 89.0600 90.4611 0.0189 0.1439 0.1845 0.2589
W2 43.1745 90.3491 93.1515 0.0183 0.1395 0.1889 0.2344
W3 39.7242 85.4484 89.6520 0.0246 0.1962 0.0979 0.9358
LN 40.7353 85.4707 88.2731 0.0391 0.2737 0.0970 0.9399
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Table 8. Maximum likelihood methods (MLEs) and their standard errors in parentheses for the second
data set.

Model a b θ λ α β

TIKEx 2.2601 1.2920 0.0073 - - -
(1.0398) (0.1740) (0.0014) - - -

WEx - - - 2.9055 0.7768 0.0024
- - - (0.4138) (0.0441) (0.0002)

LEx 3.9060 1.0496 0.0108 - - -
(4.5170) (0.5452) (0.0056) - -

GEx - - - 0.7496 0.0044 0.7989
- - - (0.1327) (0.0007) (0.1188)

BrEx 0.0112 0.9459 0.9739 - - -
(0.0024) (0.1413) (0.2126) - - -

BXEx - - 0.4261 0.2399 - -
- - (9.5 × 10−5) (.0017) - -

Ex - - 0.0112 - - -
- - (0.0008) - - -

W2 - - - - 210.6370 3.2537
- - - - (4.6020) (0.9242)

W3 - - - 0.3540 0.9100 85.2728
- - - (0.3317) (0.0364) (6.5928)

LN - - - - 3.8393 1.2405
- - - - (0.0927) (0.0655)

Table 9. Statistical measures for the second data set.

Model − ˆ̀ AIC BIC W∗ A∗ KS p-Value (KS)

TIKEx 977.4752 1960.9500 1970.5130 0.0501 0.3418 0.0470 0.8237
WEx 985.8205 1977.6410 1987.2030 0.2669 1.6410 0.0755 0.2588
LEx 982.0106 1970.0210 1979.5830 0.1416 0.8632 0.0926 0.0927
GEx 997.0995 2000.1990 2009.7610 0.4779 2.9176 0.1279 0.0057
BrEx 982.1473 1970.2950 1979.8570 0.1918 1.1773 0.0746 0.2712
BXEx 1015.6880 2035.3750 2041.7500 0.7582 4.6283 0.1899 4.9 × 10−6

Ex 985.7355 1973.4710 1976.6583 0.1894 1.1638 0.0864 0.1380
W2 980.2322 1964.4640 1970.8390 0.0751 0.5026 0.0576 0.5910
W3 982.1508 1970.3020 1979.8640 0.1724 1.0704 0.05841 0.5745
LN 980.8582 1965.7164 1972.0911 0.0535 0.4329 0.0400 0.9360
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Figure 5. Estimated pdfs for the first data set.
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Figure 9. Estimated pdfs for the second data set.
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Figure 10. Estimated cdfs for the second data set.
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Figure 11. Estimated pdfs of the models for the second data set.
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Figure 12. Estimated cdfs of the models for the second data set.

In view of Tables 7 and 9, the TIKEx model is the best (smallest AIC, smallest BIC. . . ), except for
the second data set where the log-normal model has a better KS and p-value (but the TIKEx model
remains the best for the other measures). The superiority of the TIKEx model is also supported by all
the figures illustrating the fitting of the models over the considered data. All these results motivate the
importance of the TIKEx model in the context of data analysis.

6. Conclusions

A new general family of distributions is introduced by the use of a truncated version of the
inverted Kumaraswamy distribution and composition. It is called the TIK-G family. Thanks to its
simplicity, richness, and nice flexible properties demonstrated along the study, it provides a suitable
alternative to other general families somehow complex. Its main theoretical properties are discussed,
with expressions and numerical analyzes for the Rényi entropy and Shannon entropy. A special focus
is put on the special member of the family defined with the exponential distribution, called the TIKEx
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distribution. After showing its undeniable qualities (flexible pdf and hrf, series expansions for the
moments, entropy. . . ), we prove that the TIKEx model is capable of fitting various types of data, better
than several modern models also derived to the exponential distribution. Thus, we hope that the TIK-G
family can attract wider applications in many applied field where a sharp data analysis is essential to
explain new phenomena.
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