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Abstract: This paper formulates the properties of point reachability and approximate point reachability
of either a targeted state or output values in a general dynamic system which possess a linear
time-varying dynamics with respect to a given reference nominal one and, eventually, an unknown
structured nonlinear dynamics. Such a dynamics is upper-bounded by a function of the state and
input. The results are obtained for the case when the time-invariant nominal dynamics is perfectly
known while its time-varying deviations together with the nonlinear dynamics are not precisely
known and also for the case when only the nonlinear dynamics is not precisely known. Either the
controllability gramian of the nominal linearized system with constant linear parameterization or that
of the current linearized system (which includes the time-varying linear dynamics) are assumed to be
non-singular. Also, some further results are obtained for the case when the control input is eventually
saturated and for the case when the controllability gramians of the linear parts are singular. Examples
of the derived theoretical results for some epidemic models are also discussed.

Keywords: controllability; reachability; nonlinear dynamics; linearization; biological processes;
epidemic models; entropy; self-organization; targeted state/output

1. Introduction

Usually, real dynamic systems are neither time-invariant nor linear in their whole operation rank
since there are usually saturation and dead-zone type nonlinearities at the input, saturated behaviors
in the state and output variables and sometimes nonlinear dynamics. See, for instance [1–3] and some
references therein. However, very relevant information about their properties is often obtained from the
knowledge of their equilibrium points, or their equilibrium steady-state oscillations, and the Jacobian
matrices which describe the linearized trajectory solutions around such point for small deviations of
linearity. This is the case, for instance, in some biological problems describing the species evolution
through time [4] or in mathematically modelled epidemic models described by either differential,
difference or hybrid equations. In particular, most of the epidemic models under current use and
study possess at least one disease-free equilibrium point at which the infective subpopulations are
null and an endemic one at which the infective subpopulations are non-null. A so-called reproduction
number, which is calculated from the model parameters, establishes if the infectious asymptotically
vanishes converging to an asymptotically stable disease-free attractor (if the reproduction number
is less than unity) or it becomes endemic if such a number exceeds unity. Some of the relevant
properties of positivity and stability of epidemic models are already qualitatively reflected in their
linearized versions around their equilibrium points. See, for instance, [5,6] and references therein.
The background literature on epidemic models is very abundant, including the use of either vaccination
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or treatment controls as well as combinations of both types of controls. See, for instance, [5–14] and
the references therein. Such controls may reduce the value of the basic reproduction number related
to the case of absence of controls, so the average number of contagions per each primary infectious
case, and they are also able to change the components of the equilibrium points, that is the numbers
of each subpopulation at the equilibrium, and the rates the convergence to such equilibrium points.
The usual epidemic models are typically based on differential, difference or mixed equations which
describe the coupled dynamics of the various subpopulation or, in general, they can include point
and distributed delayed dynamics or to be also formulated in a stochastic framework, [7,8,11]. There
are also studies for models of networks available which include different nodes which can represent
different sets of interacting communities [14,15], which combined control strategies which take into
account the communication links and population flows. Some of the models introduce appropriate
either prediction or entropy tools or game theory to discuss the increase of disorder associated to
them. See, for instance [11–14]. In particular, the entropy aspects are focused on deciding the various
probabilities of different steady-state behaviors or to elucidate if the mathematical model is working
properly, that is, if the entropy is non-negative [11].

The main objective of this paper is the study of the point reachability and point output-reachability
and their approximate counterparts in the presence of uncertain dynamics, at a prescribed time instant,
of either a targeted state or targeted output value in a dynamic system which has a linear time-varying
dynamics with respect to a given nominal one and an unknown structured nonlinear dynamics with a
known upper-bounding function. The results are given for the case when the time-invariant nominal
dynamics is known while the time-varying deviations and the nonlinear dynamics are not precisely
known and for the case when only the nonlinear dynamics is not precisely known. In the first case,
the controllability gramian of the nominal linearized system with constant linear parameterization
is assumed non-singular. In the second case, the current linearized system (which includes the
time-varying linear dynamics) is assumed to be non-singular. Later on, some formal extensions are
given for the case when the control input is saturated and for the case when the above mentioned
controllability gramians are singular under certain ad hoc algebraic type constraints on the targeted
state or targeted output. Some applications of the derived theoretical results for some epidemic models
are also discussed. The paper content is organized as follows. Sections 2 and 3 of this paper are
concerned with the study of general dynamic system whose linear part is time-varying, formulated as
a deviation from a constant nominal behaviour, and the nonlinear dynamics are introduced through
unstructured functions which are, in general, dependent on the state and output. The state and output
trajectory solutions are given analytically through closed formulas. Two key simplified auxiliary linear
systems, which are linearized versions of the whole nonlinear system, are introduced and discussed,
namely: (a) that describing the nominal linearized dynamics, in which the time-varying deviation
of the linear dynamics respect to their nominal values and the nonlinear contributions are deleted;
(b) that describing the linear time varying dynamics by neglecting the nonlinear contributions to the
dynamics. The controllability and reachability properties of those auxiliary systems are formulated
based on the corresponding controllability gramians. It is also examined and quantified to what
extent the reachability of the whole nonlinear system is achievable in an approximate way provided
that the linearized system versions are reachable. The (state) reachability is discussed at the levels of
point-reachability (the targeted state in finite time is prefixed) or general reachability (the targeted
state is arbitrarily fixed). The tolerances, in term of worst-case targeting errors related to a targeted
state, of the approximate point-reachability of the whole nonlinear system are discussed provided
that either the nominal or the current linearized systems are point-reachable. In particular, the
analysis of Section 3 is performed on the whole nonlinear dynamics under the assumptions that
the auxiliary linearized systems are point-reachable. It has to be pointed out that the controls used
for approximate state targeting of the whole nonlinear system are those used for reachability of
the linearized counterparts. Special attention is paid to the case when the norms of the nonlinear
contributions to the dynamics are upper-bounded by weighted powers of the state and input norms.
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On the other hand, counterpart versions for output reachability are discussed in Section 4 as simple
extensions based on the manipulations of the output controllability gramians of the auxiliary linearized
systems. Section 4 pays also attention to the cases when the controllability gramian is rank-defective,
so singular, and either there are non-unique solutions to the point-reachability problem (that is, the
system is not controllable and the relevant algebraic system that formulates the problem is compatible
indeterminate) or there are no algebraic solutions (that is, such an algebraic system is incompatible).
In those cases, the alternative formulation is based on the use of Moore-Penrose pseudoinverses of the
controllability gramian [15,16]. Finally, this section also considers the case when the input is saturated,
as it is often the case in many real problems, so that the theoretical input to achieve point-reachability
of the nominal linearized system has to be “ad hoc” modified. This situation is formally treated by
incorporating an extra reachability error to the suited targeted state or output being caused by the
deviation of the injected control input from linearity. Section 5 discusses some worked examples
related to epidemic models in the contexts of stability and point-reachability based on the behaviors
and related properties of their linearized versions. The controls are either vaccination efforts on the
susceptible or antiviral or antibiotic treatment on the infectious both based on feedback information.
On the other hand, some auxiliary results needed for the main ones are given in the appendixes.
A simple discussion which might highlight the use of entropy in an information context of the relevance
to the trajectories in the presence of more than one attractor is given in one of the given examples.
The notation used in the following sections is In is the n− th identity matrix, the superscript T stands for
transposition and λmax(.) and λmin(.) are the maximum and minimum eigenvalues of the symmetric
matrix (.).

2. Approximate Reachability of a Linear Time-Varying System under the Exact Reachability of Its
Nominal Linearized Counterpart

Consider the single-input single-output linear time-varying dynamic system of order:

.
x(t) = A(t)x(t) + b(t)u(t) + ξ(x(t), u(t) , t ) (1)

y(t) = c(t)x(t) + d(t)u(t) + ξy(x(t), u(t) , t ) (2)

subject to x(0) = x0, which has non-linear unstructured contributions ξ(x(t), u(t) , t ) and
ξy(x(t), u(t) , t ) to the state and output and with the linear part is given by (3)–(4), that is, the
particular case of (1)–(2) with Ã(t) = 0, b̃(t) = 0, C̃(t) = 0, D̃(t) = 0,ξ(x(t), u(t) , t ) = 0 and
ξy(x(t), u(t) , t ) = 0; ∀t ∈ R0+), and:

A(t) = A0 + Ã(t); b(t) = b0 + b̃(t) (3)

c(t) = c0 + c̃(t); d(t) = d0 + d̃(t) (4)

where x(t) ∈ Rn is the state vector, u(t) ∈ R and y(t) ∈ R are the scalar input and output, respectively,
and the matrices of dynamics A0 , A(t) , Ã(t) ∈ Rn×n; the control vectors b(t) , b0 , b̃(t) ∈ Rn; and the
output vectors d(t) , d0 , d̃(t) ∈ Rp. Note that:

1) If Ã(t) = 0, b̃(t) = 0,̃c(t) = 0,d̃(t) = 0, ξ(x(t), u(t) , t ) = 0 and ξy(x(t), u(t) , t ) = 0; ∀t ∈ R0+,
then the resulting dynamic system (1)–(2), subject to (3)–(4), is said to be the “nominal linearized
system”

2) The so-called “current linearized system” is distinct from the nominal linearized one and describes
the situation when at least one of these parametrical perturbation matrices is not identically zero
for all time while the nonlinear contributions are still identically zero for all time.

3) The complete system with all the effects in its dynamics including the time-varying parametrical
disturbances of the matrices and nonlinear contributions is refereed to as the “current system”.



Entropy 2019, 21, 1045 4 of 27

The system (1)–(2), subject to (3)–(4) can be rewritten as:

.
x(t) = A0x(t) + b0u(t) + vx0(t); vx0(t) = Ã(t)x(t) + b̃(t)u(t) + ξ(x(t), u(t) , t ) (5)

y(t) = cT
0 x(t) + d0u(t) + vy0(t); vy0(t) = c̃T(t)x(t) + d̃(t)u(t) + ξy((x(t), u(t) , t )) (6)

Now the approximate controllability of the current linear time-varying system (1)–(2), subject
to (3)–(4) under the controllability of its nominal linearized time-invariant counterpart is discussed.
Assume that for any prefixed time interval [0 , t], the control law is:

u(τ) = u0(τ) = bTeAT
0 (t−τ)v0(t); τ ∈ [0 , t] (7)

where v(t) is an auxiliary control function:

x(t) = eA0tx0 +

(∫ t

0
eA0(t−τ)b0bT

0 eAT
0 (t−τ)dτ

)
v0(t) +

∫ t

0
eA0(t−τ)vx0(τ)dτ (8)

= eA0tx0 +

(∫ t

0
eA0(t−τ)b0bT

0 eAT
0 (t−τ)dτ

)
v0(t) +

∫ t

0
eA0(t−τ)

(
Ã(τ)x(τ) + b̃(τ)u0(τ)

)
dτ+

∫ t∗

0
eA0(t∗−τ)ξ(x(τ), u(τ) , τ )dτ (9)

under a initial condition x(0) = x0, and:

y(t) = cT
0

[
eA0tx0 +

(∫ t
0 eA0(t−τ)b0bT

0 eAT
0 (t−τ)dτ

)
v0(t) +

∫ t
0 eA0(t−τ)vx0(τ)dτ

]
+ d0u0(t) + vy0(t)

= cT
0

[
eA0tx0 +

(∫ t
0 eA0(t−τ)b0bT

0 eAT
0 (t−τ)dτ

)
v0(t)

]
+ d0u0(t) + cT

0

∫ t
0 eA0(t−τ)vx0(τ)dτ+ vy0(t)

= cT
0

[
eA0tx0 +

(∫ t
0 eA0(t−τ)b0bT

0 eAT
0 (t−τ)dτ

)
v0(t) +

∫ t
0 eA0(t−τ)

(
Ã(τ)x(τ) + b̃(τ)u0(τ) + ξ(x(τ), u(τ) , τ )

)
dτ

]
+d0u0(t) + ξy(t, x(t)) + d̃(t)u0(t)

+c̃T(t)
[
eA0tx0 +

(∫ t
0 eA0(t−τ)b0bT

0 eAT
0 (t−τ)dτ

)
v0(t) +

∫ t
0 eA0(t−τ)b0

(
Ã(τ)x(τ) + b̃(τ)u0(τ) + ξ(x(τ), u(τ) , τ )

)
dτ

]
(10)

The following result relies on the approximate controllability of the current system under
parametrical disturbances related to the nominal linearized one, assumed to be controllable.

Theorem 1. Assume that (A0 , b0) is a controllable pair and that x∗ ∈ Rn is any prefixed state value at an
arbitrary given time t = t∗ ∈ R+. Then:

x(t∗) = F(t∗)−1
[
x∗ + G(t∗)

(
x ∗ −eA0t∗x0

)]
+

∫ t∗

0
eA0(t∗−τ)ξ(x(τ), u(τ) , τ )dτ (11)

is reached for any initial condition x(0) = x0 under the control law:

u0(τ) = bT
0 eAT

0 (t
∗
−τ)v0(t∗) = bT

0 eAT
0 (t
∗
−τ)G−1

c[0,t∗](A0 , b0)
(
x∗ − eA0t∗x0

)
; τ ∈ [0 , t∗] (12)

via the auxiliary control function v0(t∗) = G−1
c[0,t∗](A0 , b0)

(
x∗ − eA0t∗x0

)
, where:

Gc0[0,t∗](A0 , b0) =

∫ t∗

0
eA0(t∗−τ)b0bT

0 eAT
0 (t∗−τ)dτ (13)

is the controllability gramian of the nominal linearized system (that is, that associated with the controllable pair
(A0 , b0) on [0, t∗]), then non-singular, and:

F(t∗) = In −

∫ t∗

0
eA0(t∗−τ)Ã(τ)Ψ(τ, t∗)dτ (14)
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G(t∗) =
(∫ t∗

0
eA0(t∗−τ)̃b(τ)bT

0 eAT
0 (t∗−τ)dτ−

∫ t∗

0

∫ t∗

0
eA0(t∗−τ)Ã(τ)Ψ(τ, σ)b(σ)bT

0 eAT
0 (t∗−σ)dσdτ

)
G−1

c[0,t∗](A0 , b0) (15)

provided that F(t∗) is non-singular, where Ψ(t, τ) is the fundamental matrix associated with A(t) so that
.

Ψ(t, τ) = A(t)Ψ(t, τ) ; ∀t(≥ τ), τ ∈ R0+ , and:

Ψ(t, τ) = eA0(t−τ) +

∫ t

τ
eA0(t−σ)Ã(σ)dσ;∀t(≥ τ), τ ∈ R0+ (16)

Proof. It turns out that controllability gramian of the pair (A0 , b0) is non-singular on [0, t∗] since the
pair (A0 , b0) is controllable. Then, one gets from (9) and (12) that:

x(t) − eA0t∗x0 −

∫ t∗

0
eA0(t∗−τ)vx0(τ)dτ = Gc0[0,t∗](A0 , b0)v0(t∗)

Then:

x(t∗) = x∗ +
∫ t∗

0 eA0(t∗−τ)Ã(τ)x(τ)dτ+
∫ t∗

0 eA0(t∗−τ)
(̃
b(τ)u0(τ) + ξ(x(τ), u(τ) , τ )

)
dτ

=
[
In +

∫ t∗
0 eA0(t∗−τ)̃b(τ)bT

0 eAT
0 (t∗−τ)G−1

c0[0,t∗](A0 , b0)dτ
]
x∗ +

∫ t∗
0 eA0(t∗−τ)ξ(x(τ), u(τ) , τ )dτ

+
∫ t∗

0 eA0(t∗−τ)Ã(τ)x(τ)dτ−
(∫ t∗

0 eA0(t∗−τ)̃b(τ)bT
0 eAT

0 (t∗−τ)dτ
)

G−1
c0[0,t∗](A0 , b0)eA0t∗x0

(17)

with x(0) = x0 and (16) holds from
.

Ψ(t, τ) = A(t)Ψ(t, τ); ∀t(≥ τ), τ ∈ R0+, since A(t) = A0 + Ã(t) and
Ψ(t, t) = In; ∀t ∈ R0+. Then, one has:

Ψ(τ, t)x(t) = x(τ) +
∫ t

0
Ψ(τ, t)Ψ(t, σ)b(σ)u0(σ)dσ = x(τ) +

∫ t

0
Ψ(τ, σ)b(σ)u0(σ)dσ; ∀t(≥ τ), τ ∈ R0+ (18)

Then, one gets, after replacing x(τ) from (18) into (17), that:

x(t∗) =
[
In +

∫ t∗
0 eA0(t∗−τ)̃b(τ)bT

0 eAT
0 (t∗−τ)G−1

c0[0,t∗](A0 , b0)dτ
]
x∗

+
∫ t∗

0 eA0(t∗−τ)ξ(x(τ), u(τ) , τ )dτ+
∫ t∗

0 eA0(t∗−τ)Ã(τ)
(
Ψ(τ, t∗)x(t∗) −

∫ t∗
0 Ψ(τ, σ)b(σ)u0(σ)dσ

)
dτ

−

(∫ t∗
0 eA0(t∗−τ)̃b(τ)bT

0 eAT
0 (t∗−τ)dτ

)
G−1

c0[0,t∗](A0 , b0)eA0t∗x0

(19)

so that, after replacing the control law (12) on [0 , t∗] into (19), one gets that:[
In −

∫ t∗
0 eA0(t∗−τ)Ã(τ)Ψ(τ, t∗)dτ

]
x(t∗)

=
[
In +

∫ t∗
0 eA0(t∗−τ)̃b(τ)bT

0 eAT
0 (t∗−τ)G−1

c0[0,t∗](A0 , b0)dτ
]
x∗ −

∫ t∗
0

∫ t∗
0 eA0(t∗−τ)Ã(τ)Ψ(τ, σ)b(σ)u0(σ)dσdτ

−

(∫ t∗
0 eA0(t∗−τ)̃b(τ)bT

0 eAT
0 (t∗−τ)dτ

)
G−1

c0[0,t∗](A0 , b0)eA0t∗x0 +
∫ t∗

0 eA0(t∗−τ)ξ(x(τ), u(τ) , τ )dτ

=
[
In +

∫ t∗
0 eA0(t∗−τ)̃b(τ)bT

0 eAT
0 (t∗−τ)G−1

c0[0,t∗](A0 , b0)dτ
]
x∗

−

(∫ t∗
0

∫ t∗
0 eA0(t∗−τ)Ã(τ)Ψ(τ, σ)b(σ)bT

0 eAT
0 (t∗−σ)dσdτ

)
G−1

c0[0,t∗](A0 , b0)
(
x∗ − eA0t∗x0

)
−

(∫ t∗
0 eA0(t∗−τ)̃b(τ)bT

0 eAT
0 (t∗−τ)dτ

)
G−1

c0[0,t∗](A0 , b0)eA0t∗x0 +
∫ t∗

0 eA0(t∗−τ)ξ(x(τ), u(τ) , τ )dτ

= x∗ +
[∫ t∗

0 eA0(t∗−τ)̃b(τ)bT
0 eAT

0 (t∗−τ)dτ −
∫ t∗

0

∫ t∗
0 eA0(t∗−τ)Ã(τ)Ψ(τ, σ)b(σ)bT

0 eAT
0 (t∗−σ)dσdτ

]
G−1

c0[0,t∗](A0 , b0)

×

(
x∗−eA0t∗x0

)
+

∫ t∗
0 eA0(t∗−τ)ξ(x(τ), u(τ) , τ )dτ

= x ∗+G(t∗)
(
x∗−eA0t∗x0

)
+

∫ t∗
0 eA0(t∗−τ)ξ(x(τ), u(τ) , τ )dτ

(20)
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Then (11) holds, subject to (13)–(15), if F(t∗) is non-singular. �

Definition 1. The system (1)–(2), subject to (3)–(4), is said to be (x∗, t∗) -point reachable from a given initial
state x(0) = x0 ( PR (x∗, t∗ , x0) ) if there exists some control law u : [0 , t∗] → R leading to the state targeting
x(t∗) = x∗ for t∗ > 0 if x(0) = x0.

Definition 2. The system (1)–(2), subject to (3)–(4), is said to reachable R if it is PR (x∗, t∗ , x0) for any given
triple (x0 , x∗, t∗) . It is said to be reachable at time t∗ for an initial state x(0) = x0 , say R (t∗, x0) , if it is
PR (x∗, t∗ , x0) for any x∗.

Definition 3. The control law (12) is said to be the reachability standard nominal control law (
RSNCL(x∗, t∗ , x0)) of (1)–(2), subject to (3)–(4), for the system to be PR (x∗, t∗ , x0).

Remark 1.

1) Note that the constraint (4) is irrelevant for (state)-reachability since the output is not specifically involved
in such a property. However, we refer to that constraint in Definitions 1–3 to keep the whole system referred
to fully defined through (1)–(4).

2) Note that if the parametrical disturbances of (3) are zeroed, so that the control and dynamics matrices are
constant, then the resulting time-invariant linear system (that is, the nominal linearized one) is reachable,
equivalently PR (x∗, t∗ , x0) for any given triple (x0 , x∗, t∗) , under the RSNCL(x∗, t∗ , x0) , if and only
if (A0 , b0) is a controllable pair, equivalently if and only if its associate controllability gramian (13) is
non-singular [1]. In particular, an existing control law which allows the targeting x(t∗) = x∗ for any
given x∗ at any given t∗ > 0 of the nominal linearized system from any given initial state x(0) = x0 is the
RSNCL(x∗, t∗ , x0).

The following direct result relies on the eventual maintenance or lost of the reachability of the current
linearized system related to the nominal linearized one if the parametrical disturbances are arbitrary. In particular,
it is seen that, in general, the RSNCL(x∗, t∗ , x0) does not allow exact prefixed state tracking even if the nominal
linearized system is reachable.

Theorem 2. The following identity holds:

x(t∗) =
[
F(t∗)−1( In + G(t∗) ) − In

]
x∗ − F(t∗)G(t∗)eA0t∗x0 +

∫ t∗

0
eA0(t∗−τ)ξ(x(t), u(t) , t )dτ (21)

the system (1)–(2), subject to (3)–(4) is PR (x∗, t∗ , x0) under the RSNCL(x∗, t∗ , x0) if some of the conditions
given below holds:

(1) Ã(t) ≡ 0 , b̃(t) ≡ 0 and ξ(t , x(t)) ≡ 0 for t ∈ [0, t∗) if (A0 , b0) is a controllable pair.
(2) x∗ = 0 and t∗ = +∞.
(3) x0 = 0 and the controllability gramian of the nominal linearized parameterization on [0 , t∗] is non-singular

(that is, the pair (A0 , b0) is controllable) and it satisfies:

Gc0[0,t∗](A0 , b0) =
∫ t∗

0 eA0(t∗−τ)b0bT
0 eAT

0 (t∗−τ)dτ =
(∫ t∗

0 eA0(t∗−τ)Ã(τ)Ψ(τ, t∗)dτ
)
−1

×

(∫ t∗
0

∫ t∗
0 eA0(t∗−τ)Ã(τ)Ψ(τ, σ)b(σ)bT

0 eAT
0 (t∗−σ)dσdτ−

∫ t∗
0 eA0(t∗−τ)̃b(τ)bT

0 eAT
0 (t∗−τ)dτ

) (22)
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Proof. Equation (21) follows directly from (11) under the conditions (1)–(2). Condition (3) follows
since one gets from (14)–(15) that x0 = 0 implies that x(t∗) = x∗ , 0 if:

In = F(t∗) −G(t∗) = In −
∫ t∗

0 eA0(t∗−τ)Ã(τ)Ψ(τ, t∗)dτ

+
(∫ t∗

0

∫ t∗
0 eA0(t∗−τ)Ã(τ)Ψ(τ, σ)b(σ)bT

0 eAT
0 (t∗−σ)dσdτ−

∫ t∗
0 eA0(t∗−τ)̃b(τ)bT

0 eAT
0 (t∗−τ)dτ

)
G−1

c[0,t∗](A0 , b0)
(23)

so that:

Gc0[0,t∗](A0 , b0) =
∫ t∗

0 eA0(t∗−τ)b0bT
0 eAT

0 (t∗−τ)dτ =
(∫ t∗

0 eA0(t∗−τ)Ã(τ)Ψ(τ, t∗)dτ
)
−1

×

(∫ t∗
0

∫ t∗
0 eA0(t∗−τ)Ã(τ)Ψ(τ, σ)b(σ)bT

0 eAT
0 (t∗−σ)dσdτ−

∫ t∗
0 eA0(t∗−τ)̃b(τ)bT

0 eAT
0 (t∗−τ)dτ

) (24)

�

It turns out that this last constraint is generically unfeasible for almost any parametrical
disturbances

(
Ã(τ) , b̃(τ)

)
for τ ∈ [0 , t∗]. As a result, we conclude that the exact reachability is

achievable in the nominal linearized case, that is, in the absence of parametrical disturbances of the
dynamics and control vector for some finite time t∗ if the controllability gramian is nonsingular for
any interval

[
0 , t∗1

)
and some t∗1 ∈ (0, t∗). Also, it turns out that this property holds for any finite

t∗ > 0 if and only if the pair (A0 , b0) is a controllable pair because of the formal analytical relation
of the controllability gramian with the controllability matrix associated with the pair (A0 , b0). If
the controllability gramian is nonsingular then point reachability is not generically achievable under
arbitrary parametrical disturbances for any given initial condition x0 and any targeted state x∗ at any
finite time t∗ > 0.

Remark 2. Note from (11) that:

‖F(t∗)−1
‖

∣∣∣∣max
[
(1 + ‖G(t∗)‖) ‖x∗‖ − ‖G(t∗)‖‖eA0t∗

‖‖x0‖ , ‖x∗‖ − ‖G(t∗)‖
(
‖x∗‖+ ‖eA0t∗

‖‖x0‖
)]∣∣∣∣

≤ ‖x(t∗)‖ ≤ ‖F(t∗)−1
‖

[
(1 + ‖G(t∗)‖) ‖x∗‖+ ‖G(t∗)‖‖eA0t∗

‖‖x0‖
] (25)

If (A11) in Lemma A2 of Appendix A holds for t = t* and the conditions 1–5 of Lemma A4 hold then:

‖G(t∗)‖ ≤
(

K2
0

2ρ0

(
1− e−2ρ0t∗

)
‖b0‖ε∗b + K2

0KΨ ‖b0‖ε∗bε
∗

A

×e−2ρ0t∗ e−2ρΨ t∗+1−e(ρ0−ρΨ )t∗
−e−(ρ0+ρΨ )t∗

ρ2
0−ρ

2
Ψ

)
‖G−1

c[0,t∗](A0 , b0)‖
(26)

Then, from Lemmas A2–A4 and defining ε∗ξ = εξ(t∗, u0[0 , t∗)) = K0
ρ0

sup
0≤τ≤t∗

‖ξ(τ, x(τ))‖, one has:

εiFm(t∗)
(
‖x∗‖−ε∗G

(
‖x∗‖+ ‖eA0t∗

‖‖x0‖
))
−ε∗ξ

(
1− e−ρ0t∗

)
≤ ‖x(t∗)‖≤ εiFM(t∗)

(
‖x∗‖+ε∗G

(
‖x∗‖+ ‖eA0t∗

‖‖x0‖
))

+ ε∗ξ

(
1− e−ρ0t∗

) (27)

where ε∗G is defined in Lemma A4 (iii), ε∗iFM = εiFM(t∗) and ε∗iFm = εiFm(t∗) are defined for t = t∗ and:

a) for i = 5 in (A12) and (A16) if (A11) (i.e., the assumptions 5 of Lemma A2) holds,
b) for i = 4 in (A13) and (A17) if (A10) (i.e., the assumption 4 of Lemma A2) holds,
c) for i = 3 in (A14) and (A18) if (A9) (i.e., the assumption 3 of Lemma A2) holds,
d) for i = 2 in (A15) and (A19) if (A8) (i.e., the assumption 2 of Lemma A2) holds,

respectively,
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Note by inspecting Lemmas A2–A4 that ε∗G = 1 + o
(
max

(
ε∗A , ε∗b

) ∣∣∣1− e−ρ0t∗
∣∣∣) , and ε∗iFM = 1 +

o
(
ε∗A

∣∣∣1− e−ρ0t∗
∣∣∣) , ε∗iFm = 1− o

(
ε∗A

∣∣∣1− e−ρ0t∗
∣∣∣) under the corresponding condition for i = 2, 3, 4, 5 among the

above set of conditions. Then:

‖x(t∗)‖ ∈
[∣∣∣∣1− o

(
max

(
ε∗A , ε∗b, ε∗ξ

) ∣∣∣1− e−ρ0t∗
∣∣∣)∣∣∣∣ ‖x∗‖, (

1 + o
(
max

(
ε∗A , ε∗b, ε∗ξ

) ∣∣∣1− e−ρ0t∗
∣∣∣))‖x∗‖] (28)

The stability of the open-lop nominal linearized system is not crucial in the above results. If ρ0 ≤ 0
(i.e., the critically stable and unstable cases for the nominal linearized system), then (−ρ0)→

∣∣∣ρ0
∣∣∣ and(

1− e−ρ0t∗
)
→

∣∣∣e|ρ0 |t∗ − 1
∣∣∣ in all the relevant equations in the main body and Lemmas A2 and A4 in the

Appendixes to get alternative results for those cases. So, Equation (28) applies for any absolute value and sign of
the stability abscissa of the matrix A0.

Note that (27)–(28) lead to a worst-case targeting state estimate at time t∗ through the control law (12) if the
nominal linearized system is controllable. The controllability of the nominal linearized system translates into an
approximate parallel result of approximate reachability of the whole current system and the approximation degree
increases, as expected, as the parametrical disturbances and the sizes of the nonlinear contributions decrease.
Thus, we have the following “ad hoc” definition and theorem concerning this issue.

Definition 4. The current system (1)–(2), subject to (3)–(4), is said to be (x∗, t∗) -point (1− α) -approximately
reachable APR1−α (x∗, t∗ , x0) , with α = o

(
max

(
ε∗A , ε∗b, ε∗ξ

) ∣∣∣e|ρ0 |t∗ − 1
∣∣∣) , from a given initial state x(0) = x0,

where:
ε∗ξ = εξ(t∗, u0[0 , t∗)) = K0

ρ0
sup

0≤τ≤t∗
‖ξ(τ, x(τ))‖ if there exists some control law u : [0 , t∗] → R leading to

the state targeting x(t∗) ∈ [(1− α)x∗, (1 + α)x∗ ] for t∗ > 0 if x(0) = x0.
Since x(t∗) = x∗ if α = 0 then one has:

Assertion 1. The current system (1)–(2), subject to (3)–(4), is if and only if it is PR (x∗, t∗ , x0).

The above considerations, together with Remark 2 and Lemmas A2 and A4 in Appendix A, lead
to the following direct result concerning the reachability of the current system if the nominal linearized
one is asymptotically stable and controllable:

Theorem 3. (approximate reachability of the current system). Assume that:

1) A0 is a stability matrix with stability abscissa (−ρ0) < 0 so that ‖eA0t
‖ ≤ K0e−ρ0t ; ∀t ∈ R0+ for some real

constant K0(≥ 1),
2) The pair (A0, b0) is controllable, that is, it is PR (x∗, t∗ , x0) for any given triple (x0 , x∗, t∗) so reachable,

3) ‖

∫ t
0 eA0(t−τ)Ã(τ)Ψ(τ, t)dτ‖ < 1 (guaranteed via the sufficient conditions (A9)- (A11) [Lemma A2 of

Appendix A],
4) ‖Ψ(t, τ)‖ ≤ KΨe−ρΨ(t−τ) ; ∀t(≥ τ), τ ∈ R with KΨ ≥ 1 and 0 < ρΨ < ρ0

Then, the current linearized system (1)–(2), subject to (3)–(4) (i.e., that resulting for ξ(x(t), u(t) , t ) ≡ 0 on
[0 , t∗]), is exponentially stable. Furthermore, the whole system (1)–(2), subject to (3)–(4), is APR1−α (x∗, t∗ , x0)

with degree α = o
(
max

(
ε∗A , ε∗b, ε∗ξ

) ∣∣∣ 1− e−ρ0t∗
∣∣∣) , from a given initial state x(0) = x0 under the nominal control

law u0 : [0 , t∗] → R of Equation (12), where:
sup

0≤t<∞
‖Ã(t)‖ ≤ ε∗A ; sup

0≤t<∞
‖̃b(t)‖ ≤ ε∗b ; ε∗ξ =

K0
ρ0

sup
0≤τ≤t∗

‖ξ(x(τ), u(τ) , τ )‖

Theorem 4. Assume that the current linearized system (1)–(2) subject to (3)–(4), is PR (x∗, t∗ , x0) on [0 , t∗].
Then, the following properties hold:

(i)

‖x(t∗)‖ ∈
[∣∣∣∣∣∣‖x∗‖ − ‖

∫ t

0
Ψ(t∗, τ)ξ(τ , x(τ))dτ‖

∣∣∣∣∣∣ , ‖x∗‖+ ‖
∫ t

0
Ψ(t∗, τ)ξ(x(τ), u(τ) , τ )dτ‖

]
(29)



Entropy 2019, 21, 1045 9 of 27

(ii)

‖x(t∗)‖ ≤ ‖x∗‖+


∫ t∗

0
‖Ψ(t∗, τ)‖

2

dτ


1/2∫ t∗

0
‖ξ(x(τ), u(τ) , τ )‖2dτ

1/2

(30)

(iii)
If ‖Ψ(t, τ)‖ ≤ KΨe−ρΨ(t−τ) with KΨ , ρΨ , 0 then

‖x(t∗)‖ ≤ ‖x∗‖+
KΨ√
2
∣∣∣ρΨ

∣∣∣
∣∣∣1− e−2ρΨt∗

∣∣∣1/2

∫ t∗

0
‖ξ(x(τ), u(τ) , τ )‖2dτ

1/2

(31)

‖x(t∗)‖ ≤ ‖x∗‖+
KΨ∣∣∣ρΨ

∣∣∣ ∣∣∣1− e−ρΨt∗
∣∣∣ sup
0≤τ≤t∗

‖ξ(x(τ), u(τ) , τ )‖ (32)

‖x(t∗)‖ ≤ ‖x∗‖+ sup
0≤τ≤t∗

‖Ψ(t∗, τ)‖

∫ t∗

0
‖ξ(x(τ), u(τ) , τ )‖dτ

 ≤ ‖x∗‖+ KΨ
∣∣∣1− e−ρΨt∗

∣∣∣∫ t∗

0
‖ξ(x(τ), u(τ) , τ )‖dτ

 (33)

If, in addition, x∗ , 0 then sup
0≤τ≤t∗

‖ξ(x(τ), u(τ) , τ )‖ ≤ σξx∗ and:

‖x(t∗)‖ ≤

1 +
KΨ∣∣∣ρΨ

∣∣∣ ∣∣∣1− e−ρΨt∗
∣∣∣σξ ‖x∗‖ (34)

If x∗ = 0 and x0 , 0 then sup
0≤τ≤t∗

‖ξ(x(τ), u(τ) , τ )‖ ≤ σξ0x0 and:

‖x(t∗)‖ ≤
KΨ∣∣∣ρΨ

∣∣∣ ∣∣∣1− e−ρΨt∗
∣∣∣σξ0 ‖x0‖ (35)

Proof. Since the current linearized system is PR (x∗, t∗ , x0) then the controllability gramian of the
current linearized system (1)–(2), subject to (3)–(4) on [0 , t∗](that is, that associated with the pair
(A(t) , b(t)) on [0 , t∗]) is:

Gc[0,t∗](A(τ) , b(τ)) =
∫ t∗

0
Ψ(t∗, τ)b(τ)bT(τ)ΨT(t∗, τ)dτ (36)

which is non-singular and the control law

u(τ) = bT(τ)ΨT(t, τ)v(t∗) = bT(τ)ΨT(t∗, τ)G−1
c[0,t∗](A(τ) , b(τ))(x∗ −Ψ(t∗ , 0)x0); τ ∈ [0 , t∗] (37)

transfers the initial state x0 to x(t∗) = x∗ along the time interval [0 , t∗] if ξ(τ , x(τ)) ≡ 0 in (1) for
τ ∈ [0 , t∗] . If such a nonlinear contribution is non-zero then x(t∗) = x∗ +

∫ t
0 Ψ(t∗, τ)ξ(x(τ), u(τ) , τ )dτ

so that (29) holds and Property (i) is proved. Property (ii) holds since (30) follows from H
..
older´s

inequality in the upper-bound of the right-hand-side of (29). Equations (31) and (33) follow from the
right-hand side of (29) and (30) if Ψ(t, τ) is of exponential order but non-necessarily stable since t∗ is
finite and Property (iii) is proved. On the other hand, Equations (34) and (35) follow directly from (32)
under the given conditions. �

Sufficiency-type conditions which guarantee the non-singularity of the controllability gramian
of the current linearized system in the case that that of the nominal one is non-singular is given in
Appendix B.



Entropy 2019, 21, 1045 10 of 27

3. Reachability and Approximate Reachability of the Current Time-Varying System under
Unstructured Nonlinear Dynamics

Theorem 5. Define x(t∗) and x0(t∗) as the current total state including parametrical disturbances and the
nonlinear effects and the nominal linearized one, respectively, under the respective controls u(t) and u0(t). Then,
the following properties hold:

(i)
x(t∗) − x0(t∗) =

(
Ψ(t∗, 0) − eA0t∗

)
x0

+
∫ t∗

0 Ψ(t∗, τ) (b(τ)u(τ) + ξ(τ , x(τ)))dτ−
∫ t∗

0 eA0(t∗−τ) b0u0(τ)dτ
(38)

(ii) Assume that the current linearized system (i.e., that resulting for ξ(t , x(t)) ≡ 0 ) is PR (x∗, t∗ , x0)

and that u(t) = u∗(t) ; ∀t ∈ [0 , t∗] achieves perfect state targeting x∗(t∗) = x∗ at t = t∗. Then,

x∗ − x0(t∗) =
(
Ψ(t∗, 0) − eA0t∗

)
x0+

∫ t∗

0
Ψ(t∗, τ) b(τ)u∗(τ)dτ−

∫ t∗

0
eA0(t∗−τ) b0u0(τ)dτ (39)

(iii) Assume that the current linearized system (i.e., if Ã(t) = 0 , b̃(t) = 0 , c̃(t) = 0 , d̃(t) = 0 ,
ξ(t, x(t)) = 0 ξ(t , x(t)) ≡ 0 ) is PR (x∗, t∗ , x0) and that u0(t) = u∗0(t) ; ∀t ∈ [0 , t∗] , Equation (12), achieves
perfect state targeting x∗0(t

∗) = x∗ at t = t∗. Then,

x(t∗) = Ψ(t∗, 0)x0+

∫ t∗

0
Ψ(t∗, τ)

(
b(τ)u∗0(τ) + ξ(x(τ), u(τ) , τ )

)
dτ (40)

Proof. Note from (26) that, for initial conditions x(0) = x0, x(t∗) and x0(t∗) are given by:

x(t∗) = Ψ(t∗, 0)x0+

∫ t∗

0
Ψ(t∗, τ) (b(τ)u(τ) + ξ(x(τ), u(τ) , τ ))dτ (41)

x0(t∗) = eA0t∗x0+

∫ t∗

0
eA0(t∗−τ) b0u0(τ)dτ (42)

leading directly to (38). Property (i) is proved. On the other hand, if the current linearized is
PR (x∗, t∗ , x0) and that u(t) = u∗(t); ∀t ∈ [0 , t∗] achieves perfect state targeting x∗(t∗) = x∗ at t = t∗.
Then:

x(t∗) − x∗ =
∫ t∗

0
Ψ(t∗, τ) ξ(x(τ), u(τ) , τ )dτ (43)

and replacing it into (38) and simplifying the resulting equation yields (39). Property (iii) follows
directly from the fact that u0(t) = u∗0(t); ∀t ∈ [0 , t∗] achieves nominal linearized perfect state targeting
x∗0(t

∗) = x∗ at t = t∗ assumed it is PR (x∗, t∗ , x0) and then:

x∗ = eA0t∗x0 +

∫ t∗

0
eA0(t∗−τ) b0u∗0(τ)dτ (44)

replaced in (38) gives (40). �

The following result provides a worst-case estimate of the Euclidean norm of the sate norm versus
time of the current system on the reachability interval [0 , t∗] of the current linearized system, which
is not assumed to be necessarily stable, if the control law (37) is used and the targeting objective at
time t∗ is scheduled for the current linearized system which is point reachable and whose complete
time-varying parameterization is exactly known for all time.
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Theorem 6. Assume that:

A1) The current linearized system is PR (x∗, t∗ , x0) and that the perfect state targeting objective x∗(t∗) = x∗ is
scheduled for it.

A2) Ψ(t, τ) is of exponential order (although the current linearized system is not assumed necessarily stable)
and its Euclidean norm satisfies KΨ0e−ρΨ0(t−τ) ≤ ‖Ψ(t, τ)‖2 ≤ KΨe−ρΨ(t−τ) ; ∀t(≥ τ) , τ ∈ R0+ for some
real constants ρΨ0 ≥

ρΨ
2 , ρΨ , KΨ0 > 0 and KΨ ≥ 1.

A3) max
(∣∣∣1− e−ρΨt∗

∣∣∣ , ∣∣∣e|ρΨ |t∗ − 1
∣∣∣) < |ρΨ|

KΨ

A4) The point reachability control law (37) is injected to the current system.
A5) The nonlinear contribution to the dynamics related to the nominal current linearized system satisfies the

worst-case growing condition:

‖ξ(x(t) , u(t))‖ ≤ Kξx sup
0≤τ≤t

‖x(τ)‖22 + Kξu sup
0≤τ≤t

‖u(τ)‖22; τ ∈ [0 , t]; t ∈ [0 , t∗] (45)

for some real constants Kξx ≥ 0 and Kξu ≥ 0.

A6) Kξx <
|ρΨ|

αKΨMx
where:

Mx =
KΨ|ρΨ|

|ρΨ|−αKΨθξ

(
e−ρΨt∗

‖x0‖2 +
KΨαγ

|ρΨ|β
sup

0≤t≤t∗
‖b(t)‖22 (‖ x∗‖2+KΨe−ρΨt∗

‖x0‖2)

λmin

(∫ t∗

0 b(t) bT(t) dt
)


+
αγ2 KξuK2

Ψ
|ρΨ|β2

 ‖b(t)‖22 (‖ x∗‖2+KΨe−ρΨt∗
‖x0‖2)

2

λ2
min

(∫ t∗

0 b(t) bT(t)dt
)




(46)

with θξ = inf

θ ∈ R0+ : Kξx ≤
θ

sup
0≤t≤t∗

‖x(t)‖2

 , α = α(ρΨ , t∗) = max
(∣∣∣1− e−ρΨt∗

∣∣∣ , ∣∣∣e|ρΨ |t∗ − 1
∣∣∣) , γ =

γ(t∗) = max
(
1 , e−ρΨt∗

)
, and β(ρΨ , t∗) =

{
K2

Ψ0 if ρΨ0 ≤ 0
K2

Ψ0e−2ρΨ0t∗ if ρΨ0 > 0
.

Then, sup
0≤t≤t∗

‖x(t)‖2 ≤Mx.

Proof. Note from (31) that since the controllability grammian and its inverse are symmetric on any time
interval, denoting with λmin(.) and λmax(.) the minimum and maximum eigenvalues of the square
symmetric-(.) matrix, one has:

‖u(t)‖2 ≤ ‖b(t)‖2 ‖Ψ(t∗, t)‖2 ‖G
−1
c[0,t∗](A(t) , b(t))‖

2
‖ x∗ −Ψ(t∗ , 0)x0‖2

=
‖b(t)‖2 sup

0≤t≤t∗
‖Ψ(t∗,t)‖2 ‖ x∗−Ψ(t∗ , 0)x0‖2

λmin (Gc[0,t∗](A(t) ,b(t)))

≤

‖b(t)‖2 sup
0≤t≤t∗

λ1/2
max (Ψ(t∗,t)ΨT(t∗,t)) ‖ x∗−Ψ(t∗ , 0)x0‖2

inf
0≤t≤t∗

λmin (Ψ(t∗,t)ΨT(t∗,t))λmin

(∫ t∗

0 b(t) bT(t)dt
) ; ∀t ∈ [0 , t∗]

(47)

Since λ1/2
max

(
Ψ(t, τ)ΨT(t, τ)

)
= ‖Ψ(t, τ)‖2 ≤ KΨe−ρΨ(t−τ) and λmin

(
Ψ(t, τ) ΨT(t, τ)

)
≥

K2
Ψ0e−2ρΨ0 (t−τ); ∀t(≥ τ) , τ ∈ R0+ and then:

β = β(ρΨ0 , t∗) = inf
0≤t≤t∗

λmin
(
Ψ(t∗, t)ΨT(t∗, t)

)
=

{
K2

Ψ0 if ρΨ0 ≤ 0
K2

Ψ0e−2ρΨ0t∗ if ρΨ0 > 0
(48)
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Note that, since ρΨ0 ≥
ρΨ
2 , then if ρΨ0 ≤ 0⇒ ρΨ ≤ 0 so that the current linearized system is either

unstable or critically stable and ρΨ > 0⇒ ρΨ0 > 0 so that the system is exponentially stable. Define
also γ = γ(t∗) = max

(
1 , e−ρΨt∗

)
. Then, one gets from (48) into (47) that:

‖u(t)‖2 ≤
KΨγ
β
‖b(t)‖2 ‖ x∗−Ψ(t∗ , 0)x0‖2

λmin

(∫ t∗

0 b(t) bT(t)dt
) ≤ KΨγ

β

 ‖b(t)‖2 (‖ x∗‖2+KΨe−ρΨt∗
‖x0‖2)

λmin

(∫ t∗

0 b(t) bT(t)dt
)

;

∀t ∈ [0 , t∗]

(49)

Define Mx = Mx(t∗) = sup
0≤t≤t∗

‖x(t)‖2 ≤ θξ/Kξx for some θξ ∈ R0+. Thus, one has from (45) into

(41) that:

Mx = sup
0≤t≤t∗

‖x(t)‖2 ≤ sup
0≤t≤t∗

‖Ψ(t, 0)‖2‖x0‖2 + sup
0≤t≤t∗

sup
0≤τ≤t

‖

∫ t
0 Ψ(t, τ) dτ‖

2

×

(
KξxM2

x + sup
0≤t≤t∗

(
‖b(t)‖2 + Kξu sup

0≤t≤t∗
‖u(t)‖2

)
sup

0≤t≤t∗
‖u(t)‖2

)
≤ KΨ max

(∣∣∣1− e−ρΨt∗
∣∣∣ , ∣∣∣e|ρΨ |t∗ − 1

∣∣∣)[ 1
|ρΨ|

(
KξxθξM2

x + sup
0≤t≤t∗

(
‖b(t)‖2 + Kξu sup

0≤t≤t∗
‖u(t)‖2

)
sup

0≤t≤t∗
‖u(t)‖2

)]
+KΨe−ρΨt∗

‖x0‖2

(50)

so that, since KξxM2
x ≤Mx, one gets by defining α = α(ρΨ , t∗) = max

(∣∣∣1− e−ρΨt∗
∣∣∣ , ∣∣∣e|ρΨ |t∗ − 1

∣∣∣) and after
re-arranging factors of Mx and re-allocating them to the left-hand-side of the above equation:

Mx ≤

(
1− αKΨ
|ρΨ|

)−1(
KΨe−ρΨt∗

‖x0‖2

+KΨα

|ρΨ|

[
sup

0≤t≤t∗

(
‖b(t)‖2 + Kξu sup

0≤t≤t∗
‖u(t)‖2

)
sup

0≤t≤t∗
‖u(t)‖2

] ) (51)

The substitution of (49) into (51) yields sup
0≤t≤t∗

‖x(t)‖2 ≤Mx ≤Mx with Mx defined in (46) provided

that
∣∣∣ρΨ

∣∣∣ > αKΨθξ = KΨθξ max
(∣∣∣1− e−ρΨt∗

∣∣∣ , ∣∣∣e|ρΨ |t∗ − 1
∣∣∣). Note that the condition KξxMx ≤ θξ <

|ρΨ|
αKΨ

always hold for some θξ ≥ 0 if Kξx is small enough to satisfy Kξx <
|ρΨ|

αKΨ sup
0≤t≤t∗

‖x(t)‖2
. Such a constraint

is guaranteed by looking for a lower bound than |ρΨ|

αKΨ sup
0≤t≤t∗

‖x(t)‖2
by using sup

0≤t≤t∗
‖x(t)‖2 ≤ Mx via (51)

resulting to be Kξx <
|ρΨ|

αKΨMx
. �

The results of Theorem 6 are now specialized for the case when the targeting objective is an
asymptotic objective, that is, scheduled for arbitrarily large time t∗.

Corollary 1. Assume that the assumptions of Theorem 6 hold with ρΨ > 0 (implying that the current linearized
system is exponentially stable) so that the Assumption A3 becomes:

1− e−ρΨt∗ <

∣∣∣ρΨ
∣∣∣

KΨ

and that:

lim inf
t∗→∞

β(ρΨ , t∗)λmin

∫ t∗

0
b(t)bT(t)dt

 ≥ β1 > 0

lim sup
t∗→∞

β(ρΨ , t∗)λmin

∫ t∗

0
b(t)bT(t)dt

 ≤ β2 < +∞
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Then:

lim sup
t∗→∞

Mx(t∗) −
K2

ΨρΨ

(ρΨ −KΨθξ)ρΨβ1
sup

0≤t≤t∗
‖b(t)‖22

(
1 +

2KΨKξu‖x∗‖2
β1

)
‖x∗‖2

 ≤ 0 (52)

lim
Kξu→0

lim sup
t∗→∞

Mx(t∗) −
K2

ΨρΨ

(ρΨ −KΨθξ)ρΨβ1
sup

0≤t≤t∗
‖b(t)‖22 ‖x

∗
‖2

 ≤ 0 (53)

Proof. First, note that (46) can be rewritten equivalently as follows after grouping terms:

Mx = Mx(t∗)

=
KΨρΨ

ρΨ−αKΨθξ


1 +

αγK2
Ψ

ρΨβλmin

(∫ t∗

0 b(t) bT(t)dt
)
 1 +

2K2
ΨγKξue−ρΨ t∗

‖x0‖2

βλmin

(∫ t∗

0 b(t) bT(t)dt
)
 sup

0≤t≤t∗
‖b(t)‖22

λmin

(∫ t∗

0 b(t) bT(t)dt
)
 e−ρΨt∗

‖x0‖2

+

 KΨαγ

ρΨβλmin

(∫ t∗

0 b(t) bT(t)dt
) sup

0≤t≤t∗
‖b(t)‖22

 1 + 2γKΨKξu‖x∗‖2

βλmin

(∫ t∗

0 b(t) bT(t)dt
)

 ‖x∗‖2


(54)

Under the given assumptions, one has from (54) that, since ρΨ > 0, it follows that
α(ρΨ , t∗) = 1− e−ρΨt∗

→ 0 as t∗ →∞ and γ = 1, and then (52)–(53) hold. �

Another elementary targeting error estimate result follows below for the case when the current
linearized system arises perfect targeting and the nonlinear disturbance grows slower than some power
of the state norm.

Theorem 7. Let Assumptions A1 to A4 of Theorem 6 to hold and the constraint of A5 is replaced with the following one for
some real constant µ ∈ (1 , 2):

‖ξ(x(t) )‖ ≤ Kξx‖x(t)‖
µ
2 ; t ∈ [0 , t∗] (55)

Assume also that Kξx is small enough such that the condition C1 below holds:
C1)

Kξx ≤ inf
0≤t≤t∗

1

KΨ
∣∣∣1− e−(µ−1)ρΨt∗/µ

∣∣∣µ
 (µ− 1)

∣∣∣ρΨ
∣∣∣µ/(µ−1)

µ


µ

‖ξ(x(t) )‖1/µ(∫ t∗

0 ‖ξ(x(σ))‖
1/µ

2
dσ

)µ (56)

Then, if the targeting control law for the current linearized system (37) is applied to the current system, one has the
following targeting error estimate:

‖x(t∗) − x∗‖
q

2
≤ 4

K2
Ψ

|ρΨ|
2

(
qKΨKξx

(q−1) |ρΨ|
q/(q−1)

)q∣∣∣1− e−(q−1)ρΨt∗/q
∣∣∣q ∣∣∣1− e−2ρΨt∗

∣∣∣2
×

‖x0‖
2
2 + t∗2

K3
Ψγ

|ρΨ|
2
β

sup
0≤t≤t
‖b(σ)‖32

(‖ x∗‖2+KΨe−ρΨ t∗
‖x0‖2)

2

λ2
min

(∫ t∗

0 b(t) bT(t)dt
)


+2

(
qKΨKξx

(q−1)|ρΨ|
q/(q−1)

)q∣∣∣1− e−(q−1)ρΨt∗/q
∣∣∣q ‖ξ(x(t) )‖2/µ

K2
ξx

(57)

Proof. Note from (55) and condition C1 that;

0 ≤ ‖ξ(x(t) )‖1/µ
−KξxKΨ

(
µ

(µ−1)|ρΨ|
µ/(µ−1)

)µ∣∣∣1− e−(µ−1)ρΨt∗/µ
∣∣∣µ (∫ t

0 ‖ξ(x(σ))‖
1/µ

2
dσ

)µ
≤ ‖ξ(x(t) )‖1/µ

−Kξx

(∫ t
0 ‖

∫ τ
0 Ψ(τ, σ)dσ‖(µ−1)/µ

2 dτ
)µ/(µ−1) (∫ t

0 ‖ξ(x(σ))‖
1/µ

2
dσ

)µ
≤ ‖ξ(x(t) )‖1/µ

−Kξx‖
∫ t

0

∫ τ
0 Ψ(τ, σ)ξ(x(σ))dσdτ‖

2
≤ Kξx‖

∫ t
0 Ψ(τ, 0)x0 +

∫ τ
0 (Ψ(τ, σ)b(σ) u(σ))dσdτ‖;

t ∈ [0 , t∗]

(58)
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so that:

‖

∫ t

0

∫ τ

0
Ψ(τ, σ)ξ(x(σ))dσdτ‖

2
≤
‖ξ(x(t) )‖1/µ

Kξx
; t ∈ [0 , t∗] (59)

On the other hand. since the current linearized system is PR (x∗, t∗ , x0) and its perfect state targeting
objective x∗(t∗) = x∗ at time t = t∗ is achieved by the control law (37) it turns out, by using (55) and
H

..
older´s inequality in (56) with q = 2/µ > 1 and p = q/(q− 1) = 2

2−µ , that the current system satisfies:

‖x(t∗) − x∗‖2 = ‖
∫ t∗

0 Ψ(t∗ , τ) ξ(x(τ)) dτ‖
2
≤

(∫ t∗
0 ‖Ψ(t∗ , τ) dτ‖

(q−1)/q

2

)q/(q−1) (∫ t∗
0 ‖ξ(x(τ)) dτ‖

q

2

)
1/q

≤
KΨKξx

|ρΨ|
q/(q−1)

(q−1)

∣∣∣1− e−(q−1)ρΨt∗/q
∣∣∣q/(q−1)

(∫ t∗

0 ‖ x(τ)‖µq
2 dτ

)1/q (60)

Thus:

‖x(t∗) − x∗‖
q

2
≤

(
qKΨKξx

(q−1)|ρΨ|
q/(q−1)

)q∣∣∣1− e−(q−1)ρΨt∗/q
∣∣∣q(∫ t∗

0 ‖x(τ)‖
2
2dτ

)
≤

(
qKΨKξx

(q−1)|ρΨ|
q/(q−1)

)q∣∣∣1− e−(q−1)ρΨt∗/q
∣∣∣q(∫ t∗

0 ‖x(τ)‖
2
2dτ

) (61)

≤

(
qKΨKξx

(q−1) |ρΨ|
q/(q−1)

)q∣∣∣1− e−(q−1)ρΨt∗/q
∣∣∣q

×

((∫ t∗

0 ‖Ψ(τ, 0)x0 +
∫ τ

0

(
Ψ(τ, σ)b(σ) u(σ) +

∫ τ
0 Ψ(τ, σ)ξ(x(σ))

)
dσ‖

2

2

)
dτ

) (62)

and by using (59) for the nonlinear dynamics contribution upper-bound and (49) for the control
upper-bound, one gets:

‖x(t∗) − x∗‖
q

2
− 2

(
qKΨKξx

(q−1)|ρΨ|
q/(q−1)

)q∣∣∣1− e−(q−1)ρΨt∗/q
∣∣∣q ‖ξ(x(t) )‖2/µ

K2
ξx

≤ ‖x(t∗) − x∗‖
q

2
− 2

(
qKΨKξx

(q−1)|ρΨ|
q/(q−1)

)q∣∣∣1− e−(q−1)ρΨt∗/q
∣∣∣q(∫ t∗

0

∫ τ
0 Ψ(τ, σ)ξ(x(σ))dσdτ

)2

≤ 2
(

qKΨKξx

(q−1) |ρΨ|
q/(q−1)

)q∣∣∣1− e−(q−1)ρΨt∗/q
∣∣∣q((∫ t∗

0 ‖Ψ(τ, 0)x0 +
∫ τ

0 (Ψ(τ, σ)b(σ) u(σ))dσ‖
2
2

)
dτ

)
≤ 4

(
qKΨKξx

(q−1) |ρΨ|
q/(q−1)

)q∣∣∣1− e−(q−1)ρΨt∗/q
∣∣∣q((∫ t∗

0 ‖Ψ(τ, 0)‖2dτ
)
2
‖x0‖

2
2 +

(∫ t∗

0

∫ τ
0 Ψ(τ, σ)b(σ) u(σ)dσdτ

)
2
)

≤ 4
K2

Ψ

|ρΨ|
2

(
qKΨKξx

(q−1) |ρΨ|
q/(q−1)

)q∣∣∣1− e−(q−1)ρΨt∗/q
∣∣∣q ∣∣∣1− e−2ρΨt∗

∣∣∣2×(‖x0‖
2
2 + t∗2

K2
Ψ

|ρΨ|
2 sup

0≤σ≤t
‖b(σ)‖22 ‖u(σ)‖

2
2

)
≤ 4

K2
Ψ

|ρΨ|
2

(
qKΨKξx

(q−1) |ρΨ|
q/(q−1)

)q∣∣∣1− e−(q−1)ρΨt∗/q
∣∣∣q ∣∣∣1− e−2ρΨt∗

∣∣∣2
×

‖x0‖
2
2 + t∗2

K3
Ψγ

|ρΨ|
2
β

sup
0≤σ≤t

‖b(σ)‖32
(‖ x∗‖2+KΨe−ρΨ t∗

‖x0‖2)
2

λ2
min

(∫ t∗

0 b(t) bT(t)dt
)



(63)

and the result follows directly from (63). �

4. Output Reachability, Output Approximate Reachability and Practical Constraints

4.1. Output Reachability and Output Approximate Reachability

It is direct to extend Definitions 1–4 to the various parallel concepts from (state) reachability of
output point reachability and approximate output reachability OPR (y∗, t∗ , x0) and AOPR (y∗, t∗ , x0) in a
direct way when the targeted objective at time t∗ is just to prefix an output value y(t∗) = y∗ = cT(t∗)x∗ to
be either exactly or approximately targeted. The basic ideas are easy to extend from the former section
so that we only give some guidelines. Suppose for the shake of simplicity that the direct input-output
interconnection gain d(t) = d0 ≡ 0. Basically, the output controllability gramians on [0 , t∗] of the current
and nominal linearized systems are, respectively:
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Goc[0,t∗]

(
cT(t), A(t) , b(t)

)
=

∫ t∗
0 cT(τ)Ψ(t∗ , τ)b(τ)bT(τ)ΨT(t∗ , τ)c(τ)dτ

Goc0[0,t∗]

(
cT

0 , A0 , b0
)
=

∫ t∗
0 cT

0 eA0(t∗−τ)b0bT
0 eAT

0 (t
∗
−τ)c0dτ The (exact) point reachability of each system

holds if the above respective scalar output controllability gramian on [0 , t∗] is nonzero. Note that
the nominal system is controllable implying point reachability for any time instant if and only if
the output controllability matrix of the nominal linearized system

[
cT

0 , cT
0 A0b0 , · · · , cT

0 An−1
0 b0

]
, 0. In

the case of multi-output, i.e., y(t) ∈ Rp with p ≥ 2 and cT
0 → C0 , cT(t)→ C(t) , in the parameterizations

and the controllability gramians, with C0 , C(t) ∈ Rp×n then the applicable condition is that the
multi-output controllability gramian of the nominal, or respectively current, linearized system on
[0 , t∗] is nonsingular. For the nominal linearized system, the above property holds if and only if
rank

[
C0b0 , C0A0b0 , · · · , C0An−1

0 b0
]
= p.

The results of the above sections can be extended directly for output reachability with minor
direct changes.

The control laws for exact/approximate output targeting at the time instant t∗ > 0 are the subsequent
ones for the case of zero input-output interconnections gains d(t) , d0, or D(t) , D0 if p ≥ 2:

(a) For the exact reachability OPR (y∗, t∗ , x0) of the current linearized linear system and also for the
approximate reachability (AOPR (y∗, t∗ , x0)) of the current system at t∗ > 0 based on the same control,
where y∗ = C(t∗)x∗, the control law (37) is modified as follows:

u(τ) = bT(τ)ΨT(t∗, τ)G−1
oc[0,t∗](C(τ) , A(τ) , b(τ))(x∗ −Ψ(t∗ , 0)x0); τ ∈ [0 , t∗] (64)

(b) For the OPR (y∗, t∗ , x0) of the nominal linearized system and also for the AOPR (y∗, t∗ , x0) of the
current system based on the same control at t∗ > 0, the control law (12) is modified by replacing in (64):

b(τ)→ b0, Goc[0,t∗](C(τ), A(τ) , b(τ))→ Goc0[0,t∗](C0, A0 , b0).

4.2. Solvability Constraints When the Linearized Systems Are Not Controllable

If the linearized systems are non-controllable then the corresponding controllability gramians
are singular. Therefore, the exact point reachability property introduces restrictions on the tentative
targeted points x∗ at t∗ for the linearized systems for the given initial condition x0. In particular, one has
from (5) and the Rouché-Froebenius theorem from linear algebra, that for a control of the form;

u0(τ) = bT
0 eAT

0 (t
∗
−τ)v0(t∗) (65)

guarantees the exact targeting condition:

x∗ − eA0t∗x0 −

∫ t+

0
eA0(t∗−τ)vx0(τ)dτ = Gc0[0,t∗](A0, b0)v0(t∗) (66)

for the current non-linear system under some existing auxiliary controls v0(t∗) if, for given x0 and t∗,x∗

satisfies the constraint:

rankGc0[0,t∗](A0, b0) = rank
[
Gc0[0,t∗](A0, b0) , x∗ − eA0t∗x0 −

∫ t∗

0
eA0(t∗−τ)vx0(τ)dτ

]
(67)

The same control (65) has solutions for point reachability of the nominal linearized system if;

rankGc0[0,t∗](A0, b0) = rank
[
Gc0[0,t∗](A0, b0) , x∗ − eA0t∗x0

]
(68)
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Proposition 1. Assume that (68) holds for a given triple (x∗, t∗ , x0) . Then the nominal linearized system is PR (x∗, t∗ , x0)

and the current nonlinear system is PR (x∗, t∗ , x0) for some targeted x∗ which satisfies the following closeness to x∗ constraint:

‖x∗‖ ∈
[∣∣∣∣∣∣‖x∗‖ − ‖

∫ t∗

0
eA0(t∗−τ)vx0(τ)dτ‖

∣∣∣∣∣∣ , ‖x∗‖+ ‖
∫ t∗

0
eA0(t∗−τ)vx0(τ)dτ‖

]
.

If the controllability gramian is singular but (68) holds then the algebraic system (66) is compatible
indeterminate and has infinitely many solutions. Note that (68) also holds if the controllability gramian
is non-singular. Therefore, (68) holds if and only if (66) is solvable. If (66) is solvable then Proposition 1
holds for approximate reachability of the current nonlinear system. It is also known [16] that, if (68)
holds, then the either unique or the infinitely many solutions of (66) are found from the as:

v0(t∗) = G†c0[0,t∗](A0, b0)

x∗ − eA0t∗x0 −

∫ t+

0
eA0(t∗−τ)vx0(τ)dτ

 (69)

where G†c0[0,t∗](A0, b0) is the Moore-Penrose pseudoinverse of Gc0[0,t∗](A0, b0), which coincides with the
inverse if the controllability gramian is non-singular. If Gc0[0,t∗](A0, b0) has rank r(≤ n) then it can be
factorized as Gc0[0,t∗](A0, b0) = GCGD, where GC ∈ Rn×r and GD ∈ Rr×rn are both of rank r. The subsequent
result follows concerning all the set of solutions of (66), or the best approximated solution if (66) is
algebraically incompatible, by taking into account the above considerations and the basic related
results on pseudoinverse matrices in [15,16]:

Theorem 8. The following properties hold:
(i) Assume that (68) holds so that (66) is solvable in v0(t∗). Then:

Gc0[0,t∗](A0, b0)G†c0[0,t∗](A0, b0)

x∗ − eA0t∗x0 −

∫ t+

0
eA0(t∗−τ)vx0(τ)dτ

 = x∗ − eA0t∗x0 −

∫ t+

0
eA0(t∗−τ)vx0(τ)dτ

 (70)

and the control law (12) is calculated by the set of primary control solutions to the nominal linearized system is given by:

v0a(t∗) = v0a(t∗ , V0) = G†c0[0,t∗](A0, b0)
(
x∗ − eA0t∗x0 −

∫ t∗

0 eA0(t∗−τ)vx0(τ)dτ
)

+
(
In −G†c0[0,t∗](A0, b0)Gc0[0,t∗](A0, b0)

)
V0

(71)

where V0 ∈ Rn is arbitrary and which becomes the unique solution (69) if the controllability gramian is non-singular.
(ii) Assume that (68) fails so that (66) is algebraically incompatible. Then, the primary control (71) with V0 = 0 gives

in the control law (12) the best approximation of the error norm for the reachability problem of the nominal linearized system
in the sense that

v0a(t∗ , 0) = Arg min ‖x∗ − eA0t∗x0 −

∫ t+

0
eA0(t∗−τ)vx0(τ)dτ−Gc0[0,t∗](A0, b0)v0a(t∗ , V0)‖ (72)

Remark 3. If the reachability of the current linearized system is taken as basis to solve the problem then (71) is replaced for
an arbitrary Vc ∈ Rn with;

vc(t∗) = G†c[0,t∗](A(t), b(t))
(
x∗ − eA0t∗x0 −

∫ t∗

0 Ψ(t∗, τ)ξ(τ)dτ
)

+
(
In −G†c[0,t∗]

(
A0, b0(A(t),b(t))

)
Gc0[0,t∗](A(t), b(t))

)
Vc

(73)

and a parallel result to Theorem 8 can easily by established for the two cases following when;

rankGc[0,t∗](A(t), b(t)) = rank
[
Gc[0,t∗](A(t), b(t)) , x∗ − eA0t∗x0 −

∫ t∗

0
Ψ(t∗, τ)ξ(τ)dτdτ

]
(74)
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holds or fails by implementing the control law (37) based on the primary control (73).

For the case of output reachability, one uses (64) with the output controllability gramian of the
current linearized system for the counterpart of the control law (37) or its direct modification using
the output controllability gramian of the nominal linearized system. In this way, we obtain either
compatible controls or those giving the best approximation of the error norm if the problem is not
solvable. Direct “ad hoc” extensions of Theorem 8 and Remark 3 are direct and are not detailed.

4.3. Constraints Associated with Saturated Controls

Assume that either (12) or (37), that is, the controls based on the linearized nominal or current
systems are saturated to be constrained within prescribed closed domains. Then,

a) Equation (12) is modified as follows:

u0(τ) = satu01, u02 (u0(τ)) =


u02 i f u0(τ) ≥ u02

u0(τ) i f u0(τ) ∈ (u01 , u02)

u01 i f u0(τ) ≤ u01

; τ ∈ [0 , t∗] (75)

u0(τ) = bT
0 eAT

0 (t
∗
−τ)G−1

c[0,t∗](A0 , b0)
(
x∗ − eA0t∗x0

)
; τ ∈ [0 , t∗] (76)

b) Equation (37) is modified as follows:

u(τ) = satu1, u2 (u(τ)) =


u2 i f u(τ) ≥ u2

u(τ) i f u(τ) ∈ (u1 , u2)

u1 i f u(τ) ≤ u1

; τ ∈ [0 , t∗] (77)

u(τ) = bT(τ)ΨT(t∗, τ)G−1
c[0,t∗](A(τ) , b(τ))(x∗ −Ψ(t∗ , 0)x0); τ ∈ [0 , t∗] (78)

The above modified saturated controls can be extended directly “mutatis-mutandis” to the
subsequent problems:

1) Output reachability, for instance, the control effort (64) or its counterpart being based on the output
reachability of the linearized nominal system. In this case, the targeting error for approximate
reachability of Proposition 1 would become modified by including an error source generated by
the deviation of the input from linearity as follows:

‖x∗‖ ∈

∣∣∣∣∣∣‖x∗‖ −
‖∫ t∗

0
eA0(t

∗
−τ)

vx0(τ) +

 u01

satu01, u02
(u0(τ))

− 1

dτ‖+

∣∣∣∣∣∣ , ‖x∗‖+ ‖
∫ t∗

0
eA0(t

∗
−τ)

vx0(τ) +

1−
u02

satu01, u02
(u0(τ))

dτ‖

 (79)

or the alternative expression derived under the reachability of the linearized current system.
2) Non-unique solvability or algebraic incompatibility as discussed in Theorem 8 and Remark 3 by

adding similar error sources caused from the deviation of the input from linearity.

Typical examples of control saturation arise in vaccination in epidemic models since the vaccination
effort cannot be negative and cannot be larger than unity if fractions of susceptible subpopulations are
vaccinated via feedback.

5. Considerations on Reachability and Output Reachability in Some Epidemic Models Though
Worked Examples

Some of the above concerns on reachability and approximate reachability are now discussed
and emphasized on typical usual epidemic models which have in common the presence of nonlinear
quadratic terms involving contributions to the dynamics of the products of susceptible and infectious
subpopulations which plays a crucial role in the mechanism of the infective disease transmission. Such
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terms deviate the solution trajectory from the linear behavior about the equilibrium points. See, for
instance, [5–14] and also [16–21] and some of the references therein.

Example 1. It can be argued that the epidemic models are not controllable or reachable in general. The following
brief discussion leads to justify this claim. The so-called SEIR (including susceptible-exposed-infectious and recovered
subpopulations) epidemic models possess typically a nonlinear quadratic term of the form βS(t)I(t), β being the disease
coefficient transmission rate (which depends on the particular infectious disease under study), which governs the disease
transmission. From biological considerations, all the state components (roughly speaking, the subpopulations of the model)
have to be non-negative for all time. Assume an SEIR epidemic model with a unique disease-free equilibrium point and
a unique endemic equilibrium point of a constant linear parameterization with linear vaccination effort V(t) whose state
is x(t) = (S(t) , E(t) , I(t) , R(t))T and whose total population N(t) = S(t) + E(t) + I(t) + R(t) = N(0) is constant
for all time. This situation is common in many SEIR models. See, for instance, Reference [15]. Assume that the basic
reproduction number [5,6], is less than unity so that the disease-free equilibrium point xe = (Se, 0 , 0 , N(0) − Se)T , 0 is
globally asymptotically stable, [3,5,6]. Since x(t)→ xe as t→∞ , it turns out that, for t∗ = +∞ , no other targeted
state x∗(, xe) can be prefixed as objective for any given initial state x(0) even for the current linearized version. As a
result, Goc[0,∞)(A0 , b0) = lim

t∗→∞

∫ t∗
0 eA0(t∗−τ)b0bT

0 eAT
0 (t
∗
−τ)dτ is singular and the linearized system is not asymptotically

controllable and it is not asymptotically point-reachable for arbitrarily fixed x(∞) = x∗ , xe t∗ = +∞. Since the integrand
of the gramian is a semidefinite matrix, so that all its eigenvalues are non-negative and at least one of them is positive. Note,
by inspection, that the maximum eigenvalue of the integrand λmaxGoc[0,∞)(A0 , b0)(τ) = eA0(t∗−τ)b0bT

0 eAT
0 (t
∗
−τ) > 0 if

0 ≤ t∗ − τ < +∞ , that is, lim
t∗→∞

bT
0 eAT

0 t∗
(∫
∞

0 e−AT
0 τe−A0τdτ

)
eA0t∗b0) is positive.

Since Goc[0,∞)(A0 , b0) = lim
t∗→∞

∫ t∗
0 eA0(t∗−τ)b0bT

0 eAT
0 (t
∗
−τ)dτ is singular then its maximum eigenvalue is

infinity, that is, lim
t∗→∞

bT
0 eAT

0 t∗
(∫
∞

0 e−AT
0 τe−A0τdτ

)
eA0t∗b0 = +∞ and the maximum eigenvalue of the gramian.

It can be said that is it asymptotically reachable from any initial condition if the targeted state at
infinity only if the disease-free equilibrium point, i.e., x∗(∞) = xe. From Definition 2, the nominal
linearized system is not reachable either since reachability fails at infinite time for any point except for
the disease- free equilibrium one. However, it can be point reachable for certain given triples (x∗ , t∗, x0)

which should be necessarily subject to the constraint the that the sum of their components equalize
N(0). Point reachability is not possible at the time instant t∗ if such a constraint is violated. The same
conclusion can arise for the current linearized system. Just from the above empiric consideration on
necessary conditions for reachability, we can conclude that:

Asymptotic reachability of both the nominal linearized and current system are only achievable
if the targeted point at infinity time is the disease-free equilibrium point. In particular, the exposed
and infectious subpopulations should be zero. The only freedom is that such a point can be governed
by the steady-state vaccination effort which allows to modify correspondingly, depending on such
an effort, the equilibrium susceptible and recovered subpopulations while keeping each component
non-negative and their sum equal to the total population.

Finite-time reachability at the time instant t∗ of the linearized system about the disease-free
equilibrium point is only achievable if the targeted state has non-negative components whose sum
equalizes the initial total population. Since there is no reachability of the nominal linearized system
for arbitrary triples of initial conditions, targeted state and targeted time, one concludes that the pair
(A0 , b0) of such SEIR epidemic models is not controllable via vaccination controls.

If the reachability of the linearized systems in the sense of Definition 2 for an arbitrary targeted
point about the equilibrium fail then that of the current system also fails. The same above basic
principles are kept for the asymptotic reachability of the endemic equilibrium point in the case when
the reproduction number exceeds unity.

If the problem is stated for output-reachability with the dimension of the output less than that of
the state (for instance, the output has only one to three of the sate components) then the considerations
are close but the constraints are easy to satisfy. For instance, the targeted output has only to be
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constrained to its components to be non-negative and their sum to be less than or equal to the initial
total population.

A simple intuitive entropy-based interpretation of the probabilities of both attractors to be the
relevant equilibrium point is as follows. Note that we cope with a very common situation that the
epidemic model possess a unique disease-free equilibrium point and a unique endemic one. Then, if
the reproduction number R0 ≤ 1 (typically, the disease transmission rate β does not exceed a certain
critical value βc associated with R0 = 1) then the endemic equilibrium point typically does not exist as
being compatible with the non-negative solution trajectories while the unique globally asymptotically
stable attractor is the disease-free one. So, we can say that that the probability of the trajectory to
reach the first one is pd f = 1 while that of reaching the second one is pend = 0. Thus, the entropy is
H = −

(
pd f ln pd f + pend ln pend

)
= 0 [22]. The same conclusion arises if R0 > 1 (typically, the transmission

rate β exceeds the critical value βc) since then the disease-free equilibrium point is unstable while
the endemic one is asymptotically stable pd f = 0 and pend = 1 and again H = 0. In general, if the
reproduction number lies in [1− γ1 , 1 + γ2], with γ1 ∈ [0 , 1] and γ2 ≥ 0, or if the transmission rate can
oscillate around the critical value, that is β ∈ [βc − δ1 , βc + δ2], then pd f = α ∈ [0 , 1], pend = (1− α) ∈ [0 , 1]
and the entropy is H(α) = −(α lnα+ (1− α) ln(1− α)). As a result if α is close to unity (respectively, to
zero) then the disease-free equilibrium (respectively, the endemic equilibrium point) is the “most
probable” attractor. In particular, H(0) = H(1) = 0, that is the solution trajectory converges either
to the disease-free equilibrium point α = γ1 = 1 and δ1 ∈ [0 , βc], γ2 = δ2 = 0) or to the endemic one
(α = γ1 = δ1 = 0 and γ2 > 0, δ2 > 0), and max

α∈[0 , 1]
H(α) = H(1/2) = − ln(1/2) = 0.6931 > 0 gives the maximum

uncertainty about which equilibrium is the most probable attractor indicating that both of them are
“unlikely probable with the same uncertainty degree”.

Example 2. Consider the subsequent SIR model with time-invariant parameterization and a vaccination control V(t)
including an additive term proportional to the susceptible and another eventual free-choice additive term:

.
S(t) = −βI(t)S(t) −V(t) = −(βI(t) + KV)S(t) − g(t)

.
I(t) = (βS(t) − ν)I(t)

.
R(t) = νI(t) + V(t) = KVS(t) + vI(t) + g(t)

V(t) = KVS(t) + g(t)

(80)

where β is the disease transmission rate and ν is the removal rate, KV ∈ [0 , 1] is the control gain of vaccination of a
fraction of the susceptible and (−KVS(t) ≤)g(t)→ ge(≥ 0) as t→∞ . The total population is N(t) = S(t) + I(t) +R(t)
By summing up the three first equations one gets that the resulting right-hand-side is identically
zero

.
N(t) = 0 so that the total population N(t) = N(0) = S(0) + I(0) + R(0) for all time. The equilibrium points are

xe = (Se , Ie, Re)
T such that the three above time-derivatives are zero. So, the algebraic equation of the equilibrium points is:

−(βIe + KV) 0 0
0 βSe − ν 0

KV ν 0

 xe =


ge

0
−ge

 =


1
0
−1

ge

where the coefficient matrix is the Jacobian matrix corresponding to such an equilibrium. Thus, one has the subsequent cases:
1) If g(t) ≥ 0 so that ge ≥ 0 then:

Se = −
ge

βIe + KV
≥ 0⇒ Se = ge = 0

(βSe − ν)Ie = −νIe = 0⇒ Ie = 0

KVSe + νIe = −ge = 0 f oranyKV ≥ 0

Re = N(0) − Se − Ie = N(0)
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Ve = lim
t→∞

V(t) = KVSe + ge = 0 f oranyKV ∈ [0 , 1]

Then, the unique equilibrium point is a disease-free one xe = (0 , 0 , N(0))T , which depends on the initial conditions, and
with the whole population being asymptotically immune. The spectrum of the Jacobian matrix J = J(xe) is Λ = {0 ,−KV ,−ν}
which is critically stable with two zero eigenvalues if KV , 0 and one critically stable eigenvalue if KV = 0, so that, in the
absence of vaccination the stability properties become worsened with respect to the application of proportional vaccination to
the susceptible.

2) If g(t) ≤ 0 , so that ge ≤ 0 , with |g(t)| ≤ KVS(t) ≤ S(t) guaranteeing that V(t) ≥ 0 then

Se =
|ge|

βIe+KV
≥ 0, and

(βSe − ν)Ie =
(
β|ge|
βIe+KV

− ν
)
Ie = 0⇒ Ie = 0 or Ie =

β|ge|−νKV
βν which is zero (disease-free equilibrium point) if∣∣∣ge

∣∣∣ = νKV
β and nonzero (endemic equilibrium point) if

∣∣∣ge
∣∣∣ = (βIe + KV)Se >

νKV
β , that is, if Se >

νKV
β(βIe+KV)

.

KVSe + νIe = −ge = 0 for any KV ≥ 0 what implies that either KVSe = νIe =
∣∣∣ge

∣∣∣ = 0 , so that Se = Ie = ge = 0 ,
or KV = Ie = ge = 0 . As a result for both case of KV being zero or non-zero, the endemic equilibrium point does not exist
since it would make incompatible the conditions associated with the second row of the Jacobian matrix. Since ge = 0 then

Se =
|ge|

βIe+KV
= 0 irrespective of the vaccination control gain KV being zero or nonzero. Again, Re = N(0)− Se − Ie = N(0)

and Ve = lim
t→∞

V(t) = KVSe + ge = 0 for any KV ∈ [0 , 1]. As a result, the unique feasible equilibrium point is the
disease-free one xe of Case 1 which is again critically stable.

By considering the spectrum of the Jacobian matrix, it is seen that there are a critically stable
eigenvalue and a stable eigenvalue which cannot be either removed or prefixed and that the other one
can be prefixed by the choice of the control gain. Then, note the following facts:

It is obvious that the pair (A0 , b0) with A0 = J for Se = Ie = 0, Re = N(0) and b0 = (−1 , 0 , 1)T is
neither controllable nor stabilizable so that the nominal linearized system is not reachable in the sense
of Definition 2 for any given arbitrary triple (x∗, t∗ , x0). In particular, note that rank

(
b0 , Ab0, A2b0

)
= 1 < 3.

This implies that the linearized nominal system cannot be reachable at any finite time for any arbitrary
targeted state in the sense of Definition 2.

The linearized nominal system is exactly output-reachable if the output is defined to be the
susceptible subpopulation and the vaccination has no maximum constraint. Assume that the vaccination
control effort is just the proportional term to the susceptible, i.e., g(t) ≡ 0. Since the susceptible and
the infectious at the equilibrium are both zero, one has that the susceptible of the linearized nominal
system are S(t) = e−KVt∗S0. Assume that the targeted susceptible are S∗ < S0 at some t∗ > 0. Then,
KV = K∗V = − ln S∗

t∗ ln S0
targets S(t∗) = S∗ < S0. However, if S∗ ≥ S0 then KV ≤ 0 and the (exact) point

reachability of the linearized nominal system is unfeasible since vaccination cannot be implemented
with negative gains which would lead to increase the susceptible numbers.

In practice, the vaccination gain is restricted to KV ∈ [0 , 1] since the vaccination decreases the
number of susceptible and one cannot vaccinate more individuals that the susceptible amounts at each
time. Therefore, KV ∈

[
0 , max

(
1, − ln S∗

t∗ ln S0

)]
for a given t∗.

The current system is approximately reachable with a certain targeting error at any time instant t∗ > 0
if the vaccination control is unconstrained. In fact,

.
S(t) = −

(
βI(t) + K∗V

)
S(t) so that if KV = K∗V = − ln S∗

t∗ ln S0
> 0

has no upper-bound constraint then one gets:

S(t∗) = e−
∫ t

0 (βI(τ)+KVdτ)S0 = e−
∫ t∗

0 βI(τ)dτ
(
e−KVt∗S0

)
= e−

∫ t∗

0 βI(τ)dτS∗

= e−I0
∫ t∗

0 βe−ντdτS∗ = e−βI0(1−e−νt∗ )/νS∗
(81)

and, if S∗ = S0eλ
∗

S for some real λ∗S < 0, then the error between the susceptible of the current system at
the targeting time instant and the targeted susceptible of the linearized nominal systems is:

∣∣∣ln S(t∗) − ln S∗
∣∣∣ = βI0

(
1− e

ν(ln S0−|λ
∗

S |)

KV ln S0

)
/ν = βI0

(
1− e

ν(ln S0−|λ
∗

S |)

KV ln S0

)
/ν (82)
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However, if the vaccination control is constrained as KV ∈
[
0 , max

(
KV , K∗V

)]
with K∗V = − ln S∗

t∗ ln S0
> KV

for some given KV ≤ 1, which establishes the maximum fraction of susceptible allowed to be vaccinated,
then KV = KV = KV∗ −

∣∣∣KV −KV∗
∣∣∣, and:

S(t∗) = e−
∫ t

0 (βI(τ)+(KV∗−|KV−KV∗ |)dτ)S0 = e−
∫ t∗

0 βI(τ)dτ
(
e−KV∗ t∗S0

) (
e−|KV−KV∗ |t∗

)
= e−[βI0(1−e−νt∗ )/ν+|KV−KV∗ |t∗]S∗

(83)

Thus, (82) becomes modified as follows:

∣∣∣ln S(t∗) − ln S∗
∣∣∣ = βI0

1− e
ν(ln S0−|λ

∗

S |)

K∗V ln S0

/ν+
∣∣∣KV −KV∗

∣∣∣t∗ (84)

if t∗ <
∣∣∣λ∗S∣∣∣
ln S0
− 1 since K∗V > KV and KV = KV < K∗V, and:

∣∣∣ln S(t∗) − ln S∗
∣∣∣ = βI0

(
1− e

ν(ln S0−|λ
∗

S |)

KV ln S0

)
/ν = βI0

(
1− e

ν(ln S0−|λ
∗

S |)

KV ln S0

)
/ν (85)

if t∗ ≥
∣∣∣λ∗S∣∣∣
ln S0
− 1 since then KV = K∗V.

Example 3. Consider the following SI epidemic model with N interacting groups and the infection being transmitted within
and between groups which includes vaccination efforts and which was proposed (in the vaccination-free case) in [17,18]:

.
I j(t) = β

(
N j − I j(t)

)(
β jrI j(t) +

∑N

i(, j)=1
βi jrIi(t)

)
− T j(t) j = 1, 2, . . . , N (86)

subject to initial conditions I j(0) = I j0 ; j = 1, 2, . . . , N , where N j , I j and S j = N j − I j ; j = 1, 2, . . . , N are the total,
infectious and susceptible populations of the N groups with respective total populations at each group being constant: and
where βi j ; i, j = 1, 2, . . . , N is the mutual disease coefficient transmission rate from the i − th to the j − th group, β is
a reference disease coefficient transmission rate (typically, either the minimum, or the maximum or an average amount,
βi jr = βi j/β ; i, j = 1, 2, . . . , N , with β j j = β j and β j jr = β jr being a simplified notation for any j = 1, 2, . . . , N , are the
relative values of the βi j related to β and T j ; j = 1, 2, . . . , N are the antiviral treatment effort son the infectious. Assume that:

T j(t) = K j(t)
(
N j − I j(t)

)
K j(t) =

∑N

i=1
βi jIi(t) + ε j(t); j = 1, 2, . . . , N (87)

for any ε j : [0 , ∞)→
[
0 , ε j1

)
, with ε j(t) = 0 if and only if I j(t) = 0 ; j = 1, 2, . . . , N . But K j(t) ∈ [0, 1], implies that

ε j(t) ≤ ε j1 ≤ 1−
∑N

i=1
βi jIi(0) ≤ 1−

∑N

i=1
βi jIi(t); j = 1, 2, . . . , N (88)

since K j(t)
(
N j − I j(t)

)
is the fraction of susceptible used for antiviral treatment of the infectious at time t ; j = 1, 2, . . . , N .

Thus, it suffices that
∑N

i=1 βi jIi(0) ≤ 1− ε j1 and ε j1 < 1 ; j = 1, 2, . . . , N for (88) to hold resulting in I j(t) being strictly
monotonically decreasing, then I j(t)→ 0 as t→∞ ; j = 1, 2, . . . , N It has been proved the following:

Proposition 2. Assume that the epidemic model (86) is subject to the treatment control law (87) for any
ε j : [0 , ∞)→

[
0 , ε j1

)
, with ε j(t) = 0 if and only if I j(t) = 0 ; j = 1, 2, . . . , N , under the constraints ε j1 < 1

and sufficiently small initial conditions such that
∑N

i=1 βi jIi(0) ≤ 1− ε j1. Then, all the infectious subpopulations converge
strictly monotonically to zero so that the susceptible subpopulations of each group converge monotonically to the total
subpopulations of the corresponding groups. Furthermore, all the subpopulations are non-negative for all time under
non-negative initial conditions.

Assume now that the antiviral control (87) is modified as follows:

T j(t) =
∑N

i=1
λi j(t)Ii(t)I j(t) (89)
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where λi j : [0 , ∞)→ [0 , ∞) ; i, j = 1, 2, . . . , N. The replacement of (89) into (86) yields:

.
I j(t) =

∑N

i=1

[
βi jN j −

(
βi j + λi j(t)

)
Ii(t)

]
I j(t) ; j = 1, 2, . . . , N (90)

Now, choose:
λi j(t) =

1
Ii(t)

(
εi j(t) + βi j

(
N j − I j(t)

))
(91)

if Ii(t) , 0 and λi j(t) = 0 if Ii(t) = 0; i, j = 1, 2, . . . , N for some εi j : [0 , ∞)→ [0 , ∞) ; i, j = 1, 2, . . . , N, subject
to

∑N
i=1 λi j(t)Ii(t) ≤ 1 for all t ≥ 0, j = 1, 2, . . . , N so that (89) consists of giving a treatment on a fraction of

the infectious of that j-th group. This implies the subsequent constraint:∑N

i=1
λi j(t)

(
εi j(t) + βi j

(
N j − I j(t)

))
≤ 1 (92)

which is guaranteed if λi j(t) ∈
[

0 , 1
N (εi j(t)+βi j(N j−I j(t)))

]
; i, j = 1, 2, . . . , N. Under (92), one has from (90)

that
.
I j(t) = −

∑N
i=1 εi j(t) so that I j(t) ≤ I j(0) for all t ≥ 0 according to:

I j(t) = e−
∑N

i=1

∫ t
0 εi j(τ)dτI j(0) = e−

∑N
i=1

∫ t
0 (λi j(τ)Ii(τ)−βi j(N j−I j(τ)))dτI0 ; j = 1, 2, . . . , N (93)

with I j(0) = I j0; j = 1, 2, . . . , N. Then the reachability for any suited targeted state in the sense of

Definition 2 is not possible. However, the current system is PR
(
I
∗
, t∗ , I0

)
where I

∗
=

(
I∗1, I∗2, · · · I∗N

)T
and

I0 = (I10 , I20 , · · · , IN0)
T with the N constraints I∗j ≥ I j0; j = 1, 2, . . . , N, if εi j(t); i, j = 1, 2, . . . , N are such that

the control gains λi j : [0 , ∞)→ [0 , ∞) ; i, j = 1, 2, . . . , N are selected in (91) for a set of functions εi j(t) such

that ρ j =
∑N

i=1

∫ t∗

0 εi j(τ)dτ/t∗ = − 1
t∗ ln

( I∗j
I j0

)
; j = 1, 2, . . . , N.
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Appendix A Auxiliary Technical Results

Lemma A1. F(t) = In −
∫ t

0 eA0(t−τ)Ã(τ)Ψ(τ, t)dτ is non-singular for a given t ∈ R+ if the following two assumptions
hold:

1) A0 is a stability matrix so that ‖eA0t
‖ ≤ K0e−ρ0t ; ∀t ∈ R0+ for some real constants K0(≥ 1) and ρ0 > 0,

2)

‖

∫ t

0
eA0(t−τ)Ã(τ)Ψ(τ, t)dτ‖ < 1 (A1)

and (A1) holds if the assumption 3 below holds:
3)

sup
0≤τ≤t

‖Ã(τ)‖ < 1/‖
∫ t

0
eA0(t−τ)Ψ(τ, t)dτ‖ (A2)

and (A2) holds if the assumption 4 below holds:
4)

sup
0≤τ≤t

‖Ã(τ)‖ < ρ0/K0
(
1− e−ρ0t

)
‖Ψ(τ, t)dτ‖ (A3)

where Ψ(t, τ) ; ∀t(≥ τ), τ ∈ R0+ , which satisfies ‖Ψ(t, τ)‖ ≤ KΨe−ρΨ(t−τ) ; ∀t(≥ τ), τ ∈ R0+ ,is the fundamental of the
system

.
x(t) = A(t)x(t) , x(0) = x0, and (A3) holds if the assumption 5 below holds,
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5)
sup

0≤τ≤t
‖Ã(τ)‖ < (ρ0 − ρΨ)/K0KΨ

(
1− e−(ρ0−ρΨ) t

)
(A4)

for some real constants KΨ ≥ 1 and ρΨ ≥ ρ0 − sup
0≤t<+∞

‖Ã(t)‖ > 0 provided that sup
τ≤σ≤t

‖Ã(σ)‖ <
ρ0
K0

; ∀t(≥ τ), τ ∈ R and

that ρΨ ≤ ρ0 ≤ ρΨ + sup
0≤t<+∞

‖Ã(t)‖.

Proof Note that if Ψ(t, τ) is the fundamental matrix associated with A(t). Then,

Ψ(t, τ) = eA0(t−τ) +

∫ t

τ
eA0(t−σ)Ã(σ)Ψ(t, σ)dσ ; ∀t(≥ τ), τ ∈ R0+ (A5)

with Ψ(τ, τ) = In; ∀τ ∈ R0+, which is of exponential order on the interval τ ≤ σ ≤ t for any t(≥ τ), τ so that
there exist real constants KΨ ≥ 1,ρΨ ∈ R such that ‖Ψ(t, τ)‖ ≤ KΨe−ρΨ(t−τ); ∀t(≥ τ), τ ∈ R0+. On the other
hand, note that

‖Ψ(t, τ)‖ ≤ K0e−ρ0(t−τ) +
K0
ρ0

(
1− e−ρ0(t−τ)

)
sup
τ≤σ≤t

‖Ã(σ)‖ sup
τ≤σ≤t

‖Ψ(t, σ)‖; ∀t(≥ τ), τ ∈ R0+ (A6)

Note from Banach´s Perturbation Lemma and (A6) that one has for any t ∈ R0+:

‖F(t)‖−1
≤ ε5FM (t) =

ρ0 − ρΨ

ρ0 − ρΨ −K0KΨ
(
1− e−(ρ0−ρΨ) t

)
sup

0≤τ≤t
‖Ã(τ)‖

(if (A4) holds) (A7)

≤ ε4FM (t) =
ρ0

ρ0 −K0(1− e−ρ0t)‖
∫ t

0 Ψ(τ, t)dτ‖ sup
0≤τ≤t

‖Ã(τ)‖
(if (A3) holds) (A8)

≤ ε3FM (t) =
1

1− ‖
∫ t

0 eA0(t−τ)Ψ(τ, t)dτ‖ sup
0≤τ≤t

‖Ã(τ)‖
(if (A2) holds) (A9)

≤ ε2FM (t) =
1

1− ‖
∫ t

0 eA0(t−τ)Ã(τ)Ψ(τ, t)dτ‖
(if (A1) holds) (A10)

�

Lemma A2. One has that:

‖F(t)‖−1
≥ ε5Fm (t) =

ρ0 − ρΨ

ρ0 − ρΨ + K0KΨ
(
1− e−(ρ0−ρΨ) t

)
sup

0≤τ≤t
‖Ã(τ)‖

(A11)

if the assumptions 1 and 5 of Lemma A2 hold:

‖F(t)‖−1
≥ ε4Fm (t) =

ρ0

ρ0 + K0(1− e−ρ0t)‖
∫ t

0 Ψ(τ, t)dτ‖ sup
0≤τ≤t

‖Ã(τ)‖
(A12)

if the assumptions 1 and 4 of Lemma A2 hold:

‖F(t)‖−1
≥ ε3Fm (t) =

1

1 + ‖
∫ t

0 eA0(t−τ)Ψ(τ, t)dτ‖ sup
0≤τ≤t

‖Ã(τ)‖
(A13)

if the assumptions 1 and 3 of Lemma A2 hold:

‖F(t)‖−1
≥ ε3Fm (t) =

1

1 + ‖
∫ t

0 eA0(t−τ)Ψ(τ, t)dτ‖ sup
0≤τ≤t

‖Ã(τ)‖
(A14)
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if the assumptions 1 and 2 of Lemma A2 hold.

Proof. It is a direct joint consequence of Banach´s Perturbation lemma and Lemma A2. Note that if M is
a square real matrix and ‖E‖ < 1/‖M−1

‖ then M + E is non-singular and

‖ (M + E)−1
‖ ≤

‖M−1
‖

1− ‖M−1‖‖E‖
(A15)

(Banach´s Perturbation lemma). Assume that ‖ (M + E)−1
‖ > ‖M−1

‖

1−‖M−1‖‖E‖ . Thus, the following contradiction
follows:

1− ‖M−1
‖‖E‖ > 1 + ‖M−1

‖‖E‖ (A16)

Then, ‖ (M + E)−1
‖ ≥

‖M−1
‖

1+‖M−1‖‖E‖ . Thus, (A11) to (A14) follow from F(t) = In −
∫ t

0 eA0(t−τ)Ã(τ)Ψ(τ, t)dτ,

‖M−1
‖

1− ‖M−1‖‖E‖
≥ ‖ (M + E)−1

‖ ≥
‖M−1

‖

1 + ‖M−1‖‖E‖
(A17)

and the proof of Lemma A1, with the replacements M→ In , E→ −
∫ t

0 eA0(t−τ)Ã(τ)Ψ(τ, t)dτ . �

Lemma A3. Assume that:
1) A0 is a stability matrix so that ‖eA0t

‖ ≤ K0e−ρ0t ; ∀t ∈ R0+ for some real constants K0 ≥ 1 and ρ0 > 0,
2) sup

0≤t<∞
‖Ã(t)‖ = εA for εA ∈

[
0 , ε∗A

]
and some ε∗A ∈ [0 , 1),

3) ‖Ψ(t, τ)‖ ≤ KΨe−ρΨ(t−τ) ; ∀t(≥ τ), τ ∈ R with KΨ ≥ 1.
Then, the following properties hold:
(i)‖F(t)‖ ≤ 1 + ε∗A

K0KΨ
ρ0−ρΨ

(
1− e−(ρ0−ρΨ) t

)
; ∀t ∈ R0+

if ρΨ < ρ0 and
‖F(t)‖ ≥ 1− ε∗A

K0KΨ
ρ0−ρΨ

(
1− e−(ρ0−ρΨ) t

)
; ∀t ∈ R0+ if, furthermore, ε∗A <

ρ0−ρΨ

K0KΨ(1−e−(ρ0−ρΨ ) t)

(ii) ‖F(t)‖ ≤ 1 + ε∗A
K0KΨ
ρ0ρΨ

(
1− e−ρ0 t

)
; ∀t ∈ R0+, and

‖F(t)‖ ≥ 1− ε∗A
K0KΨ
ρ0ρΨ

(
1− e−ρ0 t

)
; ∀t ∈ R0+ if, furthermore, ε∗A <

ρ0ρΨ

K0KΨ(1−e−ρ0 t)

Assume, in addition, that
4) The pair (A0 , b0) is controllable,
5) sup

0≤t<∞
‖̃b(t)‖ = εb for εb ∈

[
0 , ε∗b

]
and some ε∗b ∈ [0 , 1).

Then, G(t∗) defined in (15) is subject to:
(iii)

‖G(t∗)‖ ≤ εG(t∗) = ε∗G =
(

K2
0

2ρ0

(
1− e−2ρ0t∗

)
‖b0‖ε∗b + K2

0KΨ ‖b0‖ε∗bε
∗

A

×e−2ρ0t∗ e−2ρΨ t∗+1−e(ρ0−ρΨ )t∗
−e−(ρ0+ρΨ )t∗

ρ2
0−ρ

2
Ψ

)
‖G−1

c[0,t∗](A0 , b0)‖
(A18)

Proof. Note that from Theorem 1 that ρΨ + sup
0≤t<+∞

‖Ã(t)‖ ≥ ρ0 > ρΨ if ρΨ < ρ0 so that by direct calculations

taking into account ‖eA0t
‖ ≤ K0e−ρ0t, ‖Ψ(t, τ)‖ ≤ KΨe−ρΨ(t−τ) and sup

0≤t<∞
‖Ã(t)‖ ≤ ε∗A

‖F(t)‖ = ‖In −
∫ t

0 eA0(t−τ)Ã(τ)Ψ(τ, t)dτ‖ ≤ 1 + ε∗A
K0KΨ
ρ0−ρΨ

(
1− e−(ρ0−ρΨ) t

)
; ∀t ∈ R0+ and ‖F(t)‖ ≥ 1 −

ε∗A
K0KΨ
ρ0−ρΨ

(
1− e−(ρ0−ρΨ) t

)
if

ε∗A <
ρ0 − ρΨ

K0KΨ
(
1− e−(ρ0−ρΨ) t

) (A19)
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Property (i) is proved. Property (ii) follows by applying H
..
older´s inequality to

∫ t
0 ‖e

A0(t−τ)‖dτ and∫ t
0 ‖Ψ(τ, t)‖dτ of the integral leading to the formula:

‖F(t)‖ ≤ 1 + sup
0≤t<+∞

‖A(t)‖
∫ t

0 ‖e
A0(t−τ)‖‖Ψ(τ, t)‖dτ

≤ 1 + sup
0≤t<+∞

‖A(t)‖
(∫ t

0 ‖e
A0(t−τ)dτ‖

2
)
1/2

(∫ t
0 ‖Ψ(τ, t)‖2dτ

)
1/2 ; ∀t ∈ R0+

(A20)

and, similarly, it follows that:

‖F(t)‖ ≥ 1− sup
0≤t<+∞

‖A(t)‖
∫ t

0
‖eA0(t−τ)‖‖Ψ(τ, t)‖dτ;∀t ∈ R0+.

On the other hand, note that the conditions 1-5 allow to write the following chain of inequalities
from (23)–(24):

‖G(t∗)‖ ≤
(
‖

∫ t∗
0 eA0(t∗−τ)̃b(τ)bT

0 eAT
0 (t∗−τ)dτ‖+ ‖

∫ t∗
0

∫ t∗
0 eA0(t∗−τ)Ã(τ)Ψ(τ, σ)b(σ)bT

0 eAT
0 (t∗−σ)dσdτ‖

)
G−1

c[0,t∗](A0 , b0)

≤

(
K2

0
2ρ0

(
1− e−2ρ0t∗

)
‖b0‖ sup

0≤τ≤t∗
‖̃b(τ)‖+ K2

0KΨ ‖b0‖ sup
0≤τ≤t∗

‖̃b(τ)‖ sup
0≤τ≤t∗

‖Ã(τ)‖
(∫ t∗

0

∫ t∗
0 e−2ρ0t+(ρ0−ρΨ)τ+(ρ0+ρΨ)σdσdτ

))
×‖G−1

c[0,t∗](A0 , b0)‖

=

(
K2

0
2ρ0

(
1− e−2ρ0t∗

)
‖b0‖ sup

0≤τ≤t∗
‖̃b(τ)‖+ K2

0KΨ ‖b0‖ sup
0≤τ≤t∗

‖̃b(τ)‖ sup
0≤τ≤t∗

‖Ã(τ)‖
(∫ t∗

0 e−2ρ0t+(ρ0−ρΨ)τdτ
∫ t∗

0 e−(ρ0+ρΨ)σdσ
))

×‖G−1
c[0,t∗](A0 , b0)‖

=

(
K2

0
2ρ0

(
1− e−2ρ0t∗

)
‖b0‖ sup

0≤τ≤t∗
‖̃b(τ)‖+K2

0KΨ ‖b0‖ sup
0≤τ≤t∗

‖̃b(τ)‖ sup
0≤τ≤t∗

‖Ã(τ)‖

×e−2ρ0t∗
(
e(ρ0+ρΨ )t

−1
)(

e−(ρ0+ρΨ )t
−1

)
ρ2

0−ρ
2
Ψ

)
‖G−1

c[0,t∗](A0 , b0)‖

(A21)

and Property (iii) is proved. �

Remark A2. Note that the technical results for F(t) of Equations A1–A3 are valid for any t ∈ R0+ under the given
sufficiency-type conditions rather that for the particular prefixed t∗ chosen for generating the control law (12). However, the
results for G depend explicitly on the control interval [0, t∗] so that they are applicable for t = t∗.

Appendix B Guaranteed Reachability of the Current Linearized System from the Controllability
of Its Nominal Counterpart

Theorem A1. Assume that the pair (A0 , b0) is controllable and sup
0≤t≤t∗

‖Ã(t)‖2 ≤ εA2 and sup
0≤t≤t∗

‖̃b(t)‖ ≤ εb2 for sufficiently

small real positive constants εA2 = εA2(t∗) and εb2 = εb2(t∗) depending on t∗. Then, the following properties hold:
(i) Gc[0,t∗](A(t) , b(t)) is non-singular so that the current system is PR (x∗, t∗ , x0).
(ii) If εA2 = λAε0 ≤ 1 and εb2 = λbε0 ≤ 1 for some non-negative real constants λA , λb and ε0 ∈ [0 , 1) then

Property (i) is guaranteed if:

ε0 <
2
∣∣∣ρ0

∣∣∣
K2

0

λmin
(
Gc0[0,t∗](A0, b0)

)( [
4‖b0‖

2
2 + (2‖b0‖+ 1)λb

]
λA + (2‖b0‖+ 1)λb(1 + λA)

) ∣∣∣ 1− e−2ρ0t∗
∣∣∣ (A22)

Proof. Note from (13) and (36) that the controllability gramian of the current linearized system
Gc[0,t∗](A(t) , b(t)) is kept non-singular if that of its linearized counterpart Gc0[0,t∗](A0 , b0) is non-singular

for all t∗ > 0 and, furthermore,
~
Gc0[0,t∗](A0 , b0) = Gc[0,t∗](A(t), b(t)) −Gc0[0,t∗](A0 , b0) has a sufficiently
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small norm such that, for any given matrix norm, the incremental controllability gramian satisfies

‖

~
Gc0[0,t∗](A0 , b0)‖ < 1/‖G−1

c[0,t∗](A0, b0)‖ since:

Gc[0,t∗](A(t) , b(t)) = Gc0[0,t∗](A0 , b0) +
~
Gc0[0,t∗](A0 , b0)

= Gc0[0,t∗](A0 , b0)
(
In + G−1

c0[0,t∗](A0 , b0)
~
Gc0[0,t∗](A0 , b0)

) (A23)

what follows from Banach´s Perturbation Lemma which ensures that Gc[0,t∗](A(t) , b(t)) is non-singular,
then, the current linearized system is PR (x∗, t∗ , x0). Define Ψ0(t , τ) = eA0(t−τ), Ψ̃(t, τ) = Ψ(t, τ) −

Ψ0(t , τ); ∀τ , t ∈ [0 , t∗] ∈ R0+ and
(
∆̃c0[0,t](A0 , b0)

)
(τ) being the integrand defining

~
Gc0[0,t](A0 , b0) =∫ t

0

(
∆̃c0[0,t](A0 , b0)

)
(τ)dτ; ∀t ∈ [0 , t∗] ∈ R0+. Simple direct calculations to expand in additive terms the

incremental controllability gramian yield
~
Gc0[0,t](A0 , b0) =

∫ t∗

0 ∆̃c0[0,τ]
(A0 , b0)dτ with:

‖

(
∆̃c0[0,t](A0 , b0)

)
(τ)‖ ≤ 2‖Ψ0(t , τ)b0bT

0 Ψ̃(t , τ)‖+ ‖Ψ̃(t , τ)b0bT
0 Ψ̃T(t , τ)‖

+‖Ψ0(t , τ)
(
b0̃bT + b̃b0 + b̃̃bT

)
ΨT

0 (t , τ)‖+ ‖Ψ̃(t , τ)
(
b0̃bT + b̃b0 + b̃̃bT

)
Ψ̃T(t , τ)‖

+2‖Ψ̃(t , τ)
(
b0̃bT + b̃b0 + b̃̃bT

)
ΨT

0 (t , τ)‖

(A24)

Note that:

‖Ψ0(t∗ , τ)‖2 ≤ K0e−ρ0(t∗−τ),
∫ t∗

0
‖Ψ0(t∗ , τ)‖

2
dτ ≤

(
K0/

∣∣∣ρ0
∣∣∣)∣∣∣1− e−ρ0t∗

∣∣∣,
∫ t∗

0
‖Ψ0(t∗ , τ)‖

2

2
dτ ≤

(
K2

0/2
∣∣∣ρ0

∣∣∣)∣∣∣1− e−2ρ0t∗
∣∣∣

and, since sup
0≤t≤t∗

‖Ã(t)‖2 ≤ εA2, one has
∫ t∗

0 ‖Ψ̃(t∗ , τ) ‖
2
2dτ ≤

(
K2

0ε
2
A/2

∣∣∣ρ0
∣∣∣)∣∣∣1− e−2ρ0t∗

∣∣∣ and, since furthermore

sup
0≤t≤t∗

‖̃b(t)‖ ≤ εb2, one gets from (A23) and (A24) that:

‖

~
Gc0[0,t∗](A0 , b0)‖2 = ‖

∫ t∗

0

(
∆̃c0[0,t](A0 , b0)

)
(τ)dτ‖2

≤
K2

0
2|ρ0|

(
εA2

[
2‖b0‖

2
2 (1 + εA2) + (2‖b0‖+ εb2)εb2

]
+ (2‖b0‖+ εb2)εb2

(
1 + ε2

A2

)) ∣∣∣ 1− e−2ρ0t∗
∣∣∣ (A25)

=
K2

0‖b0‖2∣∣∣ρ0
∣∣∣ (εA2‖b0‖2 + εb2 )

∣∣∣ 1− e−2ρ0t∗
∣∣∣+ o(εA) + o(εb) (A26)

Then, if K2
0‖b0‖2

|ρ0|
(εA2‖b0‖2 + εb2 )

∣∣∣ 1− e−2ρ0t∗
∣∣∣ < 1/‖G−1

c[0,t∗](A0, b0)‖ and, if max(εA2, εb2) is small enough
for the given t∗ then there exists a positive real constant ε = ε(εA2 , εb2, t∗) satisfying:

ε ≤ 1/‖G−1
c[0,t∗](A0, b0)‖ −

K2
0‖b0‖2∣∣∣ρ0

∣∣∣ (εA2‖b0‖2 + εb2 )
∣∣∣ 1− e−2ρ0t∗

∣∣∣
such that ‖

~
Gc0[0,t∗](A0 , b0)‖2 < λmin

(
Gc0[0,t∗](A0, b0)

)
= 1/‖G−1

c0[0,t∗](A0, b0)‖
2
. This implies that if

Gc0[0,t∗](A0 , b0) is non-singular then Gc[0,t∗](A(t) , b(t)) is non-singular and the first part of the proof
is complete. On the other hand, if εA2 = λAε0 ≤ 1 and εb2 = λbε0 ≤ 1 for some real constant ε0 ∈ [0 , 1), [4],
then ε2

A2 = λ2
Aε

2
0 ≤ εA2 = λAε0 ≤ 1 and ε2

b2 = λ2
bε

2
0 ≤ εb2 = λbε0 ≤ 1 so that one has from (A25) that:

‖

~
Gc0[0,t∗](A0 , b0)‖2

≤
K2

0
2|ρ0|

( [
4‖b0‖

2
2 + (2‖b0‖+ 1)εb2

]
εA2 + (2‖b0‖+ 1)εb2(1 + εA2)

) ∣∣∣ 1− e−2ρ0t∗
∣∣∣

≤
ε0K2

0
2|ρ0|

( [
4‖b0‖

2
2 + (2‖b0‖+ 1)λb

]
λA + (2‖b0‖+ 1)λb(1 + λA)

) ∣∣∣ 1− e−2ρ0t∗
∣∣∣ (A27)

and ‖
~
Gc0[0,t∗](A0 , b0)‖2 < 1/‖G−1

c0[0,t∗](A0, b0)‖
2

holds from (A27) if (A22) holds. The proof is complete. �
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