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Abstract: The equivalence between information and entropy is used to interpret the entropy of a
molecular gas as missing information about its internal state of motion. Our considerations show
that thermodynamic information is principally composed of two parts which continually change in
the course of gas-kinetic collisions. While the first part relates to energy carried by the individual
molecules in the form of kinetic energy and in internal excitations, the second relates to information
concerned with the location of the molecules within their own mean-free volumes. It is shown
that this second kind of information is generated in gas-kinetic collisions and rapidly deteriorated
and lost by quantum mechanical dispersion until it is re-gained in follow-on collisions. It is
proposed that gas-kinetic collisions can be regarded as measurement processes in which information
is continually gained, deteriorated and erased. As these processes occur naturally without any
human intervention, it is argued that thermodynamic information—like entropy—fully qualifies as
an objective physical quantity.

Keywords: information; entropy; molecular motion; measurement; information gain;
information erasure

1. Introduction

The concept of entropy was introduced by Clausius [1] in the nineteenth century into the evolving
science of thermodynamics. In this context a change in entropy S was defined as the amount of heat,
δQrev, reversibly exchanged between two macroscopic bodies maintained at an absolute temperature T:

∆S =
δQrev

T
(1)

Later, this macroscopically measurable quantity was explained in the context of statistical
mechanics as molecular disorder contained in a macroscopic body. According to Boltzmann [2],
entropy is related to the number W of microscopic states of motion which are consistent with the
limited macroscopic knowledge about the molecular system:

S = kB ln(W), kB = 8.62 ∗ 105 eV
K

(2)

One of the most striking facts about entropy is its tendency to increase in an irreversible manner
within an isolated system. This tendency was interpreted early on as arising from the statistics of
motion of large numbers of particles rather than from any irreversibility in the underlying laws of
motion of the individual molecules themselves. Considering the intrinsic reversibility of the basic
mechanical laws it was argued by Maxwell [3] that a being “whose faculties are so sharpened that it can
follow the course of individual molecules” should be able to operate a trap door, inserted into a vessel
homogeneously filled with gas, to produce either temperature or pressure differences inside the gas
that would allow mechanical work to be extracted from a single macroscopic heat reservoir, maintained
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at a finite temperature T. Such a gain in energy, clearly, would be in sharp contrast with the postulate
imposed by the second law of thermodynamics and thus create a paradox. Since its invention in 1871,
Maxwell’s demon paradox has fascinated researchers up to the present day. A good coverage of the
historical developments can be found in the books of Rex and Leff [4,5].

A decisive step forward in the analysis of Maxwell’s demons’ paradox was made by Leo Szilard
in 1929 [6]. Considering the motion of a single atom, enclosed in a finite volume V and in contact
with a heat reservoir of temperature T, Szilard showed that knowledge about the location of the
atom can be used to extract mechanical work from a single-molecule gas. This example showed that
work extraction from a thermal reservoir is not for free but that it has to be paid for in terms of a
new “currency”, called information. The other important achievement was that Szilard’s analysis
established a connection between the physical concepts of entropy and abstract information, showing
that 1 bit of abstract information corresponds to kB ln(2) units of entropy. This definition of a bit as the
unit of information is generally regarded as the starting point of modern information theory [7,8].

A further important step in the analysis of Maxwell’s demon paradox was the realization that
the information gained in a physical measurement is burdened with an energy cost that overwhelms
the energy gained in operating a Maxwell’s demon device. Brillouin’s initial analysis [9], which
claimed that this energy cost is associated with the measurement process itself was later challenged
by arguments that reversible measurements might in principle be conceivable [4,5]. Even later it was
argued that operating a Maxwell’s demon device entails storage of the information intermittently
obtained, and that the energy cost of information ultimately needs to be paid when this information is
erased again. It was argued that this latter step of erasure is unavoidable to arrive at a fully cyclic
process of information gain and work extraction and that therefore the energy cost of information
erasure is a more inescapable necessity than the energy cost of measurement and information gain.
This latter resolution of Maxwell’s demons’ paradox became known as Landauer’s principle [10].
Brillouin and Landauer both agree in that ultimately an energy of at least W = kBT ln(2) needs to be
expended to gain one bit of information and to ultimately conserve the validity of the second law.

Following discussions of Maxwell’s demon’s paradox, it can be observed that some authors express
discomfort with the idea of thermodynamic information as the processes of gaining, receiving and
maintaining information through measurement either explicitly or implicitly assume the involvement of
intelligent beings [3–6]. It is argued that such an involvement introduces an element of subjectivity into
the definition of entropy, which is unacceptable if entropy is to be considered as an element of physical
reality that exists independent of the existence of human beings and of human observation [11,12].

In the present paper we consider the entropy of a molecular gas and interpret it as information
carried by its molecular constituents. In §2 we consider the Sackur-Tetrode equation for the entropy
of an ideal gas [13] consisting of elastic hard spheres of very small size, but without any internal
structure. Transforming this equation to information units, the fact of ignorance about the molecular
motion on the side of an outside observer is turned into a more positive statement about information
that is carried with the mechanical motion of the gas molecules itself, but which remains unknown
to the outside observer. With the help of the Sackur-Tetrode equation we arrive at the result that
the individual molecules inside an ideal gas carry two kinds of information, the first one being
related to the kinetic energy of molecules carried with their center-of-mass motion and the second to
information related to the positions of gas molecules within their own mean-free volumes. With the
Sackur-Tetrode equation being a result of equilibrium statistical mechanics, this equation provides a
static and time-averaged picture of an ideal gas in which all molecules are treated alike, always moving
with the same kinetic energy and always occupying the same effective space, independent of time.
In §3 we therefore go beyond the limits of the Sackur-Tetrode equation and turn to a discussion of
gas-kinetic collisions. There, it is argued that with gas-kinetic collisions taking place, the individual
pieces of molecular information must depend on time with energy and initial localization changing
discontinuously during gas-kinetic collisions and molecular localization changing continuously during
times in between successive collisions. This latter effect is the most interesting one as it shows that
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the information about the particle location is initially determined by the energy transfers that have
taken place during a first collision and that this kind of information deteriorates and finally gets
lost as the molecules travel through their respective mean-free paths and as these become likely to
undergo follow-on collisions. In §4, it is then argued that these repeated gains and losses in molecular
information resemble measurement processes in which information is repeatedly gained, deteriorated,
erased and finally updated again as gas-kinetic collisions occur. Considering two thought-experiments
on a single-molecule gas, it is shown that the proposed continuous variation of molecular information
is in principle experimentally accessible when the experiment is performed in a supervised manner but
inaccessible otherwise. Realizing that in both experiments the basic processes of information gain and
information erasure follow the same kind of physics, it is argued that both processes do not require the
intervention of intelligent beings and that therefore entropy and thermodynamic information alike
satisfy the requirement that physical entities should exist independent of the existence and observation
of intelligent beings. In §5, we extend our considerations to molecules with a more complicated
internal structure which allows them to store energy in the form of molecular rotations, vibrations
and electronic excitations and to exchange such pieces of energy during gas-kinetic collisions. In §6,
we summarize our results and provide an outlook towards possible future research.

2. Entropy of an Ideal Gas

Ideal gases are mental constructs which replace the complex molecules in real gases by simple
elastic hard spheres of very small size, which collide from time to time and which thereby exchange
energy and momentum. As is well known, this strongly simplified picture approximates the behavior
of real gases in the limit of high temperature and low pressure. Such a situation is visualized in Figure 1
which assumes that N molecules are contained in a box of volume V = L3 which in turn is embedded
in a heat reservoir of temperature T. As the molecules move inside this box they trace out, on average,
a volume Vmol = (V/N) before suffering a gas-kinetic collision.
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Figure 1. Sketch of the molecular motion inside an ideal gas enclosed in a volume V and maintained at
a temperature T.

The entropy of such a gas is experimentally accessible by measuring the amount of heat that needs
to be fed into the volume V as the gas is heated up from very low temperatures up to the reservoir
temperature T:

Sgas(T, V, N) = V
∫ T

0

cV(θ)

θ
dθ (3)

In this equation cV(T) is the heat capacity at constant volume for a gas containing ngas =
N
V molecules per unit volume. Once the reservoir temperature has been stabilized, the quantity
Sgas(T, V, N) has been fixed and from then on represents a quantitative measure of ignorance that
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exists on the side of the outside observer with regard to the details of the molecular motion inside the
volume V.

With the help of equilibrium statistical mechanics, the entropy Sgas(T, V, N) can be related to those
three parameters N, V and T that are known and under control of the outside observer:

Sgas(T, V, N) = N
{

5
2

kB + kBln
[

Vmol

VQ(T, M)

]}
(4)

This result, which has originally been derived by Sakur and Tetrode [13] involves as a key
parameter the quantum volume:

VQ(T, M) =

(
2π}2

MkBT

) 3
2

(5)

which up to a factor of the order of unity is the third power of the thermal de-Broglie wavelength of
the moving particles:

λth(T, M) =
}

√
3MkBT

(6)

Here, pth =
√

3MkBT stands for the momentum of a molecule of mass M moving with a kinetic
energy of Eth = 3

2 kBT and } for the reduced Planck’s constant.
The statement of ignorance, expressed by the function Sgas(T, V, N), can be turned into more

positive fashion by converting Sgas(T, V, N) to information units:

Igas(T, V, N) =
1

kBln(2)
Sgas(T, V, N). (7)

In this latter form, the function Igas(T, V, N) represents an amount of information that is contained
in the molecular motion of the gas and that remains unknown to the outside observer whose knowledge
is confined to the three state parameters T, V, N. Further, considering that the entropy Sgas(T, V, N)

can be expressed in the form Sgas(T, V, N) = Nsmol(T, V, N), the molar entropies, smol(T, V, N), can be
interpreted as information that, on average, is missing to an outside observer with regard to each
molecule inside the gas:

imol(T, V, N) =
1

ln(2)

{
5
2
+ ln

[
Vmol

VQ(T, M)

]}
(8)

The latter equation shows that the molecular information principally consists of two parts, which
can be interpreted as information, iccm(T, V, N), that is missing with regard to the center-of-mass
motion of each molecule and iloc(T, V, N) as information that is missing with regard to its location
within its own mean-free volume:

imol(T, V, N) = iccm(T, V, N)+iloc(T, V, N). (9)

These latter assignments can be rationalized as follows: turning to icmm first, we remember that
in an ideal gas each particle, on average, carries an energy Eav = 1

2 kBT per degree of freedom f , icmm

therefore can be expressed as:

icmm(T, V, N) =
1

ln(2)
f Eav

kBT
(10)

The number of f = 5 degrees of freedom can be rationalized by considering that each particle
enjoys 3 degrees of freedom regarding motion along the three orthogonal directions in space and two
further degrees of freedom as each particle works against the constant-pressure background generated
by the N − 1 companion molecules inside the gas [13].

The interpretation of the second term, iloc, is straight-forward if one considers that VQ(T, M) is the
effective size of a molecule moving with its mean thermal energy through the gas. Localization of the
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molecule within its mean-free volume reduces the number n of possibilities of finding it somewhere
inside this volume from ninitial =

Vmol
VQ(T,M)

to n f inal = 1. The associated gain in information is then:

iloc(T, V, N) = log2

[
Vmol

VQ(T, M)

]
=

1
ln(2)

ln
[

Vmol

VQ(T, M)

]
(11)

3. Gas-kinetic Interactions

Being a result of equilibrium statistical mechanics, the Sackur-Tetrode equation (Equations (4)
and (5)) provides a static and time-averaged picture of an ideal gas in which each molecule is treated
alike. In particular, it suggests that each molecule is moving with the same kinetic energy and that
each molecule occupies the same volume VQ(T, M), independent of time.

This static picture sharply contrasts with the situation in real gases: in a real gas under normal
temperature-pressure (NTP) conditions, the average distance between molecules is in the order of
dav ≈ 5 × 10−5 cm . Depending on the molecular mass, the molecules inside such a gas travel these
distances with speeds around vth ≈ 5× 104 cm/s and thus, on average, collide with each other after
times τcoll ≈ 10−9 s. In these interactions energy and momentum is exchanged between the collision
partners and a Maxwellian velocity distribution is established.

Allowing for gas-kinetic interactions, kinetic energy is constantly re-shuffled among gas molecules
with an average rate of νcoll = 1/τcoll and collision partners become localized as energy is transferred
between them. In such a situation the pieces of information relating to the different gas molecules
become molecule-specific and time-dependent:

imoli, j(t) = icmmi, j + iloci, j(t) (12)

In this equation the index i enumerates the individual molecules (i = 1 . . .N) and j the particular
collisions; t, finally, is the time between successive collisions j and j + 1. As before, the icmmi, j and iloci, j
take on the forms:

icmmi, j =
1

ln(2)

Ekini, j

kBT
(13)

iloci, j =
1

ln(2)
ln

 Vmol
VQi, j

. (14)

In this latter equation, the VQi, j are the quantum volumes of molecules moving with energies
Ekini, j. As de-Broglie wavelengths depend on particle momenta and as shown in more detail in the
Appendix A, the VQi, j exhibit an energy dependence according to:

VQi, j =

(
2π2}2

MEkini, j

)3/2

(15)

A particularly interesting aspect is that the iloci, j also exhibit a continuous dependence on time
during those phases in which the individual molecules move freely in between successive collisions:

iloci, j = iloci, j(t) (16)

This latter effect arises from the phenomenon of quantum-mechanical dispersion which causes
the wave functions of the molecules to spread out in space as these are moving freely through empty
space in between successive collisions. As shown in the Appendix A, the 3d molecular wave packets
initially become localized up to the constraints imposed by the uncertainty relationships and then
rapidly spread out to volumes VQi, j comparable to the average mean-free volume Vmol in the gas at
times at which the molecules become likely to undergo follow-on collisions. As a consequence, all
iloci, j, independent of kinetic energy, tend to zero immediately before follow-on collisions are likely to
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occur. This latter effect is illustrated in Figure 2 for functions iloci, j(t), appropriate to different values
of Ekini, j gained in preceding collisions. In order to illustrate this energy-independence, all curves in
Figure 2 have been plotted as functions of their respective reduced times

τred(Ekin) = t/τcoll (Ekin) (17)

with τcoll(Ekin) standing for the mean-free time of molecules moving with kinetic energy Ekin in between
successive collisions:

τcoll(Ekin) = dav

√
M

2Ekin
(18)Entropy 2019, 21, x FOR PEER REVIEW 6 of 13 
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Figure 2. Variation of iloc(Ekin, t) (Equation A12) during successive gas-kinetic collisions as a function of
reduced time τred = t/τcoll, where τcoll = τcoll(Ekin) represents the energy-dependent collision time at
which follow-on collisions are likely to take place. The individual curves denote solutions for increasing
molecular kinetic energies in units of Eth. Molecular parameters correspond to normal air (N2, O2).

With this scaling applied, the results in Figure 2 show that, during gas-kinetic collisions,
the individual molecules repeatedly gain and loose information with regard to their localization
as these are moving on in between successive collisions.

4. Supervised and Unsupervised Measurement Processes

Information about physical phenomena is conventionally gained in measurements designed and
performed by human beings. With this background in mind, the changes in iloc(Ekin, t), displayed in
Figure 2, can be regarded as measurement processes in which information is intermittently gained,
deteriorated, lost and finally updated again as gas-kinetic collisions occur. At this point, it is relevant
to note that we defined the functions imol(T, V, N) (Equations (8) and (9)) and their time-dependent
extrapolations (Equations (12)–(16)) as information carried by the individual molecules, which otherwise
remains unknown to outside observers. Remembering this fact of unobservability, it is clear that
these naturally occurring measurements proceed in an un-supervised manner, in sharp contrast to
conventional ones.

In this section, we consider two thought experiments, performed on single-molecule gases,
which are carried out in a supervised and in an un-supervised mode. These considerations show
that the pieces of information imoli, j(t) are principally accessible in the supervised mode but remain
undetectable otherwise. In particular, we show that by performing many measurements in the
supervised mode the Maxwellian velocity distribution can be re-established while in the unsupervised
mode only learned guesses concerning the molecular motion are possible and that these lead back to
the time-averaged Sackur-Tetrode result imol(T, V, N) (Equation (8)).
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Both experiments are sketched in Figure 3. In both experiments the outside observer knows from
their preparation that a single molecule of mass M has been filled into a volume V = L3 and that this
volume is then maintained at a temperature T. Both experiments differ in the way that two of the
walls in the supervised version (Figure 3a) consist of ultra-sensitive microphones which are able to
detect wall-molecule and molecule-wall interactions, while in the unsupervised version (Figure 3b) all
walls are simply macroscopic heat reservoirs without any sensory capabilities. Concerning the internal
molecular motion, we assume that in both gases the molecule is initially adsorbed on the left-hand
wall and that it takes off from the wall with a momentum plr =

√
2MEkin_lr with Ekin_lr � Eth = 3

2 kBT,
thus enabling it to move horizontally towards the right-hand wall, which will be reached in a time

τlr = L
√

M
2Ekin_lr

. Both upon leaving the left-hand wall and arriving at the right-hand wall, signals

will be generated which allows the outside observer to determine the transit time τlr and to calculate
the kinetic energy and the linear momentum of the molecule. Further knowing that the molecule is
adequately described by a 3d quantum-mechanical wave packet, its initial volume upon take-off and
its dispersion during its travel to the right-hand wall can be ascertained. Similar arguments apply to
the backward travel shown in the lower section of Figure 3a where the molecule might have started
its journey back with a different momentum prl =

√
2MEkin_rl. In brief, the dynamics displayed in

Figure 3a can be reconstructed with a simple knowledge of basic mechanics and quantum mechanics.
In case this experiment is repeated, the Maxwellian velocity distribution can be re-established.
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Figure 3. Sketch of molecular motion inside single-molecule gases designed to allow for supervised (a)
and un-supervised (b) observations. Quantum-mechanical dispersion of the molecular wavefunctions
is indicated by circles of increasing size. Forward and backward travels have been vertically displaced
for ease of presentation.

With the same kind of molecular motion, the situation in the un-supervised experiment (Figure 3b
is a very different one: with the knowledge of the outside observer being limited to the three state
parameters T, V, N, the outside observer can only guess that the molecule is moving with its most
probable energy Eth = 3

2 kBT. With this assumption, the proper guess for the quantum volume directly
after a collision is VQ(T, M) (Equation (5)). With the timing signals of the supervised experiment not
being available, the outside observer cannot reconstruct the time evolution of the quantum volume
and thus not reconstruct the function imoli, j(t) that would appropriately describe the molecule on its
travel between both walls. With this timing information not being available, the outside observer
therefore remains with the maximum uncertainty concerning the molecule’s position inside the box,
which is given by VQ(T, M) (Equation (5)). With this uncertainty in mind, the function iloc(T, V, N)

(Equation (11)) is retained. With all these learned guesses, the outside observer finally arrives at:

imol(T, V, N) =
1

ln(2)

{
3
2
+ ln

[
Vmol

VQ(T, M)

]}
(19)

which is exactly the Sackur-Tetrode equation (Equation (5)) when the correct limit to N→ 1 molecules
is taken.
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Overall, both sketches show that the physics underlying supervised and unsupervised
measurements is basically the same, involving particle-wall interactions, wave packet localization,
wave dispersion and wave collapse during forward and backward travels. Not detecting any
fundamental differences between supervised and un-supervised measurements, it is concluded that
intelligent observers are not necessary to initiate and carry out processes of information gain and
of information erasure. Thus, thermodynamic information, like entropy both qualify as physical
quantities, independent of the existence and observation by human observers.

5. Gases with Internal Degrees of Freedom

So far, we have been dealing with ideal gases which are conceived as consisting of elastic hard
spheres without any internal degrees of freedom. Arguing within the constraints of this model we
have arrived at the conclusion that the information relating to the center-of-mass motion of a particular
molecule is valued by the ratio of its kinetic energy Ekin relative to the average thermal energy kBT
inside the reservoir formed by the N − 1 background molecules. In this section we show that the
validity of Equation (13) is not limited to the kinetic energy of the center-of-mass motion alone, but that
it is of more general validity, extending to other forms of energy as well.

In addition to moving along the three orthogonal directions in geometrical space, real molecules
also enjoy internal degrees of freedom. In gas-kinetic interactions the energy stored in such internal
degrees of freedom can be exchanged with collision partners and re-appear as kinetic energy as the
collision partners move away from their sites of impact. Alternatively, kinetic energy may become
fully or partly transferred into internal degrees of freedom as gas-kinetic collisions occur. In statistical
mechanics the entropies of molecular rotations, vibrations and electronic excitations can be obtained
from the simplified models of rigid rotators, linear oscillators and electronic two-level systems [13]
with the first two obeying Bose-Einstein and the latter Fermi-Dirac statistics. For the convenience
of the reader these molecular entropies are listed in Table 1 and their temperature dependencies are
displayed in Figure 4. From this latter figure it can be seen that for excitation energies ε > 2kBT all
entropies reasonably well follow temperature dependencies of the form.

Sint(ε, T) =
(
ε

kBT

)
exp

(
−
ε

kBT

)
(20)

In terms of information units these entropies correspond to information contents of:

iint(ε, T) =
1

ln(2)

(
ε

kBT

)
exp

(
−
ε

kBT

)
(21)

Equation (21) can be interpreted in the way that a two-level system actually excited with an energy
ε > 2kBT carries potential information in accordance with Equation (13). The additional exponential
term arises from the fact that in N gas-kinetic interactions only n ≈ Nexp

(
−

ε
kBT

)
systems are expected

to be encountered in their excited states. Significant differences in the statistical behavior of rotations,
vibrations and electronic excitations only shine up when the mean thermal energy kBT becomes large
compared to the respective quantum energies (kBT � ε). In electronic two-level systems equal numbers
of excited and non-excited electronic systems will be encountered at very high temperatures. The
information gain upon interaction therefore saturates at 1 bit per interaction, i.e., in the decision of
a simple alternative. In contrast, increasing numbers of excitations can assemble in rotational and
vibrational two-level systems as the mean thermal energy is raised beyond kBT > ε. The information
gain upon interaction, therefore, can raise far beyond the Fermi-Dirac limit of 1 bit.
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Table 1. Molecular entropies relating to molecular rotations, vibrations and electronic excitations as
derived from the simplified models of molecular rotators, vibrators and electronic two-level systems [13].

Model Molecular Entropy
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−
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6. Conclusions and Outlook

The equivalence between information and entropy has been applied to the entropy of a molecular
gas to interpret its entropy as information that is carried with its molecular constituents but missing
to outside observers. The discussion has shown that the individual molecules inside the gas carry
two kinds of information, which continually change as gas-kinetic collisions take place. The first part
relates to energy that is stored in the external and internal excitations of the gas molecules, i.e., in their
center-of-mass motion and in molecular rotations, vibrations and electronic excitations. All these forms
of energies can be interchanged in gas-kinetic collisions and cause the wave functions of collision
partners to become sharply localized to volumes much smaller than the average mean-free volume
Vmol of the molecules inside the gas. As the resulting localization is determined by the energies ε,
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carried in the external and internal excitations, these first forms of information can be summarized
under the name “potential information”:

ipot(ε, T) =
1

ln(2)
ε

kBT
ε� kBT. (22)

The second form of information relates to the positions of gas molecules within their own
mean-free volumes. Being the result of transferred energies, this second form of information can be
called “realized information”:

ireal(ε, T) =
1

ln(2)

[
Vmol

VQ(ε, T)

]
(23)

This second form of information contains as a key parameter the quantum volume VQ(ε, T)
which measures the extent of the molecular wave functions of the collision partners. As due to the
effects of quantum-mechanical dispersion, the size of such wave packets changes as molecules move
through their own mean-free volumes, the pieces of realized information are initially high directly
after collisions and rapidly deteriorate and finally vanish shortly before follow-on collisions are likely
to occur.

It is proposed that these repeated changes in realized information in between successive collisions
can be regarded as “measurement” processes in which information is continually generated, dispersed
and erased without any human intervention. Extending the concept of “measurement” to naturally
occurring physical interaction processes removes the need of “intelligence” in the processes of gaining
and erasing information. In this sense it is further proposed that, entropy and thermodynamic
information both fully qualify as objective physical entities, completely independent of human
observation and interaction.

Before concluding we want to point out that the concepts of potential and realized information
also appear to be fruitful in considering supervised measurement processes involving human observers.
As an example, we mention the process of particle detection in man-made detectors. In such technical
devices the potential information carried with the particle is converted into realized information by
dissipating the particle energy Ep in a piece of macroscopic matter maintained at a temperature Td.
In order to be useful as information-generating devices, such devices are constructed in a way that
during the process of energy dissipation a macroscopically observable output signal is created, which
can be taken as proof that a particle has interacted with the device at a certain time td and at the location
xd of the detector device. Such output signals represent events localized at space-time coordinates
(td, xd) which are endowed with a certain significance Id

(
Ep, Td

)
which depends on the signal-to-noise

ratio, SN, realized under the specific conditions of detection. We will show in a forthcoming paper [14]
that the information gain in detection:

Id
(
Ep, Td

)
=

1
ln(2)

ln(SN), (24)

always remains smaller than the potential information, carried by the particle relative to the
detector device:

Id
(
Ep, Td

)
< Ipot

(
Ep, Td

)
=

1
ln(2)

Ep

kBTd
(25)

This latter equation shows that a technical device only incompletely recovers the potential
information that has been intrinsically carried with the particle.

With an observable event having been generated, the possibility exists that this event might be
observed by observers moving in different frames of reference. In these different frames both the
particle energy Ep and the temperature of the detector Td will look different to the different observers.
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As a consequence, the different observers will in general associate different levels of significance to one
and the same event:

Id
(
Ep, Td

)
, Id

(
Ep
′, Td

′
)

(26)

The process of information gain thus ends up in the middle of the controversial subject of the
correct relativistic transformation of temperatures [15–20]. An equality sign in Equation (25) only
applies in case detector temperatures transform in the same manner as the particle energies. This
equality, which assumes equal significances independent of the frame of reference, implies that moving
objects appear to be hotter than stationary ones as predicted by the Ott transformation [16]. These
final considerations suggest that measuring the significance of observable events in different frames of
reference could provide experimental tests to shed more light on the controversial subject of relativistic
temperature transformations.
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Appendix A

In order to arrive at the time dependence of iloc(t), the functional form of the quantum volumes
VQ(Ekin, t) needs to be obtained. As quantum volumes are the 3d analogs of 1d Schrödinger wave
packets, their time evolution can be studied by referring to the textbook example of the 1d Schrödinger
wave dispersion [21]. Immediately after collision the extension of a 1d wave packet can be approximated
by a Gaussian probability distribution ρ(0) of width:

w0(Ekin) =
}

√
2MEkin

(A1)

Rearranging it is found that the initial wave packet width conforms to the position-momentum
uncertainty relationship: √

2MEkinw0(Ekin) = p(Ekin)w0(Ekin) = } (A2)

At times t > 0 the distribution ρ(x) evolves with time according to

ρ(x) =
1

√
πw(Ekin, t)

exp

− (xI − vt)2

w(Ekin, t)2

 (A3)

with xI denoting the site of impact, v =
√

2Ekin/M the speed of the outgoing particle and t the time
after impact. As this wave packet travels, its width will continually increase according to:

w(Ekin, t) = w0(Ekin)

√√
1 +

 }t

Mw0(Ekin)
2

2

(A4)

Values of ∆x(Ekin, t) are shown in Figure A1a as a function of time for a range of values of Ekin.
Approximations for ∆x(Ekin, t) for small and large times are:

w(Ekin, 0) =
}

√
2MEkin

; t < τret, (A5)

w(Ekin, t) =

√
2Ekin

M
t; t > τret. (A6)
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From these extrapolations the retention time, τret, can be obtained, below which the wave packet
extension remains close to its initial value w(Ekin, 0):

τret(Ekin) =
}

2Ekin
(A7)

Rearranging, it is found that the kinetic particle energy and the retention time conform to the
time-energy uncertainty relation:

Ekinτret =
}
2

(A8)

Further following the growth of wave packet width in Figure A1a, it can be seen that initially more
localized wave packets will reach linear dimensions comparable to the average mean-free distance dav

earlier than less localized ones. As high-energy particles traverse distances of dav in shorter times than
low-energy ones, the mean-free time between successive collisions emerges as:

τcoll(Ekin) =
1

Nσcoll

√
M

2Ekin
= dav

√
M

2Ekin
(A9)

With this result the wave packet width can be evaluated after which a molecule has travelled
through a distance x = dav:

w(Ekin, τcoll) =
1

Nσcoll
= dav; σcoll = collision cross section (A10)

This latter result shows that independent of the kinetic energy, the particle wave functions
always reach widths comparable to the average mean free distance dav before undergoing follow-on
collisions. This scaling of the wave packet widths with the reduced time τ = t/τcoll (Ekin) is illustrated
in Figure A1b.
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Figure A1. Wave-packet widths 𝑤(𝑡) relative to the average mean-free path 𝑑𝑎𝑣 as a function of time 

(a) and reduced time 𝜏 = 𝑡 𝜏𝑐𝑜𝑙𝑙(𝐸𝑘𝑖𝑛)⁄  (b) after a gas-kinetic collision has occurred. The individual 

curves denote solutions for increasing molecular kinetic energies in units of 𝐸𝑡ℎ = 3
3⁄ 𝑘𝐵𝑇. Molecular 

parameters correspond to normal air (N2, O2). 

With the results for ∆𝑥(𝐸𝑘𝑖𝑛 , 𝑡)  (equation A4), the energy-dependent size of the 3d 

quantum volumes can be estimated: 

𝑉𝑄(𝐸𝑘𝑖𝑛 , 𝑡) =  (𝑤(𝐸𝑘𝑖𝑛 , 𝑡))
3
.  (A8) 

With this the information can be obtained which is missing with regard to the location of 

molecules moving within their own mean-free volumes 𝑉𝑚𝑜𝑙 : 

𝑖𝑙𝑜𝑐(𝐸𝑘𝑖𝑛 , 𝑡) =  
1

𝑙𝑛 (2)
[

𝑉𝑚𝑜𝑙

𝑉𝑄(𝐸𝑘𝑖𝑛 , 𝑡)
] (A9) 
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Figure A1. Wave-packet widths w(t) relative to the average mean-free path dav as a function of time
(a) and reduced time τ = t/τcoll(Ekin) (b) after a gas-kinetic collision has occurred. The individual
curves denote solutions for increasing molecular kinetic energies in units of Eth = 3

3 kBT. Molecular
parameters correspond to normal air (N2, O2).

With the results for ∆x(Ekin, t) (Equation (A4)), the energy-dependent size of the 3d quantum
volumes can be estimated:

VQ(Ekin, t) = (w(Ekin, t))3. (A11)
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With this the information can be obtained which is missing with regard to the location of molecules
moving within their own mean-free volumes Vmol:

iloc(Ekin, t) =
1

ln(2)

[
Vmol

VQ(Ekin, t)

]
(A12)
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