
entropy

Article

The Connection between Bayesian Inference and
Information Theory for Model Selection, Information
Gain and Experimental Design

Sergey Oladyshkin*,† and Wolfgang Nowak *,†

Department of Stochastic Simulation and Safety Research for Hydrosystems, Institute for Modelling Hydraulic
and Environmental Systems/SC SimTech, University of Stuttgart, Pfaffenwaldring 5a, 70569 Stuttgart, Germany
* Correspondence: sergey.oladyshkin@iws.uni-stuttgart.de (S.O.); wolfgang.nowak@iws.uni-stuttgart.de (W.N.)
† These authors contributed equally to this work.

Received: 24 September 2019; Accepted: 31 October 2019; Published: 4 November 2019
����������
�������

Abstract: We show a link between Bayesian inference and information theory that is useful for model
selection, assessment of information entropy and experimental design. We align Bayesian model
evidence (BME) with relative entropy and cross entropy in order to simplify computations using
prior-based (Monte Carlo) or posterior-based (Markov chain Monte Carlo) BME estimates. On the one
hand, we demonstrate how Bayesian model selection can profit from information theory to estimate
BME values via posterior-based techniques. Hence, we use various assumptions including relations
to several information criteria. On the other hand, we demonstrate how relative entropy can profit
from BME to assess information entropy during Bayesian updating and to assess utility in Bayesian
experimental design. Specifically, we emphasize that relative entropy can be computed avoiding
unnecessary multidimensional integration from both prior and posterior-based sampling techniques.
Prior-based computation does not require any assumptions, however posterior-based estimates
require at least one assumption. We illustrate the performance of the discussed estimates of BME,
information entropy and experiment utility using a transparent, non-linear example. The multivariate
Gaussian posterior estimate includes least assumptions and shows the best performance for BME
estimation, information entropy and experiment utility from posterior-based sampling.

Keywords: model evidence, entropy, model selection, information entropy, Bayesian experimental
design, Kullback–Leibler divergence, Markov chain Monte Carlo, Monte Carlo

1. Introduction

Probability theory and stochastic analysis provide powerful tools for model selection, parameter
inference, data assimilation and experimental design. Bayesian inference is a branch of classical
probability theory [1] that offers a stochastic framework for inverse modelling and for assessing
the remaining uncertainty in model parameters and prediction [2]. Bayesian principles can be
approached via prior-based sampling approaches such as Monte Carlo [3] or via posterior-based
sampling approaches as Markov chain Monte Carlo (MCMC: [4]). A number of different approaches
for model comparison and selection are available in the literature. Typically, some trade-off between
the model’s skill and its degree of complexity is sought for in order to identify a model that will yield
robust predictions beyond calibration conditions [5]. The Bayesian framework offers the so-called
Bayesian model selection or Bayesian model averaging [6]. These two approaches rest on an integral
measure of model performance against available observation data, called the Bayesian model evidence
(BME, also called marginal likelihood), and use it to provide a relative model ranking or relative
model weights [7,8]. Bayesian model selection can also be seen as a special case of decision theory
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where the model with the largest expected likelihood is rewarded relative to the model with a smaller
expected likelihood. Estimating BME could be rigorously achieved via marginalizing the likelihood
of data over the prior distribution of the model using prior-based sampling algorithms such as
plain Monte Carlo integration. It is well known that such plain Monte Carlo techniques require
a large number of model runs, and become computationally very demanding for many applied
problems [6,9]. Thermodynamic integration [10], thermodynamic integration combined with parallel
tempering [11], nested sampling [12,13], Gaussian mixture importance sampling [14] or employment of
surrogates [15] were proposed in the literature to reduce the computational burden of estimating BME.
However, surrogates include approximation errors due to the reduced models, so that estimated BME
values should incorporate a correction factor that helps to assure a reliable model ranking especially
under strong computational time constraints [16]. Posterior-based sampling techniques achieved via
Markov chain Monte Carlo are widely used in the literature and seem to be very efficient for Bayesian
inference [17]. However, estimating the BME based on posterior samples is known to be biased [18].
This fact poses a very strong limitation for posterior-based estimates of BME required for Bayesian
model selection and model averaging. The first attempt to provide BME values from posterior samples
were proposed in [19], based on the harmonic mean approximation. Unfortunately, the harmonic
mean estimate tends to overestimate BME [20] and it converges to a biased estimate [18]. Gelfand
and Dey [21] proposed a simulation-consistent alternative to the harmonic mean estimator, again
based on posterior samples. Chib [22] suggests to follow Bayes rule and estimate BME based on a
high-density point in the support of the posterior (see also [23]). Computation via the Gelfand–Dey
and Chib methods can be found in [24].

Seemingly unrelated at first sight, information theory grew up in the 1940s [25–28] from
classical probability theory [1]. Information entropy [26] and cross entropy [25,29] were widely
used in the literature to measure expected uncertainty and information (see e.g., [30,31]). Relative
entropy, also called Kullback–Leibler divergence [27], measures the difference between two probability
distributions. All mentioned entropies are widely used for model section [32–34], optimal design
of experiments [35–38] and as well for machine learning [39–41]. Bayes’s rule was shown to be
informationally efficient, and Bayes’s theorem has been linked to maximum-entropy concepts in [42].
A recent review on entropy, information theory, information entropy and Bayesian inference can
be found in the paper [43] by Mohammad-Djafari. However, according to definition, all entropies
require estimation of a multidimensional integral. To avoid that integral in applications, various
approximations such as the Akaike information criterion [44], a second-order bias correction of the
Akaike information criterion [45], the Kashyap information criterion [46], the Bayesian information
criterion [8], and many others were developed.

In these criteria, in model selection and in experimental design, information theory and Bayesian
statistics encounter each other. Usually, these criteria rest on strong assumptions about the models
under consideration that are rarely met in practice, especially when nonlinear models are involved [6].
When applied although these conditions are not met, only parts of the available information about a
model’s skill and complexity are used (e.g., only the performance at the most likely parameter set),
which could yield biased results. Detailed discussion about the various information criteria and also
pro-contra arguments for model selection based on Bayesian model evidence or on various information
criteria can be found in a recent guiding study [5].

The current paper shows the deep connection between Bayesian inference and information
theory in Section 2. This connection can be employed for model selection, assessment of information
entropy and experimental design. The scope of the current paper is to align BME with entropies
from information theory in order to simplify BME and relative entropy estimations using either
prior or posterior-based sampling techniques. Section 3 demonstrates how BME can be estimated via
posterior-based MCMC-like techniques using various assumptions. Additionally, Section 3 discuss how
BME relates to several information criteria that are known in information theory. Section 4 demonstrates
how relative entropy can be computed to assess the information entropy during Bayesian updating and
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to predict the utility of an experiment during Bayesian experimental design. We emphasize that the
information entropy and the predicted utility of an experiment can be computed avoiding unnecessary
multidimensional integration for both prior and posterior-based sampling approaches. Employing
prior-based approaches does not require any additional assumptions. However, posterior-based
estimates require at least one additional assumption. Multivariate Gaussian posterior estimates
similar to the Gelfand and Dey approach [21], include least assumptions among all approximates
discussed in Section 3 and hence offer a suitable assessment of BME and information entropy using
posterior-based approaches. Section 5 illustrates evidence of convergence for BME, information entropy
and experiment utility with our proposed methods using a simple didactic example.

2. Bayesian Inference and Information Theory

2.1. Bayesian Inference

Bayesian theory offers a statistically rigorous approach to deal with uncertainty during inference,
providing probabilistic information on the remaining uncertainty in parameters and predictions
while incorporating the available observation data. In the Bayesian framework, initial knowledge
of parameters is encoded in a prior probability distribution. After Bayesian parameter inference,
one obtains a posterior probability distribution of the parameters, which is more informative than the
prior distribution (strictly: as least as informative as). Formally, the posterior parameter distribution
p(ω|y∗) of n uncertain parameters forming the vector of random variables ω = {ω1, ..., ωn} from
the parameter space Ω is obtained by updating the prior parameter distribution p(ω) in the light of
observed data y∗ (vector) according to Bayes’ Theorem (page 6 in [1]):

p(ω|y∗) =
p(y∗|ω)p(ω)

p(y∗)
, (1)

where the term p(y∗|ω) is the likelihood function that quantifies how well the predictions y(ω) based
on specific parameter combinations ω match the observed data y∗, and the term p(y∗) is BME.

BME p(y∗) can bee seen as a normalizing constant for the posterior distribution of the parameters
ω and can be obtained from Equation (1) using the property of probability density functions that∫

Ω
p(ω|y∗)dω = 1:

BME ≡ p(y∗) =
∫

Ω
p(y∗|ω)p(ω)dω. (2)

BME indicates the quality of the model against the available data and it can be directly estimated [47]
from Equation (2) using Monte Carlo (MC) or similar prior-based sampling techniques [48]. Several
stochastic computational approaches omit direct computation of the normalizing constant p(y∗) if only
the posterior distribution should be sampled (e.g., rejecting sampling [3] or many MCMC techniques).
Markov chain Monte Carlo was shown to be an efficient alternative to Monte-Carlo integration for
Bayesian updating [49], by providing samples from the posterior. However, computing BME p(y∗)
is indispensable for Bayesian model selection and Bayesian model averaging frameworks [6] where
a relative model ranking based on BME ratios play the core role [7,8]. However, the integral in
Equation (2) cannot be estimated directly if only posterior samples are available, unless one is willing
to accept a bias in the so-called harmonic mean estimate [18]. This poses a very strong limitation
especially if posterior-based techniques such as Markov chain Monte Carlo [1] should be applied to
estimate BME [6]. It is annoying that Bayesian updating requires posterior sampling, while estimating
BME should use prior sampling; this means that these two tasks need their own samples each.
The current paper will demonstrate how the posterior distribution could be employed to estimate
BME in a different fashion, and for that we will use the notions of information theory introduced in
the next Section 2.2.
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2.2. Information Theory

In the current Section, we will recall several definitions from Information theory [50] that we
will employ to assess information [51] in terms of the probability density functions introduced in
Section 2.1. The definitions in the current Section are considered to be well known and hence we refer
to the original papers [25–28] for further interpretation.

Information entropy is a measure of the expected missing information and also can be seen as
uncertainty of a random variable ω. According to Shannon [26], the information entropy H [p(ω|y∗)]
for a random variable ω with (posterior) parameter distribution p(ω|y∗) is defined as the following:

H [p(ω|y∗)] = −
∫

Ω
ln [p(ω|y∗)] p(ω|y∗)dω. (3)

The cross entropy [25,29] between two probability distributions is a measure of the expected
information that is required to get from one distribution to another. Therefore, the cross entropy
H [p(ω|y∗), p(ω)] is a measure of the expected missing information required to obtain the posterior
p(ω|y∗) from the prior p(ω):

H [p(ω|y∗), p(ω)] = −
∫

Ω
ln [p(ω)] p(ω|y∗)dω. (4)

Additionally, similar to Equation (4) we will introduce for the further use a non-normalized cross
entropy Ĥ [p(ω|y∗), p(y∗|ω)] that estimates non-normalized expected missing information required
to obtain the posterior p(ω|y∗) from the likelihood p(y∗|ω):

Ĥ [p(ω|y∗), p(y∗|ω)] = −
∫

Ω
ln [p(y∗|ω)] p(ω|y∗)dω. (5)

This cross entropy Ĥ [p(ω|y∗), p(y∗|ω)] is non-normalized because the likelihood p(y∗|ω) is a proper
probability density in the space of measurement data y∗ only, but not a proper probability density
in the space of modelling parameters ω. Therefore, we will introduce the normalized cross entropy
H [p(ω|y∗), p(y∗|ω)] that relies on the likelihood normalized by the probability of data p(y∗):

H [p(ω|y∗), p(y∗|ω)] = −
∫

Ω
ln
[

p(y∗|ω)

p(y∗)

]
p(ω|y∗)dω = ln BME + Ĥ [p(ω|y∗), p(y∗|ω)] . (6)

Another well-known characteristic of information is relative entropy, also called Kullback–Leibler
divergence DKL. It measures the difference between two probability distributions [27] in the Bayesian
context. The relative entropy DKL [p(ω|y∗), p(ω)] measures the so-called information geometry in
moving from the prior p(ω) to posterior p(ω|y∗) or information lost when p(ω) is used to approximate
p(ω|y∗):

DKL [p(ω|y∗), p(ω)] =
∫

Ω
ln
[

p(ω|y∗)
p(ω)

]
p(ω|y∗)dω, (7)

or, using the definitions in Equations (3) and (4):

DKL [p(ω|y∗), p(ω)] = H [p(ω|y∗), p(ω)]−H [p(ω|y∗)] . (8)

Relative entropy DKL [p(ω|y∗), p(ω)] is usually employed for Bayesian experimental design [35]
where expected (marginalized) utility should be maximized [37]. Estimating the relative entropy
in Equation (7) requires a multidimensional integration that is often infeasible for applied
problems. The link between Bayesian inference and information theory in the current paper will
demonstrate how to avoid this multidimensional integration. We would like to remind readers
that DKL [p(ω), p(ω|y∗)] 6= DKL [p(ω|y∗), p(ω)] unless p(ω) = p(ω|y∗), and hence relative entropy
cannot be considered a true measure of distance [52].
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2.3. From Bayesian Inference to Information Theory

We will re-formulate Bayes’ Theorem in Equation (1) to create a useful link between Bayesian
Inference and Information Theory. To do so, we will divide Equation (1) by the prior distribution p(ω)

and then take the natural logarithm on both sides of the equation:

ln
[

p(ω|y∗)
p(ω)

]
= ln

[
p(y∗|ω)

p(y∗)

]
. (9)

Multiplying Equation (9) by the posterior distribution p(ω|y∗) and taking the integral over the
parameter space Ω, Bayes’ Theorem becomes:

∫
Ω

ln
[

p(ω|y∗)
p(ω)

]
p(ω|y∗)dω =

∫
Ω

ln
[

p(y∗|ω)

p(y∗)

]
p(ω|y∗)dω, (10)

or, decomposing the integral in the right-hand side of Equation (10), we obtain:

∫
Ω

ln
[

p(ω|y∗)
p(ω)

]
p(ω|y∗)dω =

∫
Ω

ln [p(y∗|ω)] p(ω|y∗)dω−
∫

Ω
ln [p(y∗)] p(ω|y∗)dω. (11)

Recalling the unit-mass property of probability density functions for p(ω|y∗) and then realizing

that
∫

Ω
ln [p(y∗)] p(ω|y∗)dω = ln [p(y∗)], we obtain the following re-formulation of Equation (11):

∫
Ω

ln
[

p(ω|y∗)
p(ω)

]
p(ω|y∗)dω =

∫
Ω

ln [p(y∗|ω)] p(ω|y∗)dω− ln [p(y∗)] . (12)

Equation (12) is a reformulation of Bayes’ Theorem (1) and does not include any simplifications.
Hence, without loss of generality, we substitute all necessary definitions from Equations (2), (5) and (7)
into Equation (12):

DKL [p(ω|y∗), p(ω)] = − ln BME− Ĥ [p(ω|y∗), p(y∗|ω)] , (13)

or, using definition in Equation (6):

DKL [p(ω|y∗), p(ω)] = −H [p(ω|y∗), p(y∗|ω)] . (14)

The Equations (13) and (14) are direct consequences of Bayes’ theorem (1) that make use of
information theory in the context of Bayesian inference. It is easy to see, that maximizing of the
expected relative gain in moving from the prior p(ω) to posterior p(ω|y∗) in terms of Kullback–Leibler
divergence DKL [p(ω|y∗), p(ω)] (Bayesian experimental design [35]) could be obtained if and only
if minimizing the missing information required to obtain the posterior p(ω|y∗) from the likelihood
p(y∗|ω) in terms of cross entropy H [p(ω|y∗), p(y∗|ω)]. Overall, decreasing the information loss
represented by the cross entropy H [p(ω|y∗), p(y∗|ω)] relies on a compromise between decreasing of
the non-normalized cross entropy Ĥ [p(ω|y∗), p(y∗|ω)] and decreasing BME. From an applied point
of view, relative entropy DKL [p(ω|y∗), p(ω)] can be used as a model selection criterion. It assigns
the highest score to the model that assures a very informative distribution of likelihood compared to
the true probability distribution. That means, one would not necessarily select the model with the
highest expected value of likelihood (as in traditional BME-based model selection), but the model that
provides an overall distribution of normalized likelihood p(y∗|ω)/BME (including tails, etc.) most
similar to the unknown true probability distribution.

The link between Bayesian inference and information theory in Equation (13) can be extended
towards assessing overall expected missing information in terms of the information entropy
H [p(ω|y∗)] using the definitions in Equations (3), (4) and (8):
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H [p(ω|y∗)] = ln BME + Ĥ [p(ω|y∗), p(y∗|ω)] + H [p(ω|y∗), p(ω)] , (15)

or, using the definition in Equation (6):

H [p(ω|y∗)] = H [p(ω|y∗), p(y∗|ω)] + H [p(ω|y∗), p(ω)] . (16)

Minimizing the expected information loss in terms of the information entropy H [p(ω|y∗)] has
been suggested to identify the best fitting model [44] for model selection and is often used in machine
learning. Equation (16) demonstrates that the total expected missing information quantified by
H [p(ω|y∗)] corresponds to aggregation of expected missing information required to obtain the
posterior p(ω|y∗) from the likelihood p(y∗|ω) and the posterior p(ω|y∗) from the prior p(ω).

From a model selection point of view, the information entropy H [p(ω|y∗)] prioritises not only
the model which offers the most likely prediction of the unknown true probability distribution using
the available data (similar to Equation (14)), but as well the model that includes the most informative
prior. The last component encourages modellers to provide very meaningful priors and check how
close the suggested priors could be to the unknown true probability distributions. Therefore, obtaining
an informative likelihood is only one component in information entropy-based model selection.
Moreover, Equation (15) explicitly states that minimizing the expected information loss represented
by H [p(ω|y∗)] serves not the same purpose as maximizing BME that is often used in the traditional
Bayesian model selection framework. Therefore, a proper objective of model selection should be
exactly defined (see review [5]).

3. Bayesian Model Selection

As already pointed out in Section 2.1, BME is often used for model selection in order to identify the
most suitable model among a set of competing models or to rank the competing models. In the Bayesian
model selection framework, the prior distribution p(ω|Mk), the likelihood function p(yo|Mk, ω),
the posterior distribution p(ω|Mk, y∗) and Bayesian model evidence p(y∗|Mk) are specific to each
competing model Mk. The overall computational procedure per model is identical for all models,
and hence the indicator Mk will be omitted in the following. Additionally, Equation (2) shows that
BME is equal to the expected value Ep(ω) of the likelihood p(y∗|ω) over the prior p(ω):

BMEprior = Ep(ω) (p(y∗|ω)) . (17)

It is well known that prior-based integration approaches require high computational costs to
estimate BME. Therefore, computing BME values from posterior-based sampling, while avoiding the
so-called harmonic mean estimator (see Section 2.1), will be very valuable for the applied tasks. To do
so, we will employ the newly developed link between Bayesian inference and information theory in
Equations (13) and (15). It offers a pathway to estimate BME values from samples representing the
posterior distribution p(ω|y∗). To do so, we will re-formulate Equation (15) to obtain the following
posterior-based representation of BME:

ln BMEpost = Ep(ω|y∗) (ln [p(y∗|ω)]) +Ep(ω|y∗) (ln [p(ω)])−Ep(ω|y∗) (ln [p(ω|y∗)]) . (18)

Apparently, Equation (18) is based on posterior expectations only. The first term
Ep(ω|y∗) (ln [p(y∗|ω)]) in Equation (18) estimates the non-normalized cross entropy
Ĥ [p(ω|y∗), p(y∗|ω)] from Equation (6). It can be directly computed using posterior samples
and the corresponding log-likelihoods. Thus it does not require any knowledge about posterior density
values p(ω|y∗) or normalization of the posterior. Similarly, the second term Ep(ω|y∗) (ln [p(ω)])

in Equation (18) estimates the cross entropy H [p(ω|y∗), p(ω)] from Equation (4) and can directly
be computed by evaluating prior density values of posterior samples. However, the third term
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Ep(ω|y∗) (ln [p(ωi|y∗)]) responsible for the posterior information entropy H [p(ω|y∗)] poses a serious
computational challenge because posterior density values p(ω|y∗) are unknown and a posterior
sample is available only. Thus, the third term in Equation (18) includes the entire hardness of
BME estimation in concentrated form. The upcoming Sections 3.1–3.6 will offer several options to
approximate this term. Additionally, we will demonstrate how the resulting approximations of BME
relate to several information criteria known from information theory.

3.1. Model Evidence via Posterior Density Estimates

The first possible approximation of the posterior information entropy H [p(ω|y∗)] is to use a
density estimate p̃(ω|y∗) of the posterior distribution p(ω|y∗) based on posterior samples, e.g., via
Kernel density estimation [53] and other approaches [54]. Using such an estimate, Equation (18) will
lead to the following BME approximation:

ln BMEPDE
post ≈ Ep(ω|y∗) (ln [p(y∗|ω)]) +Ep(ω|y∗) (ln [p(ω)])−Ep(ω|y∗) (ln [ p̃(ω|y∗)]) . (19)

The quality of the posterior density estimate (PDE) p̃(ω|y∗) depends on the choice of approach
and related assumptions [55]. However, it is well known that any density estimation is extremely
computationally demanding and unfeasible for high-dimensional problems (due to the curse of
dimensionality). For that reason, we do not recommend to use Equation (19) for applications with
many uncertain parameters, but we still use it for demonstration purposes in Section 5.

3.2. Model Evidence via Dirac at the Maximum a Posteriori Estimate

Once could assume that the posterior distribution p(ω|y∗) has the form of Dirac function. i.e., the
only relevant posterior density is concentrated precisely at a single peak. Then, we can approximate
Ep(ω|y∗) (ln [p(ω|y∗)]) in Equation (18) via the maximum a posteriori (MAP) parameter set ωMAP:

ln BMEMAP
post ≈ Ep(ω|y∗) (ln [p(y∗|ω)]) +Ep(ω|y∗) (ln [p(ω)])− ln [p(ωMAP)|y∗] . (20)

We consider this MAP approximation very simplified and suggest to use it as a very rough guess
only.

3.3. Model Evidence via the Chib Estimate

Even more drastically then in Section 3.2, Chib [22] suggested to reduce computation of BME
values to a single point estimate. For estimation efficiency, the point is generally taken to have high
probability density (e.g., ωMAP) in the support of the posterior [23]):

ln BMECHIB
post = ln [p(y∗|ωMAP)] + ln [p(ωMAP)]− ln [p(ωMAP)|y∗] . (21)

It is easy to see that Chib’s approach is a consistent point estimate of Equation (18). As a direct
consequence of Equation (1), it could be exact if we had a perfect posterior density estimate at the
MAP for the third term. Its advantage is that it is simple to compute.

3.4. Model Evidence via the Akaike Information Criterion

The MAP approximation from Section 3.2 could be extended while employing the Akaike
information criterion (AIC) [44]:

AIC = −2 ln [p(ωMAP|y∗)] + 2n. (22)

Originally, the AIC employed the maximum likelihood estimator, but is often modified to use a
MAP estimator ωMAP. The AIC is well discussed in the literature, e.g., [5]. However, the original paper
of Akaike [44] used relative entropy, and dropping out the entropy of data (which is an irrelevant
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constant during model ranking) focuses the AIC to approximate the cross entropy H [p(ω|y∗)] of the
calibrated model against the data (page 718: Section IV, paragraph 1 in [44]). Moreover, the original
Akaike paper includes an assumption that the calibrated model can hit the real distribution of the
observed data (page 718: Section IV, paragraph 3 in [44]). Therefore, indeed, the AIC tends to

approximate the entropy H [p(ω|y∗)] in Equation (3) through the relation
1

2n
AIC (page 719: Section

V, paragraph 1 in [44]). This finding could be directly employed to approximate the last term in
Equation (18) as:

Ep(ω|y∗) (ln [p(ω|y∗)]) ≈ −
1

2n
AIC. (23)

Hence, substituting the approximation in Equation (23) into Equation (18), BME can be estimated
via the AIC as:

ln BMEAIC
post ≈ Ep(ω|y∗) (ln [p(y∗|ω)]) +Ep(ω|y∗) (ln [p(ω)])− 1

n
ln [p(ωMAP|y∗)] + 1, (24)

The paper [45] suggests to account for a second-order bias correction for a limited sample size s
(length of vector y∗) and extends the Akaike information criterion to the following from:

AICc = AIC +
2n(n + 1)
s− n− 1

. (25)

Therefore, using the correction in the Equation (25), the posterior-based BME estimate in
Equation (18) can be written as:

ln BMEAICc
post ≈ Ep(ω|y∗) (ln [p(y∗|ω)]) +Ep(ω|y∗) (ln [p(ω)])− 1

n
ln [p(ωMAP|y∗)] +

s
s− n− 1

. (26)

It is easy to see that the relations (24) and (26) inherit the maximum a posteriori estimation from
the Akaike approach and hence are only approximations. However, we expect that the AIC and
AICc-based BME estimate will be superior to a very simplistic MAP estimate as in Equation (20).

3.5. Model Evidence via Multivariate Gaussian Posterior Estimates

Assuming that the posterior distribution p(ω|y∗) is a multivariate Gaussian (MG) distribution,
the information entropy H [p(ω|y∗)] in Equation (3) can be approximated analytically [56,57]:

H [p(ω|y∗)] ≈
1
2

ln [(2πe)n|C|] . (27)

where C is the posterior (co)variance matrix and n is the number of uncertain parameters.
Substituting the multivariate Gaussian approximation in Equation (27) into Equation (18), we

obtain the following BME estimate:

ln BMEMG
post ≈ Ep(ω|y∗) (ln [p(y∗|ω)]) +Ep(ω|y∗) (ln [p(ω)]) +

1
2

ln [(2πe)n|C|] . (28)

This BME estimate can be directly calculated from posterior-based approaches such as MCMC.
Equation (28) provides a superior approximation of BME values in comparison to the various versions
of maximum a posteriori estimates in Equations (20), (21), (24) and (26), at least for continuous random
variables with unimodal and sufficiently symmetric posterior. Additionally, the multivariate Gaussian
posterior estimation in Equation (28) overcomes the curse of dimensionality in posterior density
estimation (19) and hence will be more efficient for high-dimensional problems.
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3.6. Model Evidence via the Kashyap Information Criterion Correction

Kashyap [46] introduced the so-called KIC information criterion. It uses the maximum likelihood
parameter estimator and is often modified to use the MAP parameter estimator ωMAP [58]:

KIC = −2 ln [p(ωMAP|y∗)]− 2 ln [p(ωMAP)]− n ln [2π]− ln [|C|] , (29)

where C is again the posterior (co)variance matrix as in Equation (27).
Taking into consideration that ln BME = −0.5KIC [6], the BME value can be directly estimated

as follows:
ln BMEKIC

post ≈ ln [p(ωMAP|y∗)] + ln [p(ωMAP)] +
1
2

ln [(2π)n|C|] . (30)

Apparently, the KIC-based Equation (30) approximates the expectations Ep(ω|y∗) (ln [p(y∗|ω)])

and Ep(ω|y∗) (ln [p(ω)]) in Equation (28) using the MAP estimate ωMAP and assumes a multivariate
Gaussian posterior distribution similarly to Equation (28). However, the KIC in Equation (29) omits
the constant −n (i.e., − ln(e)n) and hence the KIC-based Equation (30) is not acting at the proper
BME scale. Omitting the constant −n serves the model selection purpose whenever the number of
parameters n is the same for all competing models. In a more general case, we suggest to use the
multivariate Gaussian approximation according to Equation (28) and offer the follow adjustment of
the KIC:

KICr = −2 ln [p(ωMAP|y∗)]− 2 ln [p(ωMAP)]− n− n ln [2π]− ln [|C|] . (31)

Hence, to obtain the corresponding BME value, we re-scale the last term in Equation (30) by the
factor exp(n/2) inside the logarithm:

ln BMEKICr
post ≈ ln [p(ωMAP|y∗)] + ln [p(ωMAP)] +

1
2

ln [(2πe)n|C|] . (32)

It is easy to see that the KIC or KICr -based BME estimation in Equations (30) and (32) simplify
the multivariate Gaussian BME estimate in Equation (28) towards MAP estimates of the cross entropies
Ĥ [p(ω|y∗), p(y∗|ω)] and H [p(ω|y∗), p(ω)]. From the computational point of view, the KIC-based
BME estimates in Equations (32) or (30) require constructing the posterior (co)variance matrix C,
e.g., from a posterior sample. The involved averaging over the posterior sample can be performed
as well via a posterior sample to directly approximate the expectations Ep(ω|y∗) (ln [p(y∗|ω)]) and
Ep(ω|y∗) (ln [p(ω)]) in Equation (28) without any assumptions for MAP estimation. Therefore, the KIC
or KICr -based BME estimates include simplifications that are targeted at the calibrate-by-optimization
method, when samples for averaging are not available. Due to this simplification, we expect that the
plain multi-Gaussian Equation (28) will be superior to Equations (32) or (30).

3.7. Model Evidence via the Schwarz Information Criterion Correction

Schwarz [59] introduced the so-called Bayesian information criterion (BIC, also know as Schwarz
information criterion). It simplifies Equation (29), retaining a term that varies with the number of
parameters and observations, and relies on the maximum likelihood parameter estimator ωMLE:

BIC = −2 ln [p(ωMLE|y∗)]− n ln s, (33)

Therefore, similar to Equation (30), BME values can be directly approximated as follows:

ln BMEBIC
post ≈ ln [p(ωMLE|y∗)] +

n
2

ln s. (34)

Apparently, BIC-based BME estimation introduces even stronger simplifications in comparison to
KIC and KICr. BIC penalizes the dimensionality of the model and can be seen as asymptotical limit of
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KIC or KICr with growing data set size s. Far away from this limit case, it can only be used as rough
approximation of BME (see also discussion in [6]).

3.8. Model Evidence via the Gelfand and Dey Estimate

Assuming a multivariate Gaussian posterior distribution p(ω|y∗) to estimate the information
entropy H [p(ω|y∗)] as in Equation (28) is an assumptions also taken by the Gelfand and Dey (GD)
estimate [21]. The idea of Gelfand and Dey in the original paper [21] consists of introducing an
importance sampling density τ(ω) that could be multivariate Gaussian or t-densities:

ln BMEGD
post ≈ lnE−1

p(ω|y∗)

(
τ(ω)

p(y∗|ω)p(ω)

)
. (35)

When assuming multivariate Gaussianity of the importance sampling density τ(ω), the Gelfand
and Dey approach includes similar assumptions to the multivariate Gaussian estimate in Equation (27).
Both approaches have a potential to capture the posterior better than other estimates discussed in the
current Section 3. Table 1 offers a brief summary of assumptions behind all estimates discussed in the
current Section 3.

Table 1. Summary of assumptions behind estimates.

Estimate and Non-Normalized Cross Entropy Cross Entropy Information Entropy

Equation Number Ĥ [p(ω|y∗), p(y∗|ω)] H [p(ω|y∗), p(ω)] H [p(ω|y∗)]

PDE estimate (19) No assumptions No assumptions Kernel density estimation

MAP estimate (20) No assumptions No assumptions MAP point estimates

Chib estimate (21) MAP point value MAP point value MAP point estimates

AIC estimate (24) No assumptions No assumptions AIC estimates

AICc estimate (26) No assumptions No assumptions AICc estimates

MG estimate (28) No assumptions No assumptions MG estimates

KIC estimate (30) MAP point estimates MAP point estimates KIC estimates

KICr estimate (32) MAP point estimates MAP point estimates MG estimates

BIC estimate (34) MAP point estimates Asymptotical limit for growing data size

GD estimates* (35) No assumptions No assumptions MG estimates

* Remark: GD estimates relies on similar assumptions, but have different representation.

4. Bayesian View on the Information Gain

The previous Section 3 used the link between Bayesian inference and information theory from
Section 2.3 for posterior-based BME estimation. This link could be used for model selection purposes.
Additionally, the findings in Section 2.3 express information entropy in terms of relative entropy,
and so could be employed for entropy-based model selection and Bayesian experimental design.
There is plenty of literature on entropy-based model selection and Bayesian experimental design,
which is impossible to summarize here. In the upcoming Sections 4.1 and 4.2, we will shortly
demonstrate how the involved information and relative entropies could be estimated while avoiding
the multidimensional integrals.
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4.1. Information Entropy during Bayesian Inference

The traditional Bayesian model selection framework relies on the BME value only. Information
entropy H [p(ω|y∗)] could be used for model selection once the overall goal is to minimize model
discrepancy by finding the best-fit model [44] via minimizing H [p(ω|y∗)]. A detailed discussion
about the various information criteria and also pro-contra arguments for model selection based on
the BME or relative entropy can be found in a recent review [5]. However, information entropy
H [p(ω|y∗)] in Equation (3) cannot be computed directly from a posterior sample because the posterior
density values p(ω|y∗) are unknown. To overcome this situation, we will employ the definition of
DKL [p(ω|y∗), p(ω)] in Equation (8) to express the information entropy H [p(ω|y∗)]:

H [p(ω|y∗)] = H [p(ω|y∗), p(ω)]−DKL [p(ω|y∗), p(ω)] . (36)

Substituting the expression for relative entropy DKL [p(ω|y∗), p(ω)] from Equation (13) into
Equation (36), we obtain:

H [p(ω|y∗)] = ln BME + H [p(ω|y∗), p(ω)] + Ĥ [p(ω|y∗), p(y∗|ω)] . (37)

Therefore, the prior-based estimate of H [p(ω|y∗)] is equal to the expected log-ratio between BME,
the prior and the likelihood:

H [p(ω|y∗)]prior = ln BMEprior −Ep(ω|y∗) (ln [p(ω)])−Ep(ω|y∗) (ln [p(y∗|ω)]) . (38)

Equation (38) avoids any assumptions and avoids multidimensional density estimation
and integrals in Equation (3). It employs the prior-based estimation of BME values in
Equation (17) and posterior-based expectation of prior densities Ep(ω|y∗) (ln [p(ω)]) and likelihoods
Ep(ω|y∗) (ln [p(y∗|ω)]). The latter could be obtained using rejecting sampling techniques [3]. Therefore,
is not possible to evaluate Equation (38) if only a posterior sample is available. However, employing
the assumptions on BME from Section 3, the information entropy can be estimated accordingly:

H [p(ω|y∗)]post = ln BMEpost −Ep(ω|y∗) (ln [p(ω)])−Ep(ω|y∗) (ln [p(y∗|ω)]) . (39)

Finally, Equation (39) can be evaluated directly from a posterior sample and does not require any
additional steps. Obviously, Equation (39) includes an approximation of BME values in comparison to
Equation (38). However, the multivariate Gaussian BME estimate in Equation (28) or the Gelfand and
Dey estimate in Equation (35) include least assumptions in comparison to the other possible options in
Section 3, and so may offer a viable option.

4.2. Bayesian Experimental Design and Information Gain

Relative entropy DKL [p(ω|y∗), p(ω)] is often employed for Bayesian experimental design
where it represents the utility of an experiment outcome in learning about model parameters [35],
i.e., the distance between prior p(ω) and posterior p(ω|y∗) distributions in Equation (7). By formal
maximization of the expected relative entropy DKL [p(ω|y∗), p(ω)] [36,37] one can find an optimal
design dmax from the design space D:

dmax = arg maxd∈D Ed (DKL [p(ω|y∗), p(ω)]) . (40)

Alternatively, using Equation (14), the optimal design problem in Equation (40) can be
formulated as:

dmin = arg mind∈D Ed (H [p(ω|y∗), p(y∗|ω)]) . (41)
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The main computational challenge in Equation (40) is to estimate the relative entropy
DKL [p(ω|y∗), p(ω)]. For prior-based Bayesian experimental design, we re-formulate the relation
between information theory and Bayesian inference in Equation (13) in the following way:

DKL [p(ω|y∗), p(ω)]prior = Ep(ω|y∗) (ln [p(y∗|ω)])− ln BMEprior. (42)

The expression for relative entropy DKL [p(ω|y∗), p(ω)] in Equation (42) again avoids any
assumptions and avoids computation of the multidimensional density estimate and integral from
Equation (7). It employs the prior-based estimation of BME values in Equation (17) and posterior-based
expectation of the likelihood Ep(ω|y∗) (ln [p(y∗|ω)]) that could be obtained using a rejection sampling
technique or similar [3].

Similar to Section 4.1, a posterior-based estimation requires an approximation in Equation (8),
if the BME value could not be estimated using the prior samples as in Equation (42):

DKL [p(ω|y∗), p(ω)]post = −Ep(ω|y∗) (ln [p(ω)]) +Ep(ω|y∗) (ln [p(ω|y∗)]) . (43)

Hence, assuming a multivariate Gaussian posterior distribution and employing Equation (27),
the relative entropy could be estimated as follows:

DKL [p(ω|y∗), p(ω)]post = −Ep(ω|y∗) (ln [p(ω)])− 1
2

ln [(2πe)n|C|] . (44)

Equations (43) or (44) offer a posterior-based approximation of relative entropy
DKL [p(ω|y∗), p(ω)] for Bayesian experimental design that is similar to the BME estimate in
Equation (28). Moreover, the expected value Ed

(
Ep(ω|y∗) (ln [p(ω)])

)
for the so-called pre-posterior

analysis [60] has the same value for all possible designs d and hence it is irrelevant for Bayesian
experimental design. Thus, the optimization problem in Equation (40) can be simplified as:

dmax = arg maxd∈D Ed

(
−n

2
ln(2πe)− 1

2
ln |C|

)
, (45)

where Equation (45) is known in literate as D-optimally [35].

5. Model Evidence, Information Entropy and Experiment Utility for a Test Case

In the previous Sections 3 and 4, we have demonstrated how to employ the link between Bayesian
inference and information theory to perform model selection and to assess information entropy for
experimental design. The current Section 5 will illustrate the performance of the various estimates from
Sections 3 and 4 using a simple example. This is only a single example out of an infinity of possible
applications. These would all differ in prior assumptions, likelihood choices, number of parameters,
number of measurement data and degree of non-linearity. Therefore, the resulting Figures 1–3 are,
of course, problem-specific and can serve as a rough illustration only. The relevant information for the
problem-independent properties are the assumptions summarized in Table 1.

5.1. Scenario Set Up

Let us introduce a test case scenario in the form of an analytical function that will be used to
obtain the necessary quantities of interest for model selection and for assessing information entropy.
To make a fair assessment, we will keep in mind the finding in Section 3 and will ensure that the
introduced analytical scenario has a non-Gaussian posterior. To do so, we will consider a non-linear
analytical function y(ω, t) of ten (n = 10) uncertain parameters ω = {ω1, ..., ωn}:

y(ω, t) = (ω2
1 + ω2 − 1)2 + ω2

1 + 0.1ω1 exp(ω2)− 2ω1
√

0.5t + 1 +
n

∑
i=2

ω3
i

i
, (46)
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where the prior parameter distribution p(ω) is considered to be independent and uniform with
ωi ∼ U (−5, 5) for i = 1, 10 .

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Sample Size

10
-15

10
-10

10
-5

10
0

10
5

B
M
E
/
B
M
E
R
e
f

BME
prior

BME
post

HM

BME
post

MAP

BME
post

CHIB

BME
post

AIC

BME
post

AICc

BME
post

KIC

BME
post

KICr

BME
post

BIC

BME
post

PDE

BME
post

MG

BME
post

GD

Figure 1. Bayesian model evidence estimation for model selection using Markov chain Monte Carlo
and reference Monte Carlo solution.
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Figure 2. Information entropy estimation for model selection using Markov chain Monte Carlo and
reference Monte Carlo solution.
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Figure 3. Relative entropy estimate for Bayesian experimental design and model selection using
Markov chain Monte Carlo and reference Monte Carlo solution.
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The prior assumptions on the parameters will be updated using observation data y∗. For the
considered test scenario, we generate ten synthetic observed data values y∗ = y(ω, tk) with tk =

(k − 1)/9 and k = 1, 10 that correspond to the parameter set ωi = 0 ∀i. To describe how well the
predictions y(ω, t) in Equation (46) match the synthetic observed data y∗, we use the following
likelihood function p(y∗|ω), assuming independent and Gaussian distributed measurement errors:

p(y∗|ω) = (2π)−N∗/2|R|−
1
2 exp

[
−1

2
(y∗ − yk(ω, t))TR−1 (y∗ − yk(ω, t))

]
(47)

where R is the diagonal (co)variance matrix of size N∗ ×N∗ (N∗ refers to the length of the observation
data set) of measurement error ε. In our test case, we consider N∗ = 10 and a standard deviation of
measurement error σε = 2.

5.2. Bayesian Model Selection

We will use Monte Carlo sampling [48] with sample size Nprior = 106 to produce the MC-based
reference solution BMERef for the test scenario introduced in Section 5.1. Figure 4 illustrates how MC
and MCMC approaches cover the parameter space. Here, in Figure 4 only, we reduced the 10D problem
(46) to a 2D problem for illustrative purposes considering that there are only two parameters,i.e., ωi = 0
for i = 3, 10. All further computations presented here use the full 10D setup of the problem (46) from
Section 5.1. The left plot in Figure 4 illustrates how the evaluated likelihood values cover the 2D
parameter space using the MC approach. The right plot of Figure 4 illustrates the likelihood function
as 2D sampled via Metropolis-Hastings-type MCMC algorithms [61] with the same sample size of
Npost = 105. It is easy to see that the MCMC algorithm captures non-Gaussian aspects very effectively
and, after a short burn-in phase (a few separate points in the upper right quadrant), places the samples
in a high probability region. Other versions of MCMC could be used in a similar manner. To mitigate
the bias resulting from the correlated nature of the samples, the usage of samples with a specified
lag could be considered. Figure 4 reflects perfectly a typical application case of MCMC techniques,
where only a posterior sample is available from MCMC in comparison to plain (prior-type) MC
approaches. Due to the nature of appropriate MCMC techniques, a reliable posterior sample can be
obtained at low computational costs in comparison to the plain MC approach. However, such an
obvious advantage of MCMC poses a difficulty once a prior-based quantity of interest such as BME
should be estimated.

Figure 4. Likelihood values during the Bayesian updating via Monte Carlo (left plot) and Markov
chain Monte Carlo (right plot) in a 2D reduction of the 10D problem.

To test our BME estimates from Section 3, we will compute a BME value from Equation (17)
using the available MC sample, and compare it to the posterior-based estimates from Section 3
using the available MCMC sample. Figure 1 illustrates the performance of posterior-based BMEpost

estimates against the prior-based BMEprior estimate with respect to the sample size (MC or MCMC)
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relative to the reference value BMERef: BMEHM
post is the harmonic mean estimate [19], BMEMAP

post is the
maximum a posteriori estimate from Equation (20), BMECHIB

post is the Chib’s estimate from Equation (21),
BMEAIC

post is the AIC-based estimate from Equation (24), BMEAICc
post is the AICc-based estimate from

Equation (26), BMEKIC
post is the KIC estimate from Equation (30), BMEKICr

post is the KICr estimate from
Equation (32), BMEBIC

post is the BIC estimate from Equation (34), BMEPDE
post is the posterior density estimate

from Equation (19), BMEMG
post is the multivariate Gaussian posterior estimate from Equation (28) and

BMEGD
post is the Gelfand and Dey posterior estimate from Equation (35). Due to normalization with

BMERef, the ideal values is BME/BMERef = 1.
Figure 1 illustrates that the test scenario introduced in Section 5.1 is very challenging for most

approximates. Our results confirm that the harmonic mean estimate performs poorly and suffers
from large bias. The AIC-based and AICc-based estimates suffer from parameter dimensionality and
their strong non-linearity. A similar situation could be observed for the BIC approximate. Though the
maximum a posteriori estimate and Chib’s approximation demonstrate very similar results and
a slightly better performance, this observation should not be generalized, as both approaches are
very simplified estimates relying on the maximum a posteriori approximation. The BME estimate
based on the KIC demonstrates a not satisfactory performance due to the fact that it does not act at
the proper BME scale. The re-scaled KICr information criterion mitigates that problem and shows
superior results. However, the KICr-based estimate includes unnecessary simplifications of the
cross entropy Ĥ [p(ω|y∗), p(y∗|ω)] and the cross entropy H [p(ω|y∗), p(ω)] using the maximum a
posteriori estimate.

The last simplification is avoided by the posterior density estimate, the multivariate Gaussian
posterior estimate and the Gelfand Dey approach. The performance of the posterior density estimate
BMEPDE

post strongly depends on the related assumptions and problem dimensionality. The current
10D test scenario illustrates that the density estimator suffers from dimensionality, wchich often
could be crucial for the approximation quality. We included the posterior density estimate only
for demonstrational purposes, because this approach seems to be inefficient for high-dimensional
problems. Figure 1 confirms the anticipations from Section 3, demonstrating a very acceptable
performance for the multivariate Gaussian posterior estimate BMEMG

post. The Gelfand and Dey
approach provides slightly inferior results. Nevertheless, it includes assumptions similar to the
multivariate Gaussian estimate. Both approaches have the potential to capture the posterior better
than other estimates discussed in the paper. However, once the posterior is extremely non-Gaussian,
both mentioned approximates could be less powerful by their definitions. In that situation Equation (18)
explicitly shows that the main computational efforts should be focused on the estimation of the third
term responsible for the posterior information entropy H [p(ω|y∗)]. Overall, the multivariate Gaussian
posterior estimate introduced in Equation (28) avoids unreasonable simplifications and leads to a
superior BME estimate from MCMC-based posterior samples.

5.3. Information Entropy and Bayesian Experimental Design

We will estimate the information entropy during Bayesian updating using H [p(ω|y∗)]. Similar
to Section 5.2, we will compute a reference value HRef [p(ω|y∗)] using plain MC techniques with
sample size Nprior = 106 according to Equation (38), avoiding multidimensional density estimation
and integration. To estimate the information entropy via the MCMC-based posterior sample, we will
employ Equation (39) using the various BME estimates introduced in Section 3 and illustrated in
Section 5.2. Figure 2 compares the performance of these posterior-based estimates for Hpost against
the prior-based value Hprior relative to the reference value HRef [p(ω|y∗)]. Again, the ideal value is
unity. It easy to see that the information entropy estimated via the multivariate Gaussian posterior
from Equation (28) and via the Gelfand and Dey estimate from Equation (35) show the most suitable
performance. Moreover, the KICr-based estimate shows results similar to the multivariate Gaussian
estimate due to the definition in Equation (32). Thus, for posterior-based model selection based on the
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information entropy H [p(ω|y∗)], we suggest to employ the multivariate Gaussian posterior estimate
or the Gelfand and Dey approach.

Next, we look at the Bayesian experimental design where the utility of experiment outcome in
terms of the relative entropy DKL [p(ω|y∗), p(ω)] should be computed, and compare our estimates in
Equation (43) to the MC-based reference solution. Figure 3 shows the convergence of our estimates
relative to the MC reference value DRef

KL [p(ω|y∗), p(ω)] obtained from Equation (42) with sample size
Nprior = 106. Both prior and posterior-based estimates of the relative entropy DKL [p(ω|y∗), p(ω)]

avoid the multidimensional integral using the link between information theory and Bayesian inference
offered in Section 2. The multivariate Gaussian approximation and the Gelfand-Dey approach provide
very reasonable estimates with least assumptions and seem to be very useful for practical application.

Overall, the current section, Section 5.3, illustrates estimates of the information entropy during
Bayesian updating and for experimental design. The prior-based estimates avoid unnecessary
computation of multidimensional integrals and include no additional assumptions. The posterior-
based estimates avoid as well the high-dimensional integrals, however they include at least
one additional assumption. By definitions, the multivariate Gaussian posterior estimate and the
Gelfand and Dey estimate for BME, H [p(ω|y∗)] and DKL [p(ω|y∗), p(ω)] include least assumptions
among all approximations discussed in Section 3 and hence seem to be the most suitable one for
practical applications.

6. Summary and Conclusions

The current paper shows the link between Bayesian inference and information theory. We align
Bayesian model evidence (BME) with relative entropy and with cross entropy in order to simplify
computations for model selection, assessment of information entropy and experimental design. First,
we demonstrate how Bayesian model selection can profit from information theory to estimate BME
via posterior-based techniques such as MCMC. We show that MCMC-based Bayesian model selection
could be achieved using several assumptions such as a maximum a posteriori estimate or a multivariate
Gaussian posterior. Additionally, we link BME value to the AIC and AICc information criteria and
provide a new re-scaling of the KIC criterion. Second, we demonstrate how relative entropy could
profit from BME to assess information entropy during Bayesian updating and to assess the utility of
experimental outcomes for Bayesian experimental design. The current paper emphasizes that relative
entropy could be computed avoiding unnecessary multidimensional integration for both prior and
posterior-based techniques. Prior-based approaches do not require any assumptions for estimating
relative entropy. Estimating relative entropy using posterior sampling approaches requires at least
one assumption.

We illustrate the performance of the introduced estimates for BME, information entropy and
experiment utility using a numerical reference solution for a very simple example. The well-known
harmonic mean estimate for BME demonstrates weak performance and provides very unreliable
results. The maximum a posteriori, Chib’s estimate, AIC-based estimate, AICc-based estimate and
BIC estimate seem to be very simplified and can offer first rough guesses only. An estimate based
on the KIC information criteria demonstrates unsatisfactory performance because it does not act
at the proper BME scale. Its re-scaling KICr mitigates that problem and shows superior results.
However, KICr-based estimates include unnecessary simplifications of involved cross entropies
using the maximum a posteriori estimate. The multivariate Gaussian posterior estimate avoids
unreasonable simplifications and includes least assumptions for estimating BME, information entropy
and experiment utility for posterior-based techniques. The Gelfand and Dey approach provides slightly
inferior results. However, it includes assumptions similar to the multivariate Gaussian estimate and,
hence, both approaches have a potential to capture the posterior better than other estimates discussed
in the paper.
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Overall, we conclude that the introduced relation of Bayesian inference to information theory
could be very helpful for applied tasks where Bayesian model evidence, information entropy and
experimental utility should be assessed via prior-based or posterior-based techniques.
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