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Abstract: This paper formulates the properties of point reachability and approximate point 
reachability of either a targeted state or output values in a general dynamic system which possess a 
linear time-varying dynamics with respect to a given reference nominal one and, eventually, an 
unknown structured nonlinear dynamics. Such a dynamics is upper-bounded by a function of the 
state and input. The results are obtained for the case when the time-invariant nominal dynamics is 
perfectly known while its time-varying deviations together with the nonlinear dynamics are not 
precisely known and also for the case when only the nonlinear dynamics is not precisely known. 
Either the controllability gramian of the nominal linearized system with constant linear 
parameterization or that of the current linearized system (which includes the time-varying linear 
dynamics) are assumed to be non-singular. Also, some further results are obtained for the case 
when the control input is eventually saturated and for the case when the controllability gramians of 
the linear parts are singular. Examples of the derived theoretical results for some epidemic models 
are also discussed. 

Keywords: controllability; reachability; nonlinear dynamics; linearization; biological processes; 
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1. Introduction 

Usually, real dynamic systems are neither time-invariant nor linear in their whole operation 
rank since there are usually saturation and dead-zone type nonlinearities at the input, saturated 
behaviors in the state and output variables and sometimes nonlinear dynamics. See, for instance [1–
3] and some references therein. However, very relevant information about their properties is often 
obtained from the knowledge of their equilibrium points, or their equilibrium steady-state 
oscillations, and the Jacobian matrices which describe the linearized trajectory solutions around such 
point for small deviations of linearity. This is the case, for instance, in some biological problems 
describing the species evolution through time [4] or in mathematically modelled epidemic models 
described by either differential, difference or hybrid equations. In particular, most of the epidemic 
models under current use and study possess at least one disease-free equilibrium point at which the 
infective subpopulations are null and an endemic one at which the infective subpopulations are 
non-null. A so-called reproduction number, which is calculated from the model parameters, 
establishes if the infectious asymptotically vanishes converging to an asymptotically stable 
disease-free attractor (if the reproduction number is less than unity) or it becomes endemic if such a 
number exceeds unity. Some of the relevant properties of positivity and stability of epidemic models 
are already qualitatively reflected in their linearized versions around their equilibrium points. See, 
for instance, [5,6] and references therein. The background literature on epidemic models is very 
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abundant, including the use of either vaccination or treatment controls as well as combinations of 
both types of controls. See, for instance, [5–14] and the references therein. Such controls may reduce 
the value of the basic reproduction number related to the case of absence of controls, so the average 
number of contagions per each primary infectious case, and they are also able to change the 
components of the equilibrium points, that is the numbers of each subpopulation at the equilibrium, 
and the rates the convergence to such equilibrium points. The usual epidemic models are typically 
based on differential, difference or mixed equations which describe the coupled dynamics of the 
various subpopulation or, in general, they can include point and distributed delayed dynamics or to 
be also formulated in a stochastic framework, [7,8,11]. There are also studies for models of networks 
available which include different nodes which can represent different sets of interacting 
communities [14,15], which combined control strategies which take into account the communication 
links and population flows. Some of the models introduce appropriate either prediction or entropy 
tools or game theory to discuss the increase of disorder associated to them. See, for instance [11–14]. 
In particular, the entropy aspects are focused on deciding the various probabilities of different 
steady-state behaviors or to elucidate if the mathematical model is working properly, that is, if the 
entropy is non-negative [11]. 

The main objective of this paper is the study of the point reachability and point 
output-reachability and their approximate counterparts in the presence of uncertain dynamics, at a 
prescribed time instant, of either a targeted state or targeted output value in a dynamic system 
which has a linear time-varying dynamics with respect to a given nominal one and an unknown 
structured nonlinear dynamics with a known upper-bounding function. The results are given for the 
case when the time-invariant nominal dynamics is known while the time-varying deviations and the 
nonlinear dynamics are not precisely known and for the case when only the nonlinear dynamics is 
not precisely known. In the first case, the controllability gramian of the nominal linearized system 
with constant linear parameterization is assumed non-singular. In the second case, the current 
linearized system (which includes the time-varying linear dynamics) is assumed to be non-singular. 
Later on, some formal extensions are given for the case when the control input is saturated and for 
the case when the above mentioned controllability gramians are singular under certain ad hoc 
algebraic type constraints on the targeted state or targeted output. Some applications of the derived 
theoretical results for some epidemic models are also discussed. The paper content is organized as 
follows. Sections 2 and 3 of this paper are concerned with the study of general dynamic system 
whose linear part is time-varying, formulated as a deviation from a constant nominal behaviour, and 
the nonlinear dynamics are introduced through unstructured functions which are, in general, 
dependent on the state and output. The state and output trajectory solutions are given analytically 
through closed formulas. Two key simplified auxiliary linear systems, which are linearized versions 
of the whole nonlinear system, are introduced and discussed, namely: (a) that describing the 
nominal linearized dynamics, in which the time-varying deviation of the linear dynamics respect to 
their nominal values and the nonlinear contributions are deleted; (b) that describing the linear time 
varying dynamics by neglecting the nonlinear contributions to the dynamics. The controllability and 
reachability properties of those auxiliary systems are formulated based on the corresponding 
controllability gramians. It is also examined and quantified to what extent the reachability of the 
whole nonlinear system is achievable in an approximate way provided that the linearized system 
versions are reachable. The (state) reachability is discussed at the levels of point-reachability (the 
targeted state in finite time is prefixed) or general reachability (the targeted state is arbitrarily fixed). 
The tolerances, in term of worst-case targeting errors related to a targeted state, of the approximate 
point-reachability of the whole nonlinear system are discussed provided that either the nominal or 
the current linearized systems are point-reachable. In particular, the analysis of Section 3 is 
performed on the whole nonlinear dynamics under the assumptions that the auxiliary linearized 
systems are point-reachable. It has to be pointed out that the controls used for approximate state 
targeting of the whole nonlinear system are those used for reachability of the linearized 
counterparts. Special attention is paid to the case when the norms of the nonlinear contributions to 
the dynamics are upper-bounded by weighted powers of the state and input norms. On the other 
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hand, counterpart versions for output reachability are discussed in Section 4 as simple extensions 
based on the manipulations of the output controllability gramians of the auxiliary linearized 
systems. Section 4 pays also attention to the cases when the controllability gramian is rank-defective, 
so singular, and either there are non-unique solutions to the point-reachability problem (that is, the 
system is not controllable and the relevant algebraic system that formulates the problem is 
compatible indeterminate) or there are no algebraic solutions (that is, such an algebraic system is 
incompatible). In those cases, the alternative formulation is based on the use of Moore-Penrose 
pseudoinverses of the controllability gramian [15,16]. Finally, this section also considers the case 
when the input is saturated, as it is often the case in many real problems, so that the theoretical input 
to achieve point-reachability of the nominal linearized system has to be “ad hoc” modified. This 
situation is formally treated by incorporating an extra reachability error to the suited targeted state 
or output being caused by the deviation of the injected control input from linearity. Section 5 
discusses some worked examples related to epidemic models in the contexts of stability and 
point-reachability based on the behaviors and related properties of their linearized versions. The 
controls are either vaccination efforts on the susceptible or antiviral or antibiotic treatment on the 
infectious both based on feedback information. On the other hand, some auxiliary results needed for 
the main ones are given in the appendixes. A simple discussion which might highlight the use of 
entropy in an information context of the relevance to the trajectories in the presence of more than one 
attractor is given in one of the given examples. The notation used in the following sections is nI  is 
the thn −  identity matrix, the superscript T stands for transposition and ( ).maxλ  and ( ).minλ  are 
the maximum and minimum eigenvalues of the symmetric matrix (.). 

2. Approximate Reachability of a Linear Time-Varying System under the Exact Reachability of Its 
Nominal Linearized Counterpart 

Consider the single-input single-output linear time-varying dynamic system of order: 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )t,tu,txtutbtxtAtx ξ++=  (1) 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )t,tu,txtutdtxtcty yξ++=  (2) 

subject to ( ) 00 xx = , which has non-linear unstructured contributions ( ) ( )( )t,tu,txξ and 
( ) ( )( )t,tu,txyξ  to the state and output and with the linear part is given by (3)-(4), that is, the 

particular case of (1)-(2) with ( ) 0=tA~ , ( ) 0=tb~ , ( ) 0=tC~ , ( ) 0=tD~ , ( ) ( )( ) 0=t,tu,txξ and 
( ) ( )( ) 0=t,tu,txyξ ; +∈∀ 0Rt ), and: 

( ) ( )tA~AtA += 0 ; ( ) ( )tb~btb += 0  (3) 

( ) ( )tc~ctc += 0 ; ( ) ( )td~dtd += 0  (4) 

where ( ) ntx R∈  is the state vector, ( ) R∈tu and ( ) R∈ty  are the scalar input and output, 

respectively, and the matrices of dynamics ( ) ( ) nntA~,tA,A ×∈R0 ; the control vectors 

( ) ( ) ntb~,b,tb R∈0 ; and the output vectors ( ) ( ) ptd~,d,td R∈0 . Note that: 

1) If ( ) 0=tA~ , ( ) 0=tb~ , ( ) 0=tc~ , ( ) 0=td~ , ( ) ( )( ) 0=t,tu,txξ and ( ) ( )( ) 0=t,tu,txyξ ; +∈∀ 0Rt , 

then the resulting dynamic system (1)-(2), subject to (3)-(4), is said to be the “nominal 
linearized system” 

2) The so-called “current linearized system” is distinct from the nominal linearized one and 
describes the situation when at least one of these parametrical perturbation matrices is not 
identically zero for all time while the nonlinear contributions are still identically zero for all 
time. 



Entropy 2019, 21, 1045 4 of 31 

 

3) The complete system with all the effects in its dynamics including the time-varying 
parametrical disturbances of the matrices and nonlinear contributions is refereed to as the 
“current system”. 

The system (1)-(2), subject to (3)-(4) can be rewritten as:  

( ) ( ) ( ) ( )tvtubtxAtx x000 ++= ; ( ) ( ) ( ) ( ) ( ) ( ) ( )( )t,tu,txtutb~txtA~tvx ξ++=0  (5) 

( ) ( ) ( ) ( )tvtudtxcty y
T

000 ++= ; ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )t,tu,txtutd~txtc~tv y
T

y ξ++=0  (6) 

Now the approximate controllability of the current linear time-varying system (1)-(2), subject to 
(3)-(4) under the controllability of its nominal linearized time-invariant counterpart is discussed. 
Assume that for any prefixed time interval [ ]t,0 , the control law is:  

( ) ( ) ( ) ( )tvebuu tAT T

00 0 τττ −== ; [ ]t,0∈τ  (7) 

where ( )tv  is an auxiliary control function: 

( ) ( ) ( ) ( ) ( ) ( ) τττ τττ dvetvdebbexetx x
t tAtATt tAtA T

0000000 0000 +






+= −−−  (8) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ττττξττττττ ττττ d,u,xedub~xA~etvdebbexe *t *tAt tAtATt tAtA T
+++







+= −−−−

00000000 00000

 
(9) 

under a initial condition ( ) 00 xx = , and: 

( ) ( ) ( ) ( ) ( ) ( ) ( )tvdvectudtvdebbexec yx
t tATtATt tAtAT T

00000000000 0000
0 +++












+= −−− τττ τττ

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( ) 



 +++







+= −−− ττττξτττττ τττ d,u,xub~xA~etvdebbexec t tAtATt tAtAT T

0000000 0000
0

( ) ( )( ) ( ) ( )tutd~tx,ttud y 000 +++ ξ  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( ) 



 +++







++ −−− ττττξτττττ τττ d,u,xub~xA~betvdebbexetc~ t tAtATt tAtAT T

00000000 0000  

(10) 

The following result relies on the approximate controllability of the current system under 
parametrical disturbances related to the nominal linearized one, assumed to be controllable. 

Theorem 1. Assume that ( )00 b,A  is a controllable pair and that n*x R∈  is any prefixed state value 

at an arbitrary given time +∈= R*tt . Then:  

( ) ( ) ( ) ( ) ( )( ) ττττξτ d,u,xextextGxtFtx *t *tA**** A* +−= −−
























+ 0

1
0

00*  (11) 

is reached for any initial condition ( ) 00 xx = under the control law: 

( ) ( ) ( ) ( )
[ ]( )( )000
1
00000 000 xexb,Aebtvebu *tA*
*t,c

tAT*tAT *T*T
−== −−− Gτττ ; [ ]*t,0∈τ  (12) 

via the auxiliary control function ( ) [ ]( )( )000
1
00 0 xexb,A*tv *tA*
t,c* −= −G , where: 

[ ]( ) ( ) ( ) τττ debbeb,A *tAT*t *tA
*t,c

T −−
= 00 0000000G  (13) 

is the controllability gramian of the nominal linearized system (that is, that associated with the 

controllable pair ( )00 b,A on [ ]*t,0 ) , then non-singular, and: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )tvtuddvetvdebbexecty yx
t tAtATt tAtAT T

00000000000 0000 ++





+






+= −−− τττ τττ
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( ) ( ) ( ) ( ) ττττ dt,ΨA~eItF **t *tA
n* −= −

0
0  (14) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ]( )00
1
000 000

0000 b,Addebb,ΨA~edebb~etG *t,c
*tAT*t *t *tA*tAT*t *tA*

TT −−−−− 





 −=   Gτσσσττττ στττ

 
(15) 

provided that ( )*tF is non-singular, where ( )τ,tΨ  is the fundamental matrix associated with ( )tA so 

that ( ) ( ) ( )ττ ,tΨtA,tΨ = ; ( ) +∈≥∀ 0Rττ ,t , and: 

( ) ( ) ( ) ( ) σστ τ
στ dA~ee,tΨ t tAtA

+= −− 00 ; ( ) +∈≥∀ 0Rττ ,t  (16) 

Proof: It turns out that controllability gramian of the pair ( )00 b,A  is non-singular on [ ]*t,0 since 
the pair ( )00 b,A is controllable. Then, one gets from (9) and (12) that: 

( ) ( ) ( ) [ ]( ) ( )**t,cx
*t *tA*tA tvb,Advexetx 00000000 00 G=−− 

− τττ  

Then: 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( ) ττττξτττττ ττ d,u,xub~edxA~extx *t *tA*t *tA** +++= −−

000
00  

( ) ( ) ( )
[ ]( ) ( ) ( ) ( )( ττξττ τττ ,u,xexdb,Aebb~eI *t *tA*
*t,c

*tAT*t *tA
n

T


−−−− +







+= 000

1
0000

000 G

  

( ) ( ) ( ) ( ) ( ) ( )
[ ]( ) 000
1

00000
0000 xeb,Adebb~edxA~e *tA

*t,c
*tAT*t *tA*t *tA T −−−−









−+  Gτττττ τττ  

(17) 

with ( ) 00 xx =  and (16) holds from ( ) ( ) ( )ττ ,tΨtA,tΨ = ; ( ) +∈≥∀ 0Rττ ,t ,since ( ) ( )tA~AtA += 0  and 
( ) nIt,tΨ = ; +∈∀ 0Rt . Then, one has: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) σσσσττσσσστττ dub,Ψxdub,tΨt,Ψxtxt,Ψ tt
0000 +=+= ; 

( ) +∈≥∀ 0Rττ ,t  
(18) 

Then, one gets, after replacing ( )τx from (18) into (17), that: 

( ) ( ) ( ) ( )
[ ]( ) ( ) ( ) ( )( ) ττττξττ τττ d,u,xexdb,Aebb~eItx *t *tA*
*t,c

*tAT*t *tA
n*

T


−−−− +







+= 000

1
0000

000 G   

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) τσσσσττττ ddub,Ψtxt,ΨA~e t***t *tA
0

*
00

0 −+ −   

( ) ( ) ( )
[ ]( ) 000
1
0000

000 xeb,Adebb~e *tA
*t,c

*tAT*t *tA T −−−








−  Gττ ττ  

(19) 

so that, after replacing the control law (12) on [ ]*t,0  into (19), one gets that: 
( ) ( ) ( )[ ] ( )***t *tA

n txdt,ΨA~eI ττττ


−− 0
0  

( ) ( ) ( )
[ ]( ) ( ) ( ) ( ) ( ) ( ) τσσσσττττ τττ ddub,ΨA~exdb,Aebb~eI *t *t *tA*
*t,c

*tAT*t *tA
n

T

00 000
1
0000

000  
−−−− −








+= G  

( ) ( ) ( )
[ ]( ) ( ) ( ) ( )( ) ττττξττ τττ d,u,xexeb,Adebb~e *t *tA*tA
*t,c

*tAT*t *tA T


−−−− +







− 0000

1
0000

0000 G  

( ) ( ) ( )
[ ]( ) *
*t,c

*tAT*t *tA
n xdb,Aebb~eI

T









+= −−−
 ττ ττ

00
1
0000

00 G  

( ) ( ) ( ) ( ) ( )
[ ]( )( )000
1
0000 0

000 xexb,Addebb,ΨA~e *tA*
*t,c

*tAT*t *t *tA T
−








− −−−

  Gτσσσττ στ  

( ) ( ) ( )
[ ]( ) ( ) ( ) ( )( ) ττττξττ τττ d,u,xexeb,Adebb~e *t *tA*tA
*t,c

*tAT*t *tA T


−−−− +







− 0000

1
0000

0000 G  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ]( )00
1

0000 000
0000 b,Addebb,ΨA~edebb~ex *t,c
*tAT*t *t *tA*tAT*t *tA* TT −−−−−









−+=   Gτσσσττττ στττ  

(20) 
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( ) ( ) ( ) ( )( ) ττττξτ d,u,xexex *t *tA*tA
+× −
00 00-*  

( )( ) ( ) ( ) ( )( ) ττττξτ d,u,xexextG*x *t *tA*tA
++= −
00 00-**  

Then (11) holds, subject to (13)–(15), if ( )*tF  is non-singular. □ 

Definition 1. The system (1)-(2), subject to (3)-(4), is said to be ( )*t*,x -point reachable from a given 

initial state ( ) 00 xx =  ( ( )0PR x,t,x ** ) if there exists some control law [ ] R→*t,:u 0  leading to the 

state targeting ( ) ** xtx =  for 0>*t if ( ) 00 xx = . 

Definition 2. The system (1)-(2), subject to (3)-(4), is said to reachable R if it is ( )0PR x,t,x **  for 

any given triple ( )** t,x,x0 . It is said to be reachable at time *t  for an initial state ( ) 00 xx = , say 

( )0x,tR
* , if it is ( )0PR x,t,x **  for any *x . 

Definition 3. The control law (12) is said to be the reachability standard nominal control law (
( ))RSNCL 0x,t,x

**  of (1)-(2), subject to (3)-(4), for the system to be ( )0PR x,t,x ** . 

Remark 1:  

1)  Note that the constraint (4) is irrelevant for (state)-reachability since the output is not 
specifically involved in such a property. However, we refer to that constraint in Definitions 
1–3 to keep the whole system referred to fully defined through (1)–(4). 

2)  Note that if the parametrical disturbances of (3) are zeroed, so that the control and dynamics 
matrices are constant, then the resulting time-invariant linear system (that is, the nominal 
linearized one) is reachable, equivalently ( )0PR x,t,x **  for any given triple ( )** t,x,x0 , 

under the ( )0RSNCL x,t,x ** , if and only if ( )00 b,A  is a controllable pair , equivalently if 
and only if its associate controllability gramian (13) is non-singular [1]. In particular, an 
existing control law which allows the targeting ( ) ** xtx =  for any given *x  at any given  

0>*t  of the nominal linearized system from any given initial state ( ) 00 xx =  is the 

( )0RSNCL x,t,x ** . 

The following direct result relies on the eventual maintenance or lost of the reachability of the 
current linearized system related to the nominal linearized one if the parametrical disturbances are 
arbitrary. In particular, it is seen that, in general, the ( )0RSNCL x,t,x ** does not allow exact prefixed 
state tracking even if the nominal linearized system is reachable.  

Theorem 2. The following identity holds: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) τξτ dt,tu,txexetGtFxItGItFtx *t *tA*tA***
n

*
n

**


−−
+−



 −+= 








00

1
00  (21) 

the system (1)-(2), subject to (3)-(4) is ( )0PR x,t,x **  under the ( )0RSNCL x,t,x ** if some of the 
conditions given below holds: 

(1) ( ) 0≡tA~ , ( ) 0≡tb~ and ( )( ) 0≡tx,tξ for [ )*t,t 0∈  if ( )00 b,A  is a controllable pair. 
(2) 0=*x  and +∞=*t . 
(3) 00 =x  and the controllability gramian of the nominal linearized parameterization on 

[ ]*t,0 is non-singular (that is, the pair ( )00 b,A  is controllable) and it satisfies: 

[ ]( ) ( ) ( ) ( ) ( ) ( )( ) 1
00000000 000 −−−−
 == ττττ τττ dt,ΨA~edebbeb,A **t *tA*tAT*t *tA

*t,c
T

G  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )








− × −−−− τττσσσττ ττστ debb~eddebb,ΨA~e *tAT*t *tA*tAT*t *t *tA TT
0000 0000 0  

(22) 
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Proof:  

Equation (21) follows directly from (11) under the conditions (1)-(2). Condition (3) follows since 
one gets from (14)-(15) that 00 =x  implies that ( ) 0≠= *xtx *  if:  

( ) ( ) ( ) ( ) ( )0
* **

* *
0

,
t A t

n nI F t G t I e A Ψ t dτ τ τ τ−= − = −    

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ]( )00
1
00000 0

0000 b,Adebb~eddebb,ΨA~e *t,c
*tAT*t *tA*tAT*t *t *tA TT −−−−−









− + Gτττσσσττ ττστ  
(23) 

so that: 

[ ]( ) ( ) ( ) ( ) ( ) ( )( ) 1
00000000 000 −−−−
 == ττττ τττ dt,ΨA~edebbeb,A **t *tA*tAT*t *tA

*t,c
T

G  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )








− × −−−− τττσσσττ ττστ debb~eddebb,ΨA~e *tAT*t *tA*tAT*t *t *tA TT
0000 0000 0  

(24) 

□ 
It turns out that this last constraint is generically unfeasible for almost any parametrical 

disturbances ( ) ( )( )ττ b~,A~  for [ ]*t,0∈τ . As a result, we conclude that the exact reachability is 
achievable in the nominal linearized  case, that is, in the absence of parametrical disturbances of the 
dynamics and control vector for some finite time *t if the controllability gramian is nonsingular for 

any interval [ )*t, 10 and some ( )** t,t 01 ∈ . Also, it turns out that this property holds for any finite 
0>*t if and only if the pair ( )00 b,A  is a controllable pair because of the formal analytical relation of 

the controllability gramian with the controllability matrix associated with the pair ( )00 b,A . If the 
controllability gramian is nonsingular then point reachability is not generically achievable under 
arbitrary parametrical disturbances for any given initial condition 0x and any targeted state *x at 
any finite time 0>*t . 

Remark 2:  

Note from (11) that: 

( ) ( ) ( ) ( ) 



 





 +−−+ 






−

00
1

001 xex*tGx,xe*tGxtGmaxtF *tA***tA***

 

( ) ( ) ( ) ( ) 



 ++≤≤ 






−

0
1

01 xe*tGxtGtFtx *tA****  

(25) 

If (A.11) in Lemma A.2 of Appendix A holds for *tt = and the conditions 1–5 of Lemma A.4 
hold then: 

( ) ( ) *
A

*
bΨ

*
b

*t* bKKbeKtG εεε
ρ

ρ
0

2
00

2

0

2
0 01

2
+





−≤ −   

( ) ( )
[ ]( )00
1
022

0

2
2 00

0 1 b,Aeeee *t,c
Ψ

*t*t*t
*t ΨΨΨ −

+−−−
−







−
−−+× G

ρρ

ρρρρρ
ρ  

(26) 

Then, from Lemmas A.2–A.4 and defining [ )( ) ( )( )ττξ
ρ

εε
τ

ξξ x,supKt,u,t
*t

***

≤≤
==

00

0
0 0 , one has:  

( )










 +− 00 xe*xxt *tA*

G
**

iFm εε - 





 − − *t* e 01 ρ

ξε  

( )*tx≤ ( ) 





 −+











 ++≤ − *t**tA*

G
**

iFM exe*xxt 00 10
ρ

ξεεε  
(27) 
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where *
Gε  is defined in Lemma A.4 (iii), ( )*iFM

*
iFM tεε =  and ( )*iFm

*
iFm tεε =  are defined for 

*tt = and:  

a) for 5=i in (A.12) and (A.16) if (A.11) (i.e., the assumptions 5 of Lemma A.2) holds, 
b) for 4=i in (A.13) and (A.17) if (A.10) (i.e., the assumption 4 of Lemma A.2) holds, 
c) for 3=i in (A.14) and (A.18) if (A.9) (i.e., the assumption 3 of Lemma A.2) holds, 
d) for 2=i in (A.15) and (A.19) if (A.8) (i.e., the assumption 2 of Lemma A.2) holds, 

respectively, 

Note by inspecting Lemmas A.2–A.4 that ( ) 




 −+= − *t*

b
*
A

*
G e,maxo 011 ρεεε , and






 −+= − *t*
A

*
iFM eo 011 ρεε , 





 −−= − *t*
A

*
iFm eo 011 ρεε  under the corresponding condition for 

5432 ,,,i = among the above set of conditions. Then: 

( ) ( ) ( ) 











 





 −+





 −−∈ −− **t**

b
*
A

**t**
b

*
A

* xe,,maxo,xe,,maxotx 00 1111 ρ
ξ

ρ
ξ εεεεεε  (28) 

The stability of the open-lop nominal linearized system is not crucial in the above results. If 
00 ≤ρ  (i.e., the critically stable and unstable cases for the nominal linearized system), then 

( ) 00 ρρ →−  and 11 00 −→





 − − *t*t ee ρρ  in all the relevant equations in the main body and 

Lemmas A.2 and A.4 in the Appendixes to get alternative results for those cases. So, Equation (28) 
applies for any absolute value and sign of the stability abscissa of the matrix 0A . 

Note that (27)-(28) lead to a worst-case targeting state estimate at time *t  through the control 
law (12) if the nominal linearized system is controllable. The controllability of the nominal linearized 
system translates into an approximate parallel result of approximate reachability of the whole 
current system and the approximation degree increases, as expected, as the parametrical 
disturbances and the sizes of the nonlinear contributions decrease. Thus, we have the following “ad 
hoc” definition and theorem concerning this issue. 

Definition 4. The current system (1)-(2), subject to (3)-(4), is said to be ( )*t*,x -point ( )α−1

-approximately reachable ( )01APR x,t,x **
α− , with ( ) 








−= 10

*t**
b

*
A e,,maxo ρ

ξεεεα , from a given 

initial state ( ) 00 xx = , where: 

[ )( ) ( )( )ττξ
ρ

εε
τ

ξξ x,supKt,u,t
*t

***

≤≤
==

00

0
0 0  if there exists some control law [ ] R→*t,u 0:  

leading to the state targeting ( ) ( ) ( )[ ]*** x,xtx αα +−∈ 11  for 0>*t if ( ) 00 xx = . 

Since ( ) ** xtx = if 0=α  then one has: 

Assertion 1: The current system (1)-(2), subject to (3)-(4), is ( )01APR x,t,x **  if and only if it is 

( )0PR x,t,x ** . □ 
The above considerations, together with Remark 2 and Lemmas A.2 and A.4 in Appendix A, 

lead to the following direct result concerning the reachability of the current system if the nominal 
linearized one is asymptotically stable and controllable: 

Theorem 3 (approximate reachability of the current system). Assume that: 

1) 0A  is a stability matrix with stability abscissa ( ) 00 <− ρ  so that ttA eKe 00 0
ρ−≤  ; +∈∀ 0Rt

for some real constant ( )10 ≥K , 

2) The pair ( )00 b,A  is controllable, that is, it is ( )0PR x,t,x **  for any given triple ( )** t,x,x0  
so reachable, 
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3) ( ) ( ) ( ) 10
0 <

− ττττ dt,ΨA~et tA  (guaranteed via the sufficient conditions (A.9)- (A.11) [Lemma 

A. 2  of Appendix A], 
4) ( ) ( )τρτ −−≤ t

Ψ ΨeK,tΨ ; ( ) R∈≥∀ ττ ,t  with 1≥ΨK and 00 ρρΨ <<  

Then, the current linearized system (1)-(2), subject to (3)-(4) (i.e., that resulting for 

( ) ( )( ) 0≡t,tu,txξ  on [ ]*t,0 ), is exponentially stable. Furthermore, the whole system (1)-(2), subject 

to (3)-(4), is ( )01APR x,t,x **
α−  with degree ( ) 





 −= − *t**

b
*
A e,,maxo 01 ρ

ξεεεα , from a given initial 

state ( ) 00 xx =  under the nominal control law [ ] R→*t,:u 00 of Equation (12), where: 

( ) *
A

t
tA~sup ε≤

∞<≤0
 ; ( ) *

b
t

tb~sup ε≤
∞<≤0

 ; ( ) ( )( )τττξ
ρ

ε
τ

ξ ,u,xsupK
*t

*

≤≤
=

00

0 □ 

Theorem 4: Assume that the current linearized system (1)-(2) subject to (3)-(4), is ( )0PR x,t,x **  on 

[ ]*t,0 . Then, the following properties hold: 

(i) 

( ) ( ) ( )( ) ( ) ( ) ( )( ) 



 +−∈ ττττξττττξτ d,u,x,tΨx,dx,,tΨxtx t **t ***

00  (29) 

(ii) 

( ) ( ) ( ) ( )( )
21

0
2

21

0

2 /
t

/
t *** d,u,xd,tΨxtx

**





 













+≤ ττττξττ  (30) 

(iii)  
If ( ) ( )τρτ −−≤ t

Ψ ΨeK,tΨ  with 0, ≠ΨΨ ρK then  

( ) ( ) ( )( )
21

0
22121

2

/
t/t

Ψ

Ψ** d,u,xeKxtx
**

Ψ 




 −+≤ − ττττξ

ρ
ρ  

(31) 

( ) ( ) ( )( )τττξ
ρ τ

ρ ,u,xsupeKxtx
*

*
Ψ

t

t

Ψ

Ψ**

≤≤

−−+≤
0

1  (32) 

( ) ( ) ( ) ( )( ) ( ) ( )( ) 




 −+≤





 +≤ −

≤≤
ττττξττττξτ ρ

τ
d,u,xeKxd,u,x,tΨsupxtx

***

*

tt*t*

t

**
00

0
1 ΨΨ

 
(33) 

If, in addition, 0≠*x  then ( ) ( )( ) *

t
x,u,xsup

*
ξ

τ
στττξ ≤

≤≤0
and: 

( ) *t* xeKtx
*











−+≤ −

ξ
ρ

Ψ

Ψ σ
ρ

Ψ11  (34) 

If 0=*x  and 00 ≠x  then ( ) ( )( ) 00
0

x,u,xsup
*t

ξ
τ

στττξ ≤
≤≤

and: 

( ) 001 xeKtx
*t*

ξ
ρ

Ψ

Ψ σ
ρ

Ψ−−≤  (35) 

Proof: Since the current linearized system is ( )0PR x,t,x **  then the controllability gramian of the 

current linearized system (1)-(2), subject to (3)-(4) on [ ]*t,0 (that is, that associated with the pair 

( ) ( )( )tb,tA  on [ ]*t,0 ) is: 
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[ ] ( ) ( )( ) ( ) ( ) ( ) ( ) ττΨτττΨττ d,tbb,tb,A *TTt *
*t,c

*
= 00G  (36) 

which is non-singular and the control law  

( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( )( ) ( )( )0
1
0 0 x,txb,A,tbtv,tbu **
*t,c

*TT*TT ΨτττΨττΨττ −== −G ; [ ]*t,0∈τ  (37) 

transfers the initial state 0x  to ( ) ** xtx =  along the time interval [ ]*t,0 if ( )( ) 0≡ττξ x, in (1) for 

[ ]*t,0∈τ . If such a nonlinear contribution is non-zero then ( ) ( ) ( ) ( )( ) ττττξτ d,u,x,tΨxtx t *** += 0  
so that (29) holds and Property (i) is proved. Property (ii) holds since (30) follows from H o lder´s 
inequality in the upper-bound of the right-hand-side of (29). Equations (31) and (33) follow from the 
right-hand side of (29) and (30) if ( )τΨ ,t is of exponential order but non-necessarily stable since *t  
is finite and Property (iii) is proved. On the other hand, Equations (34) and (35) follow directly from 
(32) under the given conditions. □ 

Sufficiency-type conditions which guarantee the non-singularity of the controllability gramian 
of the current linearized system in the case that that of the nominal one is non-singular is given in 
Appendix B. 

3. Reachability and Approximate Reachability of the Current Time-Varying System under 
Unstructured Nonlinear Dynamics 

Theorem 5. Define ( )*tx  and ( )*tx0  as the current total state including parametrical disturbances 
and the nonlinear effects and the nominal linearized one, respectively, under the respective controls 

( )tu  and ( )tu0 . Then, the following properties hold: 

(i)  

( ) ( ) ( ) 00 00 xe,tΨtxtx
*tA***






 −=−  

( ) ( ) ( ) ( )( )( ) ( ) ( ) τττττξτττΨ τ dubedx,ub,t *t tA*t * *
0000

0
−−++  

(38) 

(ii) Assume that the current linearized system (i.e., that resulting for ( )( ) 0≡tx,tξ ) is 

( )0PR x,t,x **  and that ( ) ( )tutu *= ; [ ]*t,t 0∈∀ achieves perfect state targeting ( ) *** xtx = at *tt = . 
Then, 

( ) ( ) 00 00 xe,tΨtxx
*tA***






 −=− ( ) ( ) ( ) ( ) ( ) ττττττ τ dubedub,tΨ *t tA**t * *

0000
0−+ −  (39) 

(iii) Assume that the current linearized system (i.e., if ( ) 0=tA~ , ( ) 0=tb~ , ( ) 0=tc~ , ( ) 0=td~ ,

( )( ) 0=tx,tξ ( )( ) 0≡tx,tξ ) is ( )0PR x,t,x **  and that ( ) ( )tutu *
00 =  ; [ ]*t,t 0∈∀ , Equation (12), 

achieves perfect state targeting ( ) *** xtx =0 at *tt = . Then, 

( ) ( ) 00 x,tΨtx ** = ( ) ( ) ( ) ( ) ( )( )( ) ττττξτττ d,u,xub,tΨ **t * ++ 00  (40) 

Proof: Note from (26) that, for initial conditions ( ) 00 xx = , ( )*tx  and ( )*tx0  are given by : 

( ) ( ) 00 x,tΨtx ** = ( ) ( ) ( ) ( ) ( )( )( ) ττττξτττ d,u,xub,tΨ*t * ++ 0  (41) 

( ) 00 0 xetx
*tA* = ( ) ( ) τττ dube*t tA *

000
0+ −  (42) 

leading directly to (38). Property (i) is proved. On the other hand, if the current linearized is 

( )0PR x,t,x **  and that ( ) ( )tutu *=  ; [ ]*t,t 0∈∀ achieves perfect state targeting ( ) *** xtx = at *tt = . 
Then: 
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( ) ( ) ( ) ( )( ) ττττξτ d,u,x,tΨxtx *t *** =− 0  (43) 

and replacing it into (38) and simplifying the resulting equation yields (39). Property (iii) follows 

directly from the fact that ( ) ( )tutu *
00 =  ; [ ]*t,t 0∈∀ achieves nominal  linearized perfect state 

targeting ( ) *** xtx =0 at *tt = assumed it is ( )0PR x,t,x ** and then: 

( ) ( ) τττ dubexex **t tAtA* **

0000 00 += −  (44) 

replaced in (38) gives (40). □ 
The following result provides a worst-case estimate of the Euclidean norm of the sate norm 

versus time of the current  system on the reachability interval [ ]*t,0 of the current linearized 
system, which is not assumed to be necessarily stable, if the control law (37) is used and the targeting 
objective at time *t  is scheduled for the current linearized system  which is point reachable and 
whose complete time-varying parameterization is exactly known for all time. 

Theorem 6. Assume that: 

A1) The current linearized system is ( )0PR x,t,x **  and that the perfect state targeting objective 

( ) *** xtx = is scheduled for it.  
A2) ( )τΨ ,t is of exponential order (although the current linearized system is not assumed 

necessarily stable) and its Euclidean norm satisfies
( ) ( ) ( )τρ

Ψ
τρ

Ψ ΨΨ τΨ −−−− ≤≤ tt eK,teK 20 0 ; ( ) +∈≥∀ 0Rττ ,t  for some real constants 

20
Ψ

Ψ
ρρ ≥ , Ψρ , 00 >ΨK and 1≥ΨK . 

A3) 
Ψ

Ψρρ ρΨΨ

K
e,emax

** tt <









−− − 11  

A4) The point reachability control law (37) is injected to the current system. 
A5) The nonlinear contribution to the dynamics related to the nominal current linearized 

system satisfies the worst-case growing condition: 

( ) ( )( ) ( ) ( ) 2
2

0

2
2

0
ττξ

τ
ξ

τ
ξ usupKxsupKtu,tx

t
u

t
x

≤≤≤≤
+≤ ; [ ]t,0∈τ ; [ ]*t,t 0∈  (45) 

for some real constants 0≥xKξ and 0≥uKξ . 

A6) 
x

x MK
K

Ψ

Ψ
ξ α

ρ
<  

where: 

+



−

= −
20xe

K
K

M
*t

x
Ψρ

ξΨΨ

ΨΨ
θαρ

ρ
βρ
γα

Ψ

ΨK
*tt

sup
≤≤0

( ) 2
2tb

( ) ( ) 































 +



−

*

*

t T
min

t*

dttbtb

xeKx

0

202

λ

Ψρ
Ψ

 

2

22

βρ

αγ

Ψ

Ψξ KK u+
( )

( ) ( ) 











































 +



−

*

*

t T
min

t*

dttbtb

xeKxtb

0
2

2

202
2
2

λ

Ψρ
Ψ

 

(46) 
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with ( ) 















≤∈=

≤≤

+
2

0

0 txsup
K:inf

*tt

x
θθθ ξξ R , ( ) 










−−== − 11

** tt* e,emaxt, ΨΨ ρρ
Ψραα , 

( ) 





== − *t* e,maxt Ψργγ 1 , and ( )







>

≤
=

− 0if

0f

0
22

0

0
2

0
0 Ψ

ρ
Ψ

ΨΨ
Ψ

ρ

ρ
ρβ

Ψ
*t

*

eK

iK
t, . 

Then, ( ) x
tt

Mtxsup
*

≤
≤≤

2
0

.  

Proof: Note from (31) that since the controllability grammian and its inverse are symmetric on any 
time interval, denoting with ( ).minλ and ( ).maxλ  the minimum and maximum eigenvalues of the 
square symmetric- ( ). matrix, one has: 

( ) ( ) ( ) [ ] ( ) ( )( ) ( )
20

2
1
0222 0 x,txtb,tAt,ttbtu **
*t,c

* ΨΨ −≤ −G  

( ) ( ) ( )

[ ] ( ) ( )( )( )tb,tA
x,txt,tsuptb

*t,cmin

***

tt *

0

2020
2 0

Gλ

ΨΨ −
= ≤≤  

( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) 







−

≤


≤≤

≤≤

*

*

*

t T
min

*T*
min

tt

***T*/
max

tt

dttbtbt,tt,tinf

x,txt,tt,tsuptb

0
0

20
21

0
2 0

λΨΨλ

ΨΨΨλ

 ; [ ]*t,t 0∈∀  

(47) 

Since ( ) ( )( ) ( ) ( )τρ
Ψ ΨτΨτΨτΨλ −−≤= tT/

max eK,t,t,t 2
21  and 

( ) ( )( ) ( )τρ
Ψ ΨτΨτΨλ −−≥ tT

min eK,t,t 022
0 ; ( ) +∈≥∀ 0Rττ ,t  and then: 

( ) ( ) ( )( )






>

≤
===

−
≤≤ 0if

0f

0
22

0

0
2

0

0
0

0 Ψ
ρ

Ψ

ΨΨ
Ψ

ρ

ρ
ΨΨλρββ

Ψ
*

* t
*T*

min
tt

*

eK

iK
t,tt,tinft,  (48) 

Note that, since 
20
Ψ

Ψ
ρρ ≥ , then if 000 ≤≤ ΨΨ ρρ  so that the current linearized system is 

either unstable or critically stable and 00 0 >> ΨΨ ρρ  so that the system is exponentially stable. 

Define also ( ) 





== − *t* e,maxt Ψργγ 1 . Then, one gets from (48) into (47) that: 

( )
( ) ( )

( ) ( )

( )

( ) ( ) 































 +

≤









−
≤



−

*

*

* t T
min

t*

t T
min

**

dttbtb

xeKxtb
K

dttbtb

x,txtbKtu

0

2022

0

202
2

0

λ
β

γ

λ

Ψ

β
γ

Ψρ
Ψ

ΨΨ  ; 

[ ]*t,t 0∈∀  

(49) 

Define ( ) ( ) x
tt

*
xx K/txsuptMM

*
ξξθ≤==

≤≤
2

0
 for some +∈ 0Rξθ . Thus, one has from (45) into 

(41) that: 
( ) ( ) ( )

20
00

202
0

2
0

0 
≤≤≤≤≤≤≤≤

+≤= t

ttttttt
x d,tsupsupx,tsuptxsupM

***
ττΨΨ

τ

 

( ( ) ( ) ( )

















++×

≤≤≤≤≤≤
2

0
2

0
2

0

2 tusuptusupKtbsupMK
*** tttt

u
tt

xx ξξ  

( ( ) ( ) ( )































++










−−≤

≤≤≤≤≤≤

−
2

0
2

0
2

0

2111 tusuptusupKtbsupMKe,emaxK
***

**

tttt
u

tt
xx

tt
ξξξ

Ψ

ρρ
Ψ θ

ρ
ΨΨ    

(50) 
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20xeK
*tΨρ

Ψ
−+  

so that, since xxx MMK ≤2
ξ , one gets by defining ( ) 










−−== − 11

** tt* e,emaxt, ΨΨ ρρ
Ψραα  

and after re-arranging factors of xM and re-allocating them to the left-hand-side of the above 
equation: 















−≤ −

−

20

1

1 xeKKM
*t

x
Ψρ

Ψ
Ψ

Ψ
ρ

α

( ) ( ) ( ) 




























++

≤≤≤≤≤≤
2

0
2

0
2

0
tusuptusupKtbsupK

*** tttt
u

tt
ξ

Ψ

Ψ
ρ

α  

 

(51) 

The substitution of (49) into (51) yields ( ) xx
tt

MMtxsup
*

≤≤
≤≤

2
0

 with xM defined in (46) 

provided that 










−−=> − 11

** tt e,emaxKK ΨΨ ρρ
ξΨξΨΨ θθαρ . Note that the condition 

Ψ

Ψ
ξξ α

ρ
θ

K
MK xx <≤  always hold for some 0≥ξθ if xKξ  is small enough to satisfy 

( ) 2
0

txsupK
K

*tt

x

≤≤

<
Ψ

Ψ
ξ α

ρ
. Such a constraint is guaranteed by looking for a lower bound than 

( ) 2
0

txsupK
*tt≤≤

Ψ

Ψ
α

ρ
 by using ( ) x

tt
Mtxsup

*
≤

≤≤
2

0
 via (51) resulting to be 

x
x MK

K
Ψ

Ψ
ξ α

ρ
< . □ 

The results of Theorem 6 are now specialized for the case when the targeting objective is an 
asymptotic objective, that is, scheduled for arbitrarily large time *t . 
Corollary 1: Assume that the assumptions of Theorem 6 hold with 0>Ψρ  (implying that the 
current linearized system is exponentially stable) so that the Assumption A3 becomes: 

Ψ

Ψρ ρΨ

K
e

*t <− −1  

and that: 

( ) ( ) ( ) 010 >≥






∞→

βλρβ Ψ
*

*

t T
min

*

t
dttbtbt,inflim  

( ) ( ) ( ) +∞<≤






∞→

20 βλρβ Ψ
*

*

t T
min

*

t
dttbtbt,suplim  

Then: 

( ) ( ) ( ) 0 
2

1 
21

22
2

01

2
≤
































+

−
−

≤≤∞→

*
*

u

tt

*
x

t
x

xKK
tbsup

K
KtMsuplim

** ββρθρ
ρ ξΨ

ΨξΨΨ

ΨΨ  (52) 

( ) ( ) ( ) 0
2

2
2

01

2

0
≤




























−
−

≤≤∞→→

*

tt

*
x

tK
xtbsup

K
KtMsuplimlim

**u βρθρ
ρ

ΨξΨΨ

ΨΨ

ξ
 (53) 

Proof: First, note that (46) can be rewritten equivalently as follows after grouping terms:  
( )*xx tMM =   

 
(54) 
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( ) ( ) ( ) ( )

( )

( ) ( )
































































+









+
−

= −≤≤
−


20

0

2
2

0

0

20
2

0

2
 

  
 

2
1 1 xe

dttbtb

tbsup

dttbtb

xeKK

dttbtb

K
K

K *

*

*

*

*

*

t

t T
min

tt

t T
min

t
u

t T
min

Ψ
Ψ ρ

ρ
ξΨ

Ψ

Ψ

ξΨΨ

ΨΨ

λβλ

γ

λβρ

γα
θαρ

ρ  

( ) ( )
( )

( ) ( )
























































+









+

 ≤≤ 2
0

22
2

0
0

  
2

1 *

t T
min

*
u

ttt T
min

x
dttbtb

xKK
tbsup

dttbtb

K
***

βλ

γ

βλρ

γα ξΨ

Ψ

Ψ  

Under the given assumptions, one has from (54) that, since 0>Ψρ , it follows that 

( ) 01 →−= − *t* et, Ψρ
Ψρα as ∞→*t and 1=γ , and then (52)-(53) hold. □ 

Another elementary targeting error estimate result follows below for the case when the current 
linearized system arises perfect targeting and the nonlinear disturbance grows slower than some 
power of the state norm. 

Theorem 7. Let Assumptions A1 to A4 of Theorem 6 to hold and the constraint of A5 is replaced 
with the following one for some real constant ( )21 ,∈μ : 

( )( ) ( ) μ
ξξ 2txKtx x≤ ;  [ ]*t,t 0∈  (55) 

Assume also that xKξ  is small enough such that the condition C1 below holds: 

C1) 

( )

( ) ( ) ( )( )

( )( )
μμ

μ
μμμ

μ
μρμ

ξ

σσξ

ξ
μ

ρμ






















 −

−

≤
−

−−≤≤ *

Ψ

*
Ψ

*
t /

//

/t
Ψ

tt
x

dx

tx

eK

infK

0
1

2

11

10

1

1

1  
(56) 

Then, if the targeting control law for the current linearized system (37) is applied to the current 
system, one has the following targeting error estimate: 

( )
( ) ( )

( ) 2
21

12

2

2
11

1
4

*
Ψ

*
Ψ

Ψ

t
q

q/tq

q

q/q
xΨ

Ψ

Ψq** ee
q

KKqK
xtx ρρξ

ρρ
−−−



















−
≤ −−

−
−

 

( )
( ) ( ) 























 






 +

+×

−

≤≤ *

*

t T
min

t*

ttΨ

Ψ*

dttbtb

xeKx
bsup

K
tx

0
2

2

2023
2

0
2

3
22

20

λ
σ

βρ

γ
ρΨ

Ψ
     

( ) ( )
( ) ( )( )

2

2
1

1 1
1

2
x

/q
q/tq

q

q/q
xΨ

K

tx
e

q

KqK *
Ψ

Ψ ξ

μ
ρξ ξ

ρ
−−



















−
−

−
+  

(57) 

Proof: Note from (55) and condition C1 that; 

( )( )
( ) ( )

( ) ( )( )
μμ

μ
μρμ

μ

μμξ
μ σσξ

ρμ
μξ 







−

−
−≤ −−



















−
t //t

/Ψx
/ dxeKKtx

*
Ψ

Ψ

0
1

2
1

1
1 1

1
0

( )( ) ( ) ( )( ) ( ) ( )( )
μμμμμμτ

ξ
μ σσξτσστξ 







 −≤

−− t //t /
x

/ dxdd,ΨKtx 0
1

2

1
0

1
20

1  

( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) +≤ −≤ t
x

t
x

/ ddub,Ψx,ΨKddx,ΨKtx 0 0020 0
1 0 τ

ξ
τ

ξ
μ τσσσστττσσξστξ ; 

[ ]*t,t 0∈  

(58) 

so that: 
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( ) ( )( ) ( )( )
x

/
t

K
tx

ddx,Ψ
ξ

μ
τ ξ

τσσξστ
1

20 0 ≤  ; [ ]*t,t 0∈  (59) 

On the other hand. since the current linearized system is ( )0PR x,t,x **   and its perfect state 

targeting objective  ( ) *** xtx = at time *tt =  is achieved by the control law (37) it turns out, by  

using (55) and H o lder´s inequality in (56) with 12 >= μ/q and ( )
μ−

=−=
2

21q/qp , that the 

current system satisfies: 

( ) ( ) ( )( ) ( ) ( )
( )

( )( ) q/*t q
q/q

*t q/q**t *** dxd,tΨdx,tΨxtx
1

0 2

1

0
1

2202















≤=−

−
−

ττξττττξτ

  

( )( )
( ) ( ) ( )

q/*t qq/qq/tΨq
q/q

Ψ

xΨ dxe
q

KK * 1

2

11
1 01

1












−−−
− −

−
≤ ττ

ρ
μρξ  

(60) 

Thus: 

( )
( ) ( )

q

q/q
xΨq**

Ψq

KqK
xtx



















−≤
−

− 12 1 ρ
ξ ( ) ( ) 







−−
−
**

Ψ t
q

q/tq dxe 0
2
2

11 ττρ  

( ) ( )

q

q/q
xΨ

Ψq

KqK



















−≤
− 11 ρ

ξ ( ) ( ) 






−−
−
**

Ψ t
q

q/tq dxe 0
2
2

11 ττρ  

(61) 

( ) ( )
( )

q
q/tq

q

q/q
xΨ *

Ψ

Ψ

e
q

KKq ρξ

ρ
1

1 1
1

−−



















−
≤ −

−
 

( ) ( ) ( ) ( ) ( ) ( )( )( )





























  ++× τσσξστσσσττ τ τ ddx,Ψub,Ψx,Ψ
*t

0

2

20 000  

(62) 

and by using (59) for the nonlinear dynamics contribution upper-bound and (49) for the control 
upper-bound, one gets: 

( )
( ) ( )

( ) ( )( )
2

2
1

12
1

1
2

x

/q
q/tq

q

q/q
xΨq**

K

tx
e

q

KqK
xtx

*
Ψ

Ψ ξ

μ
ρξ ξ

ρ
−−



















−
− −

−
−  

( )
( ) ( )

( ) ( ) ( )( )( )200
1

12
1

1
2 τσσξστ

ρ
τρξ ddx,Ψe

q

KqK
xtx

**
Ψ

Ψ

t
q

q/tq

q

q/q
xΨq** −

−
−≤ −−



















−
−  

( ) ( )

q

q/q
xΨ

Ψq

KKq



















−
≤

− 11
2

ρ
ξ ( ) ( ) ( ) ( ) ( )( )





























−−
 +− τσσσσττ τρ ddub,Ψx,Ψe
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Ψ t
q

q/tq
0

2

200
1 01  

( ) ( )
( )

q
q/tq

q

q/q
xΨ *

Ψ

Ψ

e
q

KKq ρξ

ρ
1

1 1
1

4 −−
















−≤ −
−

( ) ( ) ( ) ( ) 













+








 
2

0 0
2
20

2
0 20

** tt ddub,Ψxd,Ψ τ τσσσστττ  

( ) ( )
( ) 2

21
12

2
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1
4

*
Ψ

*
Ψ

Ψ

t
q

q/tq

q

q/q
xΨ

Ψ

Ψ ee
q

KKqK ρρξ

ρρ
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


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
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
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2
22

20 σσ
ρ σ

ubsupKtx
tΨ

Ψ*  

 

( ) ( )
( ) 2

21
12

2
11

1
4

*
Ψ
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Ψ

Ψ

t
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q/q
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Ψ

Ψ ee
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
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
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
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




 +

+×


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σ
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Ψ

σ

 

(63) 

and the result follows directly from (63). □ 
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4. Output Reachability, Output Approximate Reachability and Practical Constraints 

4.1. Output Reachability and Output Approximate Reachability 

It is direct to extend Definitions 1–4 to the various parallel concepts from (state) reachability of 
output point reachability and approximate output reachability ( )0OPR x,t,y **  and 

( )0AOPR x,t,y **  in a direct way when the targeted objective at time *t  is just to prefix an output 

value ( ) ( ) **T** xtcyty ==  to be either exactly or approximately targeted. The basic ideas are easy to 
extend from the former section so that we only give some guidelines. Suppose for the shake of 
simplicity that the direct input-output interconnection gain ( ) 00 ≡= dtd . Basically, the output 

controllability gramians on [ ]*t,0 of the current and nominal linearized systems are, respectively: 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )* * *
0, * 0

, , , ,
tT T T T

oc t c t A t b t c Ψ t b b Ψ t c dτ τ τ τ τ τ τ  
= G  

( ) ( ) ( )* *
0 0*

0 0 0 0 0 0 00 0, * 0
, ,

Tt A t A tT T T
oc t c A b c e b b e c d

τ τ τ− −

  
= G  

The (exact) point reachability of each system holds if the above respective scalar output 

controllability gramian on [ ]*t,0 is nonzero. Note that the nominal system is controllable implying 
point reachability for any time instant if and only if the output controllability matrix of the nominal 

linearized system [ ] 00
1

000000 ≠− bAc,,bAc,c nTTT  . In the case of multi-output, i.e., ( ) pty R∈  with 

2≥p  and 00 CcT →  , ( ) ( )tCtcT → , in the parameterizations and the controllability gramians, with 

( ) nptC,C ×∈R0  then the applicable condition is that the multi-output controllability gramian of the 

nominal, or respectively current, linearized system on [ ]*t,0  is nonsingular. For the nominal 

linearized system, the above property holds if and only if [ ] pbAC,,bAC,bCrank n =−
0

1
0000000  . 

The results of the above sections can be extended directly for output reachability with minor 
direct changes. 

The control laws for exact/approximate output targeting at the time instant 0>*t  are the 
subsequent ones for the case of zero input-output interconnections gains ( ) 0d,td , or ( ) 0D,tD if 

2≥p : 

(a) For the exact reachability ( )0OPR x,t,y **  of the current linearized linear system and also 

for the approximate reachability ( ( )0AOPR x,t,y ** ) of the current system at 0>*t  based on the 

same control, where ( ) *** xtCy = , the control law (37) is modified as follows: 

( ) ( ) ( ) [ ] ( ) ( ) ( )( ) ( )( )0
1
0 0 x,tΨxb,A,C,tΨbu **
*t,oc

*TT −= − ττττττ G ; [ ]*t,0∈τ  (64) 

(b) For the ( )0OPR x,t,y **  of the nominal linearized system and also for the ( )0AOPR x,t,y **  

of the current system based on the same control at 0>*t , the control law (12) is modified by 
replacing in (64): 

( ) 0bb →τ , ( ) ( ) ( )( ) ( )000t*][0,0t*][0, b,A,Cb,A,C ococ GG →τττ . 

4.2. Solvability Constraints When the Linearized Systems Are Not Controllable 

If the linearized systems are non-controllable then the corresponding controllability gramians 
are singular. Therefore, the exact point reachability property introduces restrictions on the tentative 
targeted points *x  at *t  for the linearized systems for the given initial condition 0x . In particular, 
one has from (5) and the Rouché-Froebenius theorem from linear algebra, that for a control of the 
form; 
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( ) ( ) ( )*tAT tvebu
*T

000 0 ττ −=  (65) 

guarantees the exact targeting condition:  

( ) ( ) ( ) ( )*cx
t tAtA* tvb,Advexex

**

000t*][0,0000 00 G=−−
+ − τττ  (66) 

for the current non-linear system under some existing auxiliary controls ( )*tv0  if, for given 0x  and 
*t , *x  satisfies the constraint: 

( ) ( ) ( ) ( ) 





−−= − τττ dvexex,b,Arankb,Arank x
t tAtA*

cc
* **

00000t*][0,000t*][0,0 00GG  (67) 

The same control (65) has solutions for point reachability of the nominal linearized system if; 

( ) ( ) 



 −= 000t*][0,000t*][0,0 0 xex,b,Arankb,Arank

*tA*
cc GG  (68) 

Proposition 1. Assume that (68) holds for a given triple ( )0x,t,x
** . Then the nominal linearized 

system is ( )0PR x,t,x **  and the current nonlinear system is ( )0PR x,t,x **  for some targeted *x

which satisfies the following closeness to *x  constraint: 

( ) ( ) ( ) ( ) 







+−∈ 

−− ττττ ττ dvex,dvexx x
t tA*

x
t tA** * ** *

0000
00 . □ 

If the controllability gramian is singular but (68) holds then the algebraic system (66) is 
compatible indeterminate and has infinitely many solutions. Note that (68) also holds if the 
controllability gramian is non-singular. Therefore, (68) holds if and only if (66) is solvable. If (66) is 
solvable then Proposition 1 holds for approximate reachability of the current nonlinear system. It is 
also known [16] that, if (68) holds, then the either unique or the infinitely many solutions of (66) are 
found from the as: 

( ) ( ) ( ) ( ) 







−−=
+ − τττ dvexexb,Atv x
t tAtA*

c
* **

00000
†

t*][0,00 00G  (69) 

where ( )00
†

t*][0,0 b,AcG  is the Moore-Penrose pseudoinverse of ( )00t*][0,0 b,AcG , which coincides 

with the inverse if the controllability gramian is non-singular. If ( )00t*][0,0 b,AcG  has rank ( )nr ≤

then it can be factorized as ( ) DCc GGb,A =00t*][0,0G , where rn
CG

×∈ R and rnr
DG

×∈R  are both of 

rank r . The subsequent result follows concerning all the set of solutions of (66), or the best 
approximated solution if (66) is algebraically incompatible, by taking into account the above 
considerations and the basic related results on pseudoinverse matrices in [15,16]: 

Theorem 8. The following properties hold: 

(i) Assume that (68) holds so that (66) is solvable in ( )*tv0 . Then:  

( ) ( ) ( ) ( ) ( ) ( ) 







−−=







−−
++ −− ττττ ττ dvexexdvexexb,Ab,A x
t tAtA*

x
t tAtA*

cc
****

00000000
†

t*][0,000t*][0,0 0000GG

 
(70) 

and the control law (12) is calculated by the set of primary control solutions to the nominal 
linearized system is given by: 

( ) ( ) ( ) ( ) ( ) 





 −−== 

− τττ dvexexb,AV,tvtv x
t tAtA*

c
*

a
*

a
* **

00000
†

t*][0,0000 00G  

( ) ( )( ) 000t*][0,000
†

t*][0,0 Vb,Ab,AI ccn GG−+  
(71) 
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where nV R∈0  is arbitrary and which becomes the unique solution (69) if the controllability gramian 
is non-singular. 

(ii) Assume that (68) fails so that (66) is algebraically incompatible. Then, the primary control 
(71) with 00 =V  gives in the control law (12) the best approximation of the error norm for the 
reachability problem of the nominal linearized system in the sense that 

( ) ( ) ( ) ( ) ( )0000t*][0,00000 000 V,tvb,AdvexexminArg,tv *
acx

t tAtA**
a

**
G−−−=

+ − τττ  (72) 

□ 
Remark 3. If the reachability of the current linearized system is taken as basis to solve the problem 
then (71) is replaced for an arbitrary n

cV R∈ with; 

( ) ( ) ( )( ) ( ) ( ) 







−−=
** t *tA*

c
*

c d,tΨxextb,tAtv 00
†

t*][0,
0 ττξτG   

( ) ( )( )( ) ( ) ( )( )( ) cctb,tAcn Vtb,tAb,AI t*][0,000
†

t*][0, GG−+  
(73) 

and a parallel result to Theorem 8 can easily by established for the two cases following when;  

( ) ( )( ) ( ) ( )( ) ( ) ( ) 





−−= τττξτ dd,tΨxex,tb,tAranktb,tArank
** t *tA*

cc 00t*][0,t*][0, 0GG  (74) 

holds or fails by implementing the control law (37) based on the primary control (73). 
For the case of output reachability, one uses (64) with the output controllability gramian of the 

current linearized system for the counterpart of the control law (37) or its direct modification using 
the output controllability gramian of the nominal linearized system. In this way, we obtain either 
compatible controls or those giving the best approximation of the error norm if the problem is not 
solvable. Direct “ad hoc” extensions of Theorem 8 and Remark 3 are direct and are not detailed. 

4.3. Constraints Associated with Saturated Controls 

Assume that either (12) or (37), that is, the controls based on the linearized nominal or current 
systems are saturated to be constrained within prescribed closed domains. Then,  

a) Equation (12) is modified as follows: 

( ) ( )( )
( )

( ) ( ) ( )
( )








≤
∈

≥
==

01001

020100

02002

00 0201
uuifu
u,uuifu

uuifu
usatu u,u

τ
ττ

τ
ττ ; [ ]*t,0∈τ  (75) 

( ) ( )
[ ]( )( )000
1
000 00 xexb,Aebu *tA*
*t,c

tAT *T
−= −− Gττ ; [ ]*t,0∈τ  (76) 

b) Equation (37) is modified as follows: 

( ) ( )( )
( )

( ) ( ) ( )
( )








≤
∈

≥
==

11

21

22

21
uuifu
u,uuifu
uuifu

usatu u,u
τ

ττ
τ

ττ ; [ ]*t,0∈τ  (77) 

( ) ( ) ( ) [ ] ( ) ( )( ) ( )( )0
1
0 0 x,txb,A,tbu **
*t,c

*TT ΨτττΨττ −= −G ; [ ]*t,0∈τ  (78) 

The above modified saturated controls can be extended directly “mutatis-mutandis” to the 
subsequent problems: 

1) Output reachability, for instance, the control effort (64) or its counterpart being based on 
the output reachability of the linearized nominal system. In this case, the targeting error for 
approximate reachability of Proposition 1 would become modified by including an error 
source generated by the deviation of the input from linearity as follows: 
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( ) ( ) ( )( )
( ) ( ) ( )( )












































−++














+



























−+−∈ 

−− τ
τ

ττ
τ

τ ττ d
usat

uvex,d
usat

uvexx
u,u

x
t tA*

u,u
x

t tA** * ** *

0

02
00

0

01
00

0201

0

0201

0 11

 
(79) 

or the alternative expression derived under the reachability of the linearized current system. 
2) Non-unique solvability or algebraic incompatibility as discussed in Theorem 8 and 
Remark 3 by adding similar error sources caused from the deviation of the input from 
linearity. 

Typical examples of control saturation arise in vaccination in epidemic models since the 
vaccination effort cannot be negative and cannot be larger than unity if fractions of susceptible 
subpopulations are vaccinated via feedback. 

5. Considerations on Reachability and Output Reachability in Some Epidemic Models Though 
Worked Examples 

Some of the above concerns on reachability and approximate reachability are now discussed 
and emphasized on typical usual epidemic models which have in common the presence of nonlinear 
quadratic terms involving contributions to the dynamics of the products of susceptible and 
infectious subpopulations which plays a crucial role in the mechanism of the infective disease 
transmission. Such terms deviate the solution trajectory from the linear behavior about the 
equilibrium points. See, for instance, [5–14] and also [16–21] and some of the references therein. 

Example 1. It can be argued that the epidemic models are not controllable or reachable in general. 
The following brief discussion leads to justify this claim. The so-called SEIR (including 
susceptible-exposed-infectious and recovered subpopulations) epidemic models possess typically a 
nonlinear quadratic term of the form ( ) ( )tItSβ , β being the disease coefficient transmission rate 
(which depends on the particular infectious disease under study), which governs the disease 
transmission. From biological considerations, all the state components (roughly speaking, the 
subpopulations of the model) have to be non-negative for all time. Assume an SEIR epidemic model 
with a unique disease-free equilibrium point and a unique endemic equilibrium point of a constant 
linear parameterization with linear vaccination effort ( )tV whose state is ( ) ( ) ( ) ( ) ( )( )TtR,tI,tE,tStx =
and whose total population ( ) ( ) ( ) ( ) ( ) ( )0NtRtItEtStN =+++=  is constant for all time. This situation 
is common in many SEIR models. See, for instance, Reference [15]. Assume that the basic 
reproduction number [5,6], is less than unity so that the disease-free equilibrium point 

( )( ) 0000 ≠−= T
eee SN,,,Sx is globally asymptotically stable, [3,5,6]. Since ( ) extx → as ∞→t , it 

turns out that, for +∞=*t , no  other targeted state ( )e* xx ≠  can be prefixed as objective for any 
given initial state ( )0x  even for  the current linearized version. As a result, 

[ )( ) ( ) ( ) τττ debbelimb,A *t tATtA

t
oc

*T*

*


−−

∞→
∞ = 0 00000, 00G  is singular and the linearized system is not 

asymptotically controllable and it is not asymptotically point-reachable for arbitrarily fixed 
( ) e

* xxx ≠=∞ +∞=*t . Since the integrand of the gramian is a semidefinite matrix, so that all its 
eigenvalues are non-negative and at least one of them is positive. Note, by inspection, that the 

maximum eigenvalue of the integrand [ )( )( ) ( ) ( ) 000 00000, >= −−
∞

τττλ
*T* tATtA

ocmax ebbeb,AG  if 

+∞<−≤ τ*t0 , that is, 000 0000 bedeeeblim
*T*T

*
tAAAtAT

t








∞

−−

∞→
τττ ) is positive. 

Since [ )( ) ( ) ( ) τττ debbelimb,A *t tATtA

t
oc

*T*

*


−−

∞→
∞ = 0 00000, 00G  is singular then its maximum 

eigenvalue is infinity, that is, +∞=







∞

−−

∞→
000 0000 bedeeeblim

*T*T

*
tAAAtAT

t
τττ  and the maximum 
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eigenvalue of the gramian. It can be said that is it asymptotically reachable from any initial condition 
if the targeted state at infinity only if the disease-free equilibrium point, i.e., ( ) e

* xx =∞ . From 
Definition 2, the nominal linearized system is not reachable either since reachability fails at infinite 
time for any point except for the disease- free equilibrium one. However, it can be point reachable 
for certain given triples ( )0x,t,x

**  which should be necessarily subject to the constraint the that the 

sum of their components equalize ( )0N . Point reachability is not possible at the time instant *t if 
such a constraint is violated. The same conclusion can arise for the current linearized system. Just 
from the above empiric consideration on necessary conditions for reachability, we can conclude that: 

Asymptotic reachability of both the nominal linearized and current system are only achievable 
if the targeted point at infinity time is the disease-free equilibrium point. In particular, the exposed 
and infectious subpopulations should be zero. The only freedom is that such a point can be governed 
by the steady-state vaccination effort which allows to modify correspondingly, depending on such 
an effort, the equilibrium susceptible and recovered subpopulations while keeping each component 
non-negative and their sum equal to the total population. 

Finite-time reachability at the time instant *t of the linearized system about the disease-free 
equilibrium point is only achievable if the targeted state has non-negative components whose sum 
equalizes the initial total population. Since there is no reachability of the nominal linearized system 
for arbitrary triples of initial conditions, targeted state and targeted time, one concludes that the pair 
( )00 b,A  of such SEIR epidemic models is not controllable via vaccination controls. 

If the reachability of the linearized systems in the sense of Definition 2 for an arbitrary targeted 
point about the equilibrium fail then that of the current system also fails. The same above basic 
principles are kept for the asymptotic reachability of the endemic equilibrium point in the case when 
the reproduction number exceeds unity. 

If the problem is stated for output-reachability with the dimension of the output less than that 
of the state (for instance, the output has only one to three of the sate components) then the 
considerations are close but the constraints are easy to satisfy. For instance, the targeted output has 
only to be constrained to its components to be non-negative and their sum to be less than or equal to 
the initial total population. 

A simple intuitive entropy-based interpretation of the probabilities of both attractors to be the 
relevant equilibrium point is as follows. Note that we cope with a very common situation that the 
epidemic model possess a unique disease-free equilibrium point and a unique endemic one. Then, if 
the reproduction number 10 ≤R  (typically, the disease transmission rate β does not exceed a 
certain critical value cβ  associated with 10 =R ) then the endemic equilibrium point typically does 
not exist as being compatible with the non-negative solution trajectories while the unique globally 
asymptotically stable attractor is the disease-free one. So, we can say that that the probability of the 
trajectory to reach the first one is 1=dfp  while that of reaching the second one is 0=endp . Thus, the 

entropy is ( ) 0=+−= endenddfdf plnpplnpH  [22]. The same conclusion arises if 10 >R  (typically, 

the transmission rate β  exceeds the critical value cβ ) since then the disease-free equilibrium point 
is unstable while the endemic one is asymptotically stable 0=dfp  and 1=endp and again 0=H . 

In general, if the reproduction number lies in [ ]21 11 γγ +− , , with [ ]101 ,∈γ  and 02 ≥γ  , or if the 
transmission rate can oscillate around the critical value, that is [ ]21 δβδββ +−∈ cc , , then 

[ ]10 ,pdf ∈= α , ( ) [ ]101 ,pend ∈−= α  and the entropy is ( ) ( ) ( )( )ααααα −−+−= 11 lnlnH . As a result 

if α  is close to unity (respectively, to zero) then the disease-free equilibrium (respectively, the 
endemic equilibrium point) is the “most probable” attractor. In particular, ( ) ( ) 010 == HH , that is 
the solution trajectory converges either to the disease-free equilibrium point 11 == γα and

[ ]c,βδ 01 ∈ , 022 == δγ ) or to the endemic one ( 011 === δγα  and 02 >γ , 02 >δ ), and 

[ ]
( ) ( ) ( ) 0693102121

10
>=−==

∈
./ln/HHmax

,
α

α
 gives the maximum uncertainty about which equilibrium 
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is the most probable attractor indicating that both of them are “unlikely probable with the same 
uncertainty degree”. 

Example 2. Consider the subsequent SIR model with time-invariant parameterization and a 
vaccination control ( )tV including an additive term proportional to the susceptible and another 
eventual free-choice additive term: 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )tgtSKtItVtStItS V −+−=−−= ββ  

( ) ( )( ) ( )tItStI νβ −=  

( ) ( ) ( ) ( ) ( ) ( )tgtvItSKtVtItR V ++=+=ν  

( ) ( ) ( )tgtSKtV V +=  

(80) 

where β  is the disease transmission rate and ν  is the removal rate, [ ]10 ,KV ∈  is the control gain 
of vaccination of a fraction of the susceptible and ( )( ) ( ) ( )0≥→≤− eV gtgtSK as ∞→t . The total 
population is ( ) ( ) ( ) ( )tRtItStN ++=  By summing up the three first equations one gets that the 

resulting right-hand-side is identically zero ( ) 0=tN so that the total population 

( ) ( ) ( ) ( ) ( )0000 RISNtN ++==  for all time. The equilibrium points are ( )Teeee R,I,Sx =  such that 
the three above time-derivatives are zero. So, the algebraic equation of the equilibrium points is: 

( )
e

e

e

e

V

e

Ve
g

g

g
x

K
S

KI

















−
=

















−
=
















−

+−

1
0
1

0
0
00
00

ν
νβ

β
 

where the coefficient matrix is the Jacobian matrix corresponding to such an equilibrium. Thus, one 
has the subsequent cases: 

1) If ( ) 0≥tg so that 0≥eg  then: 

00 ==≥
+

−= ee
Ve

e
e gS

KI
gS

β
 

( ) 00 ==−=− eeee IIIS ννβ  
0=−=+ eeeV gISK ν  for any 0≥VK  

( ) ( )00 NISNR eee =−−=  
( ) 0=+==

∞→
eeV

t
e gSKtVlimV  for any [ ]10 ,KV ∈  

Then, the unique equilibrium point is a disease-free one ( )( )Te N,,x 000=  , which depends on 
the initial conditions, and with the whole population being asymptotically immune. The spectrum of 
the Jacobian matrix ( )exJJ = is { }νΛ −−= ,K, V0  which is critically stable with two zero 
eigenvalues if 0≠VK and one critically stable eigenvalue if 0=VK , so that, in the absence of 
vaccination the stability properties become worsened with respect to the application of proportional 
vaccination to the susceptible. 

2) If ( ) 0≤tg , so that 0≤eg , with ( ) ( ) ( )tStSKtg V ≤≤  guaranteeing that ( ) 0≥tV  then 

0≥
+

=
Ve

e
e KI

g
S

β
, and 

( ) 00 ==









−

+
=− ee

Ve

e
ee II

KI
g

IS ν
β

β
νβ  or 

νβ
νβ Ve

e
Kg

I
−

=  which is zero (disease-free 

equilibrium point)  if 
β

ν V
e

Kg =  and nonzero (endemic equilibrium point) if 

( )
β

νβ V
eVee

KSKIg >+= , that is, if  ( )Ve

V
e KI

KS
+

>
ββ
ν . 
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0=−=+ eeeV gISK ν  for any 0≥VK  what implies that either 0=== eeeV gISK ν , so that 
0=== eee gIS , or 0=== eeV gIK . As a result for both case of VK  being zero or non-zero, the 

endemic equilibrium point does not exist since it would make incompatible the conditions 

associated with the second row of the Jacobian matrix. Since 0=eg  then 0=
+

=
Ve

e
e KI

g
S

β
 

irrespective of the vaccination control gain VK being zero or nonzero. Again, 
( ) ( )00 NISNR eee =−−=  and ( ) 0=+==

∞→
eeV

t
e gSKtVlimV  for any [ ]10 ,KV ∈ . As a result, the 

unique feasible equilibrium point is the disease-free one ex  of Case 1 which is again critically 
stable.  

By considering the spectrum of the Jacobian matrix, it is seen that there are a critically stable 
eigenvalue and a stable eigenvalue which cannot be either removed or prefixed and that the other 
one can be prefixed by the choice of the control gain. Then, note the following facts: 

It is obvious that the pair ( )00 b,A  with JA =0  for 0== ee IS , ( )0NRe = and ( )T,,b 1010 −=  
is neither controllable nor stabilizable so that the nominal linearized system is not reachable in the 
sense of Definition 2 for any given arbitrary triple ( )0x,t,x

** . In particular, note that 

( ) 310
2

00 <=bA,Ab,brank . This implies that the linearized nominal system cannot be reachable at 
any finite time for any arbitrary targeted state in the sense of Definition 2.  

The linearized nominal system is exactly output-reachable if the output is defined to be the 
susceptible subpopulation and the vaccination has no maximum constraint. Assume that the 
vaccination control effort is just the proportional term to the susceptible, i.e., ( ) 0≡tg . Since the 
susceptible and the infectious at the equilibrium are both zero, one has that the susceptible of the 

linearized nominal system are ( ) 0SetS
*

V tK−= . Assume that the targeted susceptible are 0SS* < at 

some 0>*t . Then, 
0Slnt

SlnKK *

*
*
VV −== targets ( ) 0SStS ** <= . However, if 0SS* ≥  then 0≤VK  

and the (exact) point reachability of the linearized nominal system is unfeasible since vaccination 
cannot be implemented with negative gains which would lead to increase the susceptible numbers. 

In practice, the vaccination gain is restricted to [ ]10 ,KV ∈  since the vaccination decreases the 
number of susceptible and one cannot vaccinate more individuals that the susceptible amounts at 

each time. Therefore, 






















−∈

0
10

Slnt
Sln,max,K *

*

V  for a given *t . 

The current system is approximately reachable with a certain targeting error at any time instant 
0>*t  if the vaccination control is unconstrained. In fact , ( ) ( )( ) ( )tSKtItS *

V+−= β  so that if 

0
0

>−==
Slnt
SlnKK *

*
*
VV  has no upper-bound constraint then one gets: 

( ) ( )( ) ( ) ( ) *
t dItKt dIt dVKI* SeSeeSetS
*

*
V

*
−−− +−

=





== 00000 ττβττβττβ  

*
/eI

*
t deI

SeSe

*t* νβτβ τν 







−−

−
−

−
==

ν
0

0
1

0  

(81) 

and, if 
*
SeSS* λ

0= for some real 0<*
Sλ , then the error between the susceptible of the current system 

at the targeting time instant and the targeted susceptible of the linearized nominal systems is: 
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0 11  (82) 

However, if the vaccination control is constrained as ( )[ ]*
VVV K,Kmax,K 0∈  with

V*

*
*
V K

Slnt
SlnK >−=

0
 for some given 1≤VK , which establishes the maximum fraction of susceptible 

allowed to be vaccinated,  then ** VVVVV KKKKK −−== , and: 

( ) ( ) ( )
























==

−−−− 












 −−+− *

*VV
*

*V
*

*VV*V tKKtKt dI
t dKKKI

* eSeeSetS 000
0 ττβττβ  

*
tKK/eI
Se

*
*VV

*t











−+








−− −

=
νβ ν

0 1
 

(83) 

Thus, (82) becomes modified as follows: 

( ) *
VV

SlnK

Sln

** tKK/eISlntSln *
*
V

*
S

−+





















−=−






 −

νβ

λ

0

0ν

0 1  (84) 

if 1
0

−<
Sln

t
*
S*

λ
 since V

*
V KK >  and *

VVV KKK <= , and: 

( ) νβνβ

λλ

/eI/eISlntSln SlnK

Sln

SlnK

Sln

** V

*
S

V

*
S





















−=





















−=−






 −





 −

0

0

0

0 ν

0

ν

0 11
 

(85) 

if 1
0

−≥
Sln

t
*
S*

λ
 since then *

VV KK = . 

Example 3. Consider the following SI epidemic model with N interacting groups and the infection 
being transmitted within and between groups which includes vaccination efforts and which was  
proposed (in the vaccination-free case) in [17,18]: 

( ) ( )( ) ( ) ( )( )( ) ( )tTtItItINtI j
N
ji irijjrjjjj −+−=  =≠ 1βββ  ; N,...,,j 21=  (86) 

subject to initial conditions ( ) 00 jj II = ; N,...,,j 21= , where jj I,N  and jjj INS −=  ; N,...,,j 21=

are the total, infectious and susceptible populations of the N  groups with respective total 
populations at each group being constant: and where ijβ ; N,...,,j,i 21= is the mutual disease 

coefficient transmission rate from the thi −  to the thj −  group, β is a reference disease coefficient 
transmission rate (typically, either the minimum, or the maximum or an average amount, 

βββ /ijijr = ; N,...,,j,i 21= , with jjj ββ = and jrjjr ββ =  being a simplified notation for any 

N,...,,j 21= , are the relative values of the ijβ  related to β and jT ; N,...,,j 21=  are the antiviral 

treatment effort son the infectious. Assume that: 

( ) ( ) ( )( )tINtKtT jjjj −=  ; ( ) ( ) ( )ttItK j
N
i iijj εβ +=  =1 ; N,...,,j 21=  (87) 



Entropy 2019, 21, 1045 24 of 31 

 

for any [ ) [ )100: jj ,, εε →∞ , with ( ) 0=tjε  if and only if ( ) 0=tI j ; N,...,,j 21= . But ( ) [ ]10,tK j ∈ , 

implies that 

( ) ( ) ( ) == −≤−≤≤ N
i iij

N
i iijjj tIIt 111 101 ββεε ; N,...,,j 21=  (88) 

since ( ) ( )( )tINtK jjj −  is the fraction of susceptible used for antiviral treatment of the infectious at 

time t ; N,...,,j 21= . Thus, it suffices that ( ) 11 10 j
N
i iij I εβ −≤ =  and 11 <jε ; N,...,,j 21=  for (88) to 

hold resulting in ( )tI j being strictly monotonically decreasing, then ( ) 0→tI j as ∞→t ; N,...,,j 21=

It has been proved the following: 

Proposition 2. Assume that the epidemic model (86) is subject to the treatment control law (87) for 
any [ ) [ )100: jj ,, εε →∞ , with ( ) 0=tjε  if and only if ( ) 0=tI j ; N,...,,j 21= , under the constraints 

11 <jε  and sufficiently small initial conditions such that ( ) 11 10 j
N
i iij I εβ −≤ = . Then, all the 

infectious subpopulations converge strictly monotonically to zero so that the susceptible 
subpopulations of each group converge monotonically to the total subpopulations of the 
corresponding groups. Furthermore, all the subpopulations are non-negative for all time under 
non-negative initial conditions. □ 

Assume now that the antiviral control (87) is modified as follows: 

( ) ( ) ( ) ( )tItIttT ji
N
i ijj  == 1λ  (89) 

where [ ) [ )∞→∞ ,ij 0,0:λ ; N,...,,j,i 21= . The replacement of (89) into (86) yields:  

( ) ( )( ) ( )[ ] ( )tItItNtI j
N
i iijijjijj  = +−= 1 λββ  ; N,...,,j 21=  (90) 

Now, choose: 

( ) ( ) ( ) ( )( )( )tINt
tI

t jjijij
i

ij −+= βελ 1  (91) 

if ( ) 0≠tIi and ( ) 0=tijλ  if ( ) 0=tIi ; N,...,,j,i 21= for some [ ) [ )∞→∞ ,ij 0,0:ε ; N,...,,j,i 21= , 

subject to ( ) ( ) 11 ≤ = tIt i
N
i ijλ  for all 0≥t  , N,...,,j 21= so that (89) consists of giving a treatment on a 

fraction of the infectious of that j -th  group. This implies the subsequent constraint: 

( ) ( ) ( )( )( ) 11 ≤−+ = tINtt jjijij
N
i ij βελ  (92) 

which is guaranteed if ( )
( ) ( )( )( ) 












−+
∈

tINtN
,t

jjijij
ij

βε
λ 10 ; N,...,,j,i 21= . Under (92), one has 

from (90) that ( ) ( )ttI N
i ijj  =−= 1ε  so that ( ) ( )0jj ItI ≤  for all 0≥t  according to: 

( ) ( ) ( ) ( ) ( ) ( )( )( )
0

1 01 0 0 IeIetI
N
i

t
jjijiijN

i
t
ij dINI

j
d

j
 =  =  −−−− == ττβττλττε  ; N,...,,j 21=  (93) 

with ( ) 00 jj II = ; N,...,,j 21= .Then the reachability for any suited  targeted state in the sense of 

Definition 2 is not possible. However, the current system is ( )0PR I,t,I **  where ( )T*
N

*** I,I,II 21=

and  ( )TNI,,I,II 020100 =  with the N  constraints 0j
*
j II ≥ ; N,...,,j 21= , if ( )tijε ; N,...,,j,i 21=

are such that the control gains [ ) [ )∞→∞ ,ij 0,0:λ ; N,...,,j,i 21=  are selected in (91) for a set of 

functions ( )tijε such that ( ) 












−==  =

0
1 0

1
j

*
j

*
*N

i
t

ijj I
I

ln
t

t/d
*

ττερ ; N,...,,j 21= . 

Appendix A. Auxiliary Technical Results 
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Lemma A.1. ( ) ( ) ( ) ( ) ττττ dt,ΨA~eItF t tA
n 

−−= 0
0  is non-singular for a given +∈Rt if  the following 

two assumptions hold: 

1) 0A  is a stability matrix so that ttA eKe 00 0
ρ−≤  ; +∈∀ 0Rt for some real constants ( )10 ≥K

and 00 >ρ , 
2) 

( ) ( ) ( ) 10
0 <

− ττττ dt,ΨA~et tA  (A.1) 

and (A.1) holds if the assumption 3 below holds: 
3) 

( ) ( ) ( ) τττ τ

τ
dt,Ψe/A~sup t tA

t
< −

≤≤
0

0
01  (A.2) 

and (A.2) holds if the assumption 4 below holds: 
4) 

( ) ( ) ( ) ττρτ ρ

τ
dt,ΨeK/A~sup t

t
0100

0

−

≤≤
−<  (A.3) 

where ( )τ,tΨ ; ( ) +∈≥∀ 0Rττ ,t , which satisfies ( ) ( )τρτ −−≤ t
Ψ ΨeK,tΨ ; ( ) +∈≥∀ 0Rττ ,t ,is the 

fundamental of the system ( ) ( ) ( )txtAtx = , ( ) 00 xx = , and (A.3) holds if the assumption 5 below 
holds, 

5) 

( ) ( ) ( )( )tΨΨ
t

eKK/A~sup Ψρρ

τ
ρρτ −−

≤≤
−−< 0100

0
 (A.4) 

for some real constants 1≥ΨK  and ( ) 0
0

0 >−≥
+∞<≤

tA~sup
t

Ψ ρρ provided that ( )
0

0
K

A~sup
t

ρσ
στ

<
≤≤

; 

( ) R∈≥∀ ττ ,t and that ( )tA~sup
t +∞<≤

+≤≤
0

0 ΨΨ ρρρ . 

Proof: Note that if ( )τ,tΨ  is the fundamental matrix associated with ( )tA . Then, 

( ) ( ) ( ) ( ) ( ) σσστ τ
στ d,tΨA~ee,tΨ t tAtA

+= −− 00  ; ( ) +∈≥∀ 0Rττ ,t  (A.5) 

with ( ) nI,Ψ =ττ  ; +∈∀ 0Rτ , which is of exponential order on the interval t≤≤ στ  for any 
( ) ττ ,t ≥   

so that there exist real constants R∈≥ ΨΨ ,K ρ1  such that ( ) ( )τρτ −−≤ t
Ψ ΨeK,tΨ ; 

( ) +∈≥∀ 0Rττ ,t . On the other hand, note that 

( ) ( ) ( )( ) ( ) ( )σσ
ρ

τ
στστ

τρτρ ,tΨsupA~supeKeK,tΨ
tt

tt

≤≤≤≤

−−−− −+≤ 00 1
0

0
0

; ( ) +∈≥∀ 0Rττ ,t  (A.6) 

Note from Banach´s Perturbation Lemma and (A.6) that one has for any +∈ 0Rt : 

( ) ( )
( )( ) ( )τρρ

ρρε

τ

ρρ A~supeKK
ttF

t

t
ΨΨ

Ψ
FM

≤≤

−−
−

−−−

−
=≤

0
00

01

0
5

1 Ψ

 (if (A.4) holds) 
(A.7) 

( ) ( ) ( ) ( )τττρ

ρε

τ

ρ A~supdt,ΨeK
t

t

ttFM

≤≤

−
−−

=≤

0
000

0
0

4
1

 (if (A.3) holds) 
(A.8) 

( ) ( ) ( ) ( )τττ
ε

τ

τ A~supdt,Ψe
t

t

t tAFM

≤≤

−
−

=≤

0
0

03 1

1  (if (A.2) holds) 
(A.9) 
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( ) ( ) ( ) ( ) τττ
ε

τ dt,ΨA~e
t

t tAFM
−

=≤
−

0
02 1

1   (if (A.1) holds) (A.10) 

□ 
Lemma A.2. One has that: 

( ) ( )
( )( ) ( )τρρ

ρρε

τ

ρρ A~supeKK
ttF

t

t
ΨΨ

Ψ
Fm

≤≤

−−
−

−+−

−
=≥

0
00

01

0
5

1 Ψ

 
(A.11) 

if the assumptions 1 and 5 of Lemma A.2 hold: 

( ) ( ) ( ) ( ) ( )τττρ

ρε

τ

ρ A~supdt,ΨeK
ttF

t

ttFm

≤≤

−
−

−+
=≥

0
000

01

0
4

1

 
(A.12) 

if the assumptions 1 and 4 of Lemma A.2 hold: 

( ) ( ) ( ) ( ) ( )τττ
ε

τ

τ A~supdt,Ψe
ttF

t

t tAFm

≤≤

−
−

+
=≥

0
0

1

03 1

1  
(A.13) 

if the assumptions 1 and 3 of Lemma A.2 hold: 

( ) ( ) ( ) ( ) ( )τττ
ε

τ

τ A~supdt,Ψe
ttF

t

t tAFm

≤≤

−
−

+
=≥

0
0

1

03 1

1  
(A.14) 

if the assumptions 1 and 2 of Lemma A.2 hold. 

Proof: It is a direct joint consequence of Banach´s Perturbation lemma and Lemma A.2. Note that if 

M is a square real matrix and 11 −< M/E then EM + is non-singular and 

( )
EM

M
EM

1

1
1

1 −

−
−

−
≤+  (A.15) 

(Banach´s Perturbation lemma). Assume that ( )
EM

M
EM

1

1
1

1 −

−
−

−
>+ . Thus, the following 

contradiction follows: 

EMEM 11 11 −− +>−  (A.16) 

Then, ( )
EM

M
EM

1

1
1

1 −

−
−

+
≥+ . Thus, (A.11) to (A.14) follow from

( ) ( ) ( ) ( ) ττττ dt,ΨA~eItF t tA
n −= −

0
0 ,  

( )
EM

M
EM

EM

M

1

1
1

1

1

11 −

−
−

−

−

+
≥+≥

−
 (A.17) 

and the proof of Lemma A.1, with the replacements nIM → , ( ) ( ) ( ) ττττ dt,ΨA~eE t tA
−→ −
0

0 .    □ 

Lemma A.3. Assume that: 

1) 0A  is a stability matrix so that ttA eKe 00 0
ρ−≤ ; +∈∀ 0Rt for some real constants 10 ≥K  and 

00 >ρ , 
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2) ( ) A
t

tA~sup ε=
∞<≤0

 for [ ]*AA ,εε 0∈ and some [ )10 ,*
A ∈ε , 

3) ( ) ( )τρτ −−≤ t
Ψ ΨeK,tΨ  ; ( ) R∈≥∀ ττ ,t with 1≥ΨK .  

Then, the following properties hold: 

(i) ( ) ( )( )t
Ψ

Ψ*
A eKKtF Ψρρ

ρρ
ε −−−

−
+≤ 011

0

0 ; +∈∀ 0Rt  

if 0ρρΨ < and  

( ) ( )( )t
Ψ

Ψ*
A eKKtF Ψρρ

ρρ
ε −−−

−
−≥ 011

0

0 ; +∈∀ 0Rt if, furthermore, 
( )( )tΨ

Ψ*
A

ΨeKK ρρ

ρρε
−−−

−
<

010

0  

(ii) ( ) ( )t
Ψ

Ψ*
A eKKtF 011

0

0 ρ
ρρ

ε −−+≤ ; +∈∀ 0Rt , and  

( ) ( )t
Ψ

Ψ*
A eKKtF 011

0

0 ρ
ρρ

ε −−−≥ ; +∈∀ 0Rt  if, furthermore, ( )tΨ

Ψ*
A

eKK 010

0
ρ

ρρε
−−

<  

Assume, in addition, that 
4) The pair ( )00 b,A  is controllable, 

5) ( ) b
t

tb~sup ε=
∞<≤0

 for [ ]*bb ,εε 0∈ and some [ )10 ,*
b ∈ε . 

Then, ( )*tG  defined in (15) is subject to:  

(iii)  

( ) ( ) ( ) *
A

*
bΨ

*
b

*t*
G*G* bKKbeKttG εεε

ρ
εε ρ

0
2
00

2

0

2
0 01

2
+





−==≤ −  

( ) ( )
[ ]( )00
1
022

0

2
2 00

0 1 b,Aeeee *t,c
Ψ

*t*t*t
*t ΨΨΨ −

+−−−
−







−
−−+× G

ρρ

ρρρρρ
ρ  

(A.18) 

Proof: Note that from Theorem 1 that ( ) Ψρρρ >≥+
+∞<≤

0
0

tA~sup
t

Ψ if 0ρρΨ <  so that by direct 

calculations taking into account ttA eKe 00 0
ρ−≤ , ( ) ( )τρτ −−≤ t

Ψ ΨeK,tΨ and ( ) *
A

t
tA~sup ε≤

∞<≤0
 

( ) ( ) ( ) ( ) ( )( )t
Ψ

Ψ*
A

t tA
n ΨeKKdt,ΨA~eItF ρρτ

ρρ
ετττ −−− −

−
+≤−= 00 11

0

0
0 ; +∈∀ 0Rt  and 

( ) ( )( )t
Ψ

Ψ*
A ΨeKKtF ρρ

ρρ
ε −−−

−
−≥ 011

0

0  if 

( )( )tΨ

Ψ*
A

ΨeKK ρρ

ρρε
−−−

−
<

010

0  (A.19) 

Property (i) is proved. Property (ii) follows by applying H o lder´s inequality to ( ) ττ det tA


−
0

0  

and ( ) ττ dt,Ψt0 of the integral leading to the formula: 

( ) ( ) ( ) ( ) τττ dt,ΨetAsuptF t tA

t


−

+∞<≤
+≤ 0

0
01  

( ) ( ) ( ) 21
0

221
0

2

0
01 /t/t tA

t
dt,ΨdetAsup 















+≤ 

−

+∞<≤
ττττ  ;  +∈∀ 0Rt  

(A.20) 

and, similarly, it follows that: 

( ) ( ) ( ) ( ) τττ dt,ΨetAsuptF t tA

t


−

+∞<≤
−≥ 0

0
01 ; +∈∀ 0Rt . 
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On the other hand, note that the conditions 1-5 allow to write the following chain of inequalities 
from (23)-(24): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
[ ]( )00
1
000 000

0000 b,Addebb,ΨA~edebb~etG *t,c
*tAT*t *t *tA*tAT*t *tA*

TT −−−−−







 +≤   Gτσσσττττ στττ  

( ) ( ) ( ) ( ) ( ) ( )( )








+−≤  

++−+−

≤≤≤≤≤≤

− τστττ
ρ

σρρτρρρ

τττ

ρ ddeA~supb~supbKKb~supbeK *t *t t

*t*t
Ψ

*t

*t ΨΨ
0 0

2

00
0

2
0

0
0

2

0

2
0 00001

2
  

[ ]( )00
1
0 b,A*t,c

−× G   

( ) ( ) ( ) ( ) ( ) ( )( )








+−=  

+−−+−

≤≤≤≤≤≤

− *t *tt

*t*t
Ψ

*t

*t dedeA~supb~supbKKb~supbeK ΨΨ
0 0

2

00
0

2
0

0
0

2

0

2
0 00001

2
σττττ

ρ
σρρτρρρ

τττ

ρ   

[ ]( )00
1
0 b,A*t,c

−× G  

( ) ( ) ( ) ( )τττ
ρ τττ

ρ A~supb~supbKKb~supbeK

*t*t
Ψ

*t

*t

≤≤≤≤≤≤

−





+−=

00
0

2
0

0
0

2

0

2
0 01

2
      

( )( ) ( )( )
[ ]( )00
1
022

0

2 11 00
0 b,Aeee *t,c

Ψ

tt
*t ΨΨ −

+−+
−







−
−−× G

ρρ

ρρρρ
ρ  

(A.21) 

and Property (iii) is proved.  □ 

Remark A.2. Note that the technical results for ( )tF  of Lemmas A.1–A.3 are valid for any +∈ 0Rt  
under the given sufficiency-type conditions rather that for the particular prefixed *t chosen for 
generating the control law (12). However, the results for G  depend explicitly on the control interval 
[ ]*0 t, so that they are applicable for *tt = . 

Appendix B. Guaranteed Reachability of the Current Linearized System from the Controllability of 
Its Nominal Counterpart 

Theorem B.1. Assume that the pair ( )00 b,A  is controllable and ( ) 220
A

tt
tA~sup

*
ε≤

≤≤
 and 

( ) 2
0

b
tt

tb~sup
*

ε≤
≤≤

 for sufficiently small real positive constants ( )*AA t22 εε = and ( )*bb t22 εε =  

depending on *t .Then, the following properties hold: 

(i) [ ] ( ) ( )( )tb,tA*t,c 0G  is non-singular so that the current system is ( )0PR x,t,x ** . 

(ii) If 102 ≤= ελε AA  and 102 ≤= ελε bb for some non-negative real constants Aλ , bλ and
[ )100 ,∈ε then Property (i) is guaranteed if: 

[ ]( )( )
( )[ ] ( ) ( )( ) *t

AbAb

*t,cmin

ebbb

b,A

K 02
00

2
20

0000
2
0

0
0

1112124

2
ρλλλλ

λρ
ε

−−+++++
<

G  
(B.1) 

Proof: Note from (13) and (36) that the controllability gramian of the current linearized system 
[ ] ( ) ( )( )tb,tA*t,c 0G  is kept non-singular if that of its linearized counterpart [ ]( )0000 b,A*t,cG  is 

non-singular for all 0>*t  and, furthermore, [ ]( ) [ ] ( ) ( )( ) [ ]( )000000000 b,Atb,tAb,A~
*t,c*t,c*t,c GGG −=  

has a sufficiently small norm such that, for any given matrix norm, the incremental controllability 
gramian satisfies [ ]( ) [ ]( )00

1
00000 1 b,A/b,A~
*t,c*t,c

−< GG  since: 

[ ] ( ) ( )( ) [ ]( ) [ ]( )000000000 b,A~b,Atb,tA *t,c*t,c*t,c GGG +=  

[ ]( ) [ ]( ) [ ]( )( )000000
1

000000 b,A~b,AIb,A *t,c*t,cn*t,c GGG −+=  
(B.2) 

what follows from Banach´s Perturbation Lemma which ensures that [ ] ( ) ( )( )tb,tA*t,c 0G  is 

non-singular, then, the current linearized system is ( )0PR x,t,x ** . Define ( ) ( )ττΨ −= tAe,t 00 , 
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( ) ( ) ( )τΨτΨτΨ ,t,t,t~ 0−= ; [ ] +∈∈∀ 00 R*t,t,τ and [ ]( )( )( )τΔ 0000 b,A~
t,c  being the integrand defining 

[ ]( ) [ ]( )( )( ) ττΔ db,A~b,A~ t
t,ct,c = 0 00000000G ; [ ] +∈∈∀ 00 R*t,t . Simple direct calculations to expand in 

additive terms the incremental controllability gramian yield [ ]( )
[ ]

( ) τ
τ

db,A~b,A~
,c

t
t,c

*

00
000

0000  Δ=G

with: 
[ ]( )( )( ) ( ) ( ) ( ) ( )τΨτΨτΨτΨτΔ ,t~bb,t~,t~bb,tb,A~ TTT
t,c 000000000 2 +≤  

( )( ) ( ) ( )( ) ( )τΨτΨτΨτΨ ,t~b~b~bb~b~b,t~,tb~b~bb~b~b,t TTTTTT ++++++ 000000  

( ) ( ) ( )τΨτΨ ,tb~b~bb~b~b,t~ TTT
0002 +++  

(B.3) 

Note that: 

( ) ( )τρτΨ −−≤
*t* eK,t 0020 , ( ) ( ) ** tt * e/Kd,t 010020 0

ρρττΨ −−≤ , 

( ) ( ) ** tt * e/Kd,t 02
0

2
0

2

20 0 12 ρρττΨ −−≤  

and, since ( ) 220
A

tt
tA~sup

*
ε≤

≤≤
, one has ( ) ( ) ** t

A
t * e/Kd,t~ 02

0
22

00
2

2
12 ρρεττΨ −−≤ and, since 

furthermore ( ) 2
0

b
tt

tb~sup
*

ε≤
≤≤

, one gets from (B.2) and (B.3) that: 

[ ]( ) [ ]( )( )( ) 20 0000
2

0000 ττΔ db,A~b,A~ *
*

t
t,ct,c =G  

( ) ( ) ( ) ( ) *t
AbbbbAA ebbbK 022

22202202
2
202

0

2
0 112212

2
ρεεεεεεε

ρ
−−






 +++



 +++≤  

(B.4) 

( ) ( ) ( )bA
t

bA ooeb
bK *

εεεε
ρ

ρ ++−+= − 02
2202

0

20
2
0 1  (B.5) 

Then, if ( ) [ ]( )00
1
0

2
2202

0

20
2
0 11 0 b,A/eb
bK

*t,c
t

bA
* −− <−+ Gρεε

ρ
 

and, if ( )22 bA ,max εε  is small enough for the given *t then there exists a positive real constant 

( )*bA t,, 22 εεεε =  satisfying:  

[ ]( ) ( ) *t
bA*t,c eb

bK
b,A/ 02

2202
0

20
2
0

00
1
0 11 ρεε

ρ
ε −− −+−≤ G  

such that [ ]( ) [ ]( )( ) [ ]( )
200

1
00000020000 1 b,A/b,Ab,A~
*t,c*t,cmin*t,c

−=< GGG λ . This implies that if

[ ]( )0000 b,A*t,cG is non-singular then [ ] ( ) ( )( )tb,tA*t,c 0G is non-singular and the first part of the proof 

is complete. On the other hand, if 102 ≤= ελε AA   and  102 ≤= ελε bb for some real constant 

[ )100 ,∈ε , [4], then 102
2
0

22
2 ≤=≤= ελεελε AAAA and 102

2
0

22
2 ≤=≤= ελεελε bbbb  so that one has from 

(B.4) that: 

[ ]( )
2

0000 b,A~
*t,cG

( )[ ] ( ) ( )( ) *t
AbAb ebbbK

02
220220

2
20

0

2
0 1112124

2
ρεεεε

ρ
−−+++++≤  

( )[ ] ( ) ( )( ) *t
AbAb ebbbK

02
00

2
20

0

2
00 1112124

2
ρλλλλ

ρ
ε −−+++++≤  

(B.6) 
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and [ ]( ) [ ]( )
200

1
0020000 1 b,A/b,A~
*t,c*t,c

−< GG  holds from (B.6) if (B.1) holds. The proof is complete. □ 
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