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Abstract: It is well known that environmental fluctuations and fishing efforts modify fishing patterns
in various parts of the world. One of the most affected areas is northern Chile. The reduction of the
gaps in the implementation of national fisheries’ management policies and the basic knowledge that
supports the making of such decisions are crucial. That is why in this research, a transfer function
method with variable coefficients is proposed to forecast monthly disembarkation of anchovies and
sardines in northern Chile, taking into account the incidence of large-scale climatic variables on
landings. The method uses a least squares procedure and wavelets to expand the coefficients of the
transfer function. Linear estimators of the time varying coefficients are proposed, followed by a
truncation of the wavelet expansion up to an appropriate scale. Finally, the estimators for the transfer
function coefficients are obtained by using the inverse wavelet transformation. Research results
suggest that the transfer function models with variable coefficients fit the behavior of the anchovies’
landing with great accuracy, while the use of transfer function models with constant coefficients fits
sardines’ landings better. Both fisheries’ landings could be explained to a large extent from the large
scale climatic variables.

Keywords: fisheries’ landings; time series forecasting; wavelets

1. Introduction

Fish are organisms that cannot regulate the temperature of the environment independently, and
the environment temperature changes influence their geographical distribution, migratory routes, and
occupation of habitat [1]. On the other hand, although the species present variability associated with
environmental changes, the composition and abundance are also affected by predators, competitors,
and prey [2]. The link between the variation of anchovy abundance and environmental changes in
different time-space scales opens the possibility of predicting fluctuations in landings in the short,
medium, and long term [3]; which is one of the main objectives of fisheries’ management [4].

As indicated by [5], it is fundamental to consider the impact of the environment and the
interactions between fisheries for their management. In effect, the fisheries show different trends in
response to environmental changes, since these changes affect various stages of larvae, reproduction,
grazing habitat, and migration of different populations. In addition, an inevitable increase in fishing
effort must be added. Potential climate change and climate variability at different time scales have
immediate or phase effects, both locally and regionally. Possible changes in environmental variables
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such as sea surface temperature (SST), depth of the mixing layer, depth of the thermocline, intensities of
up-welling currents, the mechanism of nutrient concentration, and changes in the ice marine layers [2],
although mild, may affect the food chain, thus drastically altering the abundance, distribution,
and availability of fish populations. In addition, climatic change could have consequences on the
composition of the community and the performance of ecosystems [6].

Regarding the environment and resource analysis in the anchovy and sardine fisheries of
northern Chile, the work in [7] developed an artificial neural network (ANN) model for the
anchovies’ fishery. In [8], the authors developed a multivariate ANN model considering monthly
environmental variables such as the sea surface temperature, up-welling index, and sea level; while [9]
developed ANN models for anchovy and sardine, respectively, taking into account, in addition to
the environmental variables, the interaction between species. These studies made a brief analysis of
the correlation between variables, self-correlation, and cross-correlation using non-linear functions
to find functional relationships to introduce different models [2]. On the other hand, the wok
in [10] predicted the environmental variability in the anchovy fishery in the northern zone of Chile,
through the development of spatio-temporal indicators of the ecosystem, statistical relationships
between indicators, GIS functions (Geographical Information Systems), and ANN models, offering an
integration in the prediction of anchovy abundance.

With respect to other statistical techniques implemented to forecast fishing landings, there was
the application of a hybrid model studied by [11], in which the potentialities of autoregressive models
integrated moving averages (ARIMA) were combined with wavelet theory to enhance the precision
of fishing landings’ forecasts in Malaysia. Their study found that the combined model provided
more accurate forecasts of fishing landing series than the individual ARIMA model. Other studies
have presented a forecast strategy based on the decomposition of stationary wavelets combined with
linear regression to improve the accuracy of pelagic one month ahead fish catches predictions of the
fishing industry in the southern zone of Chile [12]. The authors demonstrated the usefulness of the
strategy in the anchovy catch dataset for monthly periods, explaining 98% of the variance with a
parsimonious reduction.

Considering the above and in virtue of the fact that in Chile, the average annual landings in the
last 30 years was 4.8 million tons and the agricultural resources in the northern zone represent 40% [13],
as well as given that in this area, the fishery is based successively on anchoveta (Engraulis ringens)
and sardine (Sardinops sagax), with notable changes associated with fishing effort and environmental
fluctuations (see [14,15]), it is considered pertinent to implement scientific techniques aimed at studying
functional relationships that can be analyzed in depth, in order to reduce gaps in the implementation
of national fisheries’ management policies and provide the basic knowledge that supports the making
of such decisions [2].

Currently, the correct prediction of fishing landings in particular is a point of special interest for
fisheries’ management, and researchers who focus on modeling time series of landings are looking
for prediction models that take into account various patterns. In the literature, most researchers
implement potential methods such as ANN and hybrid models such as autoregressive integrated
mobile average with ANN, among others, effectively synced to model time series and predict fishing
landings; however, there is still a wide range of hybrid techniques that can be implemented to achieve
improvements in predictions.

In this sense, this research proposes the implementation of highly predictive techniques to model
and study climatic phenomena, specifically the quantitative characterization of the elements that
determine the monthly disembarkation of anchovies and sardines in northern Chile. The work revolves
around the following question: Which time series model would allow forecasting more accurately the
monthly disembarkation of anchovies and sardines registered in northern Chile, under the influence of
macro-climatic variables such as the sea surface temperature and the associated ENSO phenomenon?

The benefits of our research reside in the improvements obtained in the adjustment and forecasting
of anchovy landings when the series are broken down into their high and low frequency components,
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by expanding the transfer function coefficients to a time varying approach by using a least squares
procedure. It also highlights the improved performance of using the combination of traditional
statistical techniques with the aforementioned extension when implemented to forecast sardine
landings. Likewise, seeking to optimize the goodness of fit and quality of the forecast, it was also
observed that after the application of various transformations to stabilize the variability of the observed
series, significant improvements in the results could be achieved.

The paper is divided as follows: In Section 2, we briefly describe the time series modeling strategy
and the required steps to fit these models. In Section 3, we explain the datasets used in the analysis,
the methodology to process them, and all the results at each step, when fitting the transfer function
models. We finally provide in Section 4 some conclusions and potential extensions of this work.

2. Materials and Methods

2.1. Environmental Setting and Data

Industrial fishing in the northern part of the country began in the 1950s with landings of Peruvian
anchovy (Engraulis ringens), which increased, fluctuated, and then fell strongly in 1972–1973, remaining
low until 1985, when they again began to fluctuate and increase, reaching new historic levels [13].
After the collapse of anchovy in 1972–1973, the sardine became a targeted species (Sardinops sagax),
with catches increasing until 1985, before falling notably and remaining low until the present. The
study zone comprised the area covered by the industrial seine fishing fleet that operates in northern
Chile (18◦21′–24◦00′ S) from the coast to 73◦ W. The analyzed data included environmental and fishing
registers for the 1963–2011 period, Table 1 shows a description of each variable considered for analysis.

Table 1. Variable that are the object of study. The climatic variables are explanatory, while local fisheries
are the response variables. All records are monthly from 1963 to 2011.

Type Variable

Local Climatic
SST Sea surface temperature from Antofagasta Coastal Oceanographic Station
TI Turbulence index from Antofagasta Coastal Oceanographic Station
MSL Mean sea level from Antofagasta Coastal Oceanographic Station

Global Climatic

MEI El Niño multivariate Southern Oscillation index
PDO Pacific Decadal Oscillation index
N12 Pacific sea surface temperature index (Niño Zone 1 + 2)
N34 Pacific sea surface temperature index (Niño Zone 3 + 4)
SOI Southern Oscillation index
CTI Cold tongue index

Local Fisheries DANC Disembarkation anchovy (Engraulis ringens) in northern Chile
DSAR Disembarkation sardine (Sardinops sagax) in northern Chile

2.2. Wavelet Transfer Function Model

There are many situations requiring the modeling of the impact of a regressor variable on a
response variable through time, when the regressors and the response variables are both assumed
stochastic processes. Herein, we will use the term predictors for the regressor variables and predictants
for the response variable. One or more predictors can be considered as input variables to the model.
On the other hand, predictors can have a lagged effect on the predictant variables, and one must
decide how many past values of the predictor variable would make an impact on the predictant
variable [16]. Following the transfer function models with the time varying approach used by [17], one
might consider the following model:

Yt,T =
m

∑
i=1

δi

(
t
T

)
Yt−i,T +

n

∑
j=0

ωj

(
t
T

)
X(t−j,T) + εt, (1)
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where the time series Xt,T and Yt,T correspond to the explanatory and response variable, respectively,
T is the number of observations, and εt is considered independent and identically distributed (0, σ2)

random error. It is assumed that the error and the entries in the series are independent. The functions
δi(u), i = 1, . . . , m and ωj(u), j = 0, 1, . . . , n, have compact support in the interval [0,1] and are connected
to the underlying series by an appropriate adjustment on the time scale, u = t/T. For the estimation
of δi(u) and ωj(u), i = 1, . . . , m, j = 0, 1, . . . , n, wavelet expansions are used in the time domain. The
estimators of the wavelet coefficients are obtained through the least squares method [17].

From two basic functions, the scaling function φ(x) and the wavelet function ψ(x), infinite
collections of scale and translated versions are defined, φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx−
k), j, k ∈ Z = {0,±1, ...}. It is assumed that φ(l,k)(.)(k∈z) ∪

{
ψj,k (.)

}
j≥l;k∈z

form an orthonormal basis

of L2 (R), for some coarse scale (l). To achieve a parsimonious representation of the amplitude of
wavelet function classes in the series, it is necessary to construct φ and ψ functions with compact
support, which generate an orthonormal system, with frequency and spatial localization [17]. The
functions ωj(u) and δi(u) are defined in a compact range [0,1]. Therefore, an orthonormal system
that spans L2([0, 1]) must be taken into account. Some authors use an adaptation step [18] with the
periodized wavelet defined by:

φ̃j,k (x) = ∑
n∈Z

φj,k (x− n)

ψ̃j,k (x) = ∑
n∈Z

ψj,k (x− n)
(2)

and these generate a ladder at the multiple resolution level Ṽ0 ⊂ Ṽ1 ⊂ · · · , in which the spaces Ṽj
are generated by ψ̃j,k. For those that are not necessary negative values of j, φ̃ = φ̃0,0 = 1. If j ≤ 0,

ψ̃j,k (x) = 2
−j
2 (see [19]). In the work, periodized wavelets are denoted simply by ψj,k. Consequently,

for any function f ∈ L2 ([0, 1]), an orthogonal series expansion can be considered of the form:

f (x) = α0,0φ (x) + ∑
j≥0

∑
k∈Ij

β j,kψj,k (x) , (3)

where we take l = 0 and Ij =
{

k : k = 0, · · · , 2j − 1
}

. For each j, the set Ij brings the values of k, so
that β j,k belongs to the scale 2j. For example, for j = 3, there are eight wavelet coefficients on a scale of
23. The wavelet coefficients are given by:

α0,0 =
∫

f (x) φ (x) dx,

β j,k =
∫

f (x)ψj,k (x) dx
(4)

Often, the sum of Equation (3) is considered for a maximum level J, such that we approximate f
in the space Ṽj (for more details, see [17]).

f (x) ≈ α0,0φ (x) +
J−1

∑
j=0

∑
k∈Ij

β j,kψj,k (x) , (5)

Estimators of Time Varying Coefficients

The objective is to estimate the functions δi (u) , i = 1, 2, · · ·m and ωj (u) , j = 1, 2, · · · n (δi (u) and
ωj (u) ∈ [0, 1]) that appear in model Equation (1), given the T observations of the series. We assume
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that the orders of m and n are fixed and known. The idea is to expand these functions in wavelet series
of the form [17]:

δi (u) = a(δi)
0,0 φ (u) +

J−1

∑
j=0

∑
k∈Ij

β
(δi)
jk ψjk (u)

ωi (u) = a(ωi)
0,0 φ (u) +

J−1

∑
j=0

∑
k∈Ij

β
(ωi)
jk ψjk (u)

(6)

The empirical wavelet coefficients are obtained by minimizing the expression:

T

∑
t=v+1

(
Yt,T −

m

∑
i=1

δi (u)Yt−i,T −
n

∑
j=0

ωj (u) Xt−j,T

)2

(7)

δi (u) and ωj (u) are replaced by Equation (6) for v = max (m, n). In matrix notation, the solution of
the least squares problem given by Equation (7), for 0 ≤ m ≤ J − 1, is obtained from the equations:[

β̂(δ1)

β̂(ω0)

]
=

[
Ψ
′
YΨY Ψ

′
YΨY

Ψ
′
XΨY Ψ

′
YΨX

]−1 [
Ψ
′
YY

Ψ
′
XX

]
(8)

where you have to do:

ΨY =
[
ΦY Ψ0

Y Ψ1
Y · · · Ψ(J−1)

Y

]
;

ΨX =
[
ΦX Ψ0

X Ψ1
X · · · Ψ(J−1)

X

] (9)

ΦY =


φ0,0

( 2
T
)

Y1,T
φ0,0

( 3
T
)

Y2,T
...

φ0,0

(
T
T

)
YT−1,T

 ; ΦX =


φ0,0

( 2
T
)

X1,T
φ0,0

( 3
T
)

X2,T
...

φ0,0

(
T
T

)
XT−1,T

 (10)

Ψ(m)
Y =


ψm0

( 2
T
)

Y1,T ψm1
( 2

T
)

Y1,T · · · ψm,2m−1
( 2

T
)

Y1,T
ψm0

( 3
T
)

Y2,T ψm1
( 3

T
)

Y2,T · · · ψm,2m−1
( 3

T
)

Y2,T
...

...
. . .

...

ψm0

(
T
T

)
YT−1,T ψm1

(
T
T

)
YT−1,T · · · ψm,2m−1

(
T
T

)
YT−1,T

 ; (11)

Ψ(m)
X =


ψm0

( 2
T
)

X2,T ψm1
( 2

T
)

X2,T · · · ψm,2m−1
( 2

T
)

X2,T
ψm0

( 3
T
)

X3,T ψm1
( 3

T
)

X3,T · · · ψm,2m−1
( 3

T
)

X3,T
...

...
. . .

...

ψm0

(
T
T

)
XT,T ψm1

(
T
T

)
XT,T · · · ψm,2m−1

(
T
T

)
XT,T

 (12)

After solving for β̂(δ1) and β̂(ω0), they can be inserted in Equation (6).
In this paper, the models were estimated according to the methodology proposed by [17],

simplifying the steps to be followed as shown in Figure 1. To obtain the periodized wavelet ψj,k (u) and
φj,k (u) Equation (2), the methodology implemented by [20] is used. We estimate the empirical wavelet
coefficients by least squares in two stages, as described in Figure 1. In the first stage of the process,
we return Yt,T (the response variable) from Xt−j,T and Yt−i,T (explanatory variables) Equation (1).
Expanding δi

( t
T
)

and ωj
( t

T
)

in wavelet series, we obtain Equation (13). These empirical wavelet
coefficients can be estimated using a Daubechies filter as in [17] and identifying the best resolution level
using skill comparison metrics as: root mean squared error (RMSE) and mean absolute error (MAE),
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as applied in this document, but other metrics can be implemented as in [21], where a new wavelet
entropy based approach was proposed to identify the optimal model specification and construct the
effective wavelet entropy based forecasting models.

Yt,T =
m

∑
i=1

α
(δ1)
0,0 φ (u) +

J−1

∑
j=0

β
(δ1)
jk ψjk (u)

Yt−i,T +
n

∑
j=0

α
(ω1)
0,0 φ (u) +

J−1

∑
j=0

∑
k∈Ij

β
(ω1)
jk ψjk (u)

Xt−j,T + et,T (13)

where we have restricted the values of j to a maximum scale. After obtaining estimates of the wavelet
coefficients δt (B) and ωt (B), we use the inverse wavelet transformation to obtain the estimates of
δ̂
( t

T
)

and ω̂
( t

T
)
, respectively, and with et,T as the error of the regression model of the first stage

Equation (14). For the coefficient ψjk (u) and φjk (u), we calculated j matrices (nine matrices) of
dimension N · 2J , for the maximum value of J, (512 × 512). That is to say, every periodized moment of
the signal (t/T) is an element to be sampled and convolved with the wavelet for all the possible dyadic
translations and resolutions; in our case, several Daubechies filters were implemented.

et,T = Yt,T − Ŷt,T (14)

In the second stage of the process, we fit the model:

Y =

[
ΦŶ(−1)

Ψ(0)
Ŷ(−1)

· · · Ψ(j∗−1)
Ŷ(−1)

... ΦX ΨX · · · Ψ(j∗−1)
X

]  β(δ1)

· · ·
β(ω0)

+ e2 (15)

where e2 is the random error vector, with e2;t,T , t = 2, · · · , T. In [17], it was show that each component
of e2 follows a locally stationary moving average process of order two:

e2;t,T = Yt,T − δ1 (t) Ŷt−1,T −ω0 (t) Xt,T

= Yt,T − δ1 (t) [Yt−1,T − et−1]−ω0 (t) Xt,T

= Yt,T − δ1 (t)Yt−1,T −ω0 (t) Xt,T + δ1 (t) εt−1,T − δ2
1 (t) εt−2,T

(16)

and it is obtained that e2;t,T = εt,T − δ2
1 (t) εt−2,T , which is a locally stationary MA(2). In this sense,

in the second stage of the process, εt,T of Equation (1) is replaced with MA(2) from et,T , and Yt,T is
replaced with Ŷt−i,T to obtain the final estimates of δ̂i

( t
T
)

and ω̂j
( t

T
)
.

According to the methodology of [17], the mother and father wavelets periodized with the original
signal are convolved, and after several algebraic operations resulting from the least squares process, we
obtain the wavelet coefficients, α and β Equation (4), which are introduced in the equation of wavelet
expanded series to obtain finally the δi (u) and ωj (u) coefficients Equation (6). The coefficients δi (u)
and ωj (u) are obtained in the wavelet domain. To interpret these coefficients in the time domain
and substitute in Equation (1) as the weight each explanatory variable of the model, their inverse
function must be calculated, which is resolved very similarly to how the inverse of a Fourier transform
is calculated, that is to say:

δ̂

(
t
T

)
= Ψ(m)

Y δi (u) (17)

ω̂

(
t
T

)
= Ψ(n)

X ωj (u) (18)

Synthesizing, we estimate the empirical wavelet coefficients by least squares in two stages. In
the first stage of the process, we estimate the initial residuals et,T and the adjusted values of Ŷt,T to
obtain the final estimates of δ̂(t, T) and ω̂(t, T) in the second phase of the process. At each stage of the
process, it must be identified under what level of resolution the error is minimized, and the model is
better adjusted to the data. Given that in practice, an appropriate number of levels based on the nature
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of the signal is usually selected [22], we perform calculations of various goodness of fit indicators
to identify which one or more resolution levels we could reconstruct of δ̂(t, T) and ω̂(t, T), and the
calculation was applied in both phases of the process Figure 1.

Figure 1. Process diagram for transfer function model with time varying coefficients.

2.3. Polynomial Transfer Function Model

When requiring the modeling of the impact of a regressive variable on a response variable over
time and the regressors and the response variables are assumed as stochastic processes, the approach
of the transfer function models proposed by [23] can be followed, expressed as the following lagged
regression model:

Yt =
∞

∑
j=0

αjXt−j + ηt = α (B) Xt + ηt (19)

where Xt and ηt are independent stationary processes and the weights αj measure the impact of the
past values of the input variable Xt in Yt. The polynomial α (B) = ∑∞

j=0 αiBi is called the transfer
function, and it is a polynomial in the delay operator B such that BXt = Xt−1. Its coefficients must
satisfy ∑∞

j=0
∣∣αj
∣∣ < ∞ to ensure stability. The random noise ηt is assumed to be stationary and can be

written in the form ηt =
θη(B)
φη(B)Zt, where Zt is a white noise process with variance σ2

Z.
Box et al. [23] proposed a more parsimonious representation of the transfer function as a

polynomial relation:

α (B) =
δ (B) Bd

ω (B)
Zt (20)

where δ (B) = δ0 + δ1B+ · · ·+ δsBs and ω (B) = 1−ω0 +ω1B− · · · −ωrBr and d is a delay coefficient.
The transfer function (s, d, r) will be determined completely by estimating the coefficients of the
polynomials δ (B) and ω (B) the delay coefficient d. This involves estimating the vector of parameters
(δ0, δ1, · · · , δs, ω1, · · · , ωr). It is possible to consider a transfer function model with two or more
stochastic input variables. For two input variables x1t and x2t, the model has the form:

yt =
δ1 (B) Bd1

ω1 (B)
x1t +

δ2 (B) Bd2

ω2 (B)
x2t + ηt (21)

This model has a much larger number of parameters than the model Equation (19), but its
adjustment procedure is similar. A sequential methodology is applied to estimate the parameters of the
transfer function presented in Equation (19). The methodology begins by adjusting an autoregressive
moving average (ARMA) models of order (p, q) to the input time series xt of the form φ (B) xt =

Θ (B)Wt, where Wt is a white noise process with variance σ2
W ; φ (B) = 1− φ1B− φ2B2 − · · · − φpBp

is a polynomial of order p that acts on operator B and defines the autoregressive component of the
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model, and Θ (B) = 1 + θ1B + · · ·+ θqBq is a polynomial of order q that defines the moving average

component. Applying the operator of the ARMA model φ(B)
Θ(B) on both sides of Equation (20), we obtain:

ỹt = α (B)Wt +
φ (B)
Θ (B)

ηt = α (B)Wt + η̃t (22)

where ỹt = φ(B)
Θ(B)yt and φ(B)

Θ(B)ηt = η̃t. In this equation, we assume that Wt and η̃t are independent,
where Wt is the pre-whitened input series xt and ỹt and η̃t are the filtered output series of yt and the
random noise ηt, respectively, using the operator of the ARMA (p, q) model as a filter. It can be shown
that the cross-correlation between the filtered series and the pre-whitened series Wt is γỹtWt

(h) = σ2
Wαh;

therefore, their sample values allow obtaining an approximate estimate of the coefficients of the transfer
function α0, α1, · · · [16].

Shumway and Stoffer [24] presented a sequential process to fit the transfer function model, and
this procedure is applied to the data as follow:

(i) Fit an ARMA model to the input series to estimate the parameters φ, Θ and σ2
w in the

specification φ (B) xt = Θ (B)wt. Retain ARMA coefficients for use in the next Step (ii) and the
fitted residuals ŵt for use in Step (iii).

(ii) Apply the operator determined in Step (i), φ̂ (B) yt = Θ̂ (B) ỹt to determine the transformed
output series φ̂η (B) and Θ̂η (B).

(iii) Use the cross-correlation function between ỹt and ŵt in Steps (i) and (ii) to suggest a form for

the components of the polynomial α (B) = δ(B)Bd

ω(B) and the estimated time delay d.

(iv) Obtain β̂ =
(
ω̂1, · · · , ω̂r, δ̂0, · · · , δ̂s

)
by fitting a linear regression. Retain the residuals ût for

use in Step (v).
(v) Apply the moving average transformation to the residuals ût to find the noise series η̃t and fit

an ARMA model to the noise, obtaining the estimated coefficients in φ̂η (B) and Θ̂η (B).

Model Validation Methods

The model was validated using 76 records not considered in the fitting procedure. The validation
data corresponded to the period between September 2005 and December 2011. As suggested by [25],
model parameterization was achieved by minimizing together the root mean squared error (RMSE)
and the mean absolute error (MAE) to ensure optimal results over the prediction and maximizing the
correlation coefficient (R). The commonly used RMSE quantifies the differences between predicted and
observed values and thus indicates how far the forecasts are from actual data. A few major outliers in
the series can skew the RMSE statistic substantially because the effect of each deviation on the RMSE
is proportional to the size of the squared error.

3. Results and Discussion

3.1. Data Analysis

As detailed in the previous section, the disembarkation of two species of fish (sardines and
anchovies) was selected as dependent variables, whose variability could be potentially explained from
the nine climatic variables presented in Table 1. In order to work the variables at the same scale, they
were anomalized and standardized; this in turn allowed us to explore model fitting results under
diverse temporal patterns (seasonal and slightly stationary).
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3.1.1. Variable Anomaly

The first step before estimating the models was to anomalize each of the indices, as well as the
disembarkation of anchovy. This implies subtracting from each of the data the average monthly value
calculated during a reference period and then dividing it by the monthly standard deviation (both
calculated over a base period). To do so and because the World Meteorological Organization (WMO)
states that a period of at least 30 years should be used for the anomaly calculation, the reference period
from 1963 to 2011 was considered adequate. In other words:

Xij =
Xij − X̄i

σi
, i = month, j = year, (23)

where the mean is given by X̄i = ∑2011
j=1963

Xij
49 and the variance σ2

i = ∑2011
j=1963

(Xij−X̄i)
2

48 .
The series of sardine landings was not anomalized because their cyclic variation is not determined

by a monthly base period. To stabilize the series, a logarithmic transformation was applied.

3.1.2. Variable Standardization

The standardization consisted of subtracting from each of the data the average value calculated in
a reference period and then dividing it by the standard deviation (both calculated over a base period).
In other words:

Xi =
Xi − X̄

σ
, i = month, (24)

where the mean is given by X̄i = ∑2011
j=1963

Xij
588 and the variance σ2 = ∑2011

j=1963
(Xi−X̄)2

587 .
The first step in any analysis and forecast of time series is to plot the observations against time,

to get an idea of the possible trends and/or cycles associated with the temporal evolution of the
datasets [25]. In Figure 2, it can be seen that the standardized series had periodic variation, while the
exogenous variables did not seem to show periodic variation when they were anomalized; also see
that the fish landings stabilized slightly when their logarithmic transformations was standardized.

Figure 3 describes the process to build the transfer functions. The raw data were divided
into training and test data. The training data started from January 1963 to August 2005 (totaling
512 records), while the test data started from September 2005 to December 2011 (76 records). The
different transformations (logarithmic, anomaly, standardize) were applied to the data partitions, and
the transfer function models were fitted (training data). Fish landing forecasts (test data) and goodness
of fit metrics were calculated for both the fitted and the forecast values. Finally, the metrics were
compared, and the best model was identified.
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Standardized series Anomaly series

a) b)

Figure 2. Standardized and standardized anomalies monthly series: (a) exogenous and response series
standardized; (b) standardized anomalies of exogenous series and response series standardized.

Figure 3. Process diagram for transfer function modeling.

3.2. Validation Results and Time Series Predictability

Table 2 shows the variables that had a significant cross-correlation with fish landings. From
this crossing, the transfer function models began to be built. Based on the cross-correlation function
between the fisheries’ landings and macro-climatic phenomena (Step iii, Section 2.3), correlation
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patterns among the series were detected; also see the variables that had the greatest linear association
with the monthly anchovy and sardine disembarkation in northern Chile. These were SST,turbulence
index (TI), and Niño Zone 1 + 2 (N12). Likewise, the variables with the lowest linear association were
the Pacific Decadal Oscillation index (PDO), El Niño multivariate Southern Oscillation Index (MEI),
Southern Oscillation index (SOI), and N34 (highly associated with N12).

Table 2. Cross correlation coefficients (CCF) for different lags between disembarkation and significant
explanatory variables.

X
Standardized Anomalized Standardized Anomalized

Anchovy Log Anchovy Anchovy Log Anchovy Sardine Log Sardine Sardine Log Sardine
Lag CCF Lag CCF Lag CCF Lag CCF Lag CCF Lag CCF Lag CCF Lag CCF

SST - - - - 15 −0.10 7 −0.13 - - 20 0.22 15 0.13 15 0.12
TI 2 −0.12 - - 2 −0.14 10 −0.20 18 0.15 18 0.23 2 0.14 18 0.22

MEI - - - - - - 5 0.11 10 0.15 - - - - - -
MSL - - 7 −0.15 3 −0.11 7 −0.15 - - - - 3 0.08 - -
PDO - - - - - - - - - - 2 0.10 - - - -
N12 22 −0.11 5 −0.12 - - 5 −0.11 - - 24 0.14 - - - -
N34 - - - - - - - - - - - - - - - -
SOI - - - - - - - - 23 −0.11 - - - - - -
CTI - - - - - - - - 12 −0.11 22 0.11 - - - -

DSAR - - 5 −0.19 - - 5 −0.19 1 0.80 1 0.95 1 0.80 1 0.95
DANC 1 0.54 1 0.76 1 0.57 1 0.76 10 −0.15 7 −0.14 - - 7 −0.14

It should be noted that there is a wide range of methods to identify significant variables and
associated lags, such as those shown in [26]; however in the document, the methodology suggested
by [24] and specified in the previous section was used (Step iii, Section 2.3).

Wavelet Transfer Function Models

Table 3 presents a summary of the main models obtained, with their indicators of the goodness of
fit and forecast. Synthesizing, a total of 31 combinations of resolution levels was considered for ten
Daubechies filters in the first stage. In the second stage, we worked with the residuals, fitted values,
and the filter selected from the first stage and 31 resolution combinations. A total 310 models was
fitted for each desired transfer function, in order to select the best model under diverse goodness of
fit criteria.

The results shown in Table 3 allowed us to identify that through the transfer functions of variable
coefficients, we could fit both anomalized and standardized data with a good level of accuracy;
however, its performance was much better when the signals were standardized. Likewise, it can
be observed that the models continued showing a good behavior in their residuals for the forecast
phase, preserving a moderate percentage of strength in their coefficient of determination (calculated
exclusively for the data based on the forecast).

We worked with each level j independently, as well as together until reaching an optimum level in
the fitting process. In principle, it was observed for each Daubechies filter and under each combination
of j that the mean absolute error (MAE) was minimized or the coefficient of determination (R2) was
optimized. One might think that if the model fit were good enough, the behavior should reflect
simultaneously, an elevated (R2) for the minimum MAE. However, this is not always the case, and this
is because the wave at a specific j level can have the pattern of the behavior of the original signal, but
not be at the scale of the same; therefore, the error could be large like (R2). Therefore, the best possible
model for each Daubechies filter was identified, and the second stage of the process was executed, by
tracking the metric goodness of fit again in the second stage, in order to obtain the best fit.
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Table 3. Transfer function models. Goodness of fit indicators for the resulting models. In bold are the
results of the best models for each time series.

T1/ Y2/ X3/ L4/ Type Coefficient Fitted Forecast
RMSE MAE R2 Pearson Spearman Kendall RMSE MAE R2

Anchovy

N DANC

DANC 1 Constant 0.851 0.559 0.821 0.964 0.882 0.727 0.603 0.464 0.796TI 2
N12 22 Wavelet 0.165 0.128 0.978 0.990 0.971 0.865 0.138 0.106 0.969

A DANC

DANC 1 Constant 0.831 0.568 0.826 0.966 0.919 0.771 0.660 0.571 0.750SST 15

TI 2 Wavelet 0.416 0.309 0.904 0.956 0.943 0.796 0.265 0.207 0.824MSL 3

Log N DANC

DANC 1 Constant 0.603 0.451 0.862 0.953 0.950 0.813 0.770 0.575 0.748MSL 7

N12 5 Wavelet 0.391 0.286 0.883 0.932 0.929 0.775 0.717 0.806 0.564LDSAR 5

Log A DANC

DANC 1
Constant 0.604 0.447 0.860 0.950 0.948 0.808 0.792 0.548 0.751SST 7

TI 10

MEI 5

Wavelet 0.818 0.620 0.652 0.714 0.637 0.458 0.599 0.493 0.681MSL 7
N12 5

LDSAR 5

Sardine

N DSAR

DSAR 1
Constant 0.610 0.380 0.858 0.943 0.640 0.472 0.167 0.135 0.500TI 18

MEI 10

SOI 23
Wavelet 1.033 0.734 0.672 0.715 0.538 0.374 1.308 1.072 0.500CTI 12

DANC 10

A DSAR

DSAR 1
Constant 0.614 0.381 0.859 0.947 0.744 0.584 0.139 0.109 0.619SST 13

TI 12

SOI 23
Wavelet 1.377 0.998 0.590 0.557 0.290 0.192 0.887 0.749 0.499CTI 18

Log N DSAR

DSAR 1
Constant 0.274 0.199 0.918 0.962 0.966 0.840 0.303 0.258 0.688SST 20

TI 18

PDO 2

Wavelet 1.013 1.261 0.613 0.614 0.607 0.432 0.357 0.285 0.547N12 24
CTI 22

LDANC 7

Log A DSAR

DSAR 1 Constant 0.276 0.200 0.916 0.961 0.966 0.840 0.277 0.239 0.706SST 15

TI 18 Wavelet 0.417 0.542 0.562 0.755 0.762 0.565 1.291 1.249 0.502LDANC 7
1/ Type of transformation made to the variables: standardized (N), anomalized (A). 2/ Response variable (Y).
3/ Explanatory variable (X). 4/ Lag of the explanatory variable in the transfer model (L = Lag).

Similarly, the goodness of fit statistics were calculated, but more indicators were added to make
sure that the most appropriate decision was made. In this last adjustment, the square root of the
average value of the squared residuals (RMSE), MAE, the coefficient of determination (R2), the Pearson
correlation coefficient, the Spearman correlation coefficient were calculated, as well as the Kendall
correlation coefficient, all for the Daubechies filter selected in Phase 1, and in the same way for various
resolution levels (j).

For example, in Figure 4, we show the goodness of fit metrics for wavelet transfer function
models estimated to explain anchovy landings (standardized data). Traditional metrics were used
to determine the optimal families of wavelets and the decomposition scale, which would produce
an improved forecasting performance, so the filter and resolution were selected to achieve the best
metrics (high R2 and minimum residuals). The same procedure was performed for all fitted models.
The wavelet entropy algorithm such as the one presented in [21] could be used in the future, to
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determine the optimal wavelet families and the decomposition scale that would produce an improved
forecasting performance.

R2 RMSE MAE

(a) (b) (c)

Figure 4. Goodness of fit metrics for the best wavelet transfer function models fitted to DANC: (a)
Coefficient of determination (R2). Maximum values are identified (Max in D10, resolution 1:2). (b)
Root mean squared error (RMSE). Minimum values are identified (Min in D10, resolution 1:2). (c) Mean
absolute error (MAE). Minimum values are identified (Min in D10, Resolution 1:2).

3.3. Constant Coefficient Transfer Function Models

Table 3 presents a summary of the models obtained, with their indicators of the goodness of fit and
forecast. The results shown allowed us to identify that the transfer functions of constant coefficients
can model both anomalized and standardized data with a good level of fit; however, its performance
was much better when the signals were standardized. Likewise, it can be observed that the models
continued showing a good behavior in their residuals for the forecast phase, conserving a moderate
percentage of strength in their coefficient of determination (calculated exclusively for the data based
on the forecast).

3.4. Comparison between Transfer Function Modeling Approaches

When compared to the methodologies implemented, wavelet and polynomial coefficients with
the different transformations applied to the data, in order to select the most accurate model in terms of
residuals, it was observed that when the series were standardized to explain the anchovies’ landings,
the transfer function wavelet model showed a better fit, while when the exogenous series were
anomalized to explain the standardized log(sardine landing), the transfer function polynomial model
showed a better fit. In this sense, we must keep in mind that it is convenient for the data to have certain
properties so that each approach is optimal. When using constant coefficient transfer functions, it is
recommended that the series have a more stable variance, which is achieved with the anomalization;
while when using the variable coefficient transfer functions, the high and low frequency components
of the seasonal series are captured in such a way that the models perform better.

Figure 5 shows the residuals of the fitted models, for different treatments of the variables and
transfer function models. It was verified that the best models (with smaller residuals) were obtained
when using a transfer function with variable coefficients to explain the anchovies’ landings (data
standardized); and when using a transfer function with polynomial coefficients to explain the sardines
landings (explanatory variables anomalized and sardine series in standardized logarithmic scale).
Figure 6 shows the fit behavior of both models, as well as the forecasts obtained from the test data.
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Likewise, we can see that the variance explained during the validation phase for anchovy landings
(96, 9%) showed important improvements in relation to previous works, such as that presented by [7],
where the variance explained in external validation fluctuated between 84% and 87%, or in sardine
and anchovy landing forecasts presented by [9], in which the variance explained by both models was
slightly higher than 82%.

Standardized Disembarkation Anomalized Disembarkation Series
Constant Coefficient Time Varying

Coefficients Constant Coefficient Time Varying
Coefficients

A
nchovy

Sardine
Log

anchovy
Log

sardine

Figure 5. Estimated residuals between observed values and fitted values for transfer function
model methods.
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Series Fitted Values and Forecast

DANC

Log DSAR

Figure 6. Standardized and scaled anomalized monthly series for anchovies landings (top) and sardine
landings in logarithmic scale (bottom).

We can observe that the sardine landings did not reach as good a fit as those of anchovies. This
could be optimized in a future work by considering, for example, a truncated model as suggested
by [27], where the data series were modeled based on the assumption that the data followed a truncated
and transformed multivariate normal distribution. In their work, the data predictive inferences showed
very realistic results, capturing the typical variability of the series in time and space.

4. Conclusions

Based on the analysis of models built to forecast the monthly disembarkation of anchovy (Engraulis
ringens) and sardine (Sardinops sagax) in northern Chile, the following conclusions emerged from
the analysis:

When various transformations were applied to the data to achieve better model precision, large
differences in the benefits of the selected fitted models could be identified. Records of anchovy landings
were better fitted and forecast with standardized data under a transfer model with wavelet coefficients,
using Daubechies 10 filters with low resolution levels (associated with the slightly compressed wavelets
j = 1 : 2). Sardine landings were better fitted when the variance of the landings was stabilized
using the logarithmic function; and the variance of the explanatory variables was stabilized by
anomalizing the variables; finally, modeling these sardine landings in a logarithmic scale with a
traditional transfer function.
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The variables that allowed explaining in a more robust way the disembarkation of anchovy was
the turbulence index from Antofagasta Coastal Oceanographic Station (TI) and the Pacific sea surface
temperature index (Niño Zone 1 + 2: N12); while the disembarkation of sardines was explained by
local climatic variables: TI, sea surface temperature from Antofagasta Coastal Oceanographic Station
(SST), and the log disembarkation of anchovy.

Given that the process of selecting the appropriate number of scales to optimize the model
fit was made according to the researcher’s choice, it is advisable to implement in the future some
entropy based techniques that allow for the best possible scale selection. It is also recommended to
evaluate if the results can be optimized considering other wavelet filters in addition to the Daubechies
filters. Likewise, a non-linear structure model could be considered (for example, thresholding wavelet
coefficients) in order to determine the best model structure for fishery prediction. These results could
also be optimized by implementing bootstrapping techniques for the fitted parameters in order to
quantify their uncertainty.
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