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Abstract: The performance assessment of any control system plays a key role in industrial control
systems. To meet the real-time requirements of modern control systems, a quick and accurate
evaluation of the performance of a system is necessary. In this paper, a performance assessment
method of a non-Gaussian control system based on mixture correntropy is proposed for non-Gaussian
stochastic systems. Mixture correntropy can solve the problem of minimum entropy translation
invariance. When the expected output of a system is unavailable, mixture correntropy combined
with the estimation of distribution algorithm (EDA) is used for system identification and noise
distribution estimation so as to calculate the benchmark of entropy-based performance assessment.
When the expected output of a system is available, the mixture correntropy is directly used as the
index to evaluate the performance of the system. To improve the real-time aspect of the performance
assessment, an improved EDA is presented to obtain the evaluation index more quickly. For both
Gaussian and non-Gaussian systems, the mixture correntropy and the improved identification
algorithm are used for system performance assessment, and the results are compared with the
minimum entropy index and the probability density function (PDF) curve coincident area index. The
comparisons verify the rationality and effectiveness of the correntropy index and the rapidity of the
improved EDA algorithm.

Keywords: control system performance assessment; non-Gaussian; mixture correntropy; minimum
entropy; EDA algorithm

1. Introduction

With the rapid development of communications, microelectronics, and computer technology,
industrial control systems are constantly changing, and the level of automation is constantly increasing.
Fast transmission of information, rapid sampling, and control of field devices, rapid display and
operation of the host computer, and increasingly higher requirements for the real-time performance of
a control system are being introduced for increasingly greater numbers of industrial control systems [1].
The real-time performance of a control system is the key to the performance of the entire control system,
directly affecting the control quality of the system. Therefore, it is of practical engineering significance
to be able to assess the performance of a system quickly. To assess the performance of a control
system, the system data are needed, and for processing a large amount of data, in addition to hardware
upgrade, the speed and real-time performance can be raised by improving the algorithms used.

More attention is being paid to the performance of control systems. Continuous control system
performance assessment methods have been developed and successfully applied in actual industrial
production processes, but most of these methods choose variance as a performance index, and the noise
is assumed to obey a Gaussian distribution. The theory of minimum variance control is combined
with the performance assessment method by Harris [2]. For the first time, the concept of performance
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assessment index is proposed. The minimum variance is chosen as the benchmark and compared
with the actual variance of the output. We use the name of the researcher Harris to name the index.
This approach has a milestone impact on the future of the system performance assessment research
and provides researchers with a good base. In recent years, the minimum variance control and the
minimum variance index have been applied to the field of artificial intelligence [3]. However, in the
actual production process, the noise disturbances of a system are often random and can be subject to
any random distribution. Even if the noise of the system obeys a Gaussian distribution, the distribution
of the system may be non-Gaussian because the nonlinearity of a system may occur with the system
running. Therefore, the traditional Gaussian-based modeling and control method cannot meet the
requirements of a stochastic distribution control system, which may lead to the results of performance
assessment to deviate from the correct ones [4]. For the above two cases, the use of the mean and
variance as performance indices may cause major errors.

Researchers have proposed a new method that uses a minimum entropy control strategy to assess
system performance. Entropy can describe the uncertainty of a system, which is widely used in
stochastic systems but rarely studied in control system performance assessment. This method could be
used to evaluate the performance of Gaussian systems as well as that of non-Gaussian systems [5].

For Gaussian systems, minimizing entropy is equivalent to minimizing variance. For non-Gaussian
systems, when the probability density function (PDF) of the system output is measurable, the B-spline
basis function is used to approximate the output PDF [6–8]. The B-spline decoupling model is then
converted into input and output forms. The historical output PDFs and the control input of the current
time are used to obtain the output PDF of the current time. With the PDF, entropy can be determined.
The premise of using the B-spline is that the output PDF can be measured [9,10]. When the output PDF
is unmeasurable, the system model is represented by a controlled auto-regressive moving average
(CARMA) model. With the PDF of the input noise [11], the output PDF could be obtained with the
application of the probability theory. As such, whether the output PDF is measurable or not, it could
converge to the desired value or the PDF of the error obeys a high and sharp distribution at 0 with
controllers designed by minimizing the entropy [4], and the system performance can be evaluated
with the minimum entropy.

A randomly distributed control algorithm based on the minimum entropy criterion is proposed
by Zhang and Chu [12], which inspires later researchers in the field of system performance evaluation.
A feedback control system performance evaluation method based on the minimum entropy criterion is
proposed by Jiang [13], which is similar to the minimum variance benchmark. The key aspect of the
minimum variance benchmark based assessment method is obtaining the variance of system feedback
invariants, whereas the method proposed by Jiang finds the entropy value of the feedback invariants,
and the entropy value is used as the benchmark of system evaluation. Zhou [5] modifies the calculation
method of minimum entropy proposed by Jiang [13] and provides a detailed calculation method for the
minimum entropy for discrete and continuous disturbances. The entropy value of feedback invariants
is also obtained, and the entropy value is used as the benchmark for system evaluation. The problem of
a minimum Shannon entropy [14] control system is analyzed by Zhang and Zhou [15]. The definition
of Shannon entropy does not satisfy the “consistency,” that is, when entropy can be calculated using
different methods, the results must be the same. To solve the question, a new entropy function, rational
entropy (RE), is proposed and used as the performance index of the minimum RE control for general
stochastic distribution control systems. The problem of nonconvex optimization is solved by the
method of mean constraint. However, in this work, only the calculation method of the theoretical
reference value is provided; the estimation method of the benchmark is not mentioned. Combined with
rational entropy, a control system performance evaluation index based on the minimum error entropy
is established by Zhou [5], which is used in a general feedback control system with non-Gaussian
interference. However, the index also needs to be combined with constraints on the mean to avoid the
translation invariance of entropy value.
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The key to the performance assessment of a control system based on minimum entropy is to
obtain the benchmark entropy, but most of the methods for obtaining the benchmark entropy are very
complex. For example, when the benchmark entropy is calculated using the estimation of distribution
algorithm (EDA), 1000 PDFs of the error need to be obtained in only one iteration, and the entropy
values of these PDFs are calculated [5], this will need about a few minutes. When the method is applied
to an actual system, the amount of data is larger. This complex calculation requires considerable
time to obtain a system performance evaluation index, and cannot meet the real-time requirements of
industrial control systems. Therefore, the benchmark entropy should be obtained quickly and easily,
and the results of the system performance evaluation should be quickly and accurately provided.

Correntropy [16–18] is a measure of similarity in the kernel space. The larger the correntropy
between two sequences, the smaller the difference between them. Due to the characteristics of
correntropy, it is mainly used in the fields of linear regression, adaptive filtering, state estimation,
identification, principal component analysis, pattern matching, and deep learning. Correntropy can
suppress large outliers in signal processing and machine learning. The introduction of correntropy
provides a good solution to the control and filtering of non-Gaussian systems. Mixture correntropy [19]
can be considered as a generalized form of correntropy. Mixture correntropy can flexibly adjust the
kernel width and weight coefficient to improve the accuracy of the correntropy. Inspired by the use of
correntropy in the filter design of non-Gaussian systems, mixture correntropy is adopted to assess the
performance of a control system. Compared with rational entropy, mixture correntropy calculations
are simpler, the problem of the minimum entropy translation invariance can be solved.

In order to satisfy the real-time demands of modern control systems, improve the accuracy and
rapidity of the evaluation indicators, mixture correntropy is chosen for performance assessment, which
is a more accurate and rapid evaluation index for the non-Gaussian random distribution control system,
whether the output distribution of the system is known or unknown.

We focus on the case where the expected output distribution of the system is available and
unavailable, and mixture correntropy is used for the performance assessment of the non-Gaussian
control system. The system model is outlined first in the next section. The third part introduces the
minimum variance and minimum entropy indices of performance assessment. Due to the limitations
of these two indices, the mixture correntropy is adopted. In using the mixture correntropy based index
for performance evaluation, improved EDA is presented to improve the accuracy and rapidity of the
method. The fourth part selects and introduces the system performance assessment indices for the
cases that the expected output distribution is unavailable and available. Finally, the proposed index
and improved EDA are used in a numerical simulation to verify the validity and accuracy.

2. Feedback Control System

To evaluate the system performance, a feedback control system is chosen first, which is shown
in Figure 1, where r is the setpoint; u is the control input; v is the white noise; τ is the system delay;
and Gc, Gp, and Gv are transfer functions of the feedback controller, the controlled object, and the
disturbance channel, respectively.
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The system is represented with a CARMA model as follows:

A(z−1)y(k) = B(z−1)u(k− d) + C(z−1)v(k) (1)

where A, B, and C could be expressed as:

A(z−1) = 1 + a1z−1 + a2z−2 + · · ·+ anaz−na

B(z−1) = b1z−1 + b2z−2 + · · ·+ bnbz−nb

C(z−1) = 1 + c1z−1 + c2z−2 + · · ·+ cncz−nc
(2)

When C(z−1) = 1, the noise e(k) is white noise, and when C(z−1) , 1, the noise e(k) is colored noise,
i.e.,

e(k) = C(z−1)v(k) = v(k) + c1v(k− 1) + c2v(k− 2) + · · ·+ cncv(k− nc) (3)

In minimum variance control and performance assessment, the estimated values of the above
parameters an, bn, and cn are obtained through model identification, and the premise is that the delay
and order of the system are known.

3. Control System Performance Assessment Indicators

With the given system, a performance evaluation index should be selected for performance
assessment of the system. At present, two main methods are used in system performance assessment.
For Gaussian systems, most of the evaluation indicators are based on the minimum variance, whereas
for non-Gaussian systems, the minimum entropy index is used to evaluate the performance. Since
the minimum variance and the minimum entropy are equivalent in a Gaussian system, the minimum
entropy could also be used to evaluate the performance of a Gaussian system.

3.1. Minimum Variance and Minimum Entropy Index

Assuming r = 0 for the system in Figure 1, the output of the system can be expressed as:

yt =
Gv

1 + GpGc
vt =

Gv

1 + z−τ
∼

GpGc

vt (4)

where vt is the estimated noise distribution,
∼

Gp is the transfer function without delay, and Gv is the
transfer function of the disturbance which could be expressed by the Diophantine equation as follows:

G(q−1) = F(q−1) + q−τR(q−1) (5)

where F(q−1) = 1 + n1q−1 + . . . + nτ − 1q−(τ−1), the coefficients of F(q−1) are the impulse response
coefficients of Gl, and R(q-1) is the proper transfer function, satisfying the rest of the Diophantine
identities. Substituting Equation (5) into Equation (4), Equation (4) can be rewritten as

yt = Fvt + Lvt−τ (6)

where:

L =
R− F

∼

GpGc

1 + q−τ
∼

GpGc

(7)

F is independent of the manipulated variable, which is feedback invariant and can be obtained
using the Diophantine equation; L is dependent on the controller. Therefore, when the structure and
parameters of the controller are properly selected, L can be made zero.
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In the minimum variance control, the minimum value of the system output variance is obtained
by designing the controller:

Var(yt) = Var(Fνt) (8)

With the minimum variance controller, the benchmark value of the most widely used minimum
variance index (Harris index) can be obtained.

Using the minimum variance index to evaluate non-Gaussian control systems performance may
lead to the wrong result [5]. Compared with the minimum variance, the output entropy of the system
could be expressed as:

H(yt) = H(Fvt + Lvt−τ) (9)

F is independent of the operating variables; we call it the constant feedback entropy, which can be
obtained using the Diophantine equation, and L is dependent on the controller. With proper chosen
structure and parameters of the controller, L = 0, then the entropy of the output reaches the minimum
value, which is the minimum entropy (benchmark entropy):

Hmin(yt) = H(Fvt) (10)

An entropy-based system performance evaluation index is proposed by Zhang [13]:

η =
Hmin(yt)

H(yt)
(11)

where Hmin(yt) is the entropy of the system with the minimum entropy controller, H(yt) is the entropy
of the actual output of the system with the current controller. This index has a similar meaning to the
minimum variance index, η ∈ [0,1]. The closer the value of η to 0, the worse the performance of the
system. The closer the value of η to 1, the better the performance of the control system.

Shannon entropy cannot meet the consistency requirement and rational entropy is selected for
system performance assessment [15]. Rational entropy can meet the consistency requirement, and has
the most properties of Shannon entropy:

HRE = −

∫
γ(x) log

γ(x)
1 + γ(x)

dx, x ∈ R (12)

The entropy has translation invariance, whose value is determined by the shape of the distribution
and is independent of the central position of the distribution. For example, two of the same shape
distributions with different centers (determined by the mean), the entropies of the two distributions
are the same. This leads to inaccurate performance assessment. The PDF of a system error is expected
to obey high and sharp distribution at zero, so a constraint to the mean should be added to the system
performance assessment with minimum entropy. The performance assessment index that combines
minimum entropy with the mean limit is:

η = λ1ηmean + λ2ηme (13)

where λ1 + λ2 = 1, ηmean is the mean index of the system output error, and ηme is the minimum entropy
index. The following λ1 is chosen to ensure an accurate evaluation of performance when the PDF of
the error does not obey the high and sharp distribution at zero:

λ1 =
∣∣∣arctan(E(e))

∣∣∣ (14)

where E(e) is the mean of system output error e; thus, the performance index in Equation (13) is a value
between 0 and 1. The closer the value to 1, the closer the system to the ideal case, indicating that the
system performs well; otherwise, the performance of the system needs to be improved.
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Besides combining the mean with entropy, mixture correntropy can be chosen as the performance
assessment index for non-Gaussian control systems to solve the problem of translation invariance.

3.2. Correntropy and Mixture Correntropy Index

Correntropy is a measure of similarity in the kernel space and can suppress large outliers in signal
processing. The higher the correntropy between two sequences, the smaller the difference between the
two sequences. Given two random variables X and Y, the correntropy between them can be defined as:

V(X, Y) = E[κ(X, Y)] =
∫
κ(x, y)dFXY(x, y) (15)

where E(.) is the mean, FXY is the joint PDF of random variables X and Y, x and y are the sampling
sequence of random variables X and Y, respectively, and κ(.) is the Mercer kernel. So far, the widely
used Mercer kernel function is the Gaussian kernel function. Its expression is:

κ(X, Y) = Gσ(e) = exp(−
e2

2σ2 ) (16)

where e = x − y and Gσ (.) is the kernel width of the Gaussian kernel function.
In an actual system, the joint PDF is unknown in most cases, and only a limited amount of data is

available. Therefore, the empirical correntropy in Equation (17) is adopted, where N is the number of
sampling sequences:

∧

V(X, Y) =
1
N

N∑
i=1

Gσ(xi − yi) (17)

The selection of the kernel width of the Gaussian kernel function strongly influences the empirical
correntropy. At present, no uniform method is used to select kernel width, but trial and error and the
Silverman rule are commonly used.

Mixture correntropy of Gaussian kernel functions with two different kernel widths is proposed by
Chen [19]. Mixture correntropy can flexibly adjust the kernel width and weight coefficient to improve
the accuracy of the correntropy. For example, when the mixture correntropy is applied in the system
identification, the system parameters are more accurate. The mixture correntropy is defined as follows:

M(X, Y) = E[αGσ1(e) + βGσ2(e)] (18)

where M(.) is the mixture correntropy; σ1 and σ2 are the kernel widths of the Gaussian kernel functions
of Gσ1(.) and Gσ2(.), respectively, and α and β are weight coefficients of the two kernel functions. For
Equation (18), the mixture correntropy can be extended to a generalized form containing a plurality of
kernel functions. For simplicity, only two Gaussian kernel functions are considered. Without loss of
generality, the kernel width is assumed to be σ1 ≤ σ2.

Similar to correntropy, the mixture correntropy is also calculated with an empirical formula as the
joint PDF of the actual system is mostly unknown:

∧

M =
1
N

N∑
i=1

[αGσ1(ei) + βGσ2(ei)] (19)

The mixture correntropy could be considered as a generalized form of correntropy. The expression
shows that when one weight coefficient is 0, and the other is 1, the mixture correntropy can be regarded
as the correntropy of the kernel function Gσ1(.) or Gσ2(.).

Since the mixture correntropy has more flexibility than the correntropy, with proper chosen weight
coefficients, the mixture correntropy can perform better.

Some properties of mixture correntropy are as follows:
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Property 1: The mixture correntropy is symmetrical, i.e., M(X, Y) =M(Y, X).
Property 2: The mixture correntropy is positive and bounded, only when X = Y, M(X, Y) = 1.

These properties also indicate that mixture correntropy can be used for performance evaluation.
When the expected output of a system is available, the mixture correntropy can be directly used

as the index to evaluate the performance of the system. The benchmark mixture correntropy of the
system is 1, the mixture correntropy based performance assessment index is:

η = M(Rt −Yt) = E[αGσ1(e) + βGσ2(e)] (20)

where Rt is the expected output of the system, Yt is the actual output of the system, and e = Rt − Yt.
When the expected output distribution of a system is unavailable, the mixture correntropy is

combined with EDA to get the improved EDA which is given in the following Section 3.3 for system
identification; then Equation (11) is chosen as the performance index for the performance evaluation.

3.3. System Identification and EDA

According to the feedback control system depicted in Figure 1 and Equations (12) and (13), the
PDF of the variable must be known to obtain rational entropy, and the premise of obtaining the PDF is
that the order, delay, and parameters of the system model are known.

The simplest method to estimate the delay is to analyze the correlation between the input signal
u(t) and output signal y(t) [20]. We use the Akaike information criterion (AIC) [21] to obtain the order
of the model.

With determined delay and order, the parameter of the system model needs to be identified.
The recursive extended least square (RELS) algorithm [22] is used to estimate the system parameters
and noise distribution preliminarily, then the mixture correntropy criterion-based EDA is chosen to
estimate the parameters of the system and the distribution of noise more accurately. Once the PDF of
the noise is obtained, an accurate performance evaluation index is provided.

The EDA [23] is also called the genetic algorithm based on the probability model. In the traditional
genetic algorithm, the population is used to represent a set of candidate solutions to the optimization
problem. Each individual in the population has corresponding adaptation values. The algorithm
performs the operations of selecting, crossing, and variation to simulate natural evolution, and repeats
itself to solve the problem. In the EDA, the study and sampling of the probability model are performed
instead of traditional genetic operation such as crossover and variation. The EDA describes the
distribution of candidate solutions in space using a probability model, establishes a probability model
describing the distribution from the macro perspective of the population by means of statistical learning,
and then randomly samples the probability model to produce a new population, so that the evolution
of the population is realized until the termination condition is achieved.

Crossover and mutation in the genetic algorithm can destroy the individuals that have been
optimized. The EDA replaces the crossover and mutation operators in the genetic algorithm with
the operations of establishing a probability model and sampling and solves this genetic algorithm
problem with a kind of operation mode with global manipulation. The EDA does not require too many
parameter settings, and programming is simpler than that of the genetic algorithm.

The EDA is simple in theory, but heavy in calculation burden. Based on the traditional EDA,
the initial population estimation is added in this paper, and the improved algorithm learns from the
cross-operation of the genetic algorithm. With this improvement, the algorithm can make full use of
the best information retained and improve the search speed and optimization accuracy. The improved
crossover method is:

onew = aomin + (1− a)oold (21)

where a is a random number in [0,1] and onew is the new individual, omin is the best individual, and oold

is the last sampled individual. The steps of the algorithm could be summarized as follows:
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(1) Preliminary estimation of parameters; select the initial population. The parameters are roughly
estimated by the RELS algorithms and used as the central value of the initial population of the
EDA. The parameter space initialization is completed.

(2) Calculate the fitness. R individuals are randomly selected from the parameter space, and the
corresponding mixture correntropies are calculated. When the difference between the two
adjacent mixture correntropies is less than a very small pre-specified value, the cycle ends.

(3) Establish a parameter probability model. Select N individuals with better fitness in R, calculate
their means and variances and determine the probability model of the parameters.

(4) Population sampling. The parameter population is sampled by the established probability model.
(5) Data intersection. Cross some of the data of the population in step (4).
(6) Return to step (2) until the stop criterion is met.

Figure 2 shows the process of the algorithm.
As the mixture correntropy is combined in the improved EDA, the translation invariance can

be avoided. After obtaining the corresponding PDF, the system parameters and noise estimation
distribution are obtained, the benchmark entropy and the performance of the system can be calculated
according to Equations (10) and (11). Due to the simple calculation of the mixture correntropy,
the system performance assessment index could be obtained quickly.
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4. Selection of System Performance Assessment Indices

When the minimum entropy is used to assess the performance of a system, the expected output
distribution of the system is not involved. Therefore, in the case that the expected output distribution
is unavailable, the system performance could be assessed with the index in Equation (11) and the
mixture correntropy combined with EDA increases the accuracy of the evaluation index.

For a system with available expected output distribution, the ratio between the actual output
statistics and the expected output statistics could be used to evaluate the performance of the system.
Therefore, when the expected output distribution of a system is known, two simpler and faster indices
are adopted:
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1. The area of coincidence between the PDFs of the actual output distribution and the expected
output distribution, is given in Equation (22).

2. The mixture correntropy-based performance assessment index is given in Equation (20).

To prove the effectiveness and correctness of the performance assessment index based on the
mixture correntropy, the performance index based on the PDF coincidence area is briefly introduced in
this paper.

As shown in Figure 3, for a system with a known expected output, the coincident area in the
actual output PDF and the expected output PDF can be used as the index of system performance
evaluation, which is the red area in the figure. The global integral of PDF is 1; therefore, the result
of this performance evaluation index is equal to the value of the coincident area between the actual
output PDF and the expected output PDF. That is:

η =
Scoincident

Syr
= Scoincident (22)

where Scoincident is the coincident area of the two PDF curves, Syr is the expected output PDF area of
the system, which is equal to 1. Therefore, Equation (22) could accurately and rapidly provide the
system performance and can be used to prove the effectiveness and accuracy of the mixture correntropy
performance assessment index in Equation (20).
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5. System Simulation

To verify the above identification algorithm and performance evaluation index, the following
system is chosen, and the Gaussian and non-Gaussian noise signals are numerically simulated.

y(t) = u(t− 2) +
1− 0.2z−1

1− z−1
v(t). (23)

The transfer function of the controller is

Gc =
K

1− 0.2z−1 − 0.8z−2
(24)

From the given system, the parameter of the system is θ= [−1,1,−1, −0.2], and the delay is τ = 2.
By solving the Diophantine equation, the feedback invariant F = [1,0.8] could be obtained.

In the simulation, the controller gains K = 1.2, assuming that the noise distributions are normal
N(0,0.255) and the exponential one E(0.5). According to Figures 4 and 5, N(0,0.255) obeys Gaussian
distribution, whereas E(0.5) obeys non-Gaussian distribution.
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5.1. Simulation When Expected Output Distribution is Unavailable

When the expected output of the system is unavailable, the key point for evaluating the performance
of the non-Gaussian control system is to obtain the benchmark entropy, and the noise distribution will
be used in calculating the benchmark entropy.

In the EDA, the initial population is 1000 groups of data, and the probability model of the
parameters is established. For the minimum entropy performance index, the termination condition
of the cycle is that the difference between two adjacent rational entropies is less than 0.001. For the
performance index of mixture correntropy, the cycle termination condition is that the difference between
two adjacent mixture correntropies is less than 0.0001, or the mixture correntropy reaches the maximum
value 1.

To improve the accuracy and speed of the algorithm, the RELS algorithm is chosen to determine
the approximated range of the initial population. The following Algorithm 1 is the program steps for
performance evaluation.
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Algorithm 1 Program steps for the performance evaluation

1: Use the CARMA model to represent the system; estimate the delay τ by analyzing the correlation between
u(t) and y(t); use the Akaike information criterion to obtain the order of the model (na, nb, nc).
2: an, bn, and cn in Equation (2) and the estimation of noise variance σv are obtained by combining data in step
1 with RELS.
3: Take X = [an ± 2*σv,bn ± 2*σv,cn ± 2*σv] as the initial population of EDA.
4: For i = 1:L (The value of L is determined by the number of rows of matrix X).

Calculate the mixture correntropy (Equation (19)) of each group of step 3
If M = 1 or the difference between two adjacent rational entropies is less than 0.001, end the cycle.
Else

(1) Calculate the estimated average value of the selected N parameters (corresponding mixture
correntropy is higher) and establish the probability models.

(2) The parameter population X is sampled by the established probability model.
(3) Population crossover by Equation (21).
End

End
5: The optimal estimate of the system parameters and the noise estimated distribution can be obtained by step
4.
6: The reference entropy can be obtained by Equation (10).The entropy of output is obtained according to
Equation (12).Finally, the results of the performance evaluation index are obtained by Equation (11).

Through the EDA, the system parameters and noise estimation distribution are obtained.
The benchmark value of the performance indicator can be calculated according to Equation (11),
and the final performance indicator is obtained by dividing the entropy of the actual output.

Figures 6 and 7 show the distribution of the estimated noise and the actual noise curve when the
noise obeys normal distribution and exponential distribution, respectively.

Compared with the prior system identification through the minimum entropy algorithm,
the system parameter identification is more accurate with the improved EDA when the value of the
mixture correntropy is larger. The more accurate the system parameter identification, the closer the
noise estimation distribution to the actual distribution. The calculation speed is fast, and the iteration
process of the improved EDA is faster than that of the prior system identification using the minimum
entropy algorithm. Table 1 shows that when the disturbance is subject to a normal distribution and
exponential distribution, the identification of the mixture correntropy produces the same or even
more accurate results than the identification of the minimum entropy. The time required to obtain the
evaluation index is also short. When the number of data increases, the required time clearly increases.
The maximum value of the PDF of the error is fixed at e = 0 with the index of the mixture correntropy
without adding a constraint to the mean.
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Table 1. Parameter estimation and performance evaluation index.

Project
Actual

Parameter
Value

Gaussian Exponential

Results of Minimum
Entropy Identification

Method

Results of Mixture
Correntropy

Identification Method

Results of Minimum
Entropy Identification

Method

Results of Mixture
Correntropy

Identification Method

a1 −1 −0.8905 −0.9834 −0.7253 −0.9937
b0 1 1.0054 1.0566 0.9178 0.9634
b1 −1 −1.0051 −0.9432 −0.9191 −0.9691
c1 −0.2 −0.1871 −0.1952 −0.2652 −0.2907

mixture
correntropy 0.9985 0.9928

evaluation index 0.8347 0.8733 0.8202 0.8513
Time required (s) 16.7529 11.0601 15.9768 10.8152

5.2. Simulation When Expected Output Distribution is Available

For the case where the system expected PDF is available, it is assumed that the output of the
system obeys a normal distribution with 0 mean and a variance of 1.

The ratios of the coincident area of the PDF and mixture correntropy index all take the form of the
Harris index, that is, the ratio of actual value to the expected value related to output. In the previous
work, the ratio of the coincident area of output PDF of a system and the PDF of the expected output to
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the global integral of PDF is used. As the global integral of PDF is 1, the result of this index is equal to
the coincident area of the actual output PDF and the desired output PDF.

Figures 8 and 9 depict the simulation results when the expected output of the system is known.
The noise obeys normal distribution in Figure 8, and the noise obeys exponential distribution in Figure 9.
Tables 2 and 3 provide the results of the program running results when the noise obeys Gaussian
distribution and non-Gaussian distribution, respectively. According to Tables 2 and 3, the indexes of
the coincident area of the PDF and the index of the mixture correntropy have the same changing trend.
Comparing the two indexes with the index of minimum entropy combined with the limit to the mean
value, the correctness and rationality of the above two indexes could be improved. In the simulation,
we found that less calculation time is needed for the mixture correntropy. When the amount of data is
very large, the mixture correntropy index has an advantage in terms of the calculation time, and the
results of the system performance assessment could be provided quickly and accurately.Entropy 2019, 21, x FOR PEER REVIEW 15 of 17 
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Table 2. Three performance indices for the Gaussian system with available expected distribution.

Index Mixture Correntropy
Performance Index

PDF Coincidence Area
Performance Index

Mean-Limited Minimum
Entropy Index

1 0.5752 0.5090 0.7232
2 0.5848 0.5171 0.7385
3 0.6137 0.5288 0.7441
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Table 3. Three performance indices for non-Gaussian system with available expected distribution.

Index Mixture Correntropy
Performance Index

PDF Coincidence Area
Performance Index

Mean-Limited
Minimum Entropy

Index

1 0.5611 0.5334 0.7458
2 0.5937 0.5516 0.7577
3 0.6127 0.5842 0.7701

6. Summary

To assess the performance of non-Gaussian control systems quickly and accurately, a mixture
of correntropy-based performance assessment index and an improved EDA are proposed in this
paper. A control system is given first, then with a brief review to the existing performance assessment
indices, the correntropy and mixture correntropy are introduced, and a mixture correntropy based
performance assessment index is proposed. To assess the distribution of non-Gaussian systems with
unavailable expected distribution, the improved EDA is given in detail. The rules for choosing a
performance assessment index are given for non-Gaussian systems with the available and unavailable
expected distribution. A numerical example is given for the simulation study to compare the
proposed performance assessment index and improved EDA with the existing index and algorithm.
Both Gaussian and non-Gaussian systems with available and unavailable expected distribution are
discussed. The simulation results support the effectiveness and the advantages of the proposed
performance index and the improved EDA.
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