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Abstract: The aim of this paper is to construct two new classes of multivariate risk statistics, and to
study their properties. We, first, introduce the multivariate shortfall risk statistics and multivariate
divergence risk statistics. Then, their basic properties are studied, and their representation results
are provided. Furthermore, their coherency is also characterized by means of the corresponding
loss function. Finally, entropic risk statistics are given to illustrate the proposed new classes of
multivariate risk statistics. The relationship between multivariate shortfall and divergence risk
statistics is also discussed.
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1. Introduction

To evaluate the risk of financial positions, in paper [1], the authors first introduced the concept of
coherent risk measure. In [2,3], the authors introduced the broader class, named convex risk measure.

Shortfall risk measures and divergence risk measures are two important kinds of risk measures,
and they have a dual relationship, as pointed out by [4] and [5]. Shortfall risk measures were introduced
by [2] for random variables. For more studies about shortfall risk measures, see [4–9] and the references
therein. Divergence risk measures were introduced by [10]. For more works about divergence risk
measures, see [5,8,11] and the references therein.

For a financial portfolio X̃ = (X1, · · · , XN) consisting of N financial positions, to measure not
only the risk of the marginals Xi separately, but also the joint risk of all components Xi caused by their
possible dependence between Xi. In [12], the authors first introduced the scalar multivariate coherent
and convex risk measures, see also [13]. For more works on multivariate risk measures, see [8,9,14–17]
and the references therein.

From the statistical point of view, the behaviour of a random variable can be characterized by its
observations: the samples of the random variable. In [18,19], the authors first introduced the natural
risk statistic, which can be considered as a data-based (or empirical) version of a coherent risk measure.
In [20,21], the authors studied convex and quasiconvex risk statistics, respectively. In [22,23], the
authors studied multivariate convex risk statistics.

In the aforementioned frameworks of risk statistics, the approaches are mainly axiomatic ones, and
mainly focus on the representation results for various kinds of risk statistics. An natural and interesting
issue is how about constructing meaningful risk statistics. Taking into account the importance of the
shortfall risk measures, in the present paper, we attempt to explore the multivariate shortfall risk
statistics, as well as the multivariate divergence risk statistics. This consideration mainly motivates the
present study.
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The purpose of the present paper is to construct multivariate shortfall and divergence risk statistics,
respectively, and to study their properties, including their representation results. We provide the
representation results for the multivariate shortfall and divergence risk statistics with explicit penalty
functions, which are expressed in terms of the corresponding loss functions or divergence functions,
respectively. The coherency of the univariate shortfall risk statistics is also characterized by means of
the corresponding loss function. Finally, as examples, the multivariate entropic (or entropy-like) risk
statistics are constructed to illustrate the proposed multivariate shortfall and divergence risk statistics.

The steps and methods of the present paper are as follows. We, first, introduce the acceptance
set of the accepted portfolios. Then, the multivariate shortfall risk statistics are introduced, and their
properties including their representations are investigated. Further, the coherency of the univariate
shortfall risk statistics is characterized. Meanwhile, a kind of multivariate risk statistic closely related
the multivariate shortfall risk statistic is also introduced and investigated, which is the so-called
multivariate divergence risk statistic. Finally, examples are given. Convex analysis is employed to
complete the involved argumentation.

The main contribution of the present paper are as follows. First, we have constructed two new
meaningful classes of multivariate risk statistics, which are multivariate shortfall and divergence risk
statistics. Second, their properties including the representation results are investigated, and their
coherency is characterized. Finally, multivariate entropic (or entropy-like) risk statistics are introduced.

The rest of the paper is organized as follows. In Section 2, we briefly state some preliminaries
including the definitions of multivariate shortfall and divergence risk measures. The main results
are stated in Section 3. In Section 4, All the proofs of the main results of the paper are provided. In
Section 5, examples are given. Finally, conclusions are summarized.

2. Preliminaries

In this section, we briefly introduce some preliminaries. Henceforth, let N ≥ 1 be a fixed positive
integer. We describe the loss of a financial position by a random variable. In practice, the behavior of a
random loss vector X̃ = (X1, · · · , XN) under different scenarios is preferably represented by different
sets of data generated or observed under those scenarios because specifying accurate models for X̃
(under different scenarios) is usually very difficult. Assume that there exist K scenarios. Let nij be the
sample size of Xi in the jth scenario for any 1 ≤ i ≤ N and 1 ≤ j ≤ K. Denote ni := ∑K

j=1 nij for any

1 ≤ i ≤ N and n := ∑N
i=1 ni. That is, the behavior of X̃ = (X1, · · · , XN) is represented by a collection of

data x̃ = (x̃1, · · · , x̃N) ∈ Rn1 × · · · × RnN = Rn, where x̃i = (x̃i,1, · · · , x̃i,K) ∈ Rni1 × · · · × RniK = Rni

and x̃i,j = (xi,j
1 , · · · , xi,j

nij) ∈ Rnij is the data subset that corresponds to the jth scenario of Xi. For each
i = 1, · · · , N, j = 1, · · · , K, x̃i,j can be a data set based on historical observations of Xi, hypothetical
samples simulated according to a model, or a mixture of observations and simulated samples.

For x̃ = (x̃1, · · · , x̃N) ∈ Rn1 × · · · × RnN and ỹ = (ỹ1, · · · , ỹN) ∈ Rn1 × · · · × RnN , x̃ ≤ ỹ
means xi,j

k ≤ yi,j
k , i = 1, · · · , N, j = 1, · · · , K, k = 1, · · · , nij. Denote 1̃ := (1̃1, · · · , 1̃N) ∈ Rn1 × · · · ×

RnN , where 1̃i := (1, · · · , 1) ∈ Rni for i = 1, · · · , N; 0̃ := (0̃1, · · · , 0̃N) ∈ Rn1 × · · · × RnN , where
0̃i := (0, · · · , 0) ∈ Rni for i = 1, · · · , N. ẽi := (0̃1, · · · , 0̃i−1, 1̃i, 0̃i+1, · · · , 0̃N) ∈ Rn1 × · · · × RnN for
i = 1, · · · , N. ẽi,j

k := (0, · · · , 0, 1, 0, · · · , 0) ∈ Rn where 1 is located in the (∑i−1
s=1 ns + ∑

j−1
m=1 nim + k)th

position, and ẽ1,1
1 , · · · , ẽN,K

nNK are the canonical basis of Rn. 〈·, ·〉 denotes the usual inner product on the
Euclidean space. Given a set A, int(A) means the interior point of A, co(A) means the convex hull of
A and cl(A) the closure of A. Denote

W :=
{

ω̃ = (ω̃1, · · · , ω̃N) ∈ Rn1 × · · · × RnN : ω̃ ≥ 0, 〈1̃i, ω̃i〉 = 1, i = 1, · · · , N
}

.

We begin with the acceptance set. Given a nonempty set A ⊂ Rn, we list only some of its axioms,
which will be closely related to the present paper, as follows.

(A1) Finiteness: sup{∑N
i=1 mi : (m11̃1, · · · , mN 1̃N) ∈ A } < +∞.
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(A2) Monotonicity: For any x̃ ∈ A , ỹ ∈ Rn, if ỹ ≤ x̃, then ỹ ∈ A .
(A3) Convexity: A is a convex set.
(A4) Cone: A is a positively homogeneous cone, that is, λx̃ ∈ A for any λ > 0 and x̃ ∈ A .

The interpretations of the axioms (A1)–(A4) are as follows. The finiteness means that the maximum
of the possible deterministic losses of the portfolio should not be infinity. The monotonicity implies that
if a portfolio with large losses is accepted, then a portfolio with less losses should also be accepted. The
convexity means that given two accepted portfolios, any convex combination of these two portfolios
should also be accepted. The axiom of cone means that given an accepted portfolio, any multiple of
the portfolio should also be accepted.

Definition 1. A nonempty subset A of Rn is called an acceptance set if it satisfies axioms A1–A2, and called
a convex acceptance set if it satisfies axioms A1–A3, and called a coherent acceptance set if it satisfies axioms
A1–A4.

Next, we list some axioms for a mapping ρ : Rn → R as follows, which were proposed by [23],
see also [19–21].

(B1) Translation invariance: For any x̃ ∈ Rn, ai ∈ R, i = 1, · · · , N,

ρ
(

x̃ + (a11̃1, · · · , aN 1̃N)
)
= ρ(x̃) +

N

∑
i=1

ai.

(B2) Monotonicity: For any x̃, ỹ ∈ Rn, if x̃ ≤ ỹ, then ρ(x̃) ≤ ρ(ỹ).

(B3) Convexity: For any x̃, ỹ ∈ Rn and α ∈ [0, 1],

ρ (αx̃ + (1− α)ỹ) ≤ αρ(x̃) + (1− α)ρ(ỹ).

(B4) Positive homogeneity: For any x̃ ∈ Rn and λ > 0, ρ(λx̃) = λρ(x̃).

The interpretations of the axioms (B1)–(B4) are as follows. The translation invariance says that
adding the sure loss ∑N

i=1 ai to a portfolio x̃ simply increases the risk by ∑N
i=1 ai. Monotonicity means

that the larger loss of the portfolio is, the more risky it is. Convexity means that diversification does not
increase the risk, that is, the risk of a diversified position αx̃ + (1− α)ỹ is less or equal to the weighted
average of the individual risks. Positive homogeneity means that when the loss of a portfolio increases
(or decreases) linearly with a multiple, then the risk of the portfolio should also increase (or decreases)
linearly with the same multiple.

On a general level, a multivariate risk statistic ρ is any mapping from Rn to the real numbers R. It is
a data-based version of a multivariate risk measure, and assigns (x̃1, · · · , x̃N), the data representation
of the random losses (X1, · · · , XN), a real number ρ((x̃1, · · · , x̃N)), the risk measurement of
(X1, · · · , XN).

Definition 2. A mapping ρ : Rn → R is called a multivariate monetary risk statistic if ρ satisfies axioms
B1–B2, and called a multivariate convex risk statistic if it satisfies axioms B1–B3, and called a multivariate
coherent risk statistic if it satisfies axioms B1–B4.

Given an acceptance set A , we say that x̃ ∈ Rn is acceptable ( with respect to A ) if x̃ ∈ A . For a
position X̃, represented by its sample data x̃ = (x̃1, · · · , x̃N) ∈ Rn1 × · · · × RnN , define the capital
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requirement ρA (x̃) for x̃ as the minimal amount ∑N
i=1 mi such that (x̃1 − m11̃1, · · · , x̃N − mN 1̃N) is

acceptable by A . That is,

ρA (x̃) := inf

{
N

∑
i=1

mi : (x̃1 −m11̃1, · · · , x̃N −mN 1̃N) ∈ A , mi ∈ R, 1 ≤ i ≤ N

}
(1)

for any x̃ = (x̃1, · · · , x̃N) ∈ Rn1 × · · · × RnN . we call ρA the risk statistic induced by A .
On the other hand, for any multivariate monetary risk statistic ρ : Rn → R, we can define a set

Aρ := {x̃ ∈ Rn : ρ(x̃) ≤ 0} . (2)

Note that Proposition 2 below will show that Aρ satisfies axioms (A1)–(A2), i.e., Aρ is an acceptance
set, and we call the set Aρ the acceptance set of ρ.

The following two propositions discuss the properties of ρA and Aρ for given acceptance set A

and risk statistics ρ, respectively. Their proofs will be postponed to Section 4.

Proposition 1. Let A ⊂ Rn be an acceptance set and ρA be defined by Equation (1). Then,

(1) ρA is a multivariate monetary risk statistic.

(2) ρA is a multivariate convex risk statistic if A is convex.

(3) ρA is a multivariate coherent risk statistic if A is a convex cone.

(4) A is a subset of AρA , and cl(A ) = AρA if A satisfies the finiteness and monotonicity axioms.

Proposition 2. Let ρ : Rn → R be a multivariate monetary risk statistic and Aρ be defined by
Equation (2). Then,

(1) Aρ is an acceptance set.

(2) ρ can be recovered from Aρ, i.e., ρ = ρAρ
.

(3) Aρ is a convex acceptance set if and only if ρ is convex.

(4) Aρ is a coherent acceptance set if and only if ρ is coherent.

The following representation result for multivariate convex risk statistics has been
provided in [23].

Lemma 1. A mapping ρ : Rn → R is a multivariate convex risk statistic if and only if there exists a set of
weights W̃ ⊆ W such that

ρ(x̃) = sup
ω̃∈W̃

{〈x̃, ω̃〉 − αmin(ω̃)} ,

for any x̃ ∈ Rn, where the penalty function αmin : Rn → R is given by

αmin(ω̃) := sup
x̃∈Aρ

{〈x̃, ω̃〉} ,

where Aρ := {x̃ ∈ Rn : ρ(x̃) ≤ 0}.

Definition 3. A function ` : R→ R is called a loss function, if it is increasing and not identically constant.
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The conjugate function of a proper convex function ` : R→ R is defined as

`∗(y) := sup
x∈R
{xy− `(x)}, y ∈ R.

The following two lemmas characterize the conjugate functions of loss functions, which were
provided by [24] and will be used to prove the main results.

Lemma 2. Let {`n}n∈N be a sequence of convex loss functions which decreases pointwise to the convex loss
function `, then the corresponding conjugate functions (`n)∗ increase pointwise to `∗.

Lemma 3. Let ` be a convex loss function, then the conjugate funcion `∗ has the following properties.
(1) `∗(0) = − infx∈R `(x) and `∗(y) ≥ −`(0) for any y ∈ R.
(2) `∗(y)

y → ∞ as y ↑ ∞.
(3) Denote by J := (`∗)′, the derivative function of `∗, then for any x, y ∈ R,

xy ≤ `(x) + `∗(y) with equality if x = J(y). (3)

For now on, let the loss functions `i, · · · , `N be convex. For each i = 1, · · · , N, let z0,i be an interior
point of the range of `i. Denote

z0 := z0,1 + · · ·+ z0,N .

We define the following acceptance set,

B :=

{
x̃ ∈ Rn :

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

`i(xi,j
k ) ≤ z0

}
. (4)

The interpretation of z0,i and the acceptance set B as in Equation (4) are as follows. z0,i denotes
the tolerance level towards loss of the ith financial positions at which the investor can bear. Therefore,
z0 = z0,1 + · · ·+ z0,N denotes the tolerance level towards loss of the portfolio X̃ = (X1, · · · , XN) at
which the investor can bear. For example, for risk-averse investor, the tolerance levels z0,i’s could be
chosen as zero provided that the zero is an interior point of the range of `i. For a risk-neutral investor,
the tolerance levels z0,i’s could be chosen as a positive but small numbers. For a risk-appetitive investor,
the tolerance levels z0,i’s could be chosen as certain large positive numbers. Therefore, these three
situations can also be regarded as kinds of trading preferences for an investor. Note that given the
tolerance levels z0,i’s by the investor, not all of financial positions are in the acceptance set B.

Note that the acceptance set B defined as Equation (4) is convex and closed, as each loss function
`i is convex, 1 ≤ i ≤ N. Next, according to the acceptance set B, we can introduce the definition of the
multivariate shortfall risk statistics.

Definition 4. The mapping ρB : Rn1 × · · · × RnN → R defined by

ρB(x̃) := inf

{
N

∑
i=1

mi : (x̃1 −m11̃1, · · · , x̃N −mN 1̃N) ∈ B

}
(5)

for x̃ = (x̃1, · · · , x̃N) ∈ Rn1 × · · · × RnN , is called a multivariate shortfall risk statistic.
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By the definition of the acceptance set B in Equation (4), the multivariate shortfall risk statistic
ρB can be rewritten as

ρB(x̃) = inf

{
N

∑
i=1

mi :
N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

`i(xi,j
k −mi) ≤ z0

}

for x̃ = (x̃1, · · · , x̃N) = (x1,1
1 , · · · , x1,1

n11 , · · · , x1,K
1 , · · · , x1,K

n1k , · · · , xN,1
1 , · · · , xN,1

nN1 , · · · , xN,K
1 , · · · ,

xN,K
nNK ) ∈ Rn1 × · · · × RnN .

Remark 1. As each convex loss function `i is convex, 1 ≤ i ≤ N, it is not hard to verify that B satisfies A1–A3.
Therefore, a multivariate shortfall risk statistic ρB is also a multivariate convex risk statistic. By Proposition 1,
B = AρB , as B is closed.

Now, we introduce the definition of multivariate divergence risk statistics.

Definition 5. For each i = 1, · · · , N, let gi : [0,+∞) → R ∪ {+∞} be a lower semicontinuous convex
function satisfying gi(1) < ∞ and the superlinear growth condition gi(x)

x → +∞ as x ↑ ∞. The mapping
I(g1,··· ,gN) : [0,+∞)n1 × · · · × [0,+∞)nN → R defined by

I(g1,··· ,gN)(ω̃) :=
N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

gi(niω
i,j
k ),

for ω̃ = (ω̃1, · · · , ω̃N) = (ω1,1
1 , · · · , x1,1

n11 , · · · , ω1,K
1 , · · · , ω1,K

n1k , · · · , ωN,1
1 , · · · , ωN,1

nN1 , · · · ,
ωN,K

1 , · · · , ωN,K
nNK ) ∈ [0,+∞)n1 × · · · × [0,+∞)nN , is called a multivariate (g1, · · · , gN)−divergence

function.
The mapping ρ(g1,··· ,gN) : Rn1 × · · · × RnN → R defined by

ρ(g1,··· ,gN)(x̃) := sup
ω̃∈W

{
N

∑
i=1
〈x̃i, ω̃i〉 − I(g1,··· ,gN)(ω̃)

}
,

for x̃ = (x̃1, · · · , x̃N) ∈ Rn1 × · · · × RnN , is called a multivariate divergence risk statistic.

Remark 2. (1) If gi : [0,+∞)→ R∪ {+∞} is a convex function for each 1 ≤ i ≤ N, then (β, ω) 7→ βgi(
ω
β )

is a convex function on (0,+∞)× [0,+∞), i = 1, · · · , N.
(2) For any i = 1, · · · , N, let gi : [0,+∞) → R ∪ {+∞} be a lower semicontinuous convex function

satisfying gi(1) < ∞ and the superlinear growth condition gi(x)
x → +∞ as x ↑ ∞. For β > 0, denote

g̃i(β, x) := βgi(
x
β ), the corresponding multivariate (g̃1, · · · , g̃N)−divergence function

I(g̃1,··· ,g̃N)(β, ω̃) :=
N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

βgi

(
niω

i,j
k

β

)

is a convex function on (0,+∞)× [0,+∞)n. For any fixed x̃ ∈ Rn1 × · · · × RnN , define

G(β) := Gx̃(β) :=

−ρ(g̃1,··· ,g̃N)(x̃) = infω̃∈W

{
−〈x̃, ω̃〉+ I(g̃1,··· ,g̃N)(β, ω̃)

}
if β > 0,

+∞ otherwise,

it is not hard to check that G(β) is a lower semicontinuouse convex function on (0,+∞).
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3. Main Results

In this section, we state the main results of this paper, and their proofs will be postponed to the
next section. Specifically, we will study the properties and the representation results for multivariate
shortfall risk statistics and divergence risk statistics.

The following proposition shows that ρB is a multivariate convex risk statistics, which can be
steadily implied by Proposition 1, and therefore we omit its proof here.

Proposition 3. The multivariate shortfall risk statistic ρB : Rn → R satisfies the translation invariance,
monotonicity, and convexity.

Now, we are ready to state the first main result of the present paper, which provides the
representation results for multivariate shortfall risk statistics.

Theorem 1. Let ρB : Rn → R be a multivariate shortfall risk statistic associated with the convex loss functions
(`1, · · · , `N) and z0. Then the minimal penalty function of ρB is given by

αmin(ω̃) = inf
λ>0

1
λ

{
z0 +

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

`∗i (λniω
i,j
k )

}
, ω̃ ∈ W , (6)

where `∗i is the conjugate function of `i. In particular, for any x̃ ∈ Rn,

ρB(x̃) = sup
ω̃∈W

{
〈x̃, ω̃〉 − inf

λ>0

1
λ

{
z0 +

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

`∗i (λniω
i,j
k )

}}
.

Theorem 1 shows that given N convex loss functions `1, · · · , `N and the corresponding totally
average loss level z0, the minimal penalty function αmin can be expressed in terms of `1, · · · , `N . From
a practical point of view, an investor may have uncertainty about kinds of loss function (i.e., the utility
function). Next, we will discuss this issue in the case where N = 1, and will provide a slight more
general result, which is similar to Theorem 1.

Let L be a class of convex loss functions. Given ` ∈ L , similar to Equation (4), we can define the
corresponding average loss level z0 = z0(`) and the acceptance set B = B(`, z0) by

B(`, z0) :=

{
x̃ ∈ Rn :

1
n

K

∑
j=1

nj

∑
k=1

`(xjk) ≤ z0

}
.

Assume that

BL :=
⋂
`∈L

B(`, z0) 6= ∅. (7)

Note that BL is convex and closed. Therefore, similar to Equation (5), we can define a convex
risk statistic ρL := ρBL

: Rn → R by

ρL (x̃) := inf
{

m ∈ R : x̃−m1̃ ∈ BL

}
. (8)

Theorem 1 yields the following representation for the convex risk statistic ρL .
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Corollary 1. Assume that BL defined by Equation (7) is not empty. Then the multivariate convex risk statistic
ρL defined by Equation (8) can be expressed by

ρL (x̃) = sup
ω̃∈W̃ p

{〈x̃, ω̃〉 − αmin(ω̃)} ,

where the minimal penalty function αmin : Rn → R is given by

αmin(ω̃) = inf
λ>0

inf
`∈L

{
z0(`)

λ
+

1
λn

K

∑
j=1

nj

∑
k=1

`∗(λnωjk)

}
, ω̃ ∈ W̃ ,

where W̃ = {ω̃ = (ω1, · · · , ωn) ∈ Rn : ω̃ ≥ 0, ∑n
i=1 ωi = 1}.

Remark 3. Corollary 1 can be considered as the data-based (or empirical) version of Föllmer and Schied (2011,
Corollary 4.119).

Next, we will state the second main result of the present paper, which characterizes the (univariate)
shortfall risk statistic ρB defined by Equation (5), being coherent by means of the loss function ` in a
special case where N = 1.

Theorem 2. Assume that ρB : Rn → R is a univariate shortfall risk statistic associated with a convex loss
function ` and z0 ∈ int{`(y) : y ∈ R}, and that infx∈R `(x) = −∞ and supx∈R `(x) = +∞. Then ρB is
coherent if and only if `(x) = z0 + αx+ − βx− with 0 < β ≤ α.

Finally, we will state the last main result of the present paper, which provides the representation
result for multivariate divergence risk statistics.

Theorem 3. Let gi : [0,+∞)→ R ∪ {+∞} be a lower semicontinuous convex function satisfying gi(1) < ∞
and the superlinear growth condition gi(x)

x → +∞ as x ↑ ∞ for each 1 ≤ i ≤ N; then, the multivariate
divergence risk statistic ρ(g1,··· ,gN) is of the following expression

ρ(g1,··· ,gN)(x̃) = inf
(z1,··· ,zN)∈RN

{
N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

g∗i (xi,j
k − zi) +

N

∑
i=1

zi

}
, (9)

for x̃ = (x̃1, · · · , x̃N) = (x1,1
1 , · · · , x1,1

n11 , · · · , x1,K
1 , · · · , x1,K

n1k , · · · , xN,1
1 , · · · , xN,1

nN1 , · · · , xN,K
1 , · · · ,

xN,K
nNK ) ∈ Rn1 × · · · × RnN , where g∗i (y) is the conjugate function of gi for each 1 ≤ i ≤ N.

4. Proofs of Main Results

In this section, we will provide an alternate proofs of Propositions 1 and 2, and all the proofs of
the results stated in Section 3.

Proof of Proposition 1. (1) Let A be an acceptance set, i.e., satisfying the finiteness and monotonicity,
it is not hard to verify the translation invariance and monotonicity of ρA . Therefore, we only need to
show that ρA takes finite values.

Let x̃ = (x̃1, · · · , x̃N) ∈ A be fixed (as ρA is nonempty, such x̃ must exist). Then we know that

0̃ ∈
{
(m1, · · · , mN) ∈ RN : (x̃1 −m11̃1, · · · , x̃N −mN 1̃N) ∈ A

}
,

which, together with the definition of ρA , implies that ρA (x̃) ≤ 0.
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For any given ỹ = (ỹ1, · · · , ỹN) ∈ Rn1 × · · · ×RnN , clearly, there exists a m̃ = (m1, · · · , mN) ∈ RN

such that (ỹ1 −m11̃1, · · · , ỹN −mN 1̃N) ≤ (x̃1, · · · , x̃N). Thus,

ρA (ỹ)−
N

∑
i=1

mi = ρA

(
x̃ + (m11̃1, · · · , mN 1̃N)

)
≤ ρA (x̃) ≤ 0,

which yields that ρA (ỹ) ≤ ∑N
i=1 mi < +∞.

On the other hand, by the finiteness of A , we have that

ρA (0̃) = inf

{
N

∑
i=1

mi : (0−m11̃1, · · · , 0−mN 1̃N) ∈ A

}

= − sup

{
N

∑
i=1

mi : (m11̃1, · · · , mN 1̃N) ∈ A

}
> −∞.

Clearly, there exists a m̃′ = (m′1, · · · , m′N) ∈ RN such that (ỹ1 − m′11̃1, · · · , ỹN − m′N 1̃N) ≥ 0.
Therefore, from the translation invariance and monotonicity of ρA , it follows that

ρA (ỹ) ≥ ρA (0̃) +
N

∑
i=1

m′i > −∞.

(2) Let A be a convex acceptance set. Then by part (1) above, we only need to show the convexity
of ρA .

Let x̃ = (x̃1, · · · , x̃N), ỹ = (ỹ1, · · · , ỹN) ∈ Rn1 × · · · × RnN . For any (a1, · · · , aN), (b1, · · · , bN)

∈ RN with (x̃1 − a11̃1, · · · , x̃N − aN 1̃N), (ỹ1 − b11̃1, · · · , ỹN − bN 1̃N) ∈ A , and any α ∈ [0, 1], from the
convexity of A , it follows that

α(x̃1 − a11̃1, · · · , x̃N − aN 1̃N) + (1− α)(ỹ1 − b11̃1, · · · , ỹN − bN 1̃N) ∈ A ,

which, together with the definition of ρA , yields that

ρA

(
α(x̃1 − a11̃1, · · · , x̃N − aN 1̃N) + (1− α)(ỹ1 − b11̃1, · · · , ỹN − bN 1̃N)

)
≤ 0.

Therefore, by the translation invariance of ρA ,

0 ≥ ρA

[
α(x̃1 − a11̃1, · · · , x̃N − aN 1̃N) + (1− α)(ỹ1 − b11̃1, · · · , ỹN − bN 1̃N)

]
= ρA [α(x̃1, · · · , x̃N) + (1− α)(ỹ1, · · · , ỹN)]−

[
α

N

∑
i=1

ai + (1− α)
N

∑
i=1

bi

]
,

which implies the convexity of ρA by letting ∑N
i=1 ai and ∑N

i=1 bi converge to ρA (x̃) and ρA (ỹ),
respectively.

(3) Let A be a coherent acceptance set. Then by parts (1) and (2) above, we only need to show the
positive homogeneity of ρA .
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For any λ > 0 and x̃ = (x̃1, · · · , x̃N) ∈ Rn1 × · · · × RnN ,

ρA (λx̃) = inf

{
N

∑
i=1

mi : (λx̃1 −m11̃1, · · · , λx̃N −mN 1̃N) ∈ A

}

= inf

{
N

∑
i=1

mi : (x̃1 −
m1

λ
1̃1, · · · , x̃N −

mN
λ

1̃N) ∈ A

}

= inf

{
N

∑
i=1

λm′i : (x̃1 −m′11̃1, · · · , x̃N −m′N 1̃N) ∈ A

}

= λ inf

{
N

∑
i=1

m′i : (x̃1 −m′11̃1, · · · , x̃N −m′N 1̃N) ∈ A

}
= λρA (x̃).

(4) If x̃ ∈ A , then ρA (x̃) ≤ 0, which, together with the definition of AρA , yields that x̃ ∈ AρA ,
and therefore A ⊆ AρA .

For any x̃ = (x̃1, · · · , x̃N), ỹ = (ỹ1, · · · , ỹN) ∈ Rn1 × · · · × RnN , denote ‖x̃i‖∞ := max{xi,j
k , 1 ≤

j ≤ K, 1 ≤ k ≤ nij} and ‖x̃‖ := ∑N
i=1 ‖x̃i‖∞. Since clA is the closure of A in Rn, then clA is ‖ · ‖-closed.

Note that

x̃ ≤ ỹ + (‖x̃1 − ỹ1‖∞1̃1, · · · , ‖x̃N − ỹN‖∞1̃N),

which, along with the translation invariance and monotonicity of ρA , implies that

ρA (x̃) ≤ ρA (ỹ) +
N

∑
i=1
‖x̃i − ỹi‖∞.

Reversing the roles of x̃ and ỹ, we know that

|ρA (x̃)− ρA (ỹ)| ≤
N

∑
i=1
‖x̃i − ỹi‖∞ = ‖x̃− ỹ‖. (10)

For any fixed x̃ /∈ cl(A ), we can conclude that ρA (x̃) > 0. In fact, take mi < −‖x̃i‖∞, 1 ≤ i ≤ N,
that is, mi1̃i < −‖x̃i‖∞1̃i ≤ x̃i and ∑N

i=1 mi < −∑N
i=1 ‖x̃i‖∞ = −‖x̃‖. As, cl(A ) is ‖ · ‖-closed and

x̃ /∈ cl(A ), there is some λ ∈ (0, 1), such that λ(m11̃1, · · · , mN 1̃N) + (1− λ)x̃ /∈ cl(A ). Therefore,

0 < ρA

(
λ(m11̃1, · · · , mN 1̃N) + (1− λ)x̃

)
= ρA ((1− λ)x̃) + λ

N

∑
i=1

mi.

From Equation (10), it follows that

|ρA (x̃)− ρA ((1− λ)x̃)| ≤ λ‖x̃‖.

Therefore,

ρA (x̃) ≥ ρA ((1− λ)x̃)− λ‖x̃‖ > λ

(
−

N

∑
i=1

mi − ‖x̃‖
)

> 0.

By the definition of AρA , we know that ρA (x̃) > 0 implies x̃ /∈ AρA . Thus, AρA ⊆ cl(A ). The
proof of Proposition 1 is completed.
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Proof of Proposition 2. (1) Let ρ be a multivariate monetary risk statistic, the monotonicity of Aρ

is straightforward. If sup{∑N
i=1 mi : (m11̃1, · · · , mN 1̃N) ∈ Aρ} = +∞, then there exists a sequence

{(mk
1, · · · , mk

N)}k∈N where (mk
11̃1, · · · , mk

N 1̃N) ∈ Aρ such that

lim
k→+∞

N

∑
i=1

mk
i = +∞.

By the translation invariance of ρ,

ρ
[
0̃ + (mk

11̃1, · · · , mk
N 1̃N)

]
= ρ(0̃) +

N

∑
i=1

mk
i → +∞ (k→ +∞).

This is a contradict with ρ((mk
11̃1, · · · , mk

N 1̃N)) ≤ 0.
(2) The translation invariance of ρ implies that for x̃ ∈ Rn,

ρAρ
(x̃) = inf

{
N

∑
i=1

mi : x̃− (mk
11̃1, · · · , mk

N 1̃N) ∈ Aρ

}

= inf

{
N

∑
i=1

mi : ρ
(

x̃− (mk
11̃1, · · · , mk

N 1̃N)
)
≤ 0

}

= inf

{
N

∑
i=1

mi : ρ (x̃) ≤
N

∑
i=1

mi

}
= ρ(x̃).

(3) Aρ is a convex set if ρ is convex. The converse will follow from Proposition 1 together with
ρAρ

= ρ.
(4) By part (3) above, we only need to show the relationship between the cone of Aρ and the

positive homogeneity of ρ. The cone of Aρ is straightforward from the positive homogeneity of ρ.
The converse follows from ρAρ

= ρ and the part (3) in Proposition 1. The proof of Proposition 2 is
completed.

Proof of Theorem 1. We will make full use of convex analysis to show the theorem.
Define a totally average loss function L : Rn → R as

L(x̃) :=
N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

`i(xi,j
k )

for any x̃ = (x̃1, · · · , x̃N) = (x1,1
1 , · · · , x1,1

n11 , · · · , x1,K
1 , · · · , x1,K

n1k , · · · , xN,1
1 , · · · , xN,1

nN1 , · · · , xN,K
1 , · · · ,

xN,K
nNK ) ∈ Rn1 × · · · × RnN .

First, we show that it suffices to prove the claim for L(0̃) < z0; otherwise, we can find some
ã = (ã1, · · · , ãN) ∈ Rn1 × · · · × RnN such that L(ã) < z0, as z0 was assumed to be an interior point of
L(Rn). Denote bi := min{ai,j

k : j = 1, · · · , k; t = 1, · · · , nij}, i = 1, · · · , N, and b̃ := (b11̃1, · · · , bN 1̃N).
Then, b̃ ≤ ã, which, together with the increasing of L, yields that

L(b̃) ≤ L(ã) < z0.

Let ˜̀i(x) := `i(x + bi), i = 1, · · · , N define a function:

L̃(x̃) :=
N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

˜̀i(xi,j
k ) =

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

`i(xi,j
k + bi) = L(x̃ + b̃)
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for any x̃ = (x̃1, · · · , x̃N) = (x1,1
1 , · · · , x1,1

n11 , · · · , x1,K
1 , · · · , x1,K

n1k , · · · , xN,1
1 , · · · , xN,1

nN1 , · · · , xN,K
1 , · · · ,

xN,K
nNK ) ∈ Rn1 × · · · ×RnN . It easy to verify that the function L̃ is increasing and satisfies the requirement

L̃(0̃) = L(b̃) < z0. From Equation (4), it follows that

B̃ : =

{
(x̃1, · · · , x̃N) ∈ Rn1 × · · · × RnN :

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

˜̀i(xi,j
k ) ≤ z0

}

=

{
(x̃1, · · · , x̃N) ∈ Rn1 × · · · × RnN :

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

`i(xi,j
k + bi) ≤ z0

}

=

{
(ỹ1 − b11̃1, · · · , ỹN − bN 1̃N) ∈ Rn1 × · · · × RnN :

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

`i(y
i,j
k ) ≤ z0

}

=

{
(ỹ1, · · · , ỹN) ∈ Rn1 × · · · × RnN :

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

`i(y
i,j
k ) ≤ z0

}
−
{
(b11̃1, · · · , bN 1̃N)

}
= B −

{
(b11̃1, · · · , bN 1̃N)

}
.

From Proposition 1, we know B̃ = Aρ
B̃

. Therefore, for any ω̃ = (ω̃1, · · · , ω̃N) ∈ W , we have
that

sup
(x̃1,··· ,x̃N)∈Aρ

B̃

N

∑
i=1
〈x̃i, ω̃i〉 = sup

(x̃1,··· ,x̃N)∈B̃

N

∑
i=1
〈x̃i, ω̃i〉

= sup
(ỹ1,··· ,ỹN)∈B

N

∑
i=1
〈ỹi − bi1̃i, ω̃i〉

= sup
(ỹ1,··· ,ỹN)∈B

N

∑
i=1
〈ỹi, ω̃i〉 −

N

∑
i=1

bi. (11)

Thus, if the assertion is established for L̃, then we find that

α̃min(ω̃) = inf
λ>0

1
λ

{
z0 +

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

˜̀∗
i (λniω

i,j
k )

}

= inf
λ>0

1
λ

{
z0 +

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

[
`∗i (λniω

i,j
k )− biλniω

i,j
k

]}

= inf
λ>0

1
λ

{
z0 +

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

`∗i (λniω
i,j
k )

}
−

N

∑
i=1

bi, (12)

for any ω̃ = (ω̃1, · · · , ω̃N) ∈ W , where the second equation is implied by the fact that the
Fenchel–Legendre transform ˜̀∗

i of `∗i satisfies ˜̀∗i (x) = `∗i (x)− bix.
Note that ρB̃ is a multivariate convex risk statistic; by Lemma 1, we have that α̃min(ω̃) =

sup(x̃1,··· ,x̃N)∈Aρ
B̃

∑N
i=1〈x̃i, ω̃i〉, for any ω̃ = (ω̃1, · · · , ω̃N) ∈ W , which, together with Equations (11)

and (12), yields that

sup
(ỹ1,··· ,ỹN)∈B

N

∑
i=1
〈ỹi, ω̃i〉 = inf

λ>0

1
λ

{
z0 +

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

`∗i (λniω
i,j
k )

}
, ω̃ ∈ W .

Therefore, it suffices to prove the claim for L(0̃) < z0.
Next, we show the main proof process. Let us fix ω̃ = (ω̃1, · · · , ω̃N) ∈ W .
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The part of “≤” in Equation (6). Note that `∗i is the conjugate function of `i, `∗i (ω
i,j
k ) =

supy∈R{ω
i,j
k y− `i(y)}. For any λ > 0 and x̃ ∈ Rn, we have that

xi,j
k ω

i,j
k =

1
λni

xi,j
k λniω

i,j
k

≤ 1
λni

[
`i(xi,j

k ) + `∗i (λniω
i,j
k )
]

, i = 1, · · · , N, j = 1, · · · , K, k = 1, · · · , nij,

which yields that

N

∑
i=1
〈x̃i, ω̃i〉 =

N

∑
i=1

k

∑
j=1

nij

∑
t=1

xi,j
k ω

i,j
k ≤

1
λ

[
N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

`i(xi,j
k ) +

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

`∗i (λniω
i,j
k )

]
.

Therefore,

αmin(ω̃) = sup
(x̃1,··· ,x̃N)∈AρB

N

∑
i=1
〈x̃i, ω̃i〉

= sup
(x̃1,··· ,x̃N)∈B

N

∑
i=1
〈x̃i, ω̃i〉

≤ sup
(x̃1,··· ,x̃N)∈B

1
λ

[
N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

`i(xi,j
k ) +

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

`∗i (λniω
i,j
k )

]

≤ 1
λ

[
z0 +

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

`∗i (λniω
i,j
k )

]
.

The part of “≥” in Equation (6). We will show that

αmin(ω̃) ≥ inf
λ>0

1
λ

[
z0 +

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

`∗i (λniω
i,j
k )

]
. (13)

Without loss of generality, we assume that αmin(ω̃) < ∞. The proof of Equation (13) will
be completed by three steps. First, the inequality Equation (13) will be proved under three extra
conditions. Second, without the continuity condition, the result will be done. Finally, under the general
case, we show the inequality.

Step 1. Assume that the following three conditions hold.

(C1) There exists D ⊆ Rn such that L(x̃) = infỹ∈Rn L(ỹ) for all x̃ ∈ D, where D satisfies the
monotonicity, i.e., if x̃ ∈ D then for any ỹ ≤ x̃, ỹ ∈ D .

(C2) `i, i = 1, · · · , N are finite on (0, ∞).

(C3) Ji, i = 1, · · · , N are continuous on (0, ∞).

Note that these assumptions imply that `i(0) < ∞ and that Ji(0+) have lower bounds. Moreover,
Ji(z) increases to ∞ as z ↑ ∞, and hence so does `i(Ji(z)). Note that for all z ∈ R, `∗i (z) ≥ −`i(0), i =
1, · · · , N, which yields that

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

`∗i (z
i,j
k ) ≥

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1
−`i(0) = −L(0̃) > −z0. (14)
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From Equation (3), it follows that

lim
z̃↓0̃

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

`i(Ji(z
i,j
k ))− z0 < lim

z̃↓0̃

[
N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

`i(Ji(z
i,j
k ))−

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

`∗i (z
i,j
k )

]

= lim
z̃↓0̃

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

zi,j
k Ji(z

i,j
k )

= 0.

These facts and the continuity of Ji imply that, for large enough m, there exists some λm > 0
such that

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

`i

(
Ji(λmniω

i,j
k )I{niω

i,j
k ≤m}

)
= z0.

Denote xi,j
k (m) := Ji(λmniω

i,j
k )I{niω

i,j
k ≤m}, i = 1, · · · , N, j = 1, · · · , K, k = 1, · · · , nij, x̃i,j(m) :=

(xi,j
1 (m), · · · , xi,j

nij(m)), x̃i(m) := (x̃i,1(m), · · · , x̃i,K(m)) and x̃(m) := (x̃1(m), · · · , x̃N(m)). Then x̃(m)

is bounded and belongs to B. Therefore, it follows from Equations (3) and (14) that

αmin(ω̃) = sup
(x̃1,··· ,x̃N)∈B

N

∑
i=1
〈x̃i, ω̃i〉

≥
N

∑
i=1
〈x̃i(m), ω̃i〉

=
N

∑
i=1

K

∑
j=1

nij

∑
k=1

Ji(λmniω
i,j
k )I{niω

i,j
k ≤m}ω

i,j
k

=
1

λm

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

I{niω
i,j
k ≤m} Ji(λmniω

i,j
k )λmniω

i,j
k

=
1

λm

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

I{niω
i,j
k ≤m}

[
`i(Ji(λmniω

i,j
k )) + `∗i (λmniω

i,j
k )
]

=
1

λm

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

[
`i(Ji(λmniω

i,j
k )I{niω

i,j
k ≤m})− `i(0)I{niω

i,j
k >m} + `∗i (λmniω

i,j
k )I{niω

i,j
k ≤m}

]

=
1

λm

(
z0 +

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

[
−`i(0)I{niω

i,j
k >m} + `∗i (λmniω

i,j
k )I{niω

i,j
k ≤m}

])

≥ 1
λm

(
z0 − L(0̃)

)
.

As we assume that αmin(ω̃) < ∞, the limit λ∞ of {λm}must be strictly positive.

αmin(ω̃) ≥ lim
m↑∞

1
λm

(
z0 +

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

[
−`i(0)I{niω

i,j
k >m} + `∗i (λmniω

i,j
k )I{niω

i,j
k ≤m}

])

≥ 1
λ∞

(
z0 +

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

`∗i (λ∞niω
i,j
k )

)
,

which implies Equation (13).
Step 2. Assume that the conditions C1 and C2 hold, but not all Ji, i = 1, · · · , N are continuous.

Without loss of generality, we may assume Ji0 , i0 ∈ I0 are not continuous and the other Ji are continuous.
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Then, we can approximate the function Ji0 from above with an increasing continuous function J̃i0 on
[0, ∞) such that

˜̀∗
i0(z) := `∗i0(0) +

∫ z

0
J̃i0(y)dy

satisfies

`∗i0(z) ≤ ˜̀∗i0(z) ≤ `∗i0((1 + ε)z), z ≥ 0, ε > 0.

Denote ˆ̀ i0 := ˜̀∗∗i0 , the Fenchel–Legendre transform of ˜̀∗i0 . We can renew the loss functions such
that the derivative Ji is continuous for any i = 1, · · · , N. As `i is a proper convex function, then
`∗∗i = `i and

`i0(
x

1 + ε
) ≤ ˆ̀ i0(x) ≤ `i0(x).

Thus,

B̂ : =

{
x̃ ∈ Rn : ∑

i/∈I0

1
ni

K

∑
j=1

nij

∑
k=1

`i(xi,j
k ) + ∑

i∈I0

1
ni

K

∑
j=1

nij

∑
k=1

ˆ̀ i(xi,j
k ) ≤ z0

}

⊆
{

x̃ ∈ Rn :
N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

`i(
xi,j

k
1 + ε

) ≤ z0

}
= (1 + ε)B.

By Step 1, we know that the assertion holds if the derivative Ji, i = 1, · · · , N are continuous, which
implies that

inf
λ>0

1
λ

(
z0 +

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

`∗i (λniω
i,j
k )

)

≤ inf
λ>0

1
λ

(
z0 + ∑

i/∈I0

1
ni

K

∑
j=1

nij

∑
k=1

`∗i (λniω
i,j
k ) + ∑

i∈I0

1
ni

K

∑
j=1

nij

∑
k=1

ˆ̀∗
i (λniω

i,j
k )

)

= sup
(x̃1,··· ,x̃N)∈B̂

N

∑
i=1
〈x̃i, ω̃i〉

≤ sup
(x̃1,··· ,x̃N)∈(1+ε)B

N

∑
i=1
〈x̃i, ω̃i〉

= (1 + ε)αmin(ω̃).

By letting ε ↓ 0, we obtain inequality Equation (13).
Step 3. We remove conditions C1 and C2. Without loss of generality, suppose that there exists

an i0 such that `∗i0(z) = +∞ for some z. Then, z must be an upper bound for the slope of `i0 .
Therefore, we approximate `i0 by a sequence {`n

i0
}n∈N of convex loss functions whose slope is unbound.

Simultaneously, we can handle the case where `i0 dose not take on its infimum. For this reason, we
choose a sequence zn ↓ infx∈R `i0 with zn ≤ `i0(0) < z0,i0 . Define

`n
i0(x) := max{`i0(x), zn}+

1
n
(ex − 1)+.
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Then, `n
i0

decreases to `i0 , and each loss function `n
i0

satisfies the conditions C1 and C2. Therefore,
for any n ∈ R and ε > 0, there are λn

ε such that

∞ > αmin(ω̃) ≥ αn
min(ω̃) ≥ 1

λn
ε

(
z0 + (`n

i0)
∗(λn

ε niω
i,j
k ) + ∑

i 6=i0

1
ni

K

∑
j=1

nij

∑
k=1

`∗i (λ
n
ε niω

i,j
k )

)
− ε,

where αn
min(ω̃) is the penalty function arising from `n := (`1, · · · , `n

i0
, · · · , `N). Note that (`n

i0
)∗ ↗ `∗i0 ,

by the assumption αmin(ω̃) < ∞, we have

inf
z∈R

(`n
i0)
∗(z) ≥ −`n

i0(0) = −`i0(0),

inf
z̃∈Rn

{
(`n

i0)
∗(zi,j

k ) + ∑
i 6=i0

1
ni

K

∑
j=1

nij

∑
k=1

`∗i (z
i,j
k )

}
≥ −L(0̃) > −z0. (15)

As (`n
i )
∗(z)
z → ∞ as z ↑ ∞, the sequence {λn

ε }n∈N must be bounded away from zero and from
infinity. Therefore, we assume that λn

ε converges to some λε ∈ (0, ∞). Using again the fact that
Equation (15) uniformly in n and z, we have that

αmin(ω̃) + ε ≥ lim inf
n↑∞

1
λn

ε

(
z0 + (`n

i0)
∗(λn

ε niω
i,j
k ) + ∑

i 6=i0

1
ni

K

∑
j=1

nij

∑
k=1

`∗i (λ
n
ε niω

i,j
k )

)

≥ 1
λε

(
z0 +

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

`∗i (λεniω
i,j
k )

)
.

The proof of Theorem 1 is completed.

Proof of Corollary 1. We will first show that

ρL (x̃) = sup
`∈L

ρ`(x̃), (16)

for any x̃ = (x1,1, · · · , x1,n1 , x2,1, · · · , xK,nK ) ∈ Rn, where for ` ∈ L ,

ρ`(x̃) := ρA(`,z0)
(x̃) := inf

{
m ∈ R :

1
n

K

∑
j=1

nj

∑
k=1

`(xjk −m) ≤ z0

}
.

Note that for any x̃ ∈ Rn,

ρL (x̃) = inf

{
m ∈ R :

1
n

K

∑
j=1

nj

∑
k=1

`(xjk −m) ≤ z0 for all ` ∈ L

}
.

Therefore, for any ` ∈ L and x̃ ∈ Rn,

ρL (x̃) ≥ inf

{
m ∈ R :

1
n

K

∑
j=1

nj

∑
k=1

`(xjk −m) ≤ z0

}
= ρ`(x̃),

which implies that

ρL (x̃) ≥ sup
`∈L

ρ`(x̃).
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Next, we will show that

ρL (x̃) ≤ sup
`∈L

ρ`(x̃).

Without loss of generality, we assume that M := sup`∈L ρ`(x̃) < +∞. For any ` ∈ L ,

M ≥ ρ`(x̃) = inf

{
m ∈ R :

1
n

K

∑
j=1

nj

∑
k=1

`(xjk −m) ≤ z0

}
.

Therefore, for every ε > 0, there exists an m` = m(`, ε) with 1
n ∑K

j=1 ∑
nj
k=1 `(xjk −m`) ≤ z0 such

that

m` ≤ ρ`(x̃) + ε.

Thus, for any ` ∈ L ,

−∞ < m` ≤ ρ`(x̃) + ε ≤ M + ε < +∞,

which yields that

−∞ < sup
`∈L

m` ≤ M + ε.P (17)

For any ` ∈ L , by the increasing property of `,

1
n

K

∑
j=1

nj

∑
k=1

`

(
xjk − sup

`∈L
m`

)
≤ 1

n

K

∑
j=1

nj

∑
k=1

`
(

xjk −m`

)
≤ z0,

which yields that

sup
`∈L

m` ∈
{

m ∈ R :
1
n

K

∑
j=1

nj

∑
k=1

`(xjk −m) ≤ z0 for all ` ∈ L

}
.

By the definition of ρL and Equation (17), we know that

ρL (x̃) ≤ sup
`∈L

m` ≤ M + ε,

which implies that

ρL (x̃) ≤ sup
`∈L

ρ`(x̃),

since ε > 0 is arbitrary.
From Theorem 1 it follows that for any ` ∈ L ,

ρ`(x̃) = sup
ω̃∈W̃

{
〈x̃, ω̃〉 − α`min(w̃)

}
, (18)

for x̃ ∈ Rn, where the minimal penalty function α`min : Rn → R is given by

α`min(ω̃) = inf
λ>0

{
z0(`)

λ
+

1
λn

K

∑
j=1

nj

∑
k=1

`∗(λnωjk)

}
.
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Therefore, from Equations (16) and (18), it follows that

ρL (x̃) = sup
`∈L

ρ`(x̃)

= sup
`∈L

sup
ω̃∈W̃

{
〈x̃, ω̃〉 − α`min(w̃)

}
= sup

ω̃∈W̃

{
〈x̃, ω̃〉 − inf

`∈L
α`min(w̃)

}
.

Therefore, the minimal penalty function αmin : Rn → R is

αmin(w̃) = inf
`∈L

α`min(w̃)

= inf
`∈L

inf
λ>0

{
z0(`)

λ
+

1
λn

K

∑
j=1

nj

∑
k=1

`∗(λnωjk)

}

= inf
λ>0

inf
`∈L

{
z0(`)

λ
+

1
λn

K

∑
j=1

nj

∑
k=1

`∗(λnωjk)

}
,

for ω̃ ∈ W̃ . The proof of Corollary 1 is completed.

Proof of Theorem 2. Sufficiency: Suppose that `(x) = z0 + αx+ − βx− with some 0 < β ≤ α. Since
0 < β ≤ α, the shortfall risk statistic ρA is a convex risk statistic by Proposition 3.

For any x̃ = (x1,1, · · · , x1,n1 , x2,1, · · · , xK,nK ) ∈ Rn and λ > 0,

ρB(λx̃) = inf

{
m ∈ R :

1
n

K

∑
j=1

nj

∑
k=1

`(λxjk −m) ≤ z0

}

= inf

{
m ∈ R :

1
n

K

∑
j=1

nj

∑
k=1

[ z0

n
+ α(λxjk −m)+ − β(λxjk −m)−

]
≤ z0

}

= inf

{
m ∈ R :

1
n

K

∑
j=1

nj

∑
k=1

[
α(λxjk −m)+ − β(λxjk −m)−

]
≤ 0

}

= inf

{
m ∈ R :

1
n

K

∑
j=1

nj

∑
k=1

[
α
(

xjk −
m
λ

)+
− β

(
xjk −

m
λ

)−]
≤ 0

}

= inf

{
λm∗ ∈ R :

1
n

K

∑
j=1

nj

∑
k=1

[ z0

n
+ α(xjk −m∗)+ − β(xjk −m∗)−

]
≤ z0

}

= inf

{
λm∗ ∈ R :

1
n

K

∑
j=1

nj

∑
k=1

`(xjk −m∗) ≤ z0

}
= λρB(x̃),

which implies that ρB is positively homogenous, and hence ρB is a coherent risk statistic.
Necessity: Suppose that ρB is coherent. Denote ˜̀(x) := `(x)− z0 and

B̂ :=

{
x̃ = (x1,1, · · · , x1,n1 , x2,1, · · · , xK,nK ) ∈ Rn :

1
n

K

∑
j=1

nj

∑
k=1

˜̀(xjk) ≤ 0

}
.

Then, B̂ =
{

x̃ ∈ Rn : 1
n ∑K

j=1 ∑
nj
k=1[`(xjk)− z0] ≤ 0

}
= B.
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By the positive homogeneity and continuity of ρB , for any x̃ ∈ Rn and λ > 0, ρB(λx̃) = λρB(x̃),
thus ρB(0̃) = 0, and therefore

0 = ρB(0̃) = inf

{
m ∈ R :

1
n

K

∑
j=1

nj

∑
k=1

˜̀(0−m) ≤ 0

}
= inf

{
m ∈ R : ˜̀(−m) ≤ 0

}
.

As the convex function ˜̀ is continuous and strictly increasing, we have ˜̀(0) = 0.
Denote

AρB := {x̃ ∈ Rn : ρB(x̃) ≤ 0} .

Then the positive homogeneity of ρA implies that AρB is a cone, i.e., λx̃ ∈ AρA for any x̃ ∈ AρA

and λ > 0. By Proposition 1, B = AρB and B is a cone.
Next, we will show that ˜̀(λx) = λ ˜̀(x) for any x ∈ R and λ > 0. In fact, suppose that there exist

x0 ∈ R and λ0 > 0 such that ˜̀(λ0x0) 6= λ0 ˜̀(x0). Without loss of generality, we assume that λ0 > 1.
Otherwise, if 0 < λ0 < 1, then denote λ

′
0 := 1

λ0
, x
′
0 := λ0x0, and thus ˜̀(λ

′
0x
′
0) 6= λ

′
0
˜̀(x

′
0).

By the convexity of ˜̀ and ˜̀(0) = 0, we have that

1
λ0

˜̀(λ0x0) =

(
1− 1

λ0

)
˜̀(0) +

1
λ0

˜̀(λ0x0)

≥ ˜̀
[(

1− 1
λ0

)
· 0 + 1

λ0
λ0x0

]
= ˜̀(x0), (19)

which yields that ˜̀(λ0x0) > λ0 ˜̀(x0).
Recall that the convex function ` is continuous with infx∈R `(x) = −∞ and supx∈R `(x) = +∞,

by the intermediate value theorem for continuous function, there exist (x2, · · · , xn) ∈ Rn−1 such that

˜̀(x0) + ˜̀(x2) + · · ·+ ˜̀(xn) = 0.

Therefore, by the definition of the acceptance set B̂, (x0, x2, · · · , xn) ∈ B̂ = B.
Similar to Equation (19), we know that ˜̀(λ0x) ≥ λ0 ˜̀(x) for any x ∈ R, therefore

˜̀(λ0x0) + ˜̀(λ0x2) + · · ·+ ˜̀(λ0xn) ≥ ˜̀(λ0x0) + λ0 ˜̀(x2) + · · ·+ λ0 ˜̀(xn)

> λ0 ˜̀(x0) + λ0 ˜̀(x2) + · · ·+ λ0 ˜̀(xn)

= λ0[ ˜̀(x0) + ˜̀(x2) + · · ·+ ˜̀(xn)]

= 0.

Thus λ0(x0, x2, · · · , λ0xn) = (λ0x0, λ0x2, · · · , λ0λ0xn) /∈ B, which contradicts the fact that B is
a cone.

Therefore, λ ˜̀(x) = ˜̀(λx) for any x ∈ R and λ > 0. This results in that

˜̀(x) = αx+ − βx−, x ∈ R

with some α > 0, β > 0, since ˜̀ is increasing. The inequality β ≤ α follows from the convexity of
˜̀. Consequently, `(x) = z0 + αx+ − βx− for all x ∈ R with some 0 < β ≤ α < +∞. The proof of
Theorem 2 is completed.

Proof of Theorem 3. We will make full use of convex analysis to show theorem.
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Define g̃i, i = 1, · · · , N and G as the same way as in Remark 2. It is easy to check that `i := g∗i
satisfies the assumptions in Theorem 1 for each 1 ≤ i ≤ N. As `∗i = g∗∗i = gi, 1 ≤ i ≤ N, Theorem 1
implies that for fixed x̃ ∈ Rn1 × · · · × RnN

F(s) := Fx̃(s) : = inf

{
N

∑
i=1

zi :
N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

g∗i (xi,j
k − zi) ≤ s

}

= sup
ω̃∈W

{
〈x̃, ω̃〉 − inf

λ>0

1
λ

{
s +

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

gi(λniω
i,j
k )

}}

= − inf
ω̃∈W

{
−〈x̃, ω̃〉+ inf

β>0

{
βs +

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

βgi

(
niω

i,j
k

β

)}}

= − inf
β>0

inf
ω̃∈W

{
−〈x̃, ω̃〉+ βs +

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

βgi

(
niω

i,j
k

β

)}

= − inf
β>0

{
βs + inf

ω̃∈W

{
−〈x̃, ω̃〉+

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

βgi

(
niω

i,j
k

β

)}}

= − inf
β>0

{
βs + inf

ω̃∈W

{
−〈x̃, ω̃〉+ I(g̃1,··· ,g̃N)(β, ω̃)

}}
= − inf

β>0
{βs + G(β)}

= sup
β>0

{
β(̇− s)− G(β)

}
= G∗(−s),

for all s in the interior of set {∑N
i=1

1
ni

∑K
j=1 ∑

nij
k=1 g∗i (xi,j

k ) : x̃ ∈ Rn1 × · · · × RnN}, which coincides with
the interior of domF.

Note that for t ∈ R,

G(t) = G∗∗(t) = sup
−s∈domF

{st− G∗(s)} = sup
−s∈domF

{st− F(−s)}.

By the definition of G,

ρ(g1,··· ,gN)(x̃) = −G(1) = − sup
−s∈domF

{s− F(−s)} = inf
s∈domF

{s + F(s)}.

For any s ∈ domF, there exists z̃∗ := z̃∗(g1, · · · , gN , x̃) := (z∗1 , · · · , z∗N) ∈ RN with

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

g∗i (xi,j
k − z∗i ) = s

such that

N

∑
i=1

z∗i = F(s),

as g∗i is continuous for each 1 ≤ i ≤ N.
Thus, for any x̃ ∈ Rn1 × · · · × RnN , the multivariate divergence risk statistic can be rewritten as

ρ(g1,··· ,gN)(x̃) = inf
s∈domF

{s + F(s)} = inf
(z1,··· ,zN)∈RN

{
N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

g∗i (xi,j
k − zi) +

N

∑
i=1

zi

}
.
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The proof of Theorem 3 is completed.

5. Examples

In this section, we will construct entropic (or entropy-like) risk statistics by choosing specific loss
functions.

Example 1. For exponential loss functions `i(x) := eβi x−1
βi

, βi > 0, and z0,i > − 1
βi

for each 1 ≤ i ≤ N, then

z0 + ∑N
i=1

1
βi

= ∑N
i=1(z0,i +

1
βi
) > 0. we know that the conjugation function `∗i : [0,+∞) is defined as

`∗i (x) =

 x
βi

log x− x
βi
+ 1

βi
, i f x > 0,

1
βi

, x = 0.

Then by the definition of the shortfall risk statistic in (5), we know that the corresponding shortfall risk
statistic is

ρB(x̃) = inf

{
N

∑
i=1

mi :
N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

`i(xi,j
k −mi) ≤ z0

}

= inf

{
N

∑
i=1

mi :
N

∑
i=1

1
niβi

K

∑
j=1

nij

∑
k=1

eβi(xi,j
k −mi) ≤ z0 +

N

∑
i=1

1
βi

}
(20)

for x̃ = (x̃1, · · · , x̃N) = (x1,1
1 , · · · , x1,1

n11 , · · · , x1,K
1 , · · · , x1,K

n1k , · · · , xN,1
1 , · · · , xN,1

nN1 , · · · , xN,K
1 , · · · ,

xN,K
nNK ) ∈ Rn1 × · · · × RnN .

By Theorem 1, we have that the penalty function of ρB is

αmin(ω̃) = inf
λ>0

1
λ

{
z0 +

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

`∗i (λniω
i,j
k )

}

= inf
λ>0

1
λ

{
z0 +

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

[
λniω

i,j
k

βi
log λniω

i,j
k −

λniω
i,j
k

βi
+

1
βi

]}

=
N

∑
i=1

1
βi

K

∑
j=1

nij

∑
k=1

ω
i,j
k log

[
z0 + ∑N

i=1
1
βi

∑N
i=1

1
βi

niω
i,j
k

]
(21)

for any ω̃ ∈ W =
{

ω̃ = (ω̃1, · · · , ω̃N) ∈ Rn1 × · · · × RnN : ω̃ ≥ 0, 〈1̃i, ω̃i〉 = 1, i = 1, · · · , N
}

, where

the infimum is arrived at λ =
z0+∑N

i=1
1
βi

∑N
i=1

1
βi

.

Furthermore, by Theorem 1, we know that ρB has the following dual representation,

ρB(x̃) = sup
ω̃∈W

{
〈x̃, ω̃〉 − inf

λ>0

1
λ

{
z0 +

N

∑
i=1

1
ni

K

∑
j=1

nij

∑
k=1

`∗i (λniω
i,j
k )

}}

= sup
ω̃∈W

{
〈x̃, ω̃〉 −

N

∑
i=1

1
βi

K

∑
j=1

nij

∑
k=1

ω
i,j
k log

[
z0 + ∑N

i=1
1
βi

∑N
i=1

1
βi

niω
i,j
k

]}
. (22)
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Let gi(x) := `∗i (x) for each 1 ≤ i ≤ N, the divergence function I(g1,··· ,gN) : [0,+∞)n1 × · · · ×
[0,+∞)nN → R is defined by

I(g1,··· ,gN)(ω̃) =
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∑
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)
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K
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nij
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k=1

ω
i,j
k log(niω

i,j
k ). (23)

Therefore, by Theorem 3, the divergence risk statistic is

ρ(g1,··· ,gN)(x̃) = inf
(z1,··· ,zN)∈RN

{
N

∑
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1
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g∗i (xi,j
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}

= inf
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(24)

for any x̃ ∈ Rn, where the infimum is arrived at zi =
1
βi

log
(

1
ni

∑K
j=1 ∑

nij
k=1 eβix

j,k
i

)
, i = 1, · · · , N.

Note that the penalty functions of multivariate shortfall risk statistic Equation (21) and multivariate
divergence risk statistic Equation (23) are equal if we choose z0 = 0. In other words, if z0 = 0, the corresponding
loss function and divergence function has a dual relationship.

Remark 4. ρ(g1,··· ,gN) as in Equation (24) is called multivariate entropic risk statistic, which could be considered
as the data-based (or empirical) version of the entropic risk measure in Föllmer and Schied (2002).

In Example 1, the infimum in Equation (20) and supermum in Equation (22) are hard to calculate
by explicit formulas. However, in the next Example 2, we will show that when N = 1, the infimum in
Equation (20) and supermum in Equation (22) can be expressed by explicit formulas.

Example 2. For exponential loss function `(x) := eβx−1
β , β > 0, and z0 > − 1

β , we know that the conjugation
function `∗ : [0,+∞) is defined as

`∗(x) =

 x
β log x− x

β + 1
β , i f x > 0,

1
β , x = 0.

Then by the definition of the shortfall risk statistic in Equation (5), we know that the corresponding shortfall
risk statistic is

ρB(x̃) = inf

{
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}
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]
(25)
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for any x̃ ∈ Rn.
By Theorem 1, we have that the penalty function of ρB is

αmin(ω̃) = inf
λ>0
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for any ω̃ ∈ W = {(ω11, · · · , ω1n1 , ω21, · · · , ωKnK ) ∈ Rn : ωjk ≥ 0, ∑K
j=1 ∑

nj
k=1 ωjk = 1}, where the

infimum is arrived at λ = βz0 + 1.
Let g(x) := `∗(x), the divergence function Ig : [0,+∞)n → R is defined by

Ig(ω̃) =
1
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Therefore, by Theorem 3, the divergence risk statistic is

ρg(x̃) = inf
z∈R
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(26)

for any x̃ ∈ Rn, where the infimum is arrived at z = 1
β log

(
1
n ∑K

j=1 ∑
nj
k=1 eβxjk

)
.

Note that the shortfall risk statistic Equation (25) and divergence risk statistic Equation (26) are equal if
we choose z0 = 0. In other words, if z0 = 0, the corresponding loss function and divergence function has a dual
relationship.

Remark 5. In Example 2, when z0 = 0, then ρB as in Equation (25) is called entropic risk statistic. For general
z0 > − 1

β , ρB as in Equation (25) is called entropy-like risk statistic.
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6. Conclusions

In this paper, we have introduced two new classes of multivariate risk statistics, they are
multivariate shortfall and divergence risk statistics. Their basic properties are discussed and
presentation results for them are given. Moreover, the coherency of the univariate shortfall risk
statistics is characterized. These newly introduced multivariate risk statistics complement the study
of risk statistics. Meanwhile, these shortfall and divergence statistics are more tractable than the
corresponding risk measures, because they are expressed in terms of data (i.e., samples). It would
also be interesting to see the method where the coherency of multivariate shortfall risk statistics is
characterized.
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