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Abstract: Granger causality and variants of this concept allow the study of complex dynamical
systems as networks constructed from multivariate time series. In this work, a large number of
Granger causality measures used to form causality networks from multivariate time series are
assessed. These measures are in the time domain, such as model-based and information measures,
the frequency domain, and the phase domain. The study aims also to compare bivariate and
multivariate measures, linear and nonlinear measures, as well as the use of dimension reduction
in linear model-based measures and information measures. The latter is particular relevant in the
study of high-dimensional time series. For the performance of the multivariate causality measures,
low and high dimensional coupled dynamical systems are considered in discrete and continuous
time, as well as deterministic and stochastic. The measures are evaluated and ranked according to
their ability to provide causality networks that match the original coupling structure. The simulation
study concludes that the Granger causality measures using dimension reduction are superior and
should be preferred particularly in studies involving many observed variables, such as multi-channel
electroencephalograms and financial markets.

Keywords: Granger causality; causality networks; dimension reduction measures; multivariate
time series

1. Introduction

Real-world complex systems have been studied as networks formed from multivariate time
series, i.e., observations of a number of system variables, such as financial markets and brain
dynamics [1,2]. The nodes in the network are the observed variables and the connections are defined
by an interdependence measure. The correct estimation of the interdependence between the observed
system variables is critical for the formation of the network and consequently the identification of the
underlying coupling structure of the observed system.

Many interdependence measures that quantify the causal effect between the variables observed
simultaneously in a time series are based on the concept of Granger causality [3]: a variable X Granger
causes a variable Y if the information in the past of X improves the prediction of Y. The concept was
first mentioned by Wiener [4], and it is also referred to as Wiener–Granger causality, but, for brevity,
we use the common term Granger causality here. The methodology on Granger causality was first
developed in econometrics, and it has been widely applied to many other fields, such as cardiology and
neuroscience (analysis of electroencephalograms (EEG) and functional magnetic resonance imaging
(fMRI) [5–8]) and climate [9,10].
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The initial form of Granger causality based on autoregressive models has been extended to
nonlinear models, basically local linear models [11–14], but also kernel-based and radial basis
models [15–18], and recently more advanced models, such as neural networks [19,20]. In a wider sense,
the directed dependence inherent in Granger causality is referred to as coupling, synchronization,
connectivity and information flow depending on the estimation approach for the interdependence.
Geweke [21,22] defined an analogue of Granger causality in the frequency domain, developed later to
other frequency measures [23,24]. A number of nonlinear measures of interdependence inspired by the
Granger causality idea have been developed, making use of state-space techniques [25,26], information
measures [27–29], and techniques based on the concept of synchronization [30–32]. We refer to all
these measures as causality measures (in the setting of multivariate time series) and the networks
derived by these measures as causality networks.

Distinguishing indirect and direct causality with the available methods is a difficult task [33,34],
and multivariate measures are expected to address better this task than bivariate measures.
The bivariate causality measures do not make use of the information of other observed variables
besides the variables X and Y of the examined causality from X to Y, denoted X → Y, and thus
estimate direct and indirect causality, where indirect causality is mediated by a third variable Z, e.g.,
X → Z and Z → Y results in X → Y. The multivariate causality measures apply conditioning on the
other observed variables to estimate direct causal effects, denoted as X → Y|Z, where Z stands for the
other observed variables included as conditioning terms [35–37].

For high-dimensional time series, i.e., a large number K of observed variables, the estimation
of direct causal effects is difficult and the use of multivariate causality measures is problematic.
One solution to this problem is to account only for a subset of the other observed variables based
on some criterion of relevance to the driving or response variable [38]. In a different approach,
dimension reduction techniques have been embodied in the computation of the measure restricting
the conditioning terms, and they have been shown to improve the efficiency of the direct causality
measures [29,39–43].

Recent comparative studies have assessed causal effects with various causality measures, using
also significance tests for each causal effect [14,44–51]. Some studies concentrated on the comparison
of direct and indirect causality measures [46,52], whereas other studies focused on specific types
of causality measures, e.g., frequency domain measures [53–56], or different significance tests for a
causality measure [57–59]. These studies are done on specific real data types, mostly from brain, which
limits the generalization of the conclusions.

Whereas most of the abovementioned studies were concentrated on the estimation of specific
causal effects by the tested measures, this study is merely focused on assessing the bivariate (X → Y)
and multivariate and (X → Y|Z) causality measures that estimate best the whole set of causal effects
for all pairs (X,Y), i.e., the true causality network. In particular, high dimensional systems and
subsequently high-dimensional time series are considered, so that the estimated networks have up to
25 nodes. Some first results of the application of different causality measures on simulated systems and
evaluation of their accuracy in matching the original network were presented earlier in [60]. As the
focus is on the preservation of the original causality network, we assess the existence of each causality
term applying appropriate significance criteria. The causality measures are ranked related to their
ability to match the original causality networks of different dynamical systems and stochastic processes.
For the computation of the causality measures, several software programs are freely accessible [61–66],
but we have developed most of the causality measures in the context of previous studies of our team,
and few measures were run from the software [63].

The structure of the paper is as follows. In Section 2, we present the causality measures, the
identification of network connections from each measure, the statistical evaluation of the accuracy of
each measure in identifying the original coupling network, the formation of a score index for each
measure, and finally the synthetic systems used in the simulations. In Section 3, we present the
results of the measures on these systems, and we rank the measures as for their accuracy in matching
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the original coupling network. Discussion follows in Section 4, with conclusions presented in the
final section.

2. Methodology

The methodology implemented for the comparative study of causality measures aiming at
evaluating the measures and ranking them as to their accuracy in identifying correctly the underlying
coupling network is presented here. The methodology includes the causality measures compared
in the study, the techniques for the identification of network connections from each measure, the
statistical evaluation of the accuracy of each measure in identifying the original coupling network, and
the formation of an appropriate score index for the overall performance of each measure. Finally, the
synthetic systems used in the simulation study are presented.

2.1. Causality Measures

First, it is noted that in this comparative study correlation or in general symmetric measures of
X and Y are not considered. Many such measures were initially included in the study, e.g., many
phase-based measures such as phase locking value (PLV) [67], phase lag index (PLI) [68] and weighted
phase lag index (wPLI) [69], rho index (RHO) [70], phase slope index (PSI) [31], and mean phase
coherence (MPC) [71]. However, their evaluation in the designed framework is not possible as the
identification of the exact directed connections of the original coupling network is quantified to assess
the measure performance.

Causality measures can be divided in three categories as to the domain of data representation
they are defined in: time, frequency, and phase (see Figure 1).

Figure 1. Tree structure for the types of causality measures. The five main classes are highlighted
(frame box in bold). Each measure type in a box is given a code number, used as a reference in Table 1.

The measures in time domain dominate and they are further divided in model-based and
model-free measures. Many of the model-free measures are based on information theory measures
and the other model-free measures on the time domain are referred to as “other” measures. Thus, five
main classes of causality measures are considered in this study: model-based measures, information
measures, frequency measures, phase measures, and other measures that cannot be defined in
terms of the other four classes. The measures organized in these five classes and included in the
comparative study are briefly discussed below, and they are listed in Table 1, with reference and
code number denoting the type of measure (the class, bivariate or multivariate and with our without
dimension reduction).
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Table 1. List of causality measures organized in the five classes. The first column has the measure
notation including the measure parameters, the second column has a brief description, the third column
has the code of each measure denoting its type, and the fourth column has a related reference.

Symbol Description Type Ref.

Model-based

GCI(p) Granger causality index, p is the VAR order, for Hénon maps
p = 2, 5, for VAR process p = 3, 5, for the Mackey–Glass system
and neural mass model p=5, 10, 20

1.1.1.1 [3]

CGCI(p) Conditional Granger causality index 1.1.2 [22]
PGCI(p) Partial Granger causality index 1.1.2 [72]

RCGCI(p) Restricted Granger causality index 1.1.1.2 [43]

Information

TE(m, τ) Transfer entropy. Lag τ=1 for all systems, embedding dimension
for Hénon maps m = 2, 3, for VAR process m = 3, 5, for
Mackey–Glass system and neural mass model m=5, 10, 15

1.2.1.1 [27]

PTE(m, τ) Partial transfer entropy 1.2.1.2.1 [73]
STE(m, τ) Symbolic transfer entropy 1.2.1.1 [74]

PSTE(m, τ) Partial symbolic transfer entropy 1.2.1.2.1 [75]
TERV(m, τ) Transfer entropy on rank vectors 1.2.1.1 [76]

PTERV(m, τ) Partial transfer entropy on rank vectors 1.2.1.2.1 [77]
PMIME(L) Partial mutual information from mixed embedding, maximum

lag for Hénon maps and VAR model Lmax =5, for Mackey–Glass
system and neural mass model Lmax =20

1.2.1.2.2 [42]

Frequency

PDC(p, i) Partial directed coherence, i denotes the power band i=δ, θ, α, β, γ
(relative proportion of the whole spectrum). For Hénon maps
p=2, 5, for the VAR process p=3, 5, for the Mackey–Glass system
and the neural mass model p=5, 10, 20

2.1 [24]

GPDC(p, i) Generalized partial directed coherence 2.1 [78]
DTF(p, i) Directed transfer function 2.1 [23]

dDTF(p, i) Direct directed transfer function 2.1 [79]
GGC(p, i) Geweke’s spectral Granger causality 1.1.1.1 [80]

RGPDC(p, i) Restricted generalized partial directed coherence 2.2 [81]

Phase

DPI Phase directionality index 3 [30]

Other

MCR(m, τ) Mean conditional recurrence, m is the same as for the information
measures

1.2.2 [26]

DED Directed event delay 1.2.2 [82]

The first class of model-based measures regards measures that implement the original concept
of Granger causality, the bivariate measure of Granger causality index (GCI) [3] (only X and Y
variables are considered), and the multivariate measures of the conditional Granger causality index
(CGCI) [22] and the partial Granger causality (PGCI) [72] (also the other observed variables denoted Z
are included). All these measures require the fit of a vector autoregressive model (VAR), on the two or
more variables. The order p of VAR denoting the lagged variables of each variable contained in the
model can be estimated by an information criterion such as the Akaike information criterion (AIC)
and the Bayesian Information Criterion (BIC), which often does not provide optimal lags, e.g., see the
simulation study in [83] and citations therein, and the so-called p-hacking (in the sense of p-value) in
terms of VAR models for Granger causality in [84]. To overcome the use of order estimation criteria,
here we use a couple of predefined appropriate orders p for each system (see Table 1). In the presence
of many observed variables, dimension reduction in VAR has been proposed, and here we use the
one developed from our team, the restricted conditional Granger causality index (RCGCI) [43]. Thus,
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for this class of measures, there are bivariate and multivariate measures, and multivariate measures
that apply dimension reduction, as noted in the sketched division of causality measures in Figure 1.
These are all linear measures and besides this constraint they have been widely used in applications.
Other nonlinear extensions are not considered in this study for two reasons: either they were very
computationally intensive, such as the cross predictions of local state space models [14], or they were
too complicated so that discrepancies to the original methods may occur [19,20].

The information measures of the second class have also been popular in diverse applications
recently due to their general form, as they do not require any specific model, they are inherently
nonlinear measures and can be applied to both deterministic systems and stochastic processes of any
type, e.g., oscillating flows and discrete maps of any dimension. The main measure they rely on is
the mutual information (MI), and more precisely the conditional mutual information (CMI). There
have been several forms for causality measures based on MI and CMI in the literature, e.g., see the
coarse-grained mutual information in [85], but the prevailing one is the transfer entropy (TE), originally
defined for two variables [27]. The multivariate version, termed partial transfer entropy (PTE) was later
proposed together with different estimates of the entropies involved in the definition of PTE, bins [86],
correlation sums [87], and nearest neighbors [73]. Here, we consider the nearest neighbor estimate
for both TE and PTE, found to be the most appropriate for high dimensions. Equivalent forms to TE
and PTE are defined for the ranks of the embedding vectors rather than the observations directly. We
consider the bivariate measures of symbolic transfer entropy (STE) [74] and transfer entropy on rank
vectors (TERV) [76], and the multivariate measures of partial symbolic transfer entropy (PSTE) [75]
and partial transfer entropy on rank vectors (PTERV) [77]. The idea of dimension reduction was
implemented in TE first, applying a scheme for a sparse non-uniform embedding of both X and Y,
termed mutual information on mixed embedding (MIME) [29]. This bivariate measure was later
extended to the multivariate measure of partial MIME (PMIME) [42]. Only the PMIME is included
in the study simply due to the computational cost, and it is noted that by construction the measure
gives zero for insignificant causal effects, so it does not require binarization when networks of binary
connections have to be derived (the positive values are simply set to one).

All the methods in the third class of frequency measures rely on the estimation of the VAR
model, either on only the two variables X and Y or on all the observed variables (we consider only
the latter case here). Geweke’s spectral Granger causality (GGC) is the early measure implementing
the concept of Grangre causality in the frequency domain [21,80], included in the study. Another
older such measure included in the study is the direct transfer function (DTF) [23], which, although
it is a multivariate measure, it does not discriminate direct from indirect causal effects. For this,
an improvement is proposed and used also in this study, termed direct directed transfer function
(dDTF) [79]. We also consider the partial directed coherence (PDC) [24] and the improved version of
generalized partial directed coherence (GPDC) [78], which have been particularly popular in EEG
analysis. When applied to EEG, the measures are defined in terms of frequency bands of physiological
relevance (δ, θ, α, β, γ, going from low to high frequencies), and the same proportional split of the
frequency range is followed here (as if the sampling frequency was 100 Hz). Finally, we consider a
dimension reduction of VAR in the GPDC measure called restricted GPDC (RGPDC), recently proposed
from our team [81].

As mentioned above the class of phase measures contains a good number of measures used in
connectivity analysis, mainly in neuroscience dealing with oscillating signals such as EEG, but most of
these measures are symmetric and thus out of the scope of the current study. In the evaluation of the
causality measures, we consider the bivariate measure of phase directionality index (DPI) [30], which
is a measure of synchronization designed for oscillating time series. Information measures have also
been implemented in the phases, e.g., see [88], but not considered here.

Another class of measures used mainly in neuroscience regards inter-dependence measures based
on neighborhoods in the reconstructed state space of each of the two variables X and Y. A series of
such measures have been proposed after the first work in [25], using also ranks of the reconstructed
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vectors [89], the latter making the measure computationally very slow. The convergent cross mapping
is developed under the same approach [90], and the same yields for the measure of mean conditional
recurrence (MCR) [26]. It is noted that all these measures are bivariate and they are expected to suffer
from estimating indirect connections in the estimated causality network. The MCR is included as a
representative of the state space bivariate measures in the class of other measures. In this class, we
include also event synchronization measures [82], and specifically the direct event delay (DED) that is
a directional bivariate measure, considered as causality measure and included in the study.

For the information measures where the estimation of entropies in high dimensions is hard, the
comparison of the multivariate measures that do not include dimension reduction to these including
dimension reduction would be unfair when high-dimensional systems are considered. To address this,
in the calculation of a multivariate information measure not making use of dimension reduction, we
choose to restrict the set of the conditioning variables Z in the estimated causal effect X → Y|Z to only
the three more relevant variables. In the simulations, we consider the number of observed variables
(equal to the subsystems being coupled) to be K = 5 and K = 25, while, for K = 5, all the remaining
variables are considered in Z; for K= 25, only three of the remaining 23 variables are selected. The
criterion of selection is the mutual information of the remaining variables to the driving variable X,
which is common for the selection of variables [38].

2.2. Identification of Original Network Connections

We suppose that a dynamical system is formed by the coupling of K subsystems, and we observe
one variable from each subsystem, so that a multivariate time series of dimension K is derived.
The coupling structure of the original system can be displayed as a network of K nodes where the
connections are determined by the system equations. Formally, in the graph-theoretical framework,
a network is represented by a graph G=(V; E), where V is the set of K nodes, and E is the set of the
connections among the nodes of V. The original coupling network is given as a graph of directed
binary connections, where the connection from node i to node j is assigned with a value ai,j being
one or zero, depending whether variables of the subsystem i are present in the equation determining
the variables of the subsystem j. The components ai,j, i, j=1, . . . , K, form the adjacency matrix A that
defines the network.

The computation of any causality measure presented in Section 2.1 on all the directed pairs (i, j)
of the K observed variables gives a weight matrix R (assuming only positive values of the measure,
so that a transformation of the measure can be applied if necessary). Thus, the pairwise causality
matrix R with entries Ri,j =RXi→Xj defines a network of weighted connections, assigning the weighted
directed connection Ri,j from each node i to each node j.

In applications, often binary networks are sought to better represent the estimated structure of
the underlying system. Here, we are interested to compare how the causality measure retrieves the
original directed coupling structure, and therefore we want to transform the weighted network to
a binary network. Commonly, the weighted matrix R is transformed into an adjacency matrix A by
suitable thresholding, keeping in the graph only connections with weights higher than some threshold
(and setting their weights to one) and removing the weaker connections (setting their weights to
zero). For each causality measure, an appropriate threshold criterion is sought to determine the
significant values of the measure that correspond to connections in the binary network. We consider
three approaches for thresholding that have been used in the literature:

1. Rigorous thresholding is provided by an appropriate significance test for the causality measure
RXi→Xj . For all considered causality measures in this study, we expect the causality measure to
lie at the zero level if there is no causal effect and be positive if it is, so that the test is one-sided.
Thus, the null and alternative hypotheses are respectively:

H0 : RXi→Xj = 0, H1 : RXi→Xj > 0. (1)
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Parametric significance tests have been developed only for the linear causality measures,
and for consistency we apply the randomization significance test to all causality measures,
making use of the simple technique of time-shifted surrogates. Specifically, we generate
M resampled (surrogates) time series for the driving variable X, each by shifting cyclically
the original observations of X by a random step w. For the original time series of the
driving variable Xi denoted {Xi,t} = {x1,t, x2,t, . . . , xn,t}, the surrogate time series is {X∗i,t} =
{xw+1,t, xw+2,t, . . . , xn,t, x1,t, . . . , xw−1,t, xw,t}. In this way, we destroy any form of coupling of Xi
and any other variable Xj, so that {X∗i,t} is consistent to H0, but it preserves the dynamics and
the marginal distribution of Xi. The test statistic is the causality measure RXi→Xj , and it takes the
value R0 on the original time series pair and the values R1, R2, . . . , RM on each of the M resampled
time series pairs. The rank of R0 in the ordered list of M + 1 values R0, R1, R2, . . . , RM, denoted r0,
defines the p-value of the randomization test as p=1− r0−0.326

M+1+0.348 [91]. If R0 is at the right tail of
the empirical distribution formed by R1, R2, . . . , RM, then the H0 is rejected, which suggests that
p < α, where α is the significance level of the test determining the tail. For a multivariate time
series of K variables, K(K− 1) significance tests in total are performed for each causality measure,
indicating that multiple tests are performed on the same dataset. This is a known issue in statistics
and corrections for multiple testing can be further be applied, such as the false discovery rate [92].
Here, we refrain from using such a correction and rather use three different significance levels
α=0.01, 0.05, 0.1. We opted for this as the same setting is applied for all causality measures.

2. The second thresholding criterion is given by the desired density of the binary network. In the
simulation study, we know the density of the original network, denoted by the number of
connections ρ0. We consider five different values for the density ρ of the estimated causality
binary network given in multiples of ρ0 as 0.6, 0.8, 1.0, 1.2, 1.4.

3. The third thresholding criterion is simply given by a predefined magnitude threshold on the
causality measure. Here, we select an appropriate threshold thρ separately for each causality
measure and each coupling strength for the same system, where ρ indicates the corresponding
density. Having 10 realizations for each scenario (system and coupling strength), the thρ is the
average of the thresholds found for the given density ρ in the 10 realizations.

2.3. Performance Indices for Statistical Evaluation of Methods Accuracy

For a system of K variables, there are K(K− 1) ordered pairs of variables to estimate causality.
In the simulations of known systems, we know the true coupling pairs and thus we can compute
performance indices to rate the causality measures as for their overall matching of the original
connections in the network. Here, we consider the performance indices of specificity, sensitivity,
Matthews correlation coefficient, F-measure, and Hamming distance.

The sensitivity is the proportion of the true causal effects (true positives, TP) correctly identified
as such, given as sens = TP/(TP + FN), where FN (false negatives) denotes the number of pairs having
true causal effects but have gone undetected. The specificity is the proportion of the pairs correctly
not identified as having causal effects (true negatives, TN), given as spec = TN/(TN + FP), where FP
(false positives) denotes the number of pairs found falsely to have causal effects. An ideal causality
measure would give values of sensitivity and specificity at one. To weigh sensitivity and specificity
collectively, we consider the Matthews correlation coefficient (MCC) [93] given as

MCC =
TP · TN− FP · FN√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)
. (2)

MCC ranges from −1 to 1. If MCC = 1, there is perfect identification of the pairs of true and no
causality, if MCC = −1, there is total disagreement and pairs of no causality are identified as pairs
of causality and vice versa, whereas MCC at the zero level indicates random assignment of pairs to
causal and non-causal effects.
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Similarly, we consider the F-measure that combines precision and sensitivity. The precision, called
also positive predictive value, is the number of detected true causal effects divided by the total number
of detected casual effects, given as prec = TP/(TP + FP), and the F-measure (FM) is defined as

FM =
2 · prec · sens
prec + sens

=
2TP

2TP + FN + FP
,

which ranges from 0 to 1. If FM = 1, there is perfect identification of the pairs of true causality, whereas,
if FM = 0, no true coupling is detected.

The Hamming distance (HD) is the sum of false positives (FP) and false negatives (FN),
HD = FP + FN. Thus, HD gets non-negative integer values bounded below by zero (perfect
identification) and above by K(K− 1) if all pairs are misclassified.

2.4. Score Index

In Section 2.3, we presented five performance indices to evaluate in different ways the match of
the original network and the estimated network from each causality measure. Furthermore, we want
to quantify this match for different settings, which involve different systems and different scenarios
for each system regarding the number of variables K, the system free parameter, the time series length
n and the coupling strength C, where applicable (to be presented below in Section 2.5). For this, we
rely on the index MCC, and, for each scenario of a different system, we rank the causality measures
according to their average MCC (across 10 realizations generated per scenario). For equal MCC, ordinal
ranking (called also “1234” ranking) is adopted [94]. Specifically, the order of measures of equal MCC
is decided from distinct ordinal numbers given at random to each measure of equal MCC value. Next,
we derive the average rank of a causality measure i for all different coupling strengths C of a system
j, Pi,j, as the average of the ranks of the causality measure i in all coupling strengths tested for the
system j. A score si,j of the causality measure i for the system j is then derived by normalization
of the average rank Pi,j over the number N of all measures so as to scale between zero and one,
si,j = (N − Pi,j)/(N − 1), where one is for the best measure ranked at top. The overall score of the
causality measure i over all systems, si, is simply given by the average si,j over all systems, including
the two different K values for systems S1, S2 and S3, the two values for the system parameter ∆ and A
for systems S2 and S3, respectively, and the two time series lengths n for system S1. The systems are
presented in the next section.

2.5. Synthetic Systems

For the comparative study, we use four systems with different properties: the coupled Hénon
maps as an example of discrete-time chaotic coupled system [42], the coupled Mackey–Glass system
as an example of continuous-time chaotic coupled system but of high complexity [42,95], the so-called
neural mass model as an example of a continuous-time stochastic system used as an EEG model [96,97],
and the vector autoregressive model (VAR) as suggested in [98], used as an example of a discrete-time
linear stochastic process. The four systems are briefly presented below:

S1: The system of coupled Hénon maps is a system of coupled chaotic maps defined as

xi,t = 1.4− x2
i,t−1 + 0.3xi,t−2, for i = 1, K,

xi,t = 1.4− (0.5C(xi−1,t−1 + xi+1,t−1) + (1− C)xi,t−1)
2 + 0.3xi,t−2, for j = 2, . . . , K− 1,

(3)

where K denotes the number of variables and C is the coupling strength. We consider the system for
K=5 and K=25 and the corresponding coupling network is shown in Figure 2a,b, respectively.
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Figure 2. Coupling networks for S1, S2, S3 in (a) for K=5, in (b) for K=25 , and in (c) for S4 and K=25.

Multivariate time series of size K are generated, and we use short and long time series of length
n=512 and n=2048, respectively. An exemplary time series for K=5 is given in Figure 3a.

Figure 3. Time series for: (a) coupled Hénon maps for C=0.2; (b) coupled Mackey–Glass for ∆=100
and C=0.2; (c) coupled Mackey–Glass for ∆=300 and C=0.2; (d) neural mass for A=3.45 and C=80;
(e) neural mass for A=3.7 and C=80; (f) VAR(3) model for C=0.23.

S2: The system of coupled Mackey–Glass is a system of coupled identical delayed differential
equations defined as

ẋj(t) = −0.1xj(t) +
K

∑
i=1

Cijxi(t− ∆)
1 + xi(t− ∆)10 for j = 1, 2, . . . , K, (4)
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where K is the number of subsystems coupled to each other, Cij is the coupling strength, and ∆ is the
lag parameter. We set Cii = 0.2 and Ci,j for i 6= j zero or C according to the ring coupling structure
shown in Figure 2a,b for K = 5 and K = 25, respectively. For details on the solution of the delay
differential equations and the generation of the time series, see [42]. Two scenarios are considered
regarding the inherent complexity of each of the K subsystems given by ∆=100 and ∆=300, regarding
high complexity (correlation dimension is about 7.0 [99]) and even higher complexity (not aware of
any specific study for this regime), respectively. Exemplary time series for each ∆ and K=5 are given
in Figure 3b,c. The time series used in the study have length n=4096.

S3: The neural mass model is a system of coupled differential equations with a stochastic term
that produces time series similar to EEG simulating different states of brain activity, e.g., normal and
epileptic. It is defined as

ẏj
0(t) =yj

3(t),

ẏj
3(t) =AaS[yj

1(t)− yj
2(t)]− 2ayj
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0(t),

ẏj
1(t) =yj

4(t),

ẏj
4(t) =Aa

pj(t) + C2S(C1yj
0) +

K

∑
i=1
i 6=j

Cijyi
6(t)

 ,

− 2ayj
4(t)− a2yj

1(t),

ẏj
2(t) =yj

5(t),

ẏj
5(t) =Bb

{
C4S[C3yj

0(t)]
}
− 2byj

5(t)− b2yj
2(t),

ẏj
6(t) =yj

7(t),

ẏj
7(t),=AadS(yj

1(t)− yj
2(t))− 2adyj

7(t)− a2
dyj

6(t),

(5)

where j denotes each of the K subsystems representing the neuron population defined by eight
interacting variables and the population (subsystem) interacts with other populations through variable
yj

4 with coupling strength Cij. We set Cii = 0.0 and Ci,j for i 6= j zero or C according to the ring
coupling structure shown in Figure 2a,b for K=5 and K=25, respectively. The term pj(t) represents
a random influence from neighboring or distant populations, A is an excitation parameter and B,
a, b, ad, C1–C4 other parameters (see [96] for more details). The function S is the sigmoid function
S(v) = 2e0/(1 + er(v0−v)), where r is the steepness of the sigmoid and e0, v0 are other parameters
explained in [96]. From each population j = 1, . . . , K, we consider only the first variable yj

0 and obtain
the multivariate time series of K variables. The value of the excitation parameter A affects the form of
the output signals combined with the coupling strength level, ranging from similar to normal brain
activity with no spikes to almost periodic with many spikes similar to epileptic brain activity. We
consider two values for this parameter, one for low excitation with A=3.45 and one for high excitation
with A=3.7. Exemplary time series for each A and K=5 are given in Figure 3d,e. The time series used
in the study have length n=4096.

S4: The VAR process on K = 25 variables and order P = 3 as suggested in [98] is used as a
representative of a high-dimensional linear stochastic process. Initially, 4% of the coefficients (total
coefficients 1875) of VAR(3) selected randomly are set to 0.9 and the rest are zero and the positive
coefficients are reduced iteratively until the stationarity condition is fulfilled. The autoregressive
terms of lag one are set to one. The true couplings are 8% of a total of 600 possible ordered couplings.
An exemplary coupling network of random type is shown in Figure 2c. The time series length is set
to n=512 and an exemplary time series of only five of the K=25 variables of the VAR(3) process is
shown in Figure 3f.
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For S1, S2, and S3, the coupling strength C, fixed for all couplings, is varied to study a wide
range of coupling levels from zero coupling to very strong coupling. Specifically, for S1 and S2,
C = 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and for S3 C = 0, 20, 40, 80, 120, 160, 200. For S4, only one case of
coupling strength is considered, given by the magnitude 0.23 of all non-zero coefficients, for which
the stationarity of VAR(3) process is reached. For each system and scenario of different coupling
strength, 10 multivariate time series (realizations) are generated to obtain statistically valid results.
The evaluation is performed as described in Section 2.4.

3. Results

In this section, the evaluation of the performance of all causality measures is presented for each
system and scenario. First, the procedure of the evaluation is shown in one specific setting, then the
measures are evaluated and ranked for each system and finally the overall ranking is given.

3.1. Evaluation of Measures in One Exemplary Setting

We consider a multivariate time series of length n=512 from the system S1 of coupled Hénon
maps for K=5 variables and coupling strength C=0.2. The original coupling network has the ring
structure as shown in Figure 2a. We derive the estimated causality (weight) matrix by the bivariate
measure of transfer entropy (TE) using the appropriate parameters of embedding dimension m=2
and τ=1

RTE =


0 0.148 −0.003 −0.002 −0.012

−0.005 0 0.167 0.013 −0.021
−0.015 0.094 0 0.051 −0.004
−0.015 0.016 0.092 0 −0.014
−0.011 −0.009 0.003 0.193 0

 , (6)

where the negative values denote the negative bias in the estimation of TE with the nearest neighbors
estimate. Applying the three criteria of measure significance for transforming the weight matrix to an
adjacency matrix (see Section 2.2), we derive the causality binary networks. Specifically, as shown in
Figure 4, different binary networks are obtained for the different values of the significance level of the
randomization test, the network density, and the magnitude threshold.

Figure 4. Binary networks of the measure of transfer entropy (TE) for S1 using (a) statistical significance
test (light grey→ α=0.01 , black→ α=0.05, grey→ α=0.1), (b) density threshold (light grey→ ρ=4 ,
black→ ρ=6, grey→ ρ=8) and (c) magnitude threshold (light grey→ th4 , black→ th6, grey→ th8)

In Figure 4a, the binary network for significance level α= 0.01 and α= 0.05 coincides with the
original coupling network, whereas, for α=0.1, more connections are present regarding indirect causal
effects (for the latter, the statistical significant values are given in bold in the form of Equation (6)).
When preserving the four, six, and eight strongest connections, as shown in Figure 4b, the true
structure is preserved only when the correct density is set (six connections), indicating that the highest
TE values are reached at the true couplings. This seems the optimal strategy for thresholding, but,
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in real-world applications, the actual network density is not a priori known. Similarly, in Figure 4c,
the binary networks obtained using three magnitude thresholds on TE values are shown. Each of the
three magnitude thresholds is computed as the average threshold for preserving the corresponding
network density across 10 realizations, for this specific coupling strength and causality measure.
These magnitude thresholds happen not to be the ones corresponding to the network densities for
this realization and actually none of the three thresholds identifies all the existing and non-existing
connections.

For illustration purposes, we compute the performance indices for TE at this scenario using the
statistical significance criterion for α=0.1, given in Table 2.

Table 2. Computation of the performance indices for the causality measure TE, where the binary
causality network is derived using the statistical significance criterion for α=0.1.

True Positive True Negative
Positive Found TP = 6 FP = 2
Negative Found FN = 0 TN = 12

sens : 6/6 = 1
spec : 12/14 = 0.86

MCC :
6·12−2·0√

(6+2)·(6+0)·(12+2)·(12+0)
= 0.80

FM :
2·6

2·6+0+2= 0.86
HD : 2 + 0 = 2

We note that the two extra connections found significant using α=0.1 reduce the specificity to 0.86
while sensitivity is one, which affects accordingly the other three measures. Note that the mismatch
of just two out of 20 connections (HD=2) gives MCC=0.8, significantly lower from one, and the same
holds for the F-measure index.

For the same scenario, the measure of PMIME (for a maximum lag L=5 well above the optimal
lag 2) gives a weight matrix of zero and positive numbers

RPMIME =


0 0.162 0 0 0
0 0 0.101 0 0
0 0.076 0 0.077 0
0 0 0.094 0 0
0 0 0 0.173 0

 .

No significance criterion is applied here, and simply setting the positive numbers to one gives the
adjacency matrix, and, in this case, the estimated causality network matches exactly the original
coupling network giving HD = 0 and all other indices equal to one.

3.2. Results with Respect to Performance Indices, Significance Criteria, and Coupling Strength

First, we give a comprehensive presentation reporting all the performance indices presented in
Section 2.3 and the significance criteria in Section 2.2 for system S1 and K=25, n=2048 and C=0.2.
In Table 3, the five performance indices of the eight highest ranked causality measures in terms of
MCC are presented.
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Table 3. The rankings of the eight best measures according to MCC for coupled Hénon maps (K=25,
n=2048, C=0.2) are presented for the three binarization methods. The sensitivity (sens), specificity
(spec), F measure (FM), and Hamming distance (HD) performance indices are also presented.

Measure sens spec MCC FM HD

statistical significance test (α=0.05)

1 PMIME(L=5) 0.79 0.99 0.86 0.86 11
2 RGPDC(p=5,β) 0.86 0.85 0.49 0.49 84.5
3 RGPDC(p=5,α) 0.87 0.84 0.47 0.47 91.6
4 GPDC(p=5,β) 0.87 0.84 0.47 0.46 92.3
5 RCGCI(p=5) 0.92 0.81 0.47 0.45 106.1
6 RGPDC(p=5,γ) 0.86 0.83 0.46 0.46 95.8
7 GCI(p=5) 0.83 0.84 0.45 0.45 92.9
8 RGPDC(p=5,θ) 0.83 0.84 0.45 0.45 95.4

density threshold (ρ0 =48)

1 PMIME(L=5) 0.79 0.99 0.86 0.86 10.9
2 TE(m=2) 0.68 0.97 0.66 0.68 28.8
3 TE(m=3) 0.67 0.97 0.64 0.67 30.2
4 PGCI(p=5) 0.6 0.96 0.56 0.6 36.8
5 GPDC(p=5,β) 0.59 0.96 0.56 0.59 37
6 GPDC(p=5,α) 0.57 0.96 0.54 0.57 38.8
7 RGPDC(p=5,β) 0.56 0.96 0.52 0.56 40
8 CGCI(p=5) 0.56 0.96 0.52 0.56 40

magnitude threshold (th48)

1 PMIME(L=5) 0.78 0.99 0.86 0.86 11
2 TE(m=2) 0.67 0.97 0.65 0.67 29.9
3 TE(m=3) 0.66 0.97 0.64 0.67 29.9
4 GPDC(p=5,β) 0.58 0.96 0.55 0.57 39.8
5 GPDC(p=5,α) 0.57 0.95 0.53 0.56 41.8
6 RGPDC(p=5,β) 0.54 0.96 0.51 0.55 40.4
7 PGCI(p=5) 0.50 0.96 0.51 0.52 40.6
8 RGPDC(p=5,α) 0.53 0.96 0.50 0.54 41.9

In Table 3 and all tables to follow, the measures making use of dimension reduction, i.e., PMIME,
RCGCI, and RGPDC, are highlighted (bold face) to accommodate comparison with the other measures.
The results are organized in three blocks, one for each of the three significance criteria. For the criterion
of statistical significance at α=0.05, the dimension reduction measures score highest in all performance
indices. The PMIME (L = 5) measure obtains the greatest specificity value 0.99 and RCGCI (p = 5)
the greatest sensitivity value 0.92. A large difference between the first MCC = 0.86 for PMIME and
the MCC for the other highest ranked measures is observed, while, for the specificity and sensitivity
indices, this does not hold. This is explained by the fact that a small decrease in specificity implies
increase in the number of falsely detected causal effects that, for networks of low density, dominates
in the determination of MCC (see Equation (2)). For the significance criteria of density (ρ0=48 equal
to the number of true couplings) and threshold (th48), PMIME (L = 5) is unaltered at the first rank
while the information and frequency measures exhibit better performance compared to the criterion of
statistical significance. It is also observed that these two criteria show lower sensitivity and higher
specificity, which questions the rule that the couplings of largest causality values are the true ones.
When ρ is smaller or larger than the true density, sensitivity changes more than specificity again due to
the sparseness of the true network. Similar conclusions are inferred for the significance criterion of
magnitude threshold.

We demonstrate further the dependence of the causality measure performance on the parameter
in each significance criterion using the S4 system of the VAR process (K=25, n=512, P=3). In Table 4,
the ranking of the eight best measures in terms of MCC is presented for three parameters of each of the
three significance criteria.
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Table 4. The rankings of the eight best measures according to MCC for the system S4 of the VAR
process (K=25, n=512, p=3) in conjunction with each significance criterion and its parameter. Three
rankings are given in three blocks, one for each significance criterion and for three different choices of
its parameter, where ρ0 =48 is the true density.

Statistical Significance Test

Measure a=0.01 a=0.05 a=0.1

1 RGPDC(p=3, α) 0.944 0.868 0.861
2 RGPDC(p=5, α) 0.944 0.867 0.861
3 RGPDC(p=3, θ) 0.940 0.868 0.861
4 RGPDC(p=5, θ) 0.939 0.867 0.861
5 RGPDC(p=3, δ) 0.938 0.868 0.861
6 RGPDC(p=5, δ) 0.936 0.867 0.861
7 RGPDC(p=5, β) 0.933 0.867 0.861
8 RCGCI(p=3) 0.933 0.867 0.861

density threshold

Measure 0.6ρ0 ρ0 1.4ρ0

1 RCGCI(p=3) 0.758 0.974 0.862
2 RGPDC(p=5, α) 0.758 0.972 0.862
3 RCGCI(p=5) 0.758 0.972 0.862
4 RGPDC(p=3, α) 0.758 0.972 0.862
5 RGPDC(p=3, γ) 0.755 0.972 0.862
6 RGPDC(p=5, γ) 0.755 0.972 0.862
7 RGPDC(p=5, θ) 0.785 0.972 0.862
8 RGPDC(p=3, β) 0.758 0.969 0.862

magnitude threshold

Measure th0.6ρ0 thρ0 th1.4ρ0

1 RCGCI(p=3) 0.751 0.979 0.868
2 RGPDC(p=3, θ) 0.753 0.976 0.868
3 RGPDC(p=5, θ) 0.753 0.975 0.869
4 RGPDC(p=3, α) 0.757 0.975 0.868
5 RGPDC(p=3, δ) 0.750 0.975 0.868
6 RCGCI(p=5) 0.752 0.974 0.868
7 RGPDC(p=5, α) 0.752 0.974 0.869
8 RGPDC(p=5, δ) 0.751 0.974 0.868

For this linear system, the highest ranked causality measures for all three significance criteria are
the linear measures using dimension reduction RCGCI and RGPDC for various parameter values. This
is somehow expected as these measures are both linear and the underlying system is linear, and they
use dimension reduction as the number of variables is K = 25. For such a high-dimensional time series,
the bivariate linear measures give indirect (and false in our evaluation) causality effects, whereas the
multivariate linear measures without dimension reduction cannot reach the performance of RCGCI
and RGPDC as the time series length n = 512 is relatively small for estimating accurately the VAR
model parameters (75 coefficients in VAR(3) are to be estimated for each of the K = 25 variables). The
best performance of the measures is achieved for the criterion of statistical significance when a=0.01
and for the other two significance criteria when the parameters corresponding to the true density
ρ0, as expected. Comparing the three rankings for the best parameter choice of each criterion, it is
observed that the statistical significance gives MCC values almost as high as the other two methods.
This fact indicates the advantage of the statistical significance criterion, where the a priori knowledge
of the true network density is not required. From this point on, all the presented results are for the
criterion of statistical significance.
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We here discuss the dependence of the measure accuracy on the coupling strength C and use as
an example the system S1 with K=25 and n=2048. In Figure 5, the MCC for PMIME, RGPDC, RCGCI,
and TE is given as a function of C for the three significance criteria.

Figure 5. MCC of PMIME (L = 5), TE (m = 3), RGPDC (p = 5,δ), RCGCI (p = 5) as a function of
the coupling strength C in system S1 of the coupled Hénon maps (K = 25, n = 2048) for the three
significance criteria: (a) statistical testing at α=0.05, (b) true density threshold ρ0 =48 and (c) magnitude
threshold thρ0 .

The parameters in the criteria are α = 0.05 for the statistical testing, the true density of the
original network ρ0 = 48, and the average magnitude threshold thρ0 over all magnitude thresholds
corresponding to the true density for the 10 realizations. For all significance criteria, the PMIME
exhibits the best performance for large C > 0.1 while TE has the highest MCC for small C at 0.05
and 0.1. Though S1 is a nonlinear system, the linear measures RCGCI and RGPDC (using the same
dimension reduction step) are competitive and as good as or better than TE for large C. Thus, for this
system and setting of n, K and large C, the rate of indirect (false) couplings found by the nonlinear
bivariate measure TE is as large as or larger than the undetected nonlinear couplings from the linear
measures RCGCI and RGPDC. This indicates that linear measures with dimension reduction may even
perform better than nonlinear ones in settings of time series from nonlinear systems. It is noted that
the coupling strength C=0.05 is very weak, and the dimension reduction methods PMIME, RCGCI,
and RGPDC find no significant causal effects giving zero, which cannot change with any significance
criterion. On the other hand, the small TE values for C = 0.05 are still found significant at a good
proportion giving rather large MCC at the level of 0.8.

3.3. Ranking of Causality Measures for Each Synthetic System

We derive summary results of all measures at each system over all coupling strengths C and
for different number of variables K and time series lengths n where applicable. For this, we use the
average score index si,j for each measure i at each system j as defined in Section 2.4. In all results in
this section, the statistical significance testing for α=0.05 has been used.

In Table 5, the average score si,j for system S1 (coupled Hénon maps) is presented for the eight
measures scoring highest at each scenario combining K=5 and K=25 with n=512 and n=2048.
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Table 5. The ranking of the eight best measures according to the score index for system S1 of coupled
Hénon maps for all scenarios of number of variables K and time series length n.

K=5 K=25

n=512 n=2048 n=512 n=2048

Measure Score Measure Score Measure Score Measure Score

PMIME(L=5) 0.87 PMIME(L=5) 0.84 PMIME(L=5) 0.92 PMIME(L=5) 0.91
TERV(m=3) 0.78 RGPDC(p=5,δ) 0.77 TE(m=2) 0.87 RGPDC(p=5,δ) 0.83
STE(m=3) 0.77 RGPDC(p=5,θ) 0.76 TE(m=3) 0.86 RGPDC(p=5,θ) 0.83
TE(m=3) 0.72 RCGCI(p=5) 0.76 RGPDC(p=5,β) 0.81 RCGCI(p=5) 0.82
RCGCI(p=5) 0.71 RGPDC(p=5,γ) 0.75 RGPDC(p=5,α) 0.81 RGPDC(p=5,β) 0.82
RGPDC(p=5,α) 0.71 RGPDC(p=5,β) 0.75 RGPDC(p=5,θ) 0.79 RGPDC(p=5,α) 0.81
CGCI(p=5) 0.70 PDC(p=5,α) 0.75 RGPDC(p=5,δ) 0.78 RGPDC(p=5,γ) 0.80
RGPDC(p=5,γ) 0.70 GPDC(p=5,α) 0.73 RCGCI(p=5) 0.77 CGCI(p=5) 0.76

In all scenarios of S1, the PMIME measure is found to have the best performance. In addition,
the other measures of dimension reduction RCGCI and RGPDC reach highly ranked positions in all
scenarios, especially in the case of large time series length. It is noted that these two measures are
linear and they beat many other nonlinear measures showing the importance of proper dimension
reduction. For small time series length (n=512), the information measures show better performance
and it is again notable that the bivariate measures, such as TE, STE, and TERV, score higher than the
corresponding multivariate measures, PTE, PSTE, and PTERV. Again, the explanation for this lies in
the inability of the multivariate measures to deal with high dimensions if dimension reduction is not
employed. Having even as low as three conditioning variables in the conditional mutual information
used by these measures (in the case of K = 25, the three more correlated variables in terms of MI
to the driving variable are selected from the 23 remaining variables) does not provide as accurate
estimates of the causal effects as the respective bivariate measures. These multivariate measures (along
other multivariate measures of no dimension reduction) give non-existing causal effects even to the
beginning and end of the ring, whereas the respective bivariate measures do not, and only estimate
additionally indirect causal effects (results not shown here).

In Table 6, the average score for system S2 of coupled Mackey–Glass subsystems is presented
for the eight measures scoring highest at each scenario combining K=5 and K=25 with ∆=100 and
∆=300, where ∆ controls the complexity of each subsystem.

Table 6. The ranking of the eight best measures according to the score index for system S2 of coupled
Mackey–Glass subsystems for all scenarios of number of variables K and delay parameter ∆ that
controls the complexity of each subsystem.

K=5 K=25

∆=100 ∆=300 ∆=100 ∆=300

Measure Score Measure Score Measure Score Measure Score

RGPDC(p=20,α) 0.90 RCGCI(p=20) 0.88 PMIME(L=50) 1.00 PMIME(L=50) 0.95
RGPDC(p=20,δ) 0.88 RGPDC(p=20,γ) 0.86 PGCI(p=5) 0.87 RCGCI(p=5) 0.89
RGPDC(p=20,β) 0.88 RGPDC(p=20,δ) 0.86 RGPDC(p=20,γ) 0.85 RGPDC(p=5,δ) 0.88
RGPDC(p=20,γ) 0.88 RGPDC(p=20,α) 0.86 RGPDC(p=20,δ) 0.85 RGPDC(p=5,γ) 0.87
RCGCI(p=20) 0.86 RGPDC(p=20,θ) 0.85 RGPDC(p=20,β) 0.84 RGPDC(p=5,β) 0.86
RGPDC(p=20,θ) 0.86 RGPDC(p=20,β) 0.85 RCGCI(p=20) 0.84 RGPDC(p=5,α) 0.86
RGPDC(p=5,θ) 0.86 RGPDC(p=5,γ) 0.80 RGPDC(p=20,α) 0.83 RGPDC(p=5,θ) 0.85
RGPDC(p=5,δ) 0.84 RCGCI(p=5) 0.78 PGCI(p=20) 0.82 RGPDC(p=20,α) 0.81

This system is comprised of highly complex systems with complexity increasing with ∆. For K=5
and regardless of ∆, the linear measures using dimension reduction RCGCI and RGPDC show the best
performance, indicating again the importance of dimension reduction, here for oscillating complex
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systems. The PMIME scores slightly lower than these measures and, given that RGPDC scores equally
high at different bands, together with RCGCI, they occupy the first eight places, so that the PMIME is
not listed. For K=25, on the other hand, the PMIME scores much higher than the RCGCI and RGPDC
measures and is in the first place for both ∆=100 and ∆=300. Apparently, the dimension reduction in
the information measure of PMIME is more effective than in the VAR-based measure of RCGCI and
RGPDC for larger K.

In Table 7, the average score for system S3 of the neural mass model is presented as for S2, but
having as system parameter A=3.45, 3.7, where the latter value indicates more clear oscillating behavior.

Table 7. The ranking of the eight best measures according to the score index for system S3 of the neural
mass model for all scenarios of number of variables K and oscillation controlling parameter A.

K=5 K=25

A=3.45 A=3.7 A=3.45 A=3.7

Measure Score Measure Score Measure Score Measure Score

RCGCI(p=20) 0.88 GPDC(p=20,θ) 0.94 GPDC(p=5,θ) 0.83 GPDC(p=20,θ) 0.92
GPDC(p=20,θ) 0.88 PDC(p=20,θ) 0.88 GPDC(p=20,θ) 0.82 CGCI(p=20) 0.90
RGPDC(p=20,α) 0.88 PMIME(L=20) 0.80 RCGCI(p=20) 0.81 dDTF(p=20,δ) 0.89
RGPDC(p=20,γ) 0.87 RGPDC(p=5,α) 0.78 RGPDC(p=20,δ) 0.79 GPDC(p=5,α) 0.87
PGCI(p=20) 0.87 RCGCI(p=5) 0.78 RGPDC(p=20,β) 0.79 PMIME(L=20) 0.87
CGCI(p=20) 0.87 RGPDC(p=5,α) 0.77 RGPDC(p=20,θ) 0.79 PDC(p=5,α) 0.82
RGPDC(p=20,θ) 0.86 RGPDC(p=20,θ) 0.77 CGCI(p=20) 0.78 PDC(p=20,θ) 0.80
RGPDC(p=20,δ) 0.85 RGPDC(p=20,γ) 0.77 PDC(p=20,θ) 0.78 GPDC(p=20,α) 0.80

In all scenarios, GPDC shows the best performance. The RCGCI measure for A=3.45 reaches the
next position, and RGPDC also reaches a high position on the ranking in the first three scenarios. The
fact that GPDC scores higher than RGPDC also for K=25 indicates that, for this system and both A,
the inclusion of all lagged terms in VAR of order p=5 or p=20 gives somehow better identification of
the correct couplings after significance testing. This is so, due to the relative large length n=4096 of
the time series that allows for the reliable estimation of the coefficients being as many as 20·25=500.
For A = 3.45, the PMIME does not score high as its sensitivity is comparatively small (fails to find
significant proportion of true causal effects), whereas, for A=3.7, the PMIME is also among the first
eight best measures. It is observed that, in all settings, the frequency measures, and particularly at low
frequency bands, have the ability to identify the true causality interactions better than information and
other measures. This is reasonable since this system is characterized by strongly harmonic oscillations.

For S4, no average results are shown as the system is run for only one scenario, and the ranking
for this was shown in Table 4 and discussed earlier.

3.4. Overall Ranking of Causality Measures

For an overall evaluation of the causality measures, the average score si over all systems and
scenarios is computed for each measure i, as defined in Section 2.4. In Table 8, the ten measures with
highest score si are listed.

It is noted that, for each measure computed for varying parameters, such as the frequency bands
for the frequency measures, only the one with the highest score is listed. The best performance is
achieved by the three measures making use of dimension reduction, with the information measure
PMIME scoring highest. It is noted that there is a jump in score from the third to the fourth place,
showing the superiority of the measures of dimension reduction over the other measures. The
remaining places in the list are dominated by the linear measures in the time and frequency domain.
Comparing the frequency measures based all on the same VAR model, we note GPDC and even PDC
scores higher than dDTF. As for the information measures, the bivariate measures TE and TERV score
much higher than the multivariate respective measures (results not shown), indicating the inability
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of multivariate information measures to perform well unless an appropriate dimension reduction
is applied.

Table 8. Average score index over all systems and scenarios.

Measure Score

PMIME 0.80
RGPDC 0.79
RCGCI 0.78
GPDC 0.63
CGCI 0.61
PGCI 0.61
PDC 0.56
TE 0.51

dDTF 0.50
TERV 0.46

4. Discussion

In this paper, a simulation study is performed for the estimation of causality networks from
multivariate time series. For the network construction, Granger causality measures, simply termed here
as causality measures, of different types were employed as information and model-based measures,
measures based on phase, frequency measures, and measures making use of dimension reduction.
These measures are applied to linear and nonlinear (chaotic), deterministic and stochastic, coupled
simulated systems, to evaluate their ability to detect the existing coupled pairs of observed variables
of these systems. We considered the nonlinear dynamical systems of coupled Hénon maps (S1),
coupled Mackey–Glass subsystems (S2), the so-called neural mass model (S3), and a linear vector
autoregressive process (VAR) of order 3 (S4). For systems S1, S2, and S3, we used K= 5 and K= 25
subsystems, whereas S4 was defined only on K = 25 variables. For S2 and S3, we considered two
regimes of different complexity for each system, controlled by a system parameter. For S1, S2, and
S3, a range of coupling strengths C were designed covering the setting of none to weak and strong
coupling. For S1, a small and a large time series length n were used. This design of the simulation
aimed at testing the causality measures on different types of systems with respect to time (S1, S4 are
discrete and S2, S3 continuous in time), low and high dimensional having K=5 and K=25, linear (S4)
and nonlinear (S1, S2, S3), deterministic (S1, S2) and stochastic (S3, S4), and for a range of coupling
strengths (S1, S2, S3). Thus, rather than concentrating on a particular system or type of systems,
e.g., often met in EEG studies, we aimed at evaluating the performance of the causality measures on
many different system settings. Measures that were best suited for strongly oscillating systems, such
as the frequency measures, may not be appropriate for maps, and, on the other hand, information
measures on ranks (such as TERV) that are more appropriate for discrete-time systems (maps) may not
be appropriate for strongly oscillating signals. However, the evaluation showed that this was not the
case, and, in the overall ranking, frequency measures dominated, but also TERV was included among
the ten best.

The evaluation of the measures was based on the match of the causality network constructed
from each measure to the original coupling network of the system generating the multivariate time
series. For this, three significance criteria were used to transform the value of each causality measure,
corresponding to a weighted network connection, to a binary value, corresponding to a binary
connection. While the criteria of network density threshold and magnitude threshold are arbitrary
and best results are only attained when the thresholds are given based on the knowledge of the
original coupling network, the statistical testing, which does not require a priori information on the
underlying system, was competitive and was further suggested as the criterion of choice to derive
binary connections. Performance indices were computed checking the preservation of the original
binary connections (true) in the causality binary network (estimated), and we used the Matthews
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correlation coefficient (MCC) to quantify best the matching performance of each causality measure as
it weighs sensitivity and specificity.

We considered bivariate and multivariate causality measures, and a subset of three multivariate
measures making use of dimension reduction. The first is the information measure of partial mutual
information from mixed embedding (PMIME), which can be considered as a restriction of the partial
transfer entropy (PTE) to the most relevant lagged variables. The other two measures are linear and
they are both based on VAR model. The dimension reduction suggests fitting a sparse VAR rather than
a full VAR. While the conditional Granger causality index (CGCI) is defined in the time domain on
the full VAR, the restricted CGCI (RCGCI) is computed on the sparse VAR, and accordingly in the
frequency domain the generalized partial directed coherence (GPDC) is modified using a sparse VAR
to the restricted GPDC (RGPDC).

While linear models can be estimated sufficiently well in high-dimensional time series, provided
the length of the time series is much larger than the number of the unknown model coefficients,
the estimation of entropies, used in information measures, in high dimension is problematic, even
when using the most appropriate estimate of nearest neighbors. To make a fair comparison between
the multivariate information measure making use of dimension reduction (PMIME) to the other
multivariate information measures in high-dimensional time series (here K = 25), for the latter
measures, we do not condition the causal relationship among the driving and response to all remaining
variables (23 in our case), but rather select the three variables that are best correlated in terms of mutual
information to the driving variable. In this way, we avoid to some degree the curse of dimensionality,
but still the embedding is done separately for each of the five variables, i.e., the driving, the response
and the other three variables, whereas, for the measures using dimension reduction, the embedding is
built jointly for all variables selecting only the most appropriate lagged variables.

The evaluation of the causality measures showed differences in their performance in the different
systems and their parameters (n, K, C and system parameter ∆ for S2 and A for S3). For system S1, the
measures making use of dimension reduction scored highest regardless of n and K with the PMIME
attaining highest MCC for all but very small C. Bivariate information measures scored high here but
only for small n. For system S2, the frequency measures were the most accurate at all frequency bands,
especially for small C while for stronger couplings dimension reduction measures reached higher
MCC. For high-dimensional time series (K=25), the PMIME again scored highest followed mainly by
the linear dimension reduction measures for different parameter values. For system S3 characterized
by strong oscillations, the frequency measures performed best occupying the highest ranks and only
the PMIME entered the list of eight highest rankings for the system parameter A = 3.7 for both K.
For the linear VAR system S4, as expected, the linear measures with dimension reduction performed
best and the respective linear measures of full dimension had also increased performance.

The conclusions of the simulation study on comparatively low-dimensional (K = 5) and high-
dimensional (K=25) time series from different systems are itemized as follows:

1. The multivariate measures making use of dimension reduction (PMIME, RCGCI, RGPDC)
outperform all other bivariate and multivariate measures.

2. Among the dimension reduction measures, the information measure of PMIME is overall best but
the overall score is slightly higher than that of the other two linear measures. Though the PMIME
outperforms the other measures in the chaotic systems S1 and S2, for the strongly oscillating
stochastic system S3 and the linear stochastic process S4, it scores lower than RCGCI and RGPDC.

3. Linear measures, especially these applying dimension reduction, exhibited a competitive
performance to other nonlinear measures also on nonlinear systems, such as S1, S2, and S3.
This remark supports the use of linear measures (preferably with dimension reduction) to settings
that may involve nonlinear relationships. Certainly, results still depend on the studied system.

4. Though bivariate measures tend to identify causality relationships that are not direct, they
do not fail in identifying non-existing causal relationships. The latter occurs when using
multivariate measures without dimension reduction. Though this effect cannot be captured
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by standard performance indices used in this study, such as the sensitivity and specificity, it is
a significant finding advocating against the use of multivariate measures, unless dimension
reduction is applied.

Admittedly, the collection of causality measures is biased including all measures our team has
developed. On the other hand, the collection is not comprehensive, leaving out nonlinear measures
that are more difficult to implement and could not be found freely available when the study was
initiated. It is noted that, initially, many connectivity measures that are not directional, especially these
based on phases, were included, but they could not be fairly evaluated in the designed framework
comparing the derived network to the original network of directed connections. The simulation study
was conducted using four systems, leaving out other systems, such as the coupled Lorenz or coupled
Rössler systems, as well as different coupling structures, such as the random (used here only in S4),
small-world and scale-free, used by our team in other studies. Besides these shortcomings, we believe
the current study can be useful for methodologists and practitioners to assess the strengths and
weaknesses of the different causality measures and their applicability especially to high-dimensional
time series.

5. Conclusions

A range of Granger causality measures were assessed comparing the estimated causality networks
to the original networks of the systems generating the multivariate time series. In this simulation study,
we used low and high dimensional coupled dynamical systems in discrete and continuous time, as
well as deterministic and stochastic systems. The causality measures were bivariate and multivariate,
in the time domain, such as model-based and information measures, the frequency domain, and the
phase domain. In particular, linear model-based measures and information measures making use
of dimension reduction were included. The evaluation of the matching of the causality networks
estimated by the causality measures to that of the original system showed that the causality measures
using dimension reduction preserve best the original coupling structure on both low-dimensional
(5 variables) and high-dimensional (25 variables) multivariate time series. The study suggests the use
of causality measures including dimension reduction in the causality and network analysis of time
series from many variables or coupled subsystems, such as multi-channel electroencephalograms and
financial markets.
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