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Abstract: The use of data from social networks such as Twitter has been increased during the last few
years to improve political campaigns, quality of products and services, sentiment analysis, etc. Tweets
classification based on user sentiments is a collaborative and important task for many organizations.
This paper proposes a voting classifier (VC) to help sentiment analysis for such organizations. The VC is
based on logistic regression (LR) and stochastic gradient descent classifier (SGDC) and uses a soft voting
mechanism to make the final prediction. Tweets were classified into positive, negative and neutral classes
based on the sentiments they contain. In addition, a variety of machine learning classifiers were evaluated
using accuracy, precision, recall and F1 score as the performance metrics. The impact of feature extraction
techniques, including term frequency (TF), term frequency-inverse document frequency (TF-IDF), and
word2vec, on classification accuracy was investigated as well. Moreover, the performance of a deep
long short-term memory (LSTM) network was analyzed on the selected dataset. The results show that
the proposed VC performs better than that of other classifiers. The VC is able to achieve an accuracy
of 0.789, and 0.791 with TF and TF-IDF feature extraction, respectively. The results demonstrate that
ensemble classifiers achieve higher accuracy than non-ensemble classifiers. Experiments further proved
that the performance of machine learning classifiers is better when TF-IDF is used as the feature extraction
method. Word2vec feature extraction performs worse than TF and TF-IDF feature extraction. The LSTM
achieves a lower accuracy than machine learning classifiers.

Keywords: text mining; text classification; sentiment analysis; supervised machine learning; ensemble
classifier; long short-term memory network

1. Introduction

Text mining is one of the distinguished fields of data mining which possesses the potential to extract
useful information from raw data. In a world where 2.5 quintillion bytes of data are generated every
day, text mining has become a key tool to retrieve meaningful data and organize them into profitable
information [1,2]. Text classification is becoming a prominent field of research in text mining, especially
after the inception and penetration of social platforms such as Facebook, Twitter, etc. People express their
views on such platforms and their opinions serve as the guideline to design and govern the policies of
various companies. For example, the tweets can be analyzed to find the sentiments of the users about
a specific company or product, which helps to devise policies to increase the acceptance of products or
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improve user services. The wide use of such social platforms leads to generate many data that contain a
variety of potential information.

The last few years have witnessed a growing interest in social network databases due to their richness
and versatility. One iconic use of such data is to analyze user sentiments about a particular product or
company. Such analysis of user sentiments from text is called “sentiment analysis’ [3]. Sentiment analysis
is a famous method that is used to extract people’s reactions, opinions, reviews and feedback towards
a specific product or service of a company. The user feedback on social platforms serves two broad
purposes. First, the companies can model policies to attract new potential customers and revise the
existing policies to increase the acceptance of their products/services based on sentiment analysis. For
example, Rainie and Horrigan [4] pointed out that US presidential campaigns are planned according to the
political reviews analyzed from Twitter data. In the same way, sentiment analysis is important for different
companies to analyze customer reviews about products and make better decisions for the future [5,6].
Second, online reviews about various products and services have a significant influence on purchase
trends [7]. Horrigan [8] pointed out that consumers are willing to pay more for a specific product which
has a five-star rating than one that has a four-star rating.

Sentiment analysis can be divided into lexicon sentiment analysis technique, machine learning-based
sentiment analysis, and hybrid methods [9], as shown in Figure 1. Lexicon sentiment analysis mainly
works on the polarity of tokens (words) in a sentence. A lexicon is a dictionary or a container that contains
a large set of standard words that are categorized based on the polarity score. However, most people
use very informal words in reviews that are not present in lexicons. Therefore, researchers emphasize
applying alternative techniques for sentiment detection in the text. Hence, the second category utilizes
machine learning approaches for sentiment analysis. Models can be trained on a sample dataset and later
can be used to perform predictions on a different dataset. The problem is formulated as a classification
task, for example, a document can be represented by a set of features [5]. After that, these documents
are labeled based on the polarity (i.e., positive, negative, or neutral), and converted into a feature matrix.
In this way, machine learning approaches give better performance than that of lexicon-based method to
detect sentiments [10].

Sentiment analysis

Machine learning methods Hybrid methodsLexicon-based methods

Corpus-based Dictionary-based 

Unsupervised 

learning
Supervised 

learning

Semi-supervised 

learning

Machine learning 

& lexicon based

Figure 1. Categories of sentiment analysis.

The competition has been rising in every domain of life and airlines are no exception. They aim to
generate more revenue by improving offered services and devising new schemes and policies for the
future. Social networks play a very important role in such improvements, as the customer’s reviews serve
as the feedback to such companies. Customers’ reviews are analyzed based on the expressions given in
the reviews. The volume of such reviews is very high and it requires a large number of experts for analysis
and classification. Thus, a variety of machine learning classifiers have been proposed which can help
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mitigate human effort to classify these reviews. However, improvements are still necessary to further
increase the classification accuracy. This research proposes the use of a voting classifier to this end and
aims to evaluate the performance of famous machine learning classifiers on a number of twitter datasets.
This research serves the following key contributions:

• Machine learning-based classifiers including calibrated classifier (CC), support vector classifier (SVC),
AdaBoost (ADB), decision tree classifier (DTC), Gaussian naive Bayes (GNB), extra trees classifier
(ETC), random forest (RF), logistic regression (LR), stochastic gradient descent classifier (SGDC), and
gradient boosting machine (GBM) are trained on US airline twitter dataset.

• A voting classifier (VC) is devised to perform tweets classification which is constituted by LR and
SGDC.

• Complete and partial pre-processing schemes are adopted to evaluate the impact of pre-processing
on models’ classification accuracy.

• Tweets are classified as positive, negative, or neutral and the results are compared against the actual
classification to evaluate models’ performance.

• A deep learning long short-term memory (LSTM) network is implemented as well to analyze its
performance on the selected dataset.

The rest of the paper is organized as follows. Section 2 describes a few pieces of research related to
the current study. Section 3 gives an overview of the methodology adopted for the current research as
well as a description of the dataset used for the experiment. Results are discussed in Section 4 while the
conclusion is given in Section 5.

2. Literature Review

The area of text classification possesses a huge potential to analyze sentiments and many researchers
have investigated the process of sentiment analysis by detecting emotions found in the text [11,12]. Others
have proposed sentiment evaluation methods that are formulated by observing human responses to a
certain experience [13]. The use of machine learning techniques including naïve Bayes (NB), maximum
entropy (ME), and support vector machines (SVM) for sentiment classification has also been studied [14].
For example, the authors of [15] applied NB, ME, and SVM on the Internet Movie Database (IMDb), which
consists of movie reviews expressed either with stars or in numerical values. The approach is evaluated
using accuracy and recall measures. This work has served as a baseline for many authors and the same
techniques have been utilized across different domains.

Similarly, the authors of [16] performed sentiment analysis on travelers’ feedback about airlines. The
authors found that the feature selection and over-sampling techniques are equally important to achieve
refined results. Feature analysis is performed to select the best features which not only improves the overall
performance of the model but reduces the training time as well. In addition, the skewed distribution of
the classes found in most of the smaller datasets is reduced without causing over-fitting. The results of
the research show the compelling evidence that the proposed model has a higher classification accuracy
when predicting the three classes of positive, negative, and neutral. The authors of [17] followed a similar
approach and performed a multi-class sentiment classification. A feature selection process is used to extract
the important features that are later used to train a machine learning-based algorithm. The performance
of DTC, NB, SVM, radial basis function neural network, and k nearest neighbor is tested with 10-fold
cross-validation.

In another research [18], the authors used customers feedback to investigate different aspects such
as loyalty, satisfaction, etc. The loyalty is determined through airline attributes, namely operational
factors (punctuality, aircraft, and safety), attractive factors (food and beverages and the staff service),
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competitive factors (schedule, ticket prices, reputation, and flyer program), etc. The research concludes
that the customer’s higher satisfaction can be achieved through company reputation, staff service, frequent
flyer program, aircraft, and punctuality. Kumar and Sebastian [19] presented a novel approach for the
sentiment analysis of Twitter data. To uncover the sentiment, the authors extracted the opinion words (a
combination of the adjectives along with the verbs and adverbs) in the tweets. The corpus-based method
is used to find the semantic orientation of adjectives and the dictionary-based method to find the semantic
orientation of verbs and adverbs. The overall tweet sentiment is then calculated using a linear equation
that also incorporates emotion intensifiers. A score is calculated for the overall sentiment of the tweet and
tweets are classified as positive, neutral and negative based on the calculated score.

The authors of [20] performed sentiment analysis using a machine learning technique. The polarity is
found using TextBlob, SentiWordNet and word sense disambiguation (WSD) sentiment analyzers. TextBlob
comes with the basic features of natural-language processing essentials, which are used for the polarity and
subjectivity calculation of tweets. SentiWordNet is a publicly available analyzer for the English language
that contains opinions extracted from a wordnet database. In addition, W-WSD has the ability to detect
the correct word sense within a specified context.

The authors of [21] presented a meta-heuristic method called CSK, which is based on cuckoo search
(CS) and k-means (K). Since clustering plays a vital role in analyzing the viewpoints and sentiments in
user tweets, the research proposes a method that is used to find the optimum cluster head from the twitter
dataset. Experimental results show promising outcomes. The authors of [22] investigated the impact of
multiple classifier systems on Turkish sentiment classification. The voting algorithm is used with NB,
SVM, and bagging to evaluate their efficacy. The results demonstrate that the use of multiple classifiers
elevates the performance of individual classifiers. The research approves that multiple classifier systems
have more potential for sentiment classification.

In addition to the use of multiple classifiers for classification, employing various pre-processing
techniques helps to improve the classification as well. For example, the authors of [23] proved that the
selection of an appropriate pre-processing technique may produce enhanced classification performance.
They investigated a variety of pre-processing techniques including term weighting, frequency cut,
stemming, and stopword elimination to analyze their impact on machine learning-based classification
methods. Their research shows that the combination of various pre-processing methods plays a decisive
role in finding the best classification rates. They also studied the pre-processing techniques and their
relevant impact on the feature space through visualization.

In the same fashion, the use of various feature extraction techniques has proven to improve
classification accuracy. Text mining has many feature extraction methods but term frequency (TF), inverse
document frequency (IDF), TF-IDF, word2vec and doc2vec are among the most commonly used feature
extraction techniques [24]. The authors of [25] investigated the use of TF, IDF, and TF-IDF with linear
classifiers including SVM, LR, and perceptron with a native language identification system. Experiments
are carried out with ten-fold cross-validation on different languages. The TF-IDF is applied to n-gram
words/characters/ parts-of-speech tags. The TF-IDF weighting on features proves to outperform other
techniques when applied with uni-grams and bi-grams of words. Similarly, the authors of [26] analyzed
the use of three feature extraction techniques with a neural network for the text analysis. TF-IDF along with
its two modifications, namely latent semantic analysis (LSA) and linear discriminant analysis (LDA), is
applied to evaluate the performance of each feature analysis technique. The experiment shows that TF-IDF
helps the model to achieve higher accuracy with large dataset. For smaller datasets, the combination of
TF-IDF and LSA is appropriate to achieve similar accuracy.

Machine learning techniques perform better for classification than that of traditional approaches.
However, machine learning methods for classification problems commonly assume that the class values are
unordered. However, in many practical applications, the class values exhibit a natural order, for example,
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when learning how to grade. The standard ordinal classification approach converts the class value into a
numeric quantity, applies a regression learner to the transformed data and translates the output back into
a discrete class value in a post-processing step. The authors of [27] presented a simple method that enables
standard classification algorithms to make use of ordering information in class attributes. Tree induction
methods and linear models are popular techniques for supervised learning tasks, both for the prediction
of nominal classes and numeric values. For predicting numeric quantities, research has been conducted on
combining two schemes into “model trees”, i.e., trees that contain linear regression functions at the leaves.
The authors of [28] presented an algorithm that performs classification using logistic regression instead of
linear regression. A stage-wise fitting process is used to construct the logistic regression models that can
select relevant attributes in the data in a natural way and shows how this approach can be used to build
the logistic regression models at the leaves by incrementally refining those constructed at higher levels
in the tree. In the current research, supervised learning algorithms are used, wherein some algorithms
perform individually while others use ensemble learning techniques.

3. Materials and Methods

This section contains the description of the dataset used for sentiment analysis, its visualization, as
well as the proposed methodology to perform the sentiment analysis on the selected dataset.

3.1. Data Description

In this study, the dataset from Kaggle was used, which contains tweets for six airlines of the United
States (US). The dataset name is “twitter-airline-sentiment” and it contains a total of 14,640 records. Every
record is labeled as positive, negative, or neutral according to the sentiment polarity. The selected dataset
contains different features and its description is given in Table 1.

Table 1. Feature description of selected dataset.

Featuresr Descriptiont

Airline Sentiment
Confidence

A numeric feature representing the confidence level of classifying the
tweet to one of the 3 classes.

Negative Reason The reason behind considering this tweet as negative.

Negative Reason Confidence The level of confidence in determining the negative reason behind a
negative tweet.

Airline Name of the airline Company.
Retweet Count Number of retweets of a tweet.
Text Original tweet posted by the user.
Airline Sentiment Labels for tweets (positive, negative, neutral).

3.2. Data Visualization

The dataset is visualized to help understand its attributes. Figure 2 shows the most frequent reasons
for customer complaints about the airline. The dataset visualization shows that the highest number of
tweets are about “customer service issues”. Figure 3 shows sentiment polarity for six airlines used as the
standard to evaluate the performance of the selected classifiers.
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Figure 2. Customers’ complaints of airlines.

Figure 3. The polarity of customers’ tweets for individual airline.
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3.3. Methodology

In the current research, different classifiers and feature extraction techniques were investigated. CC,
LR, ETC, SVC, DTC, RF, ADB, GNB, SGDC, and GBM were evaluated on the selected dataset with term
frequency (TF), term frequency-inverse document frequency (TF-IDF) and word2vec features. The phases
followed during the experiments are described here briefly.

In the methodology steps of this research, pre-processing was carried out on the dataset. Different
tools and libraries were utilized in this step, e.g., natural language toolkit. This study considered two
strategies at the pre-processing level:

• Complete pre-processing
• Partial pre-processing

3.3.1. Complete Pre-processing

In complete pre-processing, data cleaning was performed to improve the learning efficiency of
machine learning models. Machine learning models show improved classification accuracy if the data are
pre-processed. The pre-processing was done using the natural language toolkit of Python [29]. Tweets
contain punctuation, stopwords, and the combination of lower- and uppercase words, which can affect the
model learning capability. Two tweets are shown in Table 2 as a means to show the pre-processing steps
followed in this study.

Table 2. Sample tweets from twitter dataset.

No. Tweets

1 @VirginAmerica plus you’ve added commercials to the experience... tacky.
2 @VirginAmerica I didn’t today... Must mean i need to take another trip for 2 months!

Figure 4 shows the sequence of the pr-processing steps followed for the selected twitter dataset. As
a first step, punctuation has to be removed from tweets. The following punctuation was removed from
text: []() \/ | , ; . ’. In addition, twitter assigned @user to each user was also removed during this phase.
Table 3 shows the tweets before and after punctuation removal.

Punctuation 

removal

Punctuation 

removalTweets Tweets 
Stopwords

removal

Stopwords

removal
Stemming Stemming 

Convert to 

lower case

Convert to 

lower case

Numerical 

value removal

Numerical 

value removal

Figure 4. The sequence followed in pre-processing of tweets dataset.

Table 3. Output of sample after removing punctuation.

Input Data After Punctuation Removal

@VirginAmerica plus you’ve added
commercials to the experience... tacky.

plus youve added commercials to the experience
tack

@VirginAmerica I didn’t today... Must mean i
need to take another trip for 2 months!

I didnt today Must mean i need to take another trip
for 2 months

Punctuation was removed from data because it does not contribute to text analysis in the study.
Punctuation helps to make sentences readable but it impairs the models’ ability to differentiate between
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punctuation and other characters [30]. In the next step, numeric values from the tweets were removed as
they have no impact on text analysis. Removing numeric values decreases the complexity of training the
models. Table 4 shows the output of before and after numbers were removed from tweets.

Table 4. Output of sample after numbers removal.

Input Data After Numeric Removal

plus youve added commercials to the experience
tacky

plus youve added commercials to the experience
tacky

I didnt today Must mean i need to take another trip
for 2 months

I didnt today Must mean i need to take another trip
for months

After numeric removal, all text in the tweets was converted to lowercase. This step is important
because text analysis is case sensitive. Yang and Zhang [30] stated that the probabilistic machine learning
models count the occurrence of each word, which means that, e.g., “Good”, and “good” are considered
two different words if changing all text to lowercase is not performed. It could decrease the importance
of more frequent terms in the text. Table 5 shows the example of before and after the tweets have been
converted to lower case.

Table 5. Output of sample after case lowering of tweets.

Input Data After Case Lowering

plus youve added commercials to the experience
tacky

plus youve add commercials to the experience tacki

I didnt today Must mean i need to take another trip
for months

i didnt today must mean i need to take another trip
for months

Stemming is an important technique in pre-processing because removing affixes from words and
converting them into their root form helps to increase the performance of the model [31]. For example,
words may have many forms with essentially the same meaning in the text. For example, “goes” and
“going” are modified forms of “go”. Stemming converts these types words into their root form. Stemming
was performed using Porter stemmer algorithms in current study [32]. Table 6 shows the sample of tweets
before and after stemming.

Table 6. Tweets before and after stemming.

Input Data After Stemming

plus youve added commercials to the experience
tacky

plus youve add commercial to the experience tacki

i didnt today must mean i need to take another trip
for months

i didnt today must mean i need to take another trip
for month

The last step in the pre-processing phase is the removal of stopwords in the tweets. Stopwords have
no analytic value for text analysis, so they need to be removed to reduce the complexity of input features.
Table 7 shows the output of the tweets after stopwords were removed.
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Table 7. Output of tweets after stopwords removal.

Input Data After Stopwords Removal

plus youve add commercial to the experience tacki plus haveve add commercial experience tacki
i didnt today must mean i need to take another trip
for month

today must mean need take another trip month

3.3.2. Partial Pre-processing

Other than the complete pre-processing, this study considered the use of partial pre-processing as
well, to analyze the impact of pre-processing steps on classifiers’ accuracy. The partial pre-processing does
not involve “stemming” and “stopwords removal”. Thus, the pre-processing was carried out in the order
given in Figure 5.

Punctuation 

removal

Punctuation 

removalTweets Tweets 
Stopwords

removal

Stopwords

removal
Stemming Stemming 

Convert to 

lower case

Convert to 

lower case

Numerical 

value removal

Numerical 

value removal

Punctuation 

removal

Punctuation 

removalTweets Tweets 
Convert to 

lower case

Convert to 

lower case

Numerical 

value removal

Numerical 

value removal

Figure 5. Steps followed in partial pre-processing.

3.3.3. Feature Extraction Methods

After the pre-processing phase, the corpus was divided into “training subset” and “testing subset”. It
was divided in the ratio of 3:1 for training and testing, respectively. Feature extraction methods were then
applied to the training subset, as shown in Figure 6, which represents the adopted methodology.

Feature extraction techniques were applied to both training and testing data: on the training data
to train the selected models and on the testing data when classification was performed. TF-IDF is a
scoring measure widely used in information retrieval (IR) and summarization. TF-IDF is intended to
reflect how relevant a term is in a given document. TF-IDF feature extraction considers TF and IDF. IDF
rewards the tokens that are rare overall in a dataset. If a rare word appears in two documents, then it is
more important to the meaning of each document. IDF weights a token t in a set of documents U and is
computed as follows:

IDF(t) =
N

n(t)
(1)

where n(t)
N is the frequency of t in U and N

n(t) is the inverse frequency. Thus, the total TF-IDF weight for a
token in a document is given as:

TF− IDF = TF ∗ IDF (2)

TF-IDF is used with parameter “ngram_ range”. TF-IDF is used to measure the importance weight
of terms which give the weights of each term in the corpus. The term weighted matrix is the output of
TF-IDF. With the TF-IDF vectorizer, the value increases proportionally to the count but is offset by the
frequency of the word in the corpus. Table 8 shows the output of three sentences when TF-IDF technique
is applied to the pre-processed form of these sentences. The sentences are:
“good companies”
“bad services”
“I have seen good management”
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Data Data 

Preprocessing

Stopwords removalStopwords removal

StemmingStemming
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Trained modelTrained model
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Accuracy Accuracy 

Precision Precision 

Recall Recall 

F1-scoreF1-score

Figure 6. The methodology adopted for tweets classification.

Table 8. Output of TF-IDF on preprocessed data.

Bad Compani Good Management Seen Service

0.000000 0. 795961 0. 605349 0. 000000 0. 000000 0.000000
0.707107 0. 000000 0. 000000 0. 000000 0.000000 0.707107
0. 000000 0. 000000 0.473630 0.622766 0.622766 0.000000

Similar to TF-IDF, the TF technique is used for feature extraction as well and is commonly applied in
document classification where the (frequency) occurrence of each word is used as a feature for training a
classifier. However, contrary to TF-IDF where more frequent words get smaller weight, the TF feature does
not care if a word is common or not. The output of TF for the above-given sentences is shown in Table 9.

Table 9. Output of TF on preprocessed data.

Bad Compani Good Management Seen Service

0 1 1 0 0 0
1 0 0 0 0 1
0 0 1 1 1 0

This study also considers the use of word2vec as the feature extraction technique [33]. Word2vec
is a famous two-layer neural net which produces the feature vectors from a text corpus. It utilizes the
continuous bag-of-words (CBOW) or the skip-gram (SG) model for this purpose. This study employed SG
because SG has been tested and shown good performance in NLP tasks [34,35]. The use of SG model aims
at finding the word representations that are used to predict the adjacent word in a sentence. The SG model
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was considered in this study based on its suitability for small- to medium-sized datasets. Jang et al. [36]
stated that the SG model is advantageous over CBOW when data size is not too large.

3.4. Classifiers Used for Tweet Classification

This section describes the necessary details for the machine learning classifiers used in this study for
tweet classification.

3.4.1. Machine Learning Classifiers

Multiple classifiers were used in the current study. The DTC is one of the used classifiers. The DTC
algorithm falls under the category of supervised learning and can be used to solve both regression and
classification problems. In DTC, the major challenge is the identification of the attribute for the root node
at each level [37]. This process is known as attribute selection. The two most popular attribute selection
measures are “information gain” and “Gini index” [38]. To calculate Gini, this study considered the
probability of finding each class after a node and then the sum of the square of those values was calculated
and subtracted from 1. Thus, when a subset is pure (i.e., there is only one class in it), Gini will be 0, because
the probability of finding that class is 1; indeed, it is concluded that we have reached a leaf. To calculate
Gini value, the following equation is used:

Gini = 1−
classes

∑
i=1

p(i|t)2 (3)

Besides Gini, information gain was also used for the selection of the best attribute. Whereas the Gini
value gives the impurity of data in the dataset, information gain provides the purity of data in the dataset.
There are two steps for calculating information gain for each attribute:
Step 1. Calculate the entropy of the target.
Step 2. Calculate the entropy for every attribute.

Using information gain formula, entropy was subtracted from the entropy of target. Given a set of
examples D, entropy is calculated using:

entropy(D) = −
|c|

∑
i=1

Pr(ci) log2 Pr(ci), (4)

|c|

∑
i=1

Pr(ci) = 1 (5)

where Pr(ci) is the probability of class ci in dataset D.
The entropy is used as the measure of impurity or disorder of a dataset ( or a measure of information

in a tree). If an attribute Ai is made with v values, this will partition D into v subsets D1, D2, ..., Dv. If Ai is
used as the current root, the expected entropy is:

entropyAi (D) = −
v

∑
j=1

|Dj|
D
∗ entropy(Dj) (6)

Thus, information gain for selecting attribute Ai to branch or partition the data is:

entropy(D, Ai) = entropy(D)− entropyAi (D) (7)

The attribute with the highest gain was selected to branch/split the current tree in this study. The Gini
value and information gain were used to construct the trees for all tree-based classifiers used in this study.
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SVM is another machine learning classifier utilized in the current study. It is a linear model for
classification and regression problems. It can solve linear and non-linear problems and works well for
many practical applications [39]. SVM creates a line or a hyper-plane which separates the data into
classes. SVM has functions called kernels which take low-dimensional input space and transform it into a
higher-dimensional space, i.e., it converts not separable problems to separable problems. It is mostly useful
in non-linear separation problems. Simply put, it does some extremely complex data transformations and
finds the process to separate the data based on the defined labels.

Two voting classifiers, namely LR and SGDC, were evaluated as well. Both LR and SGDC are able
to estimate class probabilities on their outputs, i.e., they predict if the input is class-A with probability a
and class-B with probability b. If a > b, then it outputs predicted class is A, otherwise B. In voting, the
classifier sets the voting parameter to soft enable them in order to calculate their probability (also known as
confidence score) individually and presents it to the voting classifier. Then, the voting classifier averages
them and outputs the class with the highest probability. The GBM, on the other hand, trains many models
in a gradual, additive and sequential manner. The major difference between ADB and GBM is how the
two algorithms identify the shortcomings of weak learners (e.g., decision trees). The ADB model identifies
the shortcomings by using high weight data points, while the GBM model performs the same by using
gradients in the loss function y = ax + b + e, where e is the error term. The loss function is a measure
indicating how good the model’s coefficients are at fitting the underlying data. A logical understanding of
loss function would depend on what we are trying to optimize.

3.4.2. Proposed Voting Classifier (LR + SGDC)

The voting classifier (VC) is an ensemble model that combines different base models to perform the
classification through different voting schemes (e.g., soft voting and hard voting). It gets final results by
aggregating the results from the classifiers. In this study, two classifiers, LR and SGDC, were ensembled
through soft voting criteria for the final prediction of target class. SGDC is useful for big data, especially
when there are redundancies in the dataset. It solves the classification problems by specifying a loss and
penalty function [40]. It works similarly to regular gradient descent, except that it looks at only one sample
at each step [41]. LR, on the other hand, derives the posterior class probability (PCP) p(Ct|v) implicitly
to perform the binary classification. LR derives PCP through the sigmoid function σ by using a linear
combination of the input [42]. VC can be expressed as:

p̂ = argmax{
n

∑
i

LRi,
n

∑
i

SGDCi} (8)

where ∑n
i LRi and ∑n

i SGDCi give n prediction probabilities for given samples. After each given probability
for sample text, the probability passes through soft voting criteria, as shown in Figure 7.

The functioning of the VC can be described with the help of an example. Let the following be the
probability scores of each class given by LR:
Negative class = 0.1126337
Neutral class = 0.35984473
Positive class = 0.52889191
Similarly, SGDC probability scores against each class are:
Negative class = 0.17610406
Neutral class = 0.42969437
Positive class = 0.39420157
The VC gives probability scores against each class using the probabilities of LR and SGDC as follows:
Negative class = (0.1126337+0.17610406)/2 = 0.143683715
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Neutral class = (0.35984473 + 0.42969437)/2 = 0.39476955
Positive class = (0.52889191 + 0.39420157)/2 = 0.46154674

The VC classifies it as the “positive” class for the given tweet using the maximum of the given
probability. The tweet tested with the VC classifier also belongs to the “positive” class in the dataset.

Logistic Regression

Stochastic Gradient 

Descent Classifier

VC1=(LRP1+SGDCP1)/2

VC2=(LRP2+SGDCP2)/2

VC3=(LRP3+SGDCP3)/2

Final Prediction Pf =

MaxProb(VC1,VC2,VC3)

Probability Score 

Negative Class (LRP2)

Probability Score Negative 

Class (SGDCP1)

Neutral Class 

Probability (VC2)

Pf

Figure 7. Architecture of the proposed voting classifier.

3.5. Performance Evaluations Parameters

Different performance evaluation parameters have been utilized to analyze the performance of the
classifiers. Four basic notations used in these parameters are as follows [43–45]:

True Positives (TP): These are the positive predictions of a class made by a classifier which are
correctly predicted.

True Negatives (TN): These are the negative predictions about a class which are correctly labeled so
by the classifier.

False Positives (FP): These are the negative instances of a class which are incorrectly predicted as
positive by the classifier.

False Negatives (FN): These are the positive instances of a class which are incorrectly predicted as
negative by the classifier.

These quantities are used to calculate accuracy, F1 score, recall, and precision of each classifier to
evaluate its performance. Accuracy is defined as:

accuracy =
TP + TN

TP + TN + FP + FN
× 100 (9)

Recall shows the completeness of a classifier and is calculated as:

Recall =
TP

TP + FN
(10)

Precision is the exactness of the classifiers and involves TP to the sum of TP and FP. It is calculated
using:

Precision =
TP

TP + FP
(11)

The F1 score conveys the balance between the precision and the recall and is calculated as:
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F1 = 2
precision× recall
precison + recall

(12)

4. Results and Discussion

Experiment results are discussed with respect to various pre-processing steps utilized as well as the
feature extraction techniques selected for this study.

4.1. Results with Complete Pre-processing

The current research utilized the selected machine learning classifiers with different hyper-parameters.
These parameters were set empirically to achieve higher accuracy. CC, for example, performs best when it
works with stochastic gradient descent. Similarly, the SVM classifier gives higher accuracy with a linear
kernel. The accuracy results for all classifiers when used TF-IDF are displayed in Table 10.

Table 10. Accuracy of models with TF-IDF.

Classifier Features Used Accuracy

AdaBoost Classifier TF-IDF 0.746
Calibrated Classifier TF-IDF 0.791

Decision Tree Classifier TF-IDF 0.686
Extra Trees Classifier TF-IDF 0.761

Gaussian Naïve Bayes TF-IDF 0.438
Gradient Boosting Machine TF-IDF 0.734

Logistic Regression TF-IDF 0.787
Random Forest Classifier TF-IDF 0.758

Stochastic Gradient Descent classifier TF-IDF 0.792
Support Vector Classifier TF-IDF 0.785

Voting Classifier (LR + SGDC) TF-IDF 0.792

As shown in Figure 8, GNB gives the lowest accuracy when used with TF-IDF feature extraction
technique and VC gives the best results with TF-IDF. VC gives the best results as it is an ensemble model
that works with other classifiers.

Figure 8. Classifiers’ accuracy with TF-IDF.



Entropy 2019, 21, 1078 15 of 22

Table 11 shows the classification accuracy of different classifiers when used with TF feature extraction
method. Experimental results reveal that the SGDC classifier shows the best results when stopping
criterion parameter value is set to “1e−3” and max_ iter=1000. Similarly, VC gives higher accuracy than
that of other classifiers when it works with LR and SGDC.

Table 11. Classifiers’ accuracy with TF feature extraction.

Classifier Features Used Accuracy

AdaBoost Classifier TF 0.745
Calibrated Classifier TF 0.789

Decision Tree Classifier TF 0.672
Extra Trees Classifier TF 0.772

Gaussian Naïve Bayes TF 0.418
Gradient Boosting Machine TF 0.740

Logistic Regression TF 0.780
Random Forest Classifier TF 0.763

Stochastic Gradient Descent classifier TF 0.792
Support Vector Classifier TF 0.773

Voting Classifier (LR + SGDC) TF 0.791

Figure 9 shows that SGDC performs better than other classifiers, even when the TF feature extraction
method is utilized. There is a slight difference in the accuracy of RF on TF-IDF and TF techniques. However,
at the same time, VC shows a very similar performance with both feature extraction techniques.

Figure 9. Classifiers’ accuracy with TF feature extraction.

Table 12 shows the results for precision, recall, and F1 score of each class of tweets, as well as the
average of three classes for all classifiers used in the study. In the current study, CC performs better when
used with TF-IDF because it allows the calibration of the probabilities for a given model or to add support
for probability prediction on the dataset. VC is the best classifier for tweets classification on the selected
dataset when the TF-IDF feature extraction method is used. The average precision of VC is 82%, which is
better than CC.
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Table 12. Classifiers’ accuracy parameters with TF-IDF.

Classifier Precision Recall F1 Score
Neg. Pos. Neut. Avg. Neg. Pos. Neut. Avg. Neg. Pos. Neut. Avg.

ADB 0.87 0.47 0.55 0.76 0.80 0.54 0.68 0.74 0.83 0.50 0.61 0.74
CC 0.92 0.50 0.64 0.81 0.83 0.65 0.74 0.79 0.87 0.57 0.69 0.80

DTC 0.80 0.41 0.50 0.68 0.77 0.42 0.55 0.67 0.78 0.42 0.52 0.67
ETC 0.94 0.41 0.56 0.82 0.79 0.64 0.74 0.77 0.86 0.50 0.64 0.78
GBM 0.89 0.40 0.55 0.76 0.79 0.53 0.66 0.73 0.83 0.46 0.60 0.74
GNB 0.26 0.32 0.84 0.61 0.92 0.28 0.24 0.37 0.41 0.30 0.37 0.36
LR 0.92 0.51 0.62 0.81 0.83 0.64 0.75 0.79 0.87 0.57 0.68 0.80
RF 0.93 0.39 0.54 0.81 0.79 0.61 0.74 0.76 0.85 0.47 0.62 0.77

SGDC 0.92 0.49 0.64 0.82 0.83 0.65 0.74 0.79 0.87 0.56 0.69 0.80
SVC 0.91 0.52 0.62 0.80 0.83 0.61 0.74 0.78 0.87 0.56 0.67 0.79
VC 0.94 0.45 0.58 0.82 0.85 0.65 0.77 0.78 0.86 0.53 0.66 0.79

LR examines the influence of various factors on a dichotomous outcome by estimating the probability
of the event’s occurrence [46]. It gives good results on the dataset with TF-IDF. The precision of LR is
better on neutral and positive labels than VC. Additionally, ETC, RF, SVM, and SGDC perform better than
the other classifiers in terms of precision, recall and F1 score. SVM shows better results with linear kernel
and parameter c set to 2.0. DTC, GBM, ADB, and GNB do not perform well and have lower precision on
the selected dataset. Table 12 shows the performance evaluation parameters for the selected classifiers
with TF-IDF feature extraction method.

The results for performance parameters when selected classifiers make use of the TF feature extraction
method are given in Table 13. The results demonstrate that CC, VC, LR, ETC, and RF perform better with
both TF and TF-IDF feature extraction methods. On the other hand, the performance of GNB is severely
degraded when used with TF feature extraction.

Table 13. Classifiers’ accuracy parameters with TF feature extraction.

Classifier Precision Recall F1 Score

Neg. Pos. Neut. Avg. Neg. Pos. Neut. Avg. Neg. Pos. Neut. Avg.

ADB 0.89 0.44 0.58 0.77 0.80 0.56 0.69 0.75 0.84 0.50 0.63 0.76
CC 0.92 0.50 0.65 0.81 0.83 0.66 0.73 0.79 0.87 0.57 0.69 0.80

DTC 0.78 0.48 0.50 0.67 0.79 0.42 0.59 0.67 0.78 0.45 0.54 0.67
ETC 0.93 0.45 0.59 0.81 0.81 0.62 0.75 0.77 0.86 0.52 0.66 0.79
GBM 0.88 0.48 0.55 0.76 0.80 0.53 0.70 0.74 0.84 0.50 0.61 0.75
GNB 0.41 0.31 0.67 0.51 0.82 0.30 0.23 0.43 0.55 0.30 0.35 0.40
LR 0.90 0.57 0.65 0.80 0.85 0.62 0.73 0.79 0.87 0.59 0.69 0.79
RF 0.92 0.45 0.57 0.80 0.81 0.42 0.73 0.76 0.86 0.45 0.64 0.78

SGDC 0.88 0.60 0.67 0.79 0.86 0.60 0.71 0.78 0.87 0.60 0.69 0.78
SVC 0.86 0.59 0.66 0.77 0.86 0.58 0.70 0.77 0.86 0.58 0.68 0.77
VC 0.90 0.56 0.66 0.80 0.85 0.63 0.72 0.79 0.87 0.59 0.69 0.79

Table 14 shows the accuracy of selected classifiers when word2vec is used as the feature extraction
method. The results show that the performance of all classifiers has been degraded with the exception
of SVC and GNB. The accuracy of SVC has been slightly improved, while GNB’s accuracy has been
significantly elevated with word2vec features. Table 15 shows the comparison of classifiers’ accuracy when
used with various feature extraction methods. The results show that the accuracy of most classifiers is
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degraded with word2vec features. CC is able to achieve the highest accuracy of 0.780 with word2vec while
many classifiers have a substantial decrease in accuracy.

Table 14. Accuracy of models with word2vec feature extraction.

Classifier Features Used Accuracy

AdaBoost Classifier word2vec 0.743
Calibrated Classifier word2vec 0.780

Decision Tree Classifier word2vec 0.623
Extra Trees Classifier word2vec 0.737

Gaussian Naïve Bayes word2vec 0.708
Gradient Boosting Machine word2vec 0.715

Logistic Regression word2vec 0.779
Random Forest Classifier word2vec 0.746

Stochastic Gradient Descent classifier word2vec 0.779
Support Vector Classifier word2vec 0.783

Voting Classifier (LR + SGDC) word2vec 0.777

Table 15. Comparison of classifiers’ accuracy with various feature extraction methods.

Classifier Accuracy

TF TF-IDF Word2vec

AdaBoost Classifier 0.745 0.746 0.743
Calibrated Classifier 0.789 0.791 0.780
Decision Tree Classifier 0.672 0.686 0.623
Extra Trees Classifier 0.772 0.761 0.737
Gaussian Naïve Bayes 0.418 0.438 0.708
Gradient Boosting Machine 0.740 0.734 0.715
Logistic Regression 0.780 0.787 0.779
Random Forest Classifier 0.763 0.758 0.746
Stochastic Gradient Descent classifier 0.792 0.792 0.779
Support Vector Classifier 0.773 0.785 0.783
Voting Classifier (LR + SGDC) 0.791 0.792 0.777

The average accuracy of all the classifiers with TF and TF-IDF is shown in Figure 10. The experimental
results show that there is very little difference in accuracy when the feature extraction technique is changed
from TF to TF-IDF; however, TF-IDF is better in terms of accuracy, precision, and other performance metrics.
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Figure 10. Comparison of classifiers’ accuracy with TF and TF-IDF feature extraction.

4.2. Results with Partial Pre-Processing

Table 16 compares the results for classifiers’ accuracy using complete pre-processing with the partial
pre-processing results where stopwords removal and stemming has been discarded. The results exhibit that
the partial pre-processing leads to reducing the overall accuracy of the classifiers. Complete pre-processing
is of utmost importance to improve the performance of prediction. Stemming and stopwords removal
help to mitigate the amount of meaningless data and reduce the data dimensionality [47]. Document
features estimate the importance of specific terms in a document. Pre-processing helps to reduce the
high-dimensional attributes and help feature extraction methods to learn only the important features.
Hence, if the pre-processing is incomplete, the feature extraction may be improper, which leads to poor
prediction of classifiers.

Table 16. Accuracy of classifiers with partial pre-processing.

Classifier Partial Pre-Processing Complete Pre-Processing

Accuracy (TF) Accuracy (TF-IDF) Accuracy (TF) Accuracy (TF-IDF)

AdaBoost Classifier 0.747 0.745 0.745 0.746
Calibrated Classifier 0.781 0.790 0.789 0.791
Decision Tree Classifier 0.682 0.670 0.672 0.686
Extra Trees Classifier 0.750 0.756 0.772 0.761
Gaussian Naïve Bayes 0.498 0.501 0.418 0.438
Gradient Boosting Machine 0.745 0.752 0.740 0.734
Logistic Regression 0.791 0.791 0.780 0.787
Random Forest Classifier 0.752 0.757 0.763 0.758
Stochastic Gradient Descent classifier 0.793 0.803 0.792 0.792
Support Vector Classifier 0.776 0.801 0.773 0.785
Voting Classifier (LR + SGDC) 0.794 0.804 0.791 0.792

4.3. Results Using Long Short-Term Memory Classifier

A deep learning approach LSTM was employed as well to analyze its accuracy on the selected twitter
dataset. Figure 11 shows the structure of the LSTM network used in this study.

Between the input layer and LSTM layer, an embedding layer was inserted, which creates word
vectors from the input layer. Rectified linear unit (ReLU) was used as the activation function because of its
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better performance on text data [41,48]. A dropout layer was used as the regularization unit with a value
of 0.5. Sigmoid was utilized at the end layer to produce the probability of each class [49]. This study used
“Adam” optimizer as it has proven to show better performance in case of noisy data [50]. The LSTM is
able to achieve an accuracy of 0.686, which is lower than those of most of the machine learning models
investigated in this study. The poor performance of LSTM is due to the dataset used in the current study.
Deep learning is a data-intensive approach that performs better when the dataset is large. Research shows
various results both favorable and poor on the use of deep learning on smaller datasets. For example, Feng
et al. [51] stated that deep learning-based methods perform poor with small datasets. However, Zampieri
et al. [52] investigated the use of SVM, CNN, and bidirectional LSTM (BiLSTM) to predict the offensive
language in social media. They found that BiLSTM and CNN can perform well even on relatively smaller
datasets, and outperform traditional machine learning SVM. It is also possible that the specific architecture
of the used LSTM model is not suitable for the selected dataset. Hence, the results cannot be conclusive
without further investigation of LSTM and other deep learning techniques on more datasets.

Figure 11. Architecture of LSTM model used in this study.

4.4. Statistical Significance of Results

This study employed a T-test to validate if the difference between the results is statistically significant
or not. Thus, the null hypothesis Ho is that the difference between the classification accuracy is not
significant while the alternative hypothesis Ha claims that the difference between the accuracy is significant.
The T-test found that the null hypothesis cannot be rejected in favor of alternative hypotheses for TF and
TF-IDF features. However, when the test was performed between the accuracy with TF-IDF and word2vec
features, it favored the alternative hypothesis and stated that the difference in the accuracy is statistically
significant.
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5. Conclusions

This paper proposes a voting classifier that is based on logistic regression and stochastic gradient
descent classifier. Soft voting is used to combine the probability of LR and SGDC. In addition, various
machine learning-based text classification methods were investigated to perform sentiment analysis. The
experiments were carried out on a twitter dataset which contains the reviews of travelers about US airlines.
Three feature extraction methods, namely TF, TF-IDF, and word2vec, were investigated to analyze the
impact on models’ classification accuracy. The selected classifiers were used to classify the tweets into
positive, negative and neutral classes. Precision, recall, and F1 score were used as performance metrics
besides accuracy. The results demonstrate that TF-IDF feature extraction is more appropriate for tweet
classification. The proposed voting classifier performs better with both feature extraction methods and
achieves an accuracy of 0.789 and 0.791 with TF and TF-IDF, respectively. Ensemble classifiers show higher
accuracy than the non-ensemble classifiers. A deep long short-term memory model was also implemented
with TF-IDF feature extraction. The results show that LSTM does not perform well on the selected dataset.
However, the results from LSTM are not conclusive, as research [52] shows strong evidence of superiority
of bidirectional LSTM and CNN over machine learning classifiers. Thus, future work is intended to
perform further experiments with more deep learning methods on the selected as well as additional
datasets.
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