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Abstract: In this work, an analytical framework for deriving the exact moments of multiple-input-
multiple-output (MIMO) mutual information in the high-signal-to-noise ratio (SNR) regime is
proposed. The idea is to make efficient use of the matrix-variate densities of channel matrices
instead of the eigenvalue densities as in the literature. The framework is applied to the study of the
emerging models of MIMO Rayleigh product channels and Jacobi MIMO channels, which include
several well-known channels models as special cases. The corresponding exact moments of any order
for the high-SNR mutual information are derived. The explicit moment expressions are utilized to
construct simple yet accurate approximations to the outage probability. Despite the high-SNR nature,
simulation shows usefulness of the approximations with finite SNR values in the scenario of low
outage probability relevant to MIMO communications.

Keywords: matrix integrals; MIMO mutual information; non-asymptotic analysis; random matrix theory

1. Introduction

Mutual information is one of the most important quantities in information theory.
It is crucial in the analysis and design of various communications and signal processing systems.
In multiple-input-multiple-output (MIMO) communications, the supremum of the mutual information
provides the fundamental performance measure of the channel capacity. Efforts have been made
to understand the statistical properties of MIMO mutual information for different channel models.
However, knowledge in the literature is essentially limited to either the exact mean values [1–6] or
the limiting means and variances [7–11]. The first moment is relevant to the ergodic mutual information,
whereas the higher order moments describe the outage probability essential to study to slow or block
fading channels. Our study is also motivated by the fact that the prevailingly adopted asymptotic
variances based approximative outage probabilities [8–11] fail to capture the true distribution when
the number of antennas is small or the outage probability is low. Accurate characterizations require
the exact higher order moments, which govern the tail of the distribution.

Deriving the exact higher order moments of MIMO mutual information for any given arbitrary
signal-to-noise ratio (SNR) is a notable and longstanding challenging task. In fact, even the exact second
moment is still unknown in the literature for any non-trivial MIMO channel model. The purpose
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of this paper is to show that, with the assumption of high-SNR, exact moments of any order for a wide
class of MIMO channels can be explicitly obtained. The idea of the proposed approach stems
from our observations that moment expressions of high-SNR mutual information can be efficiently
obtained by means of integrals over matrix-valued channel densities. This is contrary to the existing
approach [1–6,8–11], where the starting point is the seemingly simpler integrals over the eigenvalue
densities of channel matrices.

To show the usefulness of the proposed framework, we study the mutual information of the MIMO
Rayleigh product channels [3–5,7,10,12] and the Jacobi MIMO channels [6,9,11]. The MIMO Rayleigh
product channel takes the well-known MIMO Rayleigh channels with [2] and without [1] correlation
as special cases. The Jacobi MIMO channel is useful in modeling MIMO optical channels [6,11]
and interference-limited multiuser channels [9]. The main results of this present work are the exact
yet explicit formulas of all integer moments of mutual information for the above mentioned channel
models in the high-SNR regime. We utilize the derived moments to construct analytical approximations
to channel outage probabilities. Despite the high-SNR assumption, the resulting approximations turns
out to be reasonably accurate for finite SNR values.

The high-SNR regime provides important insights into the statistical performance of MIMO
channels. In particular, it characterizes the minimum required transmit power, which is also referred
to as the high-SNR power offset [13]. The considered high-SNR mutual information is directly related
to the high-SNR power offset, where its mean values have been derived for different channel models
in [13]. As an application of our results, we may study as a possible future work the distribution
of the power offset pertaining to the nonergodic channels, an open problem discussed in [13]. This open
problem has been partially addressed in [14] for the case of a product of two MIMO Rayleigh channels.

2. Problem Statement

2.1. MIMO Mutual Information

Consider a MIMO system consisting of n transmit and m receive antennas, the channel in between
is described by an m× n random matrix H. Assuming i.i.d. input across the transmit antennas and that
the channel H is only known to the receiver, the mutual information in nats/second/Hz of the MIMO
channel is [1]

I = ln det
(

Im + rHH†
)
=

m

∑
i=1

ln (1 + rθi) , (1)

where m ≤ n is assumed without loss of generality. In Equation (1), ln(·) is the natural logarithm,
det(·) is the matrix determinant, r is the SNR, and θm ≤ · · · ≤ θ2 ≤ θ1 denote the eigenvalues
of the Hermitian matrix HH†. In the high-SNR regime, by ignoring the constant Im in Equation (1)
the mutual information is approximated by

I = m ln r + ln det
(

HH†
)

(2)

= m ln r +
m

∑
i=1

ln θi, (3)

where I denotes the approximation to I in the high SNR regime. This approximation becomes exact as
the SNR r grows to infinity.

A fundamental information-theoretic quantity for MIMO channels is the outage probability,
which is the probability that a given rate exceeds the value of the mutual information. For high-SNR
mutual information Equation (2), the outage probability Pout(z) is defined as a function of the rate z as

Pout(z) = P (I < z) . (4)
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Clearly, the above defined high-SNR outage probability Pout(z) is an approximation to the true outage
probability P (I < z), which approaches to its exact value as the SNR tends to infinity.

Finding simple and explicit expressions to the outage probability Equation (4) for finite-size
systems of the following MIMO channel models is the focus of this work.

2.2. MIMO Rayleigh Product Channels

The MIMO Rayleigh product channel, originally proposed in [7], is a relevant model for the indoor
wireless propagation in pico-cellular networks such as train stations, office buildings, and airports.
Physical motivation for such a channel model can be found, for example, in ([15], Section 3).
The MIMO Rayleigh product channel has received increasing attention due to the recent breakthrough
in understanding its finite-size distribution [3–5]. Assuming a MIMO channel with d0 transmit and dM
receive antennas, the information transmitted to the receiver goes through M− 1 successive layers,
each having di (i = 1, . . . , M − 1) scatterers, the corresponding channel equals the product of M
channel matrices

H = HM · · ·H1. (5)

The dimensions of the i-th channel Hi is di × di−1, where each channel is assumed to be
an independent MIMO Rayleigh channel. All the scattering between the MIMO Rayleigh channels
Hi and Hi+1 happens through the di scatterers in the layer i, which can be thought as di keyholes.
In the literature, the channel model considered in Equation (5) has been referred to different names such
as multiple cluster scattering channel, progressive scattering channel, or multiple Rayleigh scattering
channel. We choose to use the term MIMO Rayleigh product channel in this paper to emphasize that
each channel in the product is described by the Rayleigh fading.

The effect of spatial correlation among receive antennas is considered, which is caused by physical
constraints of the terminal size. We choose the separable correlation model, where the effect of
correlation is multiplicative, i.e.,

E
[
HH†

]
=

(
M

∏
i=1

di−1

)
Σ, (6)

where the dM × dM deterministic matrix Σ is the correlation matrix. For convenience of the discussion,
we study here the receiver side correlation, whereas the transmitter side correlation can be considered
at the same time. The only difference is that the result (21a) will have an additional term ln det Ω,
where the d0 × d0 matrix Ω specifies the correlation matrix at the transmitter side. As will be discussed
in detail in Section 3, one could assume without loss of generality that the dimensions of the channels
are ordered as

νi = di − dM ≥ 0, i = 0, . . . , M− 1, (7)

which is known as the weak commutation relation for products of random matrices [4]. Strictly
speaking, the weak commutation relation was established in [4] for the case Σ = Im. The extension to
an arbitrary Σ can be seen by the fact that the parametrization ([4], Equations (2)–(4)) is essentially the
same in the presence of Σ. The extension is further confirmed by the observation that the density (9) is
indeed invariant under any permutation of the parameters νi. For notational convenience, we further
denote the smallest dimension dM by

m = dM. (8)

By the above assumptions, the density of the joint eigenvalues of the hermitian matrix HH† is
given by [5]

p (θ) =
1
c

det
(

θ
j−1
i

)
det

(
f j (θi)

)
, i, j = 1, . . . , m, (9)

with

f j(θ) = GM,0
0,M

(
θ

σj

∣∣∣∣∣ −
νM−1, . . . , ν0

)
, (10)
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where 0 ≤ θm ≤ · · · ≤ θ2 ≤ θ1 < ∞ and c is a normalization constant that does not depend on θ. Here,
σj denotes the j-th eigenvalue of the correlation matrix Σ with σi 6= σj for i 6= j. The case when some
of σi are equal can be resolved by the L’Hopital’s rule. The function in Equation (10) is a Meijer’s
G-function [5] and the determinant in Equation (9)

det
(

θ
j−1
i

)
= ∏

1≤i<j≤m

(
θi − θj

)
(11)

is a Vandermonde determinant.
The MIMO Rayleigh product channel, seen in Equations (5) and (6), is a general channel model

that includes the following well-known models as special cases:

• Uncorrelated MIMO Rayleigh product channels [3,4,7,10] when Σ = Im,
• MIMO Rayleigh channels [2] when M = 1,
• Uncorrelated MIMO Rayleigh channels [1,8,9] when M = 1 and Σ = Im.

In the literature, the exact ergodic mutual information E [I] of the MIMO Rayleigh product
channels with and without correlation has been derived in [3–5], respectively. For the MIMO Rayleigh
channels, the exact ergodic mutual information with and without correlation has been derived in [1,2],
respectively. For the exact higher order moments E

[
Ik
]
, k = 2, 3, . . . , that are needed to characterize

the outage probability, no explicit finite-size results seem available for any of the above channel models.
We exclude the discussion of finite-size results in the literature that involve, as final results, integral
representations or combinatorial objects such as determinants and sums over partitions. For example,
for different channel models in [16,17] the exact outage mutual information has been represented as
contour integrals involving determinants, which may only be evaluated numerically in most cases.
The existing results are limited to a scenario of large channel dimensions, where some asymptotic
formulas for the second moment are available [8–10].

2.3. Jacobi MIMO Channels

The Jacobi MIMO channel is a useful model for the MIMO optical communications [6,11] as well
as the interference-limited multiuser MIMO [9]. We will, however, formulate the problem mainly
in the context of the former application, where the relevance to the latter will be briefly discussed.

The spatial degrees of freedom of the MIMO Rayleigh channels (and its generalization to MIMO
product channels) lead to the well-known capacity scaling law [1]. The idea behind the MIMO fiber
optical channels is to attain a similar scaling law by exploiting the spatial degrees of freedom as well.
Particularly, multiple spatial transmission in the same fiber is possible by designing a multi-mode
and/or multi-core fiber. To explore the spatial diversity, the Jacobi MIMO optical channel was proposed
in [6,11], which relies on the following assumptions. The propagation through the fiber is assumed
to be as lossless such that it can be modeled as an l × l random unitary matrix UU† = Il , also known
as the scattering matrix. Assuming n transmitting and m receiving modes (with m ≤ n), the effective
optical MIMO channel is given by the upper left sub-matrix of the scattering matrix U =

(
uij
)

with
the condition that l ≥ m + n, i.e.,

H =
(
uij
)

i=1,...,m; j=1,...,n . (12)

With these assumptions, the joint density of the eigenvalues of the hermitian channel matrix HH†

is expressed as [6,11]

p (θ) =
1
c ∏

1≤i<j≤m

(
θi − θj

)2
m

∏
i=1

θα1
i (1− θi)

α2 , (13)

where 0 ≤ θm ≤ · · · ≤ θ2 ≤ θ1 ≤ 1,

α1 = n−m, α2 = l −m− n, (14)
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and c is a normalization constant that does not depend on θ. The ensemble Equation (13) is referred
to as the Jacobi ensemble [18] in random matrix theory, and hence the name Jacobi MIMO channels
in the information theory and communications theory communities. Notice that when the SNR is
high enough the optical channel becomes nonlinear which may not be modeled by the above channel
model. Fortunately, our derived analytical results are valid for moderate high SNR values as shown
in Section 4.

The eigenvalue density of the interference-limited MIMO channel considered in [9] takes the form
of Equation (13) with the same parameter α1 = n−m as the difference between the number of transmit
and receive antennas. For this application, the parameter α2 is now

α2 = kn−m, (15)

where k denotes the number of interferers. For a detailed discussion of the interference-limited MIMO
channels and its connection to the Jacobi ensemble, we refer to [9].

For applications in optical MIMO communications, the exact ergodic mutual information E [I]
of the Jacobi MIMO channels was derived in [6], whereas an unexplicit as well as a limiting second
moment formulas can be found in [11]. Note that the exact higher order moments might be also
derived from the representation in ([11], Equation (13)), which would carry the same combinatorial
structure involving sums over partitions. On the contrary, our proposed moments expressions for
high SNRs in Proposition 2 are simple and explicit, the difficulty of which does not increase with
the order of moment considered. For applications to interference-limited MIMO channels, the first two
limiting moments and a differential equation for the moments were obtained in [9]. Finally, we note
that the random variable ln det

(
HH†

)
for Jacobi MIMO channels was shown in ([19], Proposition 2.4)

to have the same distribution as a product of independent Beta random variables, whose density
function can be obtained in principle, albeit complicated, by multiple convolutions of the underlying
Beta densities.

3. Exact Moments of High-SNR Mutual Information

Despite that even the exact second moment E
[
I2] of the mutual information Equation (1) is

difficult to obtain for any previously discussed channel model, we will show that the exact moments
E
[
Ik
]
, k = 1, 2, . . . , of the high-SNR mutual information Equation (2) can be explicitly calculated.

These moments will be utilized to construct simple and accurate approximations to the outage
probability of the considered MIMO channels.

To compute the moments, one naturally starts from integrals involving the eigenvalue densities,
seen in Equations (9) and (13) as has been done in the literature [1–6,8–11]. Contrary to this
prevailing approach, our starting point is the integrals over the matrix-variate densities of the channel
matrices HH†. This may be counter-intuitive as the matrix integral involves to the order of m2

real variables, whereas the integral over eigenvalue density only involves m variables. We will
show, however, that by starting from matrix integrals the exact moment of any order can be derived
in a straightforward manner.

As m ln r in Equation (2) is a constant, we first focus on the random variable

X = ln det
(

HH†
)

. (16)

The cumulant generating function K(s) of X is defined as

K(s) = lnE
[
esX
]
=

∞

∑
i=1

κ̃i
si

i!
, (17)
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where the i-th order cumulant κ̃i of X can be recovered from the generating function as

κ̃i =
di

dsi K(s)
∣∣∣∣
s=0

. (18)

Denote the i-th order cumulant of I by κi, we have

κ1 = m ln r + κ̃1, (19a)

κi = κ̃i, i ≥ 2, (19b)

which is due to the shift-equivariant and the shift-invariant property, respectively. With the knowledge
of cumulants, the corresponding moments can be determined. In general, the i-th order moment
is an i-th degree polynomial in the first i cumulants and vice versa. For example, the first five moments
of I written in terms of its first five cumulants are listed below

E [I ] = κ1, (20a)

E
[
I2
]

= κ2 + κ2
1, (20b)

E
[
I3
]

= κ3 + 3κ2κ1 + κ3
1, (20c)

E
[
I4
]

= κ4 + 4κ3κ1 + 3κ2
2 + 6κ2κ2

1 + κ4
1, (20d)

E
[
I5
]

= κ5 + 5κ4κ1 + 10κ3κ2 + 10κ3κ2
1 + 15κ2

2κ1 + 10κ2κ3
1 + κ5

1. (20e)

We now present the main technical contributions of this paper, which are summarized in the two
propositions and two corollaries below.

3.1. All the Integer Moments of Mutual Information of MIMO Rayleigh Product Channels

Proposition 1. The i-th exact cumulant κi of the high-SNR mutual information (Equation (2)) of the MIMO
Rayleigh product channels (Equation (5)) is given by

κ1 = m
M

∑
j=1

ψ0
(
dj−1 −m

)
+

M

∑
j=1

dj−1
(
ψ0
(
dj−1

)
− ψ0

(
dj−1 −m

))
+

m(ln r−M) + ln det Σ, (21a)

κi = m
M

∑
j=1

ψi−1
(
dj−1 −m

)
+

M

∑
j=1

dj−1
(
ψi−1

(
dj−1

)
− ψi−1

(
dj−1 −m

))
+

(i− 1)
M

∑
j=1

(
ψi−2

(
dj−1

)
− ψi−2

(
dj−1 −m

))
, i ≥ 2, (21b)

where

ψi(z) =
∂i+1 ln Γ(z)

∂zi+1 = (−1)i+1i!
∞

∑
k=0

1
(k + z)i+1 (22)

denotes the i-th order polygamma function [20].

The proof of Proposition 1 is in the Appendix A. Note that for positive integer arguments,
the polygamma function of order 0 (digamma function) reduces to a finite sum as

ψ0(l) = −γ +
l−1

∑
k=1

1
k

(23)
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with γ ≈ 0.5772 being the Euler’s constant, and the polygamma functions of order i ≥ 1 in Equation (24)
also become finite sums as

ψi(l) = (−1)i+1i!

(
ζ(i + 1)−

l−1

∑
k=1

1
ki+1

)
, (24)

where

ζ(s) =
∞

∑
k=1

1
ks (25)

is the Riemann zeta function. In particular, the trigamma function (i = 1) reduces to

ψ1(l) =
π2

6
−

l−1

∑
k=1

1
k2 . (26)

Note also that an exact moment expression of the MIMO Rayleigh product channel has been
recently obtained in ([12], Proposition 4), which involves a combinatorial structure of matrix
determinant. On the contrary, our proposed moment expressions are simple and explicit partially due
to the efficient use of the cumulant generating function, an approach we try to advocate in this paper.

The general results in Proposition 1 can be simplified to various special cases depending on the channel
models considered. The following two special cases, as summarized in the Corollaries 1 and 2, may deserve
separate attention.

Corollary 1. In the case of square channel matrices

d0 = d1 = · · · = dM = m, (27)

the results of Proposition 1 are simplified to

κ1 = M (mψ0(m)−m + 1) + m ln r + ln det Σ, (28a)

κi = M (mψi−1(m) + (i− 1) (ψi−2(m)− ψi−2(1))) , i ≥ 2. (28b)

The proof of Corollary 1 is in Appendix B. Note that the above channel model corresponds
to the scenario of equal number of scatterers on each layer (cf. Equation (5)). Note also that Proposition 1
is in fact not directly valid in the case of Equation (27), where some general expressions from
Equations (A22a) and (A23a) will be needed, cf. Equations (A4) and (A5).

Corollary 2. In the case M = 1, i.e., the MIMO Rayleigh channels, the results of Proposition 1 reduce to

κ1 = (m− d0)ψ0(d0 −m) + d0ψ0(d0) + m(ln r− 1) + ln det Σ, (29a)

κi = (m− d0)ψi−1(d0 −m) + d0ψi−1(d0) + (i− 1) (ψi−2(d0)− ψi−2(d0 −m)) , i ≥ 2. (29b)

The proof of Corollary 2 follows directly by setting M = 1 in Equation (21). In the literature,
the first two (unsimplified) cumulants κ1 and κ2 of Corollary 2 have been reported in [13,21,22], where
some bounds on the corresponding outage probability can be also found in [22]. In particular, the
variance formulas provided in ([22], Section IV) can be further simplified to finite sums. Note that
the derivation in [22] essentially ended with the expressions for the moment generating functions,
whereas we have derived explicit expressions for all the moments via the corresponding cumulants.
In addition, in our construction of the outage probability from the moments no generic probabilistic
bounds, such as the Chernoff bound used in [22], are needed.

It is interesting to observe that the terms involving SNR γ and spatial correlation Σ only appear
in the first cumulants in Equations (21a), (28a) and (29a) of the high-SNR mutual information.
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As a result, the corresponding cumulants for the uncorrelated channel models only incur a change
in Equations (21a), (28a) and (29a) by setting

ln det Σ = ln det Im = 0, (30)

whereas the higher cumulants in Equations (21b), (28b) and (29b) remain the same.

3.2. All the Integer Moments of Mutual Information of Jacobi MIMO Channels

Proposition 2. The i-th exact cumulant κi of the high-SNR mutual information in Equation (2) of the Jacobi
MIMO channels in Equation (12) is given by

κ1 = nψ0(n)− lψ0(l)− (n−m)ψ0(n−m) + (l −m)ψ0(l −m) + m ln r, (31a)

κi = nψi−1(n)− lψi−1(l)− (n−m)ψi−1(n−m) + (l −m)ψi−1(l −m) +

(i− 1) (ψi−2(n)− ψi−2(l)− ψi−2(n−m) + ψi−2(l −m)) , i ≥ 2. (31b)

The proof of Proposition 2 can be found in Appendix C. A similar, but unsimplified,
κ1 expression was obtained in the context of mean power offset of interference-limited MIMO
channels ([13], Equation (78)). In such a setting, our derived higher cumulants may useful in the study
of the distribution of power offset, which may be addressed separately as a future work.

4. Moment-Based Approximations to Outage Probability

With the derived exact cumulant expressions from Equations (21), (28), (29), (31) and
the cumulant-moment relations Equation (20), moment-based approximations to the outage probability
in Equation (4) for each of the discussed channel model can now be constructed. The basic idea
of moment based approximation is to match the moments and support of an intractable distribution
by an elementary distribution and the associated orthogonal polynomials [23,24]. The theory
of moment-based approximation as developed by Ha and Provost [23,24] assigns Gaussian, Gamma,
or Beta density as the elementary distribution (initial approximation) when the considered random
variable is supported in (−∞, ∞), [a, ∞), or [a, b] (a, b being finite), respectively. The respective
orthogonal polynomials for the chosen elementary densities are Hermite, Laguerre, and Jacobi
polynomials. The parameters of the initial approximations are obtained by matching the first two
moments, whereas the orthogonal polynomials encode the higher moments. An important property is
that the approximation accuracy in general improves as the number of moments involved increases.
Note also that the moment-based approximation provides closed-form distribution functions by taking
the moment expressions as input, where no numerical simulation of any random variable is needed.

Since the random variable of interest in Equation (16) is supported in X ∈ [a, ∞) for the MIMO
Rayleigh product channels and in X ∈ (−∞, 0] for the Jacobi MIMO channels, the gamma distribution
is chosen as the elementary distribution of the approximation. As a consequence, the Laguerre
polynomials as the associated orthogonal polynomials are utilized to construct the approximation.
The resulting approximative distribution function Fq(x) to the distribution function P(X < x) of
the random variable X in Equation (16), obtained by matching the first q moments of X to a linear
combination of Laguerre polynomials up to degree q, can be read off from ([23], Appendix 2) as

Fq(x) =
γ (α, x/β)

Γ(α)
+ εq(x), (32)

where

εq(x) =
q

∑
i=3

wi

i

∑
j=0

(−1)jΓ(α + i)
(i− j)!j!

γ (α + j, x/β)

Γ(α + j)
(33)
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with

wi =
i

∑
l=0

(−1)l i!
(i− l)!l!Γ(α + l)βl E

[
Xl
]

(34)

and

γ(a, b) =
∫ b

0
ta−1e−t dt (35)

being the lower incomplete Gamma function. The parameters α, β in the approximative distribution
function in Equation (32) are found by matching the first two moments of X to a Gamma random
variable having a density

1
Γ(α)βα

xα−1e−
x
β , x ∈ [0, ∞) (36)

as

α =
E2 [X]

E [X2]−E2 [X]
=

(κ1 −m ln r)2

κ2
, (37a)

β =
E
[
X2]−E2 [X]

E [X]
=

κ2

κ1 −m ln r
, (37b)

where the derived higher cumulant expressions enter the approximation via Equation (34),
cf. Equation (20). Finally, the resulting approximation to the outage probability of Equation (4)
is obtained by keeping in mind the relation of Equation (2) as

Pout(z) ≈ Fq (z−m ln r) . (38)

The simplest form of the moment-based approximation corresponds to q = 2 in Equation (32) as

F2(x) =
γ (α, x/β)

Γ(α)
, (39)

where only the first two moments are involved. Note that the above Equations (32)–(39) are valid
for X ∈ [0, ∞) of the MIMO Rayleigh product channels and its special cases. For the Jacobi MIMO
channels having X ∈ (−∞, 0], one constructs an approximation to the random variable−X in a parallel
manner as the above with details omitted.

In principle, with the number of moments E
[
Xi], i = 1, . . . , involved in the term in Equation (34)

increases, the accuracy of the approximation in Equation (38) improves [23,24]. This is especially
true for the tail of the distribution, where the accuracy is governed by the higher order moments.
We now focus on the numerical study of the approximation accuracy in various realistic scenarios.
The emphasis will be on the low outage probability in the regime when the SNR and the number of
antennas are finite. We point out that the outage probability at low outage is a crucial metric for optical
communications, where requesting a retransmission in the case of packet loss may not be possible [11].

We first study the impact of the number of moments q on the approximation accuracy, where
we consider the Jacobi MIMO channels Equation (12) for illustration. Figure 1 shows the outage
probability of the high-SNR mutual information Equation (2) assuming the channel dimensions m = 4
and n = 6, where different dimensions l = 12, 16, and 20 of the scattering matrices are considered. The
numerical simulations are compared with the moment-based approximative outage probability, where
the number of moments considered are q = 2 and q = 5. It is observed that the accuracy of the proposed
approximation improves (most prominently in the tails) as the number of moments increases from
q = 2 to q = 5. We also see that the outage probability decreases as the number of untapped channels
l −m− n decreases, where the same phenomenon has been observed in [11] as well.
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Figure 1. Outage probability of high-signal-to-noise ratio (SNR) mutual information (Equation (2)) of
Jacobi multiple-input-multiple-output (MIMO) channels (Equation (12)) for different l with m = 4,
n = 6, and r = 20 dB.

We now study the impact of finite SNR on the accuracy of the outage probability.
Since the approximation is formally valid when the SNR approaches infinity, the study helps evaluate
the usefulness of the results in practical scenarios of finite SNR values. In Figure 2, we consider
the MIMO Rayleigh product channels in Equation (5) with M = 3, d0 = 7, d1 = 6, d2 = 5, d3 = 4,
where the exponential correlation model

(Σ)i,j = ρ|i−j|, ρ ∈ [0, 1), (40)

is chosen for the correlation matrix Σ with ρ being set at 0.7. In Figure 3, we consider the Jacobi MIMO
channels in Equation (5) with the channel dimensions l = 12, m = 4, and n = 6. In both figures,
the number of moments used in the approximation equals q = 5. Despite the high-SNR assumption,
it is observed that the proposed approximation is already reasonably accurate for not-so-high SNR
values even for outage probability as low as 10−4. Simulations with other parameter values have been
extensively performed, where similar accuracy performance as in Figures 2 and 3 persists.
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Figure 2. Outage probability of mutual information Equation (1) of MIMO Rayleigh product
channels Equation (5) for different SNR values with q = 5, M = 3, d0 = 7, d1 = 6, d2 = 5, d3 = 4,
and ρ = 0.7.
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Figure 3. Outage probability of mutual information Equation (1) of Jacobi MIMO channels Equation (12)
for different SNR values with q = 5, l = 12, m = 4, and n = 6.

5. Conclusions

In this work, we study the mutual information of MIMO Rayleigh product channels and Jacobi
MIMO channels, which has received substantial attention very recently. For the considered channel
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models, the exact moments of any order of the high-SNR mutual information are derived. The results
are derived by making use of the relevant matrix-variate densities of the channel matrices. The obtained
exact moments lead to closed-form approximations to the outage probability. Simulations demonstrate
the usefulness of the results in practical scenarios of low outage probability with finite SNR values
and channel dimensions. Future work includes extending the analytical framework to studying
the moments of mutual information for MIMO channels with more complicated matrix-variate
densities such as the MIMO Rician channels.
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Appendix A. Proof of Proposition 1

The proofs of Propositions 1 and 2 as well as Corollary 1 rely on the matrix-variate gamma and
beta distributions as well as some finite sum identities involving polygamma functions, which are
summarized in the definitions and the lemma below.

Definition A1. The matrix-variate gamma density with parameters (α, Σ) is defined as ([18], p. 357)

1
Γm(α)det(Σ)α

det(X)α−me−tr(Σ−1X), (A1)

where X and Σ are Hermitian matrices of dimensions m×m, and

Γm(α) = π
1
2 m(m−1)

m−1

∏
k=0

Γ(α− k) (A2)

denotes the multivariate gamma function ([18], p. 356).

Definition A2. The matrix-variate beta density with parameters (α, β) is defined as ([18], p. 357)

Γm(α + β)

Γm(α)Γm(β)
det (X)α−m det (Im − X)β−m , (A3)

where X is a Hermitian matrix of dimensions m×m.

Lemma A1. For an integer l > 0, we have

n

∑
k=1

ψ0(k + l) = (n + l)ψ0(n + l)− lψ0(l)− n, (A4a)

n

∑
k=1

ψi(k + l) = (n + l)ψi(n + l)− lψi(l) + i (ψi−1(n + l)− ψi−1(l)) , i ≥ 1, (A4b)

and when l = 0, we have

n

∑
k=1

ψ0(k) = nψ0(n)− n + 1, (A5a)

n

∑
k=1

ψi(k) = nψi(n) + i (ψi−1(n)− ψi−1(1)) , i ≥ 1. (A5b)
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Proof. We will first prove the identities of Equation (A4), whereas the identities of Equation (A5)
can then be established by taking appropriate limits of Equation (A4) to resolve the indeterminacy.
To prove Equation (A4a), we observe from the definition of digamma function of Equation (23) that

ψ0(k + l) = ψ0(l) +
k−1

∑
i=0

1
l + i

, (A6)

which gives

n

∑
k=1

ψ0(k + l) = nψ0(l) +
n

∑
k=1

k−1

∑
i=0

1
l + i

(A7a)

= nψ0(l) +
n−1

∑
i=0

n

∑
k=i+1

1
l + i

(A7b)

= nψ0(l) + n
n−1

∑
i=0

1
l + i

−
n−1

∑
i=1

i
l + i

(A7c)

= nψ0(l) + n (ψ0(n + l)− ψ0(l))−
n−1

∑
i=1

l + i− l
l + i

(A7d)

= nψ0(n + l) + l
n−1

∑
i=1

1
l + i

− n + 1 (A7e)

= nψ0(n + l) + l (ψ0(n + l)− ψ0(l + 1))− n + 1 (A7f)

= (n + l)ψ0(n + l)− lψ0(l)− n. (A7g)

This proves Equation (A4a). To show Equation (A4b), by the series representation of polygamma
function of Equation (24), one has

ψi(k + l) = ψi(l) + (−1)ii!
k−1

∑
j=0

1
(l + j)i+1 , (A8)

which similarly gives

n

∑
k=1

ψi(k + l) = nψi(l) + (−1)ii!
n−1

∑
j=0

n

∑
k=j+1

1
(l + j)i+1 (A9a)

= nψi(l) + (−1)ii!n
n−1

∑
j=0

1
(l + j)i+1 − (−1)ii!

n−1

∑
j=1

j
(l + j)i+1 (A9b)

= nψi(l) + n (ψi(n + l)− ψi(l))− (−1)ii!
n−1

∑
j=1

l + j− l
(l + j)i+1 (A9c)

= nψi(n + l)− (−1)ii!
n−1

∑
j=1

1
(l + j)i + (−1)ii!l

n−1

∑
j=1

1
(l + j)i+1 (A9d)

= nψi(n + l) + i
(

ψi−1(n + l)− ψi−1(l)−
(−1)i−1(i− 1)!

li

)
(A9e)

+l
(

ψi(n + l)− ψi(l)−
(−1)ii!

li+1

)
(A9f)

= (n + l)ψi(n + l)− lψi(l) + i (ψi−1(n + l)− ψi−1(l)) . (A9g)
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To prove Equation (A5a), setting l = 0 in Equation (A4a) results in

n

∑
k=1

ψ0(k) = nψ0(n)− n− 0ψ0(0), (A10)

where the “0×∞” type indeterminacy can be resolved by using the fact that [20]

ψ0(ε) = −
1
ε

(
1− ψ0(1)ε + o

(
ε2
))

, ε→ 0, (A11)

as
0ψ0(0) = lim

ε→0
εψ0(ε) = − lim

ε→0

(
1− ψ0(1)ε + o

(
ε2
))

= −1. (A12)

This proves Equation (A5a). Similarly, to prove Equation (A5b) we set l = 0 in Equation (A4b),
which gives

n

∑
k=1

ψi(k) = nψi(n) + iψi−1(n)− iψi−1(0)− 0ψi(0), i ≥ 1. (A13)

The indeterminate term −iψi−1(0)− 0ψi(0) can be handled by the fact that [20]

ψi(ε) =
(−1)i−1i!

εi+1 + ψi(1) + o(ε), ε→ 0, (A14)

as

iψi−1(0) + 0ψi(0) = lim
ε→0

(iψi−1(ε) + εψi(ε)) (A15a)

= lim
ε→0

(
(−1)i−2i!

εi + iψi−1(1) + o(ε) +
(−1)i−1i!

εi + εψi(1) + o
(

ε2
))

= lim
ε→0

(
iψi−1(1) + o(ε) + εψi(1) + o

(
ε2
))

= iψi−1(1), (A15b)

which gives Equation (A5b). This completes the proof of Lemma A1.

Notice that Equation (A4a) and the special case i = 1 of Equation (A4b) also appeared, without
proofs, in ([25], Equation (A1)) and ([25], Equation (A7)), respectively.

With the Lemma A1, we turn to the proof of Proposition 1.

Proof. In order to utilize the matrix integral approach, we need to parameterize the product channel
matrix of Equation (5) as [4]

H =
(
H 0dM×(d0−dM)

)
U, (A16)

where
H = HM · · · H1 (A17)

is now the product of M square matrices of dimensions dM × dM and U is a unitary matrix UU† = IdM .
It follows from Equation (A16) that

HH† = HH†, (A18)

which implies that the product of rectangular matrices H and the product of square matricesH have
the same non-zero singular values. The joint density of the square matricesHi, i = 1, . . . , M, can be
written as [4]

1
det(Σ)dM−1

M

∏
i=1

Γm(di−1)e
−tr(Σ−1HMH†

M)
M−1

∏
i=1

e−tr(HiH†
i )

M

∏
i=1

det(HiH†
i )

di−1−m, (A19)
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where the original dimensions are ordered as in Equation (7) with m = dM. The above
transform is known as the weak commutation relation for products of random matrices [4].
The density (Equation (A19)) is recognized as the product of M matrix-variate gamma
densities (Equation (A1)), where the parameters di, i = 0, . . . , M− 1 take the role of the parameter
α in Equation (A1). Consequently, the cumulant generating Equation (17) of the random variable
Equation (16) can be calculated, in terms of the new matrix-variate density Equation (A19), as

K(s) = lnE
[
es ln det(HH†)

]
(A20a)

= lnE
[
det

(
HH†

)s]
(A20b)

= lnE
[
det

(
HH†

)s]
(A20c)

= ln
M

∏
i=1

E
[
det

(
HiH†

i

)s]
(A20d)

= ln
1

det(Σ)dM−1

M

∏
i=1

Γm(di−1) + ln
M−1

∏
i=1

∫
e−tr(HiH†

i ) det(HiH†
i )

s+di−1−m dHiH†
i +

ln
∫

e−tr(Σ−1HMH†
M) det(HMH†

M)s+dM−1−m dHMH†
M (A20e)

= ln
1

det(Σ)dM−1

M

∏
i=1

Γm(di−1) + ln
M−1

∏
i=1

Γm(s + di−1) + ln Γm(s + dM−1)det(Σ)s+dM−1

= ln
1

det(Σ)dM−1

M

∏
i=1

Γm(di−1) + ln det(Σ)s+dM−1
M

∏
i=1

Γm(s + di−1), (A20f)

where the second to the last step is established by using the definition of matrix-variate gamma density
in Equation (A1). In fact, the results of the integrations can be directly read off from the normalization
constant in Equation (A1) with each di (α in Equation (A1)) replaced by s + di.

By the definition of Equation (18), the i-th cumulant κ̃i of the MIMO Rayleigh product channels
Equation (5) can now be computed as

κ̃i =
di

dsi K(s)
∣∣∣∣
s=0

(A21a)

=
di

dsi ln det(Σ)s
M

∏
j=1

Γm(s + dj−1)

∣∣∣∣
s=0

(A21b)

=
di

dsi

(
s ln det Σ +

M

∑
j=1

m−1

∑
k=0

ln Γ(s + dj−1 − k)

) ∣∣∣∣
s=0

(A21c)

= δ(i− 1) ln det Σ +
M

∑
j=1

m−1

∑
k=0

ψi−1(dj−1 − k) (A21d)

= δ(i− 1) ln det Σ +
M

∑
j=1

m

∑
k=1

ψi−1(dj−1 −m + k), (A21e)

where we have used the definitions of the multivariate gamma function in Equation (A2) and
the polygamma function in Equation (24). By the relation between the cumulants in Equation (19),
we now have

κ1 =
M

∑
j=1

m

∑
k=1

ψ0(dj−1 −m + k) + ln det Σ + m ln r (A22a)
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= m
M

∑
j=1

ψ0
(
dj−1 −m

)
+

M

∑
j=1

dj−1
(
ψ0
(
dj−1

)
− ψ0

(
dj−1 −m

))
+

m(ln r−M) + ln det Σ, (A22b)

where we have used Equation (A4a) to arrive at the last equality. This proves Equation (21a). Similarly,
by using Equation (A4b) the higher cumulants are simplified as

κi =
M

∑
j=1

m

∑
k=1

ψi−1(dj−1 −m + k) (A23a)

= m
M

∑
j=1

ψi−1
(
dj−1 −m

)
+

M

∑
j=1

dj−1
(
ψi−1

(
dj−1

)
− ψi−1

(
dj−1 −m

))
+

(i− 1)
M

∑
j=1

(
ψi−2

(
dj−1

)
− ψi−2

(
dj−1 −m

))
, i ≥ 2, (A23b)

which is Equation (21b). We complete the proof of Proposition 1.

We see from Equation (A21) that the use of cumulant generating function turns out to be more
convenient than directly studying the moments.

Appendix B. Proof of Corollary 1

Proof. In the case of square channel matrices Equation (27), the starting point to show Equation (28a)
is the general expression of Equation (A22a) valid for any channel dimensions di, i = 0, . . . , M, which,
by using Equation (A5a), is simplified to

κ1 = M
m

∑
k=1

ψ0(k) + ln det Σ + m ln r (A24a)

= M (mψ0(m)−m + 1) + m ln r + ln det Σ. (A24b)

Similarly, to show Equation (28b) we start from Equation (A23a), which by using Equation (A5b),
is simplified to

κi = M
m

∑
k=1

ψi−1(k) (A25a)

= M (mψi−1(m) + (i− 1) (ψi−2(m)− ψi−2(1))) , i ≥ 2. (A25b)

This completes the proof of Corollary 1.

Appendix C. Proof of Proposition 2

Proof. As in the proof of Proposition 1, the key here is to utilize the relevant matrix integral
instead of using the eigenvalue density Equation (13). In fact, as a truncation of an unitary matrix
in Equation (12), the density of the Jacobi MIMO matrix is written as [6]

Γm(l)
Γm(n)Γm(l − n)

det
(

HH†
)n−m

det
(

Im −HH†
)l−n−m

, (A26)

which is the matrix-variate beta density Equation (A3) with parameters α = n and β = l − n.
The corresponding cumulant generating function of Equation (17) over the matrix-variate density
of Equation (A26) can now be calculated as

K(s) = lnE
[
es ln det(HH†)

]
(A27a)
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= lnE
[
det

(
HH†

)s]
(A27b)

= ln
Γm(l)

Γm(n)Γm(l − n)
+ ln

∫
det

(
HH†

)s+n−m
det

(
Im −HH†

)l−n−m
dHH† (A27c)

= ln
Γm(l)

Γm(n)Γm(l − n)
+ ln

Γm(s + n)Γm(l − n)
Γm(s + l)

. (A27d)

The integration in the second to last line is a trivial deformation of the density of Equation (A26),
which was computed by replacing in the normalization constant of Equation (A26) the appearance
of α by s + α.

By Equation (18), the i-th cumulant κ̃i of the Jacobi MIMO channels of Equation (12) are now
calculated as

κ̃i =
di

dsi K(s)
∣∣∣∣
s=0

(A28a)

=
di

dsi ln
Γm(s + n)
Γm(s + l)

∣∣∣∣
s=0

(A28b)

=
di

dsi

(
m−1

∑
k=0

ln Γ(s + n− k)−
m−1

∑
k=0

ln Γ(s + l − k)

) ∣∣∣∣
s=0

(A28c)

=
m−1

∑
k=0

ψi−1(n− k)−
m−1

∑
k=0

ψi−1(l − k) (A28d)

=
m

∑
k=1

ψi−1(n−m + k)−
m

∑
k=1

ψi−1(l −m + k), (A28e)

where the definitions in Equations (24) and (A2) have been utilized. Finally, by using Equation (A4)
in Lemma A1 and the relation between the cumulants in Equation (19), we prove Proposition 2.
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