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Abstract: We explore the possible role of network dynamics near a critical point in the storage of
new information in silico and in vivo, and show that learning and memory may rely on neuronal
network features mediated by the vicinity of criticality. Using a mean-field, attractor-based model,
we show that new information can be consolidated into attractors through state-based learning in
a dynamical regime associated with maximal susceptibility at the critical point. Then, we predict
that the subsequent consolidation process results in a shift from critical to sub-critical dynamics to
fully encapsulate the new information. We go on to corroborate these findings using analysis of
rodent hippocampal CA1 activity during contextual fear memory (CFM) consolidation. We show
that the dynamical state of the CA1 network is inherently poised near criticality, but the network also
undergoes a shift towards sub-critical dynamics due to successful consolidation of the CFM. Based on
these findings, we propose that dynamical features associated with criticality may be universally
necessary for storing new memories.
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1. Introduction

Phase transitions and critical phenomena are of central importance to statistical physics and there
is growing evidence supporting its crucial role in living systems [1-3]. Here we investigate how near
critical network dynamics may recruit neurons and facilitate formation of a new distributed memory
in a situation where the incoming input must compete with the already stored (native) memories for
neuronal resources.

It is widely hypothesized that new information is encoded in brain circuits through activity
dependent, long-term synaptic structural changes [4] that are a putative substrate for memory
formation [5,6]. While features of memory traces can be localized to specific cell populations (e.g.,
location information encoded in place cell activity), in general, tracing so-called “engrams” to neural
circuits has been an elusive task [5]. Attempts at disrupting well-established memories through
brain lesions [7] or, more recently, through optogenetic silencing [8] have shown that they are robust
to alterations in communication between individual neurons or brain areas. A parsimonious and
longstanding explanation of these phenomena is that a process termed “systems consolidation” leads
to diffuse, widespread memory encoding and storage. However, despite more than a century of
study, it is not well understood how engrams are initially formed and subsequently stored across vast
distances (in terms of numbers of synaptic connections between neurons) in the brain.
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A major problem to understanding the mechanisms for systems consolidation is that very little is
known about how the formation of new memories (i.e., learning) impacts neural network dynamics.
The general, long-accepted assumption is that either strengthening of existing synaptic connections,
or the de novo creation of additional synapses (i.e., formation of a discrete structural heterogeneity)
leads to the formation of a dynamical attractor [9,10]. If this is the case, then the dynamical state of the
network must support long-range correlations across the network, as the number of neurons actively
involved in encoding a specific memory trace is thought to constitute only a small fraction of the total
neuronal population [11]. Moreover, individual synapses in regions such as the hippocampus have a
surprisingly brief lifetime (approximately 1-2 weeks on average [12]), necessitating rapid dissemination
and consolidation of information. These requirements raise two questions: (1) how do permanent
and widely-distributed neural engrams form from initial, transient changes to a discrete subset of the
network’s synapses during learning, and (2) what mediates transformation of local representations of
disparate features to global memory representation? New experimental [13] and computational work
shows that theta band oscillatory patterning and/or dynamics associated with sharp wave ripples can
mechanistically coordinate neuronal activity recruiting them into the representation [14].

In this work, we show computationally that in addition to large scale temporal pattering of
neuronal activity, near-critical dynamics in the brain could be an important factor in facilitating memory
consolidation. Specifically, we show that storage of new information that is weakly and/or sparsely
impinged on the network is mediated through plastic, state-dependent changes in network connectivity
and can be successfully consolidated (which is associated with attractor formation) near criticality—a
point associated with second order phase transitions [15]. This storage is followed by a subsequent
shift from critical to sub-critical dynamics.

Theidea that the brain operates at or near dynamical critically is not new (see References [1,16,17] for
comprehensive reviews) and it was experimentally observed in in vivo and in vitro preparations [18-27].
A large body of work also investigated the potential functional benefit of operating in a near-critical
regime [28-32]. Here, we specifically identify very basic, underlying importance for the brain to
reside near criticality and demonstrate that near-critical dynamics may be essential for a system-wide
consolidation of new memories in a situation when the sensory input is weak and/or sparse in
comparison with signals generated by memories native to the network (i.e., those previously stored).

To substantiate these hypotheses, we analyze in vivo recordings associated with contextual fear
memory (CFM) consolidation. Contextual fear conditioning (CFC) is an optimal experimental paradigm
in this regard as it allows for rapid formation and consolidation of memory (i.e., after single-trial
learning) [13,33]. In this particular case, the CEM consolidation is associated with normal sleep, which
has been shown to play a vital role in various types of memory consolidation [13,33-35]. Here, we first
characterize hippocampal dynamics in mice subjected to CFC and show that: (1) the hippocampus
operates in a near critical regime pre- and post-CFC training, and (2) successful, behaviorally-verified
consolidation of fear memory leads to an underlying shift in hippocampal dynamics towards a
subcritical state, similar to what we predict in our model simulations.

Together, these results indicate that novel learning may occur preferentially near a critical regime
and leads to universal widespread stabilization of network activity patterns, which in turn drives the
formation of widely-distributed engrams (i.e., systems memory consolidation).

2. Consolidation of New Memory Near Criticality in Attractor Neural Networks

We modeled a neuronal network with easily controllable dynamics using a mean-field,
Hopfield-like formalism [10]. In this context, instantaneous neuronal states are modeled as binary
variables, S; = %1, corresponding to a firing (+1) and a quiescent (—1) neuronal state, respectively.
Instantaneous states are updated based on a neuron’s input
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which serves to align that neuron’s state with that input, so that sgn(S;) = sgn(h;) with probability

1

T+ exp(=2fh) @

P(hi,p) =
where k is the incoming degree of each neuron, sgn(x) is the sign function, and J is the connectivity
matrix, discussed in detail below. The term § = T~! is a control parameter which directly controls the
dynamical state of the system: when g < 1, P(h;, ) — % and, conversely, > 1, P(h;, ) — 0, with
the critical point typically located near T = 1. These dynamics describe properties of the standard
Hopfield model in the absence of an external field [36,37].

The network we use here consists of N = 10000 neurons, arranged in a directional, small-world
network (10% chance of rewiring a local connection) [38] with ~2% incoming connectivity, but with no
self-connections allowed. Initially the network is seeded with p native memories (hereafter collectively
referred to as the native state and designated by the superscript n) defined by a random configuration
of states {éln ==+l | i €1, N] } for each memory, and with the weighted connectivity matrix indices

defined as 1
L = P n cn
]1] = p E =1 éi,‘ué]',yl (©)]

for all incoming connections (hence, J;; = 0).

With p memories already embedded in the network through Equation (3), we want to investigate
how the network responds to, and possibly consolidates, a new representation with randomly
configured states similar to the native memories, {éf ==l | i €[1, N } (the superscript e hereafter
representing a configuration of states associated with the new memory). However, throughout
evolution of the network the new representation influences only a small subset, N’, of network neurons;
here, the neurons belonging to N’ are randomly selected from the full network. The instantaneous
states of these neurons do not change throughout the simulation and are set to S;(t) = 5;:’, VtieN.
In addition, a connection emanating from these input neurons is modified to:

w’ ece g ; ’

where the w* term is the additional weight of the connections corresponding to the new state relative
to the native connectivity (Equation (3)). We formulated the input in this way to mimic real biological
processes of learning and memory. The subset of the input neurons and their corresponding connectivity
is to roughly represent the memory backbone formed rapidly during the presentation of the new input
(associated with the new representation). At the same time the freezing of the dynamics of these
neurons is to correspond to input constancy during the experience, or, reactivation of these neurons
during sleep that was observed experimentally [39,40].

Although the majority of neurons in the network encode for the native memories, those receiving
input from neurons representing the new state will align with it if the new state is fractionally stronger
than the native state at any time. The competition between the native and new states are encapsulated
in the total input a neuron receives,

Bi(t) = Y JSi) + 0™ Y Taf = () 4 I (5)

where K (t) is given by Equation (1) and hl?’“ represents input from the constant external field, here
facilitated by fixed neuron states.
We assessed the presence of attractors in the network by measuring the overlap of the final state

of the network with one of the native configurations (m; = |W Y ieN-N’ 5?,#51-') and/or the new

configuration (m° = ||N—1—N’| Yien-n' & Si'), where the averages are over all non-fixed neurons in the
network (i.e., the relative compliment of N and N’).
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First, we examined the overlap of the network with the new configuration (red solid line in
Figure 1A; with | N’| = 700) and the native ones (black solid line in Figure 1A) when only one native
memory is stored in the system (p = 1) as a function of temperature T. The universal dynamical
properties of the system at criticality maximizes the susceptibility to the external input at the critical
point. In this work, we define T¢ as the point where the order parameter (i.e., ;) reaches a half-maximal
value (when quantified, it is found via linear interpolation between point pairs). This point coincides
with the half maximal value achieved by stability, another order parameter of the system (see below).
Here, the critical point has been well-characterized as a second order phase transition that separates
the phase of high-stability dynamics (T < T; characterized by convergence to stored attractors) from
disordered dynamics (T > T¢) [37]. The result is a well-defined regime, where the network overlap
with the new configuration, impinged on the system through external input, is higher than that of
native memories. When the system is sub-critical (T < T¢), the overlap with one of the native memories
dominates the system. In contrast, the super-critical network (T > T) is in a disordered state where
neither the native configuration nor the new configuration dominates dynamics. At (T ~ T¢) the
attractor associated with native memory becomes unstable, and at the same time magnetic susceptibility
peaks making the overlap of the network with the new representation significantly higher. However,
if the states of the input neurons are set to the values of the natively stored configuration, i.e.,
& = &, i€ N’ (during a memory recall event, for example), the stability of the native memory is
extended over the critical range (Figure 1A dashed black line), shifting the phase transition towards
higher temperatures. Thus, depending on the input configuration, at (T ~ T.) both, native memory
can be stabilized or new memory representation can be fractionally successfully impinged on the
system. This theoretically provides the network with agility to store a new memory or to retrieve a
known one. Such shift away from criticality in presence of structured input was also observed in self
organizing recurrent networks (SORNs [41]), and may explain slightly subcritical brain states observed
in vivo [27].
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Figure 1. New memory consolidation occurs only near criticality. (A) Overlap of the system with the
native configuration without external input (solid black line) and with external input (dashed black
line), as well as overlap with the new configuration (red) represented by external input, as a function of
temperature before learning. Note that maximal susceptibility of the new configuration only occurs
near the initial critical temperature of the system, where overlap with the native configuration declines.
Here, we define the critical temperature to be the temperature where the order parameter (Overlap)
reaches its half-maximal value, as indicated by the blue line. (B) Overlap of the new configuration after
learning for neurons grouped based on their number of connections to the input. Colors represent
pre-learning sub- (blue) super- (black) and critical (red) temperatures. (C) Overlap of the system with
the native (black) and new (red) configurations as a function of system temperature after learning.
Few changes in overlap occur before the initial critical temperature, after which (near criticality) the
system aligns to the new configuration. Note also that the new configuration overlap occurs for larger
values of temperature, indicating consolidation and a shift in critical temperature due to learning.
All error bars in (A-C) represent the standard error of the mean.
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We next wanted to investigate how proximity to the external input (through numbers of
connections) effects the corresponding overlap, m® for different temperature ranges. We measure
fractional overlap of the final network state with the new configuration as a function of the number of
connections that neurons receive from the external input neurons (Figure 1B); those neurons receiving
higher native input should align with the native configuration, whereas neurons with higher non-native
input should be driven to adopt the new configuration (under the right dynamical state, given by the
control parameter ). We observe, as predicted, that the mean overlap of neuronal states with the
new configurations is significant and highest (Figure 1B, red curve) for neurons receiving the external
input at criticality, as compared to sub-critical (black points), and super-critical (blue points) regimes.
Thus, at criticality, as opposed to sub-critical and super-critical regimes, even sparse and/or weak
input can lead to global changes in the network, providing a plausible mechanistic explanation for the
distributed nature of memory traces.

We next investigated whether application of a type of activity-dependent synaptic plasticity rule
observed experimentally [42] can lead to consolidation of the new configuration. Here by consolidation
we mean whether (a) the overlap between the new configuration and stability of the network in the
presence of input can be increased, and (b) whether the stable (in absence of the external input) attractor
representing the new configuration can be successfully formed.

We implement these synaptic changes in the model by introducing state-based changes in
connectivity strengths,

AJij(t) = eSi(t)S;(t) - (6)

During the learning phase, both the neural states and the connections were updated (with ¢ = 0.1),
with the exception of neurons pertaining to the external input (i.e., those neurons remain fixed and so
receive no relevant input).

We investigated the range of the control parameter, T, for which the network is able to successfully
store the new configuration (i.e., the emergence of a new attractor with a large value of m°®). We found
that the system successfully consolidated the new configuration starting near T¢, indicated by an
increase in m® post-learning (Figure 1C). This shows that new memory consolidation occurs only near
criticality, when susceptibility to external input drives the increased overlap with new configuration
(Figure 1C). In addition, we observed that consolidation shifts T¢ to higher values of T, causing an
initially critical regime to become sub-critical. These changes (due to the unbounded learning rule)
lead to an increase of the overall magnitude of synaptic coupling, resulting in a stronger external field
and ultimately leading to a peak in m® at T > T after learning.

We next investigated how the consolidation depends on the number of input neurons, i.e., the size
of N’, and the magnitude of the weight of the connections stemming from the input (Equation (4)).
We varied both of these parameters and monitored maximal change in magnitude of new-state overlap
from pre-learning (as exemplified on Figure 1A) to post-learning (Figure 1C). These results are presented
in Figure 2A and one can observe that the number of input neurons can be as small as 4% of the total
network size to observe meaning full change in the overlap over the rest of the network. Conversely
the w*™" can be as low 2.3 to observe increase of the overlap. Hence, even weak and sparse input can
have noticeable impact on network dynamics, but only near criticality. The asterisk represents the
parameter configuration used to generate results presented on Figure 1.

Up to this point, we have examined network response to external input represented by fixed
neuronal states in the network. Alternatively, instead of the new memory being represented by specific
neurons, we can represent the new memory as persistent input to all neurons in the network by
defining an extra term for the observed input,

hi(t) = h!(t) t+ hext o
t _ eX
h = S
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with 1! (t) again being represented by Equation (1). We ran the simulation in the presence of a fixed
external field applied to all neurons with learning (a pre-learning phase followed by a learning phase),
followed by an additional phase with h‘;:’"t = 0 and then subsequently calculated the difference in the
final overlap between the new and the native memory. We found that the system only consolidates the
new configuration given sufficiently high external field strength, and only near the critical temperature
(Figure 2B). Hence, the system is able to adapt to the new configuration, regardless of its source,
only near the critical regime, in support of previous studies [43]. Importantly, higher field magnitude
increases the range of temperatures for which the new memory is consolidated (top of Figure 2B).
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Figure 2. Robustness of new memory consolidation as a function of input strength. (A) Peak change in
overlap of the new state between pre- and post-learning as a function of input size (percentage of fixed
nodes in the network) and strength (w°). The asterisk represents the parameters used to generate the
data showed in Figure 1. (B) Change in overlap (color) between the new and native configurations
post-learning as a function of temperature for increasing values of external field strength applied
during learning. Blue colors represent cases where the native configuration is still stable after learning,
red colors are where the new configuration is stable, and green is where neither configuration is stable.
Note that for sufficiently high field strength, we see a slight increase in the maximal critical temperature.

These results show evidence of the possible importance of near-critical dynamics in storing
new memories. To be more robust with our findings, we further examined the properties of new
memory consolidation. We first calculated the amount of time (i.e., the number of iterations) needed
for the network to align with the new configuration, so that m*® > % (Figure 3A). Near the initial (i.e.,
pre-learning) value of T¢, only a fraction of the learning time was required to consolidate the new
configuration, and with increasing T, the consolidation time increased exponentially before abruptly
increasing to an interval greater than the simulation time. In contrast, sub-critical and super-critical
states were marked by prohibitively long consolidation periods (left- and right-hand sides of Figure 3A,
respectively).

Next, we examined how changes to the learning rate (¢ in Equation (6)) affects both the consolidation
of the external input representing the new configuration and the dynamical properties of the system.
To assess the transition point (i.e., T¢), we measured the network’s configuration stability, f(T), as a
function of temperature for different values of ¢. Stability here is defined as the mean number of
changes from active (+1) to quiescent (—1) states occurring in the network for fixed simulation length;
the expected number of these activity changes is 0 in the sub-critical regime and ~N/2 in the super-critical
regime, due to Equation (2). We subsequently fit sigmoidal functions to the transition numbers as a

function of temperature, taking the form f(T) = %, where the slope u represents the change
I+exp| - —; i

in stability due to changing regime and we designate T, ;, the temperature where the transitions reach

their half-maximum value, as a proxy for critical temperature (Figure 3B); as previously mentioned,
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f(T) is thus an order parameter of the system. We next calculated the change in the critical temperature

due to learning, AT,; = T, ,(to) - Tc<t final)r and found that consolidation of new information shifts the

stability, and therefore the critical regime, of the system approximately linearly with the learning rate
(Figure 3C).
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Figure 3. Dynamical properties of consolidating new information. (A) Time (steps) required for the
system to consolidate the new configuration, as a function of temperature. Values not shown (on
the left and right sides) indicate timescales longer than the simulation runtime, i.e. that it takes a
prohibitively long time to consolidate a new memory. (B) Data and fit sigmoidal functions for mean
number of changes in the neurons’ state S; per iteration as a function of temperature, pre- (solid black
line) and post-learning (dashed lines); the learning rate ¢ increases left-to-right and from darker to
lighter colors of the dashed lines. Error bars represent the standard error of the mean. The horizontal
line labeled Tc represents the half-maximal point of the where we calculate the critical temperature via
linear interpolation. (C) Change in observed critical temperature T¢, calculated using the sigmoidal
half-maximum values (B) as a function of the learning rate . Colors correspond to the curves shown
in (B). (D) Critical temperature T, as a function of the memories per degree distribution a before
(black points) and after (red shaded region) learning for a new-state connectivity strength of w® = 3.0.
Note that the minimal value of the critical temperature for the new configuration post-learning closely

matches the critical temperature pre-learning, but that the effect of learning is a broadening of the
stable regime.

Finally, we investigated the behavior of the system when it is loaded with multiple native
configurations, and when the location of the critical point is a function of both memory loading
o and temperature T [36]. We thus pre-loaded additional native configurations into the network.
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_ Pmax

It is known that memory recall fails for T = 0 at ayux = 5 ~ 0.14 (with py.y being the maximal
number of configurations stored and N number of neurons in the network) for a fully connected
network [37], but this value changes for a sparsely connected system and is proportional to nodal

_ Pmax

degree k, atyux = R

We found that regardless of the number of memories pre-loaded into the system (below the
loading limit), successful consolidation of new configuration always occurs near T¢ (Figure 3D). Here,
the black curve represents the location of the pre-learning critical point, estimated as the first point
where rapid decline of stability for the native configuration occurs (i.e., m" < 0.45), whereas the red
area is the parametric space where the new memory is consolidated (m° > 0.45).

Taken together, the model simulations outline how the process of learning is affected by dynamics
near criticality. Here, the system is highly susceptible to network input and subsequently consolidates
new configurations through state-based plastic changes in network connectivity strengths. If, on the
other hand, the input corresponds to one of the native memories their stability is extended over
the critical temperature range. Thus, the critical state on one hand provides metastability to native
configurations allowing their retrieval in presence of correct external input, but also provides dynamical
substrate for storage and consolidation of the new configurations.

Further, during learning, the synaptic plasticity shifts the critical point, extending the sub-critical
regime post-learning. To test whether these are general principals of learning in neuronal networks
in vivo, we next analyzed spike data recorded from neurons in mouse hippocampal area CA1 during
consolidation of a fear memory.

3. Consolidation of a Fear Memory Results in Subcritical Neural Dynamics in the
Mouse Hippocampus

We analyzed spiking data recorded from hippocampal area CA1 of mice subjected to contextual
fear conditioning (CFC) in order to investigate the effect of learning on network dynamics. Specifically,
mice are placed in the novel environment that they are allowed to explore briefly. They are subsequently
exposed to electric shock while in the novel environment (induction of CFC) or not (sham) through the
wire mesh placed in the floor. The mice exposed to the shock exhibit a freezing behavior (i.e., they stop
moving) in the novel environment on subsequent presentation while the sham mice do not. Using CFC,
long-lasting fear memories (CFMs) can be successfully consolidated in mice in the hours following a
single training trial, consisting of placement in a novel environmental context paired with a foot shock.
This single-trial learning, unlike more elaborate training procedures (e.g., object recall or track learning),
provides clear boundaries between baseline and post-conditioning and allows for direct comparisons
of network dynamics. Further, memory consolidation in general [35] and fear memory consolidation
in particular [13,33,34] is known to rely on sleep, a vigilance state characterized by internally driven
dynamics and thus allowing the possibility for truly self-organized neural behavior [44].

Successfully consolidated CFMs manifest as visual changes in behavior, where mice cower in place
(i.e., freezing behavior) instead of adopting their normally inquisitive or explorative nature [13,33].
The level of success of memory consolidation is quantified by a percent change in this behavior as
compared to baseline, which we hereafter refer to as the learning score. In this study, we thus compare
the behavior and analysis of hippocampal recordings across two groups of mice: (1) contextual fear
conditioned mice (CFC) that are given a fear stimulus in a novel environment and have ad lib sleeping
patterns in the 24 h following the stimulus; and (2) sham mice that are introduced to the novel
environment but do not receive a foot shock and are not sleep deprived. More information about the
experimental procedure can be found in the Methods section. We indeed found that CFC mice had
higher learning scores post-stimulus compared to their Sham counterparts (Figure 4A).
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Figure 4. Branching parameter and its changes as a function of quality of memory consolidation during
SWS sleep. (A) Percentage of freezing behavior observed in mice before (baseline) and after learning
(post-cond.) for sham (circles) and CFC (squares) groups. Different colors represent different mice.
(B) Branching parameters o during SWS before (baseline) and after learning (post-cond.). Colors and
shapes are conserved as in (A). Error bars represent the standard error of the mean, calculated for each
mouse over all intervals. (C) Change in freezing behavior vs change in branching parameter across the
learning interval. Error bars represent the propagation of standard errors between Pre and Post in (B).
(D) Mean change in branching parameter within each group. Error bars represent the standard error
of the mean. * p < 0.10 confidence interval that the reduction was significant; ** p < 0.02 confidence
interval that the reduction was significant, using the one-way T test.

In order to substantiate our model hypothesis that (a) near-critical dynamics may be important
for memory consolidation and (b) that consolidation actually stabilizes the system, CA1 neurons’
spiking data was analyzed for proximity to a critical state by calculating the branching parameter [18].
While other metrics have been used to determine dynamical states, namely, power-law-distributed
avalanches [18,44], the benefit of the method described here is that it better controls for spurious
correlations between the data and can account for slowly varying dynamical changes [45]. A previous
study by the Priesemann group addressed this issue by showing a more accurate branching parameter
can be determined by taking into account the relationship between the variance and covariance of the
branching parameter and by eliminating data sets that showcase non-stationarities [45]. In this study,
we used the python package associated with their study to calculate the optimal branching parameter
o (Python Package Index—mrestimator v 0.1.4; https://pypi.org/project/mrestimator). For each Slow
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Wave sleep (SWS) interval, we binned hippocampal spiking data into sub-intervals of 16 ms, calculated
the avalanche size (i.e., the number of spikes) in each interval, then used the provided software to
calculate the branching parameter. Data sets that failed tests of non-stationarity (e.g., due to fast
fluctuation between up and down states or from external drive; see [45]) were removed, and the
average branching parameter was calculated.

We calculated o from CA1 spike data recorded in the two groups (CFC and Sham) from every
bout of SWS during 24 h time interval post CFC. We analyzed only SWS as during wake the mice are
constantly swamped with new input making assessment of intrinsic hippocampal dynamical state
impossible. At the same time rapid eye movement (REM) sleep bouts in mice are few and short in
duration making branching parameter estimate unstable (i.e., it failed many criteria set forth in [45]).
We found that mice in both groups had branching parameters near o = 1 (Figure 4B), indicating that the
mouse brain naturally has near-critical dynamics. After the learning interval, we observed a noticeable
decrease in o in most CFC compared to Sham mice (Figure 4C). Indeed, we found that an increase
in learning score generally exhibited a decrease in their branching parameter (Figure 4C) away from
a critical state and that CFC mice exhibited a more significant reduction due to learning (p < 0.02)
compared to Sham animals (p < 0.10). These data indicate that (a) typical in vivo dynamics lie near
criticality and that (b) consolidation of memory in vivo causes a deviation from critical to sub-critical
behavior, as predicted by modeling. The smaller drop in branching parameter in sham group may
also be associated with (smaller) degree of consolidation of the new environment even without the
electric shock.

4. Discussion

The question we address in this paper is how relatively sparse input can dynamically compete with
already stored representations, to be stored and later consolidated into a distributed memory (engram).
Through computational modeling work and analysis of in vivo hippocampal recordings, we show that
criticality may play a pivotal role in mediating stabilization and subsequent storage of the new memory
as a distributed representation. Namely, we show in a reduced attractor network, that only when the
system is near a critical point can the new representation globally impinge its activity pattern on the
network, making it fractionally dominant as compared to the native representation (Figure 1). This is
primarily due to the fact that at criticality, when the system has the highest susceptibility to the external
input, this input biases the state of the network towards the new representation, and the emergence of
long-distance correlations allows it to spread throughout the system. Subsequently, state dependent
synaptic plasticity allows for long-term storage (consolidation) of this new representation, even as
it competes with a broad range of native configurations (Figure 3D). Thus here, similarly to results
shown in self-organizing recurrent models [41], presentation of organized input results in a shift in
the parametric location of criticality (Figure 1B), due to increased stability of native representation or
storage of the new representation (Figure 3B).

We thus hypothesize that criticality on one hand provides metastability to already stored
configurations, so that if a native memory is presented through input, the memory is retrieved via the
stabilized attractor, while on the other hand criticality provides a dynamical substrate for storage and
consolidation of the new representations.

We find that successful new memory consolidation possibly changes the underlying dynamical
state from being near-critical to being slightly sub-critical (Figure 3). Previous studies have reported
a similar, slightly sub-critical dynamical state of the brain [27] which here seems to be the result of
system consolidation to new information. Indeed, we see a similar deviation from critical to sub-critical
dynamics in hippocampal recordings of mice successfully consolidating fear memories in vivo (Figure 4).
This phenomenon can be explained as follows: before learning, susceptibility to external input is
maximal near a critical point but, as learning commences, the system adapts by strengthening the
connectivity to consolidate this new information extending the region of dynamical stability.
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Our results indicate that the brain operates near criticality, possibly slightly sub-critical, and that
plasticity plays an active role in reducing the dynamical state away from criticality during learning and
consolidation. This is an agreement with previous work that suggests slightly sub-critical dynamics
still impart increased tunability, response to external input, and long-range spatial and temporal
correlations [46]. The extension of the Hopfield model we present here suggest that the critical point is
indeed shifted (Figure 3B), rather than the phase transition region is widened, what would be indicative
of emergence of Griffith phase [47]. However, some of our unpublished results obtained in models of
self-organized criticality, which are similar to integrate and fire models, suggest that the critical point
may indeed expand suggesting emergence of Griffith phase (data not shown).

This raises an interesting question: how does the brain finally reset to a near-critical state after
learning, so that another (new) memory can be consolidated? Our work here does not address
this issue, but previous work by others has shown that neurons and networks in the brain have
built-in homeostatic mechanisms which serves to recalibrate synaptic efficacies (see References [48-52]),
a process that was proposed to happen also during development [53]. Thus, it could be that homeostatic
plasticity together with reduced external input during sleep is sufficient to drive the system towards
criticality, as shown by Zierenberg, J. et al. [54]. Indeed, our in vivo analysis indicates that the role
of sleep is not purely homeostatic [52], but instead involves active learning processes, in line with
previous reports [40,55]. As an additional consideration: both the model system and mice subjected to
fear stimuli involve relatively strong inputs to be learned. In processes that occur over longer time
periods, the dynamical shift may be weak compared to homeostatic dynamical rescaling, making
it hard to detect on such short time scales as we show here. Future work should thus be done to
investigate the interplay between homeostatic-based and learning-based changes in system dynamics
near criticality.

Experimental Methods

Male C57BL6/] mice (Jackson, aged 2-5 months) were implanted with driveable headstages
containing two bundles of 7 stereotrodes each (spaced 1 mm apart) for single-unit and local field
potential (LFP) recordings, and silver-plated wires for nuchal electromyographic (EMG) recording.
LFP and EMG signals were used to assign behavioral states (wake, NREM, and REM sleep) in 5 s
epochs throughout the recording period. Mice were individually housed (in standard caging with
beneficial environmental enrichment including nesting material, manipulanda, and treats) during
post-operative recovery and subsequent behavioral experiments. Lights were maintained on a
12 h:12 h light-dark cycle, and food and water were available ad lib, throughout all procedures.
All housing and experimental procedures were approved by the University Committee on Use and
Care of Animals at the University of Michigan.

Following a 1-week recovery period, mice were habituated to daily handling (5-10 min/day) for
3 days. During this habituation period, stereotrodes were gradually lowered into CA1 until stable
neuronal recordings (with characteristic spike waveforms continuously present on individual recording
channels for more than 24 h) were obtained. Electrode positions remained fixed throughout subsequent
experimental procedures. All mice underwent a 24 h baseline recording starting at lights on (9 AM).

At lights on the following day, mice underwent single-trial contextual fear conditioning (CFC,
n = 5) or sham conditioning (Sham, n = 3) [33]. Mice were placed into a standard conditioning chamber
(Med Associates) with patterned Plexiglass walls and a metal grid floor. All mice were allowed to freely
explore the novel chamber over the 3-min training session; CFC mice (but not Sham mice) received a 2 s
footshock (0.75 mA) after the first 2.5 min. At the end of 3 min in the conditioning chamber, mice were
returned to their home cage for an additional 24 h recording period. After 24 h following training,
at lights on, mice were returned to the conditioning chamber for a 5 min assessment of contextual fear
memory. This was calculated as the change in context-specific freezing (cessation of all movement save
respiration), referred to as the learning score, between testing and training trials (i.e., percentage of
time spent freezing at test—percentage of time spent freezing, pre-shock, at baseline).
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Electrophysiological signals recorded from the hippocampus before and after CFC or Sham
conditioning were digitized and differentially filtered as spike and LFP data as described previously [33]
using Omniplex hardware and software; single-unit spike data was discriminated using Offline Sorter
software (Plexon). The firing of individual neurons was tracked throughout each experiment on the
basis of spike waveform, relative spike amplitude on the two stereotrode recording channels, positioning
of spike wave-form clusters in three-dimensional principal component space, and neuronal subclass
(e.g., FS interneurons vs. principal neurons). Only those neurons that were reliably discriminated and
continuously recorded across both the 24 h baseline and 24 h post-conditioning recording periods were
included in subsequent analyses.
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