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Abstract: This paper investigates the minimum mean square error (MMSE) of communicating a
pair of Gaussian sources over a a bandwidth-matched Gaussian multiple-access channel with block
Rayleigh fading in the absence of channel state information (CSI) at the transmitters. The achievable
MMSE is not known. To this end, we derive several upper-bounds to the minimum achievable
average MMSE as a function of the transmitter powers, the average channel fading power-to-noise
ratio, and the correlation coefficient of the two sources. To derive nontrivial upper bounds which
improve on those of separate source-channel coding and uncoded transmission, we incorporate
ideas from joint source-channel coding and hybrid digital–analog coding to construct specific coding
schemes for which the achievable MMSE can be determined.

Keywords: Gaussian sources; multiple-access channel; Rayleigh fading; channel-state information;
joint source-channel coding; uncoded transmission

1. Introduction

An important problem in wireless communication is the design of systems that are robust against
random variations in the channel signal-to-noise ratio (CSNR) caused by fading. If the channel
response can be measured at both transmitter and receiver prior to transmitting each codeword and
the channel remains stationary during the transmission of a codeword, adaptive transmitters and
receivers can be used to achieve optimal communication. Although the receiver adaptation is feasible
in most cases, the transmitter adaptation can be impractical in some cases. An obvious case is a single
transmitter communicating with multiple receivers over a broadcast channel (BC). Another case is
multiple transmitters communicating with a common receiver over a multiple-access channel (MAC)
where the individual transmitters have no access to the respective CSNRs observed at the receiver.
An important practical application of the latter case is a wireless sensor network (WSN) [1], where
possibly correlated, sampled analog signals sensed at multiple locations are transmitted to a single
receiver over a MAC [2]. The work presented in this paper is an attempt to characterize the theoretical
limits to performance achievable in transmitting a pair of sampled Gaussian sources over a Gaussian
MAC (GMAC) to a common receiver. More specifically, the basic question of interest is, “what is the
total minimum mean square error (MMSE) with which we can reconstruct at a common receiver, a pair
of Gaussian sources transmitted over a two-user power-limited GMAC with block fading, when the
receiver knows the channel state information (CSI) but the transmitters only have prior knowledge of
the distribution of CSI?” The problem involves averaging the achievable MMSE for a given channel
state over the CSI distribution. A complete answer to this question remains an open problem. In this
paper, we partially answer this question by considering certain coding schemes for which the MMSE
can be computed. The answer to our question partly depends on whether or not the two sources are
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correlated. Both cases are considered in this paper. We limit attention to the particular case where
transmission rate is one source sample per channel use, or in other words, the bandwidth of each
source is identical to the GMAC bandwidth (“bandwidth-matched”).

1.1. Related Work

Asymptotically optimal (achieves the MMSE as the codeword length approaches infinity)
communication of a Gaussian source over a point-to-point block fading channel whose CSI is
known to both the transmitter and the receiver can be achieved by separate source-channel (SSC)
coding, i.e., by cascading an optimal vector quantizer (VQ) for the Gaussian source with a capacity
achieving channel code for the Gaussian channel [3]. Even if CSI is available at the transmitters,
the source-channel separation is not in general optimal for communication over MACs ([4], Ch. 15) [5].
General conditions under which the optimality of separation holds for Gaussian sources and a GMAC
are not completely known. Some special cases are however known. It is known that separation is
optimal for orthogonalized transmission over a GMAC if the CSI is available at both the transmitters
and the receiver [6]. When the sources are memoryless and mutually independent, SSC coding is also
known to be optimal for the so-called two-to-one GMAC with no fading (NF-GMAC) [7]. In both cases,
the MMSEs achievable for a set of Gaussian sources at given rates can be obtained by combining the
rate-distortion functions of the sources and the capacity region of the GMAC. For a block-fading MAC
(BF-MAC), the same optimality result applies if the CSI is available at both the transmitters and the
receiver. In this case, the optimality can be achieved by adaptive coding at each transmitter. This is,
however, not possible if CSI is not available at the transmitters.

For the transmission of mutually correlated Gaussian sources over a NF-GMAC, SSC coding
requires, at each transmitter, a cascade of an optimal distributed VQ [8] and a capacity achieving
channel code for the GMAC. It is, however, known that this approach is not optimal even if the
transmitters know CSI [9]. This follows from a simple observation regarding the channel capacity.
When the sources at the inputs are correlated, the maximum mutual information between the inputs
and the output of a two-to-one MAC can be made higher than that with uncorrelated inputs,
which implies that the achievable rate region of a MAC for correlated sources is larger than that
for uncorrelated sources. However, realizing the rates in the enlarged region necessitates joint
source-channel (JSC) codes capable of creating mutually correlated inputs to the GMAC. For example,
if the source sequences themselves are used as the channel codewords, the source correlation is directly
transferred to the GMAC inputs. This the simplest possible JSC coding scheme and is commonly
referred to as “uncoded” or “amplify-and-forward” transmission. Despite the simplicity of this
scheme, it is shown in [10] that uncoded transmission is optimal for transmitting two memoryless
and correlated Gaussian sources with equal bandwidths over a two-to-one NF-GMAC with the same
bandwidth, if the CSNR is below a threshold that is determined by the correlation coefficient between
the two sources. Furthermore, the MMSE of uncoded transmission remains below that of SSC coding
for a wide range of CSNRs even above this threshold. This is in sharp contrast to orthogonal multiple
access over a NF-GMAC, in which the separation is strictly optimal at all CSNRs [6]. However, as the
CSNR approaches infinity, SSC coding on a two-to-one NF-GMAC outperforms uncoded transmission.
Intuitively, if the MAC is noisy, the dependence between the channel inputs allows better estimation of
the individual inputs from their noisy sum observed at the channel output; whereas, if the MAC is
almost noise-free, there is little to be gained by having dependent channel inputs. In the latter case,
proper coding allows recovering the individual GMAC inputs error-free, from which each source
can be reconstructed within the quantization error. This is not possible when the GMAC output
is the direct sum of the two sources as in the case of uncoded transmission. Another instance of
the NF-GMAC in which the uncoded transmission is optimal is the so-called “CEO problem” [11].
In the simplest instance of the CEO problem, the transmitters at the inputs of a GMAC observe
noisy versions of the same memoryless Gaussian source, and the objective is to estimate the this
source from the GMAC output. For this set-up, if the sources and the channel are bandwidth matched,
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the uncoded transmission is optimal regardless of the CSNR [12], whereas the SSC coding is suboptimal.
This result is not surprising if one considers the fact that, for a single memoryless Gaussian source and
a memoryless Gaussian channel with identical bandwidths, the uncoded transmission is optimal [13].

The trade-off between the energy per channel use and the achievable distortion in transmission
of two correlated Gaussian sources over a NF-GMAC is studied in [14]. The focus in [14] is the
minimum transmit energy pairs, which can achieve a given distortion pair with no restriction on the
source-channel bandwidth ratio. Interestingly, the analysis in [14] reveals that, with no feedback from
the receiver to the transmitters, uncoded transmission is more energy efficient than SSC coding for
sufficiently large distortion targets.

1.2. Main Contributions

This paper derives a number of upper-bounds to the average MMSE, referred to as the
fading-averaged MMSE (FA-MMSE), achievable in sending a pair of Gaussian sources over a GMAC
with Rayleigh-fading and no transmit-side CSI, as a function of transmitter powers, average channel
fading power-to-noise ratio, and source correlation coefficient. We refer to the MMSE in this case as
the distortion power function (DPF) for Gaussian sources and GMAC. What is derived here are the
upper bounds of the unknown DPF.

1. The obvious and relatively straightforward to-determine upper-bounds to the DPF are the
FA-MMSEs, which are achievable with uncoded transmission and SSC coding. In this paper,
we derive an alternative bound by considering conventional hybrid digital–analog (HDA) coding,
wherein vector quantization error in conventional digital coding is transmitted in analog form
by superposition. As expected, the numerical results show that, for uncorrelated sources,
HDA coding improves on both SSC coding and uncoded transmission. For correlated sources,
uncoded transmission has an advantage over HDA coding at low CSNRs where digital coding
frequently suffers receiver outages due to lack of CSI at the the transmitters.

2. It is shown in [10] that when the sources are correlated and the GMAC is fixed (no fading),
although uncoded transmission of the sources over the GMAC is optimal at SNRs below a
threshold determine by the source correlation, the uncoded transmission of vector quantized
sources directly over the GMAC (JSC-VQ) is asymptotically (as the CSNR approaches infinity)
optimal. Furthermore, it has been shown that this scheme, when enhanced with a superimposed
uncoded transmission of the sources (HDA-JSC-VQ), is nearly optimal at all CSNRs. Based on
these observations, we derive two upper bounds to the DPF for the fading GMAC, referred as
the JSC-VQ bound and HDA-JSC-VQ bound, respectively. Although these bound do not have
expressions that can be readily interpreted, they can be numerically computed. It is observed
that JSC-VQ and HDA-JSC-VQ bounds are not significantly different, regardless of the source
correlation. However, the comparison of these bounds with the distortion bound for SSC coding
shows a gap that grows with source correlation and CSNR. Although there exists a gap even
when the sources are uncorrelated, this gap is relatively much smaller. The HDA-JSC-VQ bound
established here is the lowest known upper bound to unknown DPF. It is shown that, for highly
correlated sources and under low average CSNRs, uncoded transmission can achieve performance
approaching the HDA-JSC-VQ bound.

2. Problem Definition

We begin with a formal statement of the basic problem addressed in this paper. Suppose we
observe two continuous-valued information sources, S1 and S2, at different locations and there is no
communication link between the two locations. We wish to communicate and reproduce these two
sources at a central location, where the communication takes place over a wireless channel modeled
by a two-to-one GMAC with block Rayleigh fading (BF-GMAC). The fading gains of the GMAC are
known to the receiver, but are not known to the the respective transmitters. Each source is a circularly
symmetric complex-valued Gaussian variable, Si ∈ C, with mean zero, variance of E{|Si|2} = σ2,
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and the correlation E{S∗1S2} = ρσ2, where |ρ| < 1. A sequence of n samples from the source Si,
denoted by SSSi = (Si,1, . . . , Si,n), is assumed to be independent and identically distributed (iid). Our
interest in this paper is the transmission of a sequence of n source samples in n uses of the GMAC.
The encoder for source Si is therefore a mapping f (n)i : Cn → Cn, where the channel codeword
XXXi = (Xi,1, . . . , Xi,n) is given by

XiXiXi = f (n)i (SSSi),

and Xi,k ∈ C is the channel input for Si at time k = 1, . . . , n (the superscript in f (n)i emphasizes the fact
that each encoder is a block-encoder for n connective source samples.) The transmitter for Si has an
average power constraint, Pi, so that

1
n

n

∑
k=1

E
{
|Xi,k|2

}
≤ Pi, (1)

i = 1, 2.
Let the GMAC output for the input codeword pair (XXX1, XXX2) be the sequence YYY = (Y1, . . . , Yn),

where Yk ∈ C is the GMAC output at time k given by

Yk = h1,kX1,k + h2,kX2,k + Wk,

hi,k ∈ C is the gain of the channel between Si and the receiver at time k and Wk ∈ C is complex-valued
channel noise. As usual, it is assumed that (h1,k, h2,k) are iid complex Gaussian random variables with
mean zero and independent real and complex parts. In a BF-GMAC, h1,k and h2,k remain constant
during the transmission of a length n codeword. Therefore, henceforth we will drop the time index, k,
denote the channel gains by h1 and h2, and denote (h1, h2) by hhh. The channel noise, Wk, is assumed
to be circularly symmetric Gaussian random variable with mean zero and variance N. The noise
WWW = (W1, . . . Wn) is assumed to be an iid sequence. For convenience, define the CSNR Γi = |hi|2/N
and γi = |hi|2, which is the exponentially distributed power gain of the channel i = 1, 2. Let E{γi} = γ̄.
The total output CSNR in the channel state hhh is

Γ =
γ1P1 + γ2P2 + 2ρxγ12

√
P1P2

N
= Γ1P1 + Γ2P2 + 2ρxΓ12

√
P1P2,

where γ12 = Re{h1h∗2}, ρx =
E{X1X∗2}√

P1P2
, and Γ12 = γ12/N. We will refer to Γ̄ = γ̄

N as the “fading
power-to-noise ratio” (FPNR) of the channel, which is a figure-of-merit for the BF-GMAC. Note that
ρx depends on the encoding scheme. For example, if SSC coding is used, the GMAC inputs are
independent and we will have ρx = 0 regardless of source correlation ρ. On the other hand, if uncoded
transmission is used, ρx = ρ.

The receiver observes the channel output YYY and the channel state hhh = (h1, h2) and reconstructs
the sequences SSS1 and SSS2. This decoder can be described by a pair of mappings φ

(i)
i : Cn ×C2 → Cn,

such that the decoded source sequences are given by

ŜSSi = φ
(n)
i (YYY, hhh), i = 1, 2.

We will measure the distortion between SSSi and ŜSSi using the average MSE, given by

di =
1
n

n

∑
k=1

E|Si,k − Ŝi,k|2,

For notational simplicity, we denote the minimum achievable di for a fixed channel state hhh by
di(hhh) and let

d1,2(hhh) = d1(hhh) + d2(hhh).
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Our main goal in this paper is to determine the distortion power function (DPF) for two Gaussian
sources and a BF-GMAC, given by

D(P1, P2) = inf
f1, f2,φ1,φ2

1
2

∫
d1,2(hhh)p(hhh)dhhh, (2)

where p(hhh) = p1(h1)p2(h2) and pi(h) is the pdf of hi, i = 1, 2. Note that D(P1, P2) is defined for a given
source correlation ρ and a FPNR Γ̄ of a bandwidth-matched BF-GMAC. An alternative description
of D(P1, P2) is the achievable power region (P1, P2) for a given target D. Note that DPF for a single
Gaussian source and a point-point AWGN channel can be found by evaluating the distortion rate
function of the source at the rate equal to the channel capacity, i.e., D(P) = σ22− log2(1+P/N) [4].

Finding D(P1, P2) in general is difficult. Therefore, our end goal is to find useful upper-bounds
to D(P1, P2), by considering certain coding schemes for which d1(hhh) and d2(hhh) can be found in
closed-form, and therefore Equation (2) can be at least numerically evaluated.

Notation and Terminology

For simplicity of presentation, throughout the paper we define the index variable i ∈ {1, 2}.
The index j ∈ {1, 2} is always defined in relation to i as follows,

j =

{
2 if i = 1
1 if i = 2.

The complex conjugate of X is denoted by X∗. The transpose and conjugate transpose (Hermitian)
of a matrix XXX are denoted by XXXT and XXXH , respectively. The time-averaged expectation of a length n
sequence X1, . . . , Xn will be denoted by

1
n

n

∑
k=1

E{Xk} = E{X}n.

3. Separate Source-Channel Coding

As a benchmark, we consider ubiquitous SSC coding. In this case, the encoder mapping XXXi =

f (n)i (SSSi) is a concatenation of two-stages. In the first, the sequence SSSi is vector-quantized to produce

a “digital” index Ii = Π(n)
i (SSSi). In the second stage, the index Ii is encoded into a channel codeword

XXXi = Λ(n)
i (Ii). The first-stage (VQ) is a mapping Π(n)

i : Cn → {0, . . . , 2nRi − 1}, and the second stage

(channel encoder) is a mapping Λ(n)
i : {0, . . . , 2nRi − 1} → Cn, where Ri is the rate of the encoder

i in bits/channel-use, i = 1, 2. If SSS1 and SSS2 are uncorrelated, Π(n)
i is a rate-distortion optimal VQ

for SSSi. If SSS1 and SSS2 are correlated, the pair (Π(n)
1 , Π(n)

2 ) is an optimal distributed VQ for (SSS1, SSS2) [15].

The decoder φ
(n)
i also consists of two stages. The first stage (channel decoder) decodes the index Ii

using YYY and hhh. As usual, we will say that a transmitted channel codeword is “correctly decodable”,
or simply decodable, if the codeword can be recovered from the channel output with an arbitrarily
small error probability by letting n → ∞. The second stage (source decoder) optimally estimates SSSi
using recovered (I1, I2), i.e., with MMSE estimation, ŜSSi = E{SSSi|I1, I2}. However, as the transmitters do
not observe hhh, the source and channel codes cannot be chosen adaptively to guarantee the error-free
recovery of (I1, I2). With fixed f (n)i , i = 1, 2, depending on the realization of hhh the received channel
codewords may or may not be decodable. The event where only a single codeword, either XXX1 or XXX2,
can be decoded is referred to as a “partial outage” and that where both codewords are undecodable is
referred to as a “total outage”.

Let Ei denote the event that Ii is decoded correctly and E12 denote the no-outage event that
both codewords are decoded correctly (no-outage event). Further, let E ′i denote the partial-outage
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event that only the codeword Ii is correctly decoded and E ′12 denote the total-outage event.
The probabilities of outage events for uncorrelated sources and transmitters with the same power
have been determined in [16]. In general, P(E|R1, R2), given (R1, R2), can be found as shown in
Appendix A. Let d(E|R1, R2) denote the conditional MMSE under the outage event E , given (R1, R2).
If the conditional fading-averaged MMSE (FA-MMSE), given (R1, R2), is d̄(R1, R2), then the minimum
FA-MMSE achievable with SSC coding is

DSSC(P1, P2) = min
R1,R2

d̄(R1, R2). (3)

3.1. Uncorrelated Sources

In this case, the reconstruction of SSSi only requires Ii and straightforwardly

d̄(R1, R2) =
σ2

2

2

∑
i=1

{
2−2Ri Pr(Ei|R1, R2) + [1− Pr(Ei|R1, R2)]

}
.

3.2. Correlated Sources

When the sources are correlated, the source encoders must constitute a distributed VQ. One issue
with an optimal distributed VQ is that, due to the mutual dependence of quantizers for the two sources,
the reconstruction of neither source is possible unless the channel codewords from both transmitters
can be correctly decoded. Therefore,

d̄(R1, R2) = d(E12|R1, R2)p12 + σ2(1− p12),

where p12 = Pr(E12|R1, R2) and d(E12|R1, R2) in this case are the minimum achievable MSE
DDVQ(R1, R2) of a distributed VQ with rates (R1, R2), which is given by the the following lemma.

Lemma 1. Let
∆(x, y) = 2−2x(1− ρ2 + ρ22−2y)

and Rsum = R1 + R2. The MMSE of a distributed VQ for a pair of mean-zero, variance σ2 Gaussian sources
with the correlation coefficient ρ is given by

DDVQ(R1, R2) = σ2

(
∆∗ +

∆(Rsum, Rsum)

∆∗

)

where

∆∗ = max
{

∆(R1, R2), ∆(R2, R1),
√

∆(Rsum, Rsum)

}
. (4)

Proof. See Appendix B.

4. Conventional HDA Coding

Both fully analog (uncoded) transmission and fully digital SSC coding are special cases of more
general HDA coding, where the total power and/or channel bandwidth are split between an analog
encoder and a conventional digital encoder. When CSI is not available at the transmitters, an HDA
system with a power allocation optimized for the channel state distribution can always outperform
(in a FA-MMSE sense) both the uncoded and SSC-coded transmission. In this section, we analyze an
HDA scheme that uses a conventional SSC encoder (optimal VQ in cascade with a channel coder
for GMAC) as the digital part and the quantization error as the analog part [17]. The conventional
approach to combining the analog and digital channel signals is by superposition as considered below.



Entropy 2019, 21, 992 7 of 32

Later, in Section 5.1, we will consider an alternative approach where a vector quantizer is used a JSC
code in the digital part.

A conventional HDA system is shown in Figure 1. The analog and digital components of each
transmitter output share the same channel bandwidth via superposition, whereas the total available
transmitter power is split between the two components via digital and analog scaling factors (αdi, αai).
The decoding at the GMAC output relies on the principle of successive interference cancellation (SIC).
Each encoder is parameterized by (Ri, ti), where Ri is VQ rate and 0 ≤ ti ≤ 1 is the digital–analog
power allocation factor to be introduced below, i = 1, 2. Note that in this HDA system, each source
encoder is a rate-distortion optimal VQ for the respective source, regardless of whether the sources
are correlated or not. Therefore, unlike in Section 3, the source reconstruction becomes possible even
under partial-outage events. Furthermore, if the sources are correlated, the quantization errors are also
correlated (which is not the case if a distributed VQ is used), allowing analog components of the HDA
transmission to interfere, on average, in a constructive manner over the GMAC.

+

+

+

+

�

�

S1

S2

S̃2

S̃1

Z1

Z2 Z̃2

Z̃1

X̃1

X̃2C2

C1

↵a,1

↵a,2

↵d,2

↵d,1

V Q1

V Q2 CC2

CC1

Y

X2

X1

G
M

A
C

Figure 1. Hybrid digital–analog (HDA) transmission of Gaussian source over GMAC. VQ: vector
quantizer; CC: channel encoder.

Let the quantized value and quantization error for source sequence SSSi be S̃SSi and ZZZi, respectively.
For rate-distortion optimal VQ of a Gaussian source, the quantization error variance is [4]

E{|Zi|2}n = σ2
zi
= σ22−2Ri ,

where ZZZi = (Zi,1, . . . , Zi,n). Furthermore, S̃SSi and ZZZi are uncorrelated, and therefore

E{|S̃i|2}n = σ̃2
i = σ2(1− 2−2Ri ).

where S̃i =
(

S̃i,1 . . . , S̃i,n

)
. For correlated Gaussian sources, the following results regarding the

time-averaged asymptotic cross-correlations hold [10].

E{S∗i S̃i}n = σ2(1− 2−2Ri ) (5)

E{S∗i S̃j}n = σ2ρ(1− 2−2Rj) (6)

E{S̃∗1 S̃2}n = σ2ρ(1− 2−2R1)(1− 2−2R2) (7)

E{Z∗1 Z2}n = ρσ22−2(R1+R2). (8)
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Further, we define the correlation coefficients

ρ̃ =
E{S̃∗1 S̃2}n

σ̃1σ̃2
= ρ

√
(1− 2−2R1)(1− 2−2R2), (9)

ρz =
E{Z∗1 Z2}n

σz1 σz2

. (10)

The VQ codeword S̃SSi (specifically, an index identifying it) is encoded into a channel codeword
CCCi of a capacity achieving channel code for the GMAC. The channel input for source sequence SSSi is
given by

XXXi = X̃XXi + Z̃ZZi,

where X̃XXi = αdiCCCi and Z̃ZZi = αaiZZZi, and 0 ≤ αdi ≤ 1 and 0 ≤ αai ≤ 1 are chosen such that

α2
diE{|Ci|2}n + α2

aiE{|Zi|2}n = Pi, i = 1, 2.

We define the digital–analog power allocation factors as ti =
α2

aiE{|Zi |2}n
Pi

, i = 1, 2, so that α2
diE{|Ci|2}n =

(1− ti)Pi. The resulting GMAC output is given by

Yk = h1

(
X̃1,k + Z̃1,k

)
+ h2

(
X̃2,k + Z̃2,k

)
+ Wk, k = 1, . . . , n,

where X̃XXi = (X̃i,1, . . . , X̃i,n), WWW = (W1, . . . , Wn) and YYY = (Y1, . . . , Yn).
The analog channel inputs act as noise to the digital channel decoder which jointly decodes

the two codewords CCC1 and CCC2. Recall that with asymptotically optimal VQ, Z̃i,ks are iid Gaussian
variables and therefore the total noise Z̃ZZi +WWWi at the input of the channel decoder is also iid Gaussian.
Digital codewords are decoded first and the correctly decoded codewords are then used to cancel
out the digital channel inputs from the observed channel output. The source sequences are then
linearly estimated from the correctly decoded channel codewords and the residual channel output.
The achievable MMSE of the HDA system in any given channel state hhh depends on the the decodability
of digital codewords CCC1 and CCC2. Let di(E|R1, R2, t1, t2) be the conditional MMSE for source i under the
event E , given R1, R2, t1, and t2, i = 1, 2. The necessary and sufficient conditions for each event can be
found using the basic achievable rate region for a GMAC [4].

• No outage event E12: Both CCC1 and CCC2 are decodable if and only if ([4], Equations 15.147–15.149)

Ri <
1
2

log

(
1 +

(1− ti)PiΓi

tiPiΓi + tjPjΓj + 2Γ12ρz
√

t1t2P1P2 + 1

)
, i = 1, 2 (11)

R1 + R2 <
1
2

log

(
1 +

(1− t1)P1Γ1 + (1− t2P2)Γ2

t1P1Γ1 + t2P2Γ2 + 2Γ12ρz
√

t1t2P1P2 + 1

)
. (12)

• Partial outage event E ′i (either CCC1 or CCC2 is decodable, but not both): CCCi is decodable while CCCj is not
decodable if and only if

Ri <
1
2

log

(
1 +

(1− ti)PiΓi

t1P1Γ1 + P2Γ2 + 2Γ12ρz
√

t1t2P1P2 + 1

)
, (13)

Rj >
1
2

log

(
1 +

(1− tj)PjΓj

tiPiΓi + tjPjΓj + 2Γ12ρz
√

t1t2P1P2 + 1

)
, (14)

• Total outage event E ′12: Neither CCCi nor CCCj is decodable if and only if Equation (11) is violated for
i = 1, 2 and Equation (12) is violated.
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It can be verified that, when the sources are uncorrelated, Equations (11)–(14) describe regions of
(γ1, γ2) for these decoding events as shown in Figure 2. For correlated sources, these regions not only
depend on γ1 and γ2, but also on γ12. We now proceed to evaluate MMSE under each event.

�2

�1

E12

E 0
1

E 0
12

E 0
2

22R2 � 1

µ2(1 � t222R2)

22R1 � 1

µ1(1 � t122R1)

22R1 � ⌧

µ1(⌧ � t222(R1+R2))

⌧22R2 � 1

µ2(1 � t1⌧22(R1+R2))

22R2(22R1 � 1)

µ1(1 � t1⌧22(R1+R2))

22R1(22R2 � 1)

µ2(⌧ � t222(R1+R2))

Figure 2. (γ1, γ2) pairs corresponding to outage events in HDA coding of uncorrelated Gaussian
sources; τ = 1−t2

1−t1
.

4.1. No Outage Event (E12)

In this case, the digital channel codewords CCCi, i = 1, 2 are correctly decoded at the receiver.
Therefore h1X̃1 + h2X̃2 can be perfectly canceled from the received signal Y to obtain the residual
ỸYY =

(
Ỹ1, . . . , Ỹn

)
, where

Ỹk = h1Z̃1,k + h2Z̃2,k + Wk, k = 1, . . . , n,

and the source components (S1, S2) can be estimated from the recovered source codewords S̃1 and
S̃2, and the residual sequence Ỹ. The asymptotically optimal estimator is linear, and therefore the
estimated source sequence Si is given by

Ŝi,k = qi1S̃1,k + qi2S̃2,k + qi3Ỹk k = 1, . . . , n,

where qi,1 , qi,2, and qi,3 are the coefficients of the optimal linear estimator. The MSE of the optimal
estimator is

di(E12|R1, R2, t1, t2) = σ2 − qi1c1 − qi2c2 − qi3c3, i = 1, 2, (15)

where qil and cl , l = 1, 2, 3 are found in Appendix C.1. Now, for given (R1, R2, t1, t2), the total FA-MMSE
can be found by evaluating

d̄i(E12|R1, R2, t1, t2) =
1
2

∫

E12

2

∑
i=1

di(E12|R1, R2, t1, t2)p1(h1)p2(h2)dh1dh2. (16)

Remark 1.

1. For the special case of uncoded transmission, we can set R1 = R2 = 0 and t1 = t2 = 1 (ρz = 0).



Entropy 2019, 21, 992 10 of 32

2. On the other hand, by setting t1 = t2 = 0, we obtain the achievable MMSE of a purely digital SSC coding
system. However, for correlated sources, this MMSE is less than that given by the Lemma 1. This is because
the digital encoder in Figure 1 does not achieve a distributed coding gain, as does the digital encoder in
Section 3. To achieve a coding gain, a distributed VQ must be used, but this will render the quantization
errors of the two source uncorrelated, preventing us from exploiting the correlation between the GMAC
inputs to our advantage. The advantage of the HDA scheme in Figure 1 is its robustness against unknown
CSI. In particular, when the two sources are correlated, so will be their quantization errors. This correlation
allows for a form of statistical cooperation at the GMAC output as reflected by the appearance of ρz in
Equation (16), see Appendix C.

4.2. Partial Outage Event (E ′i )

Suppose only CCCi is decodable (CCCj is undecodable), i ∈ {1, 2}. Upon decoding CCCi, the decoder
computes ỸYY = YYY− hiX̃XXi to obtain the residuals

Ỹk = hiUi,k + hj

(
Uj,k + X̃j,k

)
+ Wk, k = 1, . . . , n. (17)

The optimal estimates of the source sequences are

Ŝi,k = qi1S̃i,k + qi2Ỹk,

Ŝj,k = q′i1S̃i,k + q′i2Ỹk.

and the corresponding MSEs are

di(E ′i |R1, R2, t1, t2) = σ2 − qi1c1 − qi2c2,

dj(E ′i |R1, R2, t1, t2) = σ2 − q′i1c′1 − q′i2c′2,

where qil , q′il , cl and c′l , l = 1, 2 are found in Appendix C.2. The total FA-MMSE can be found by
evaluating

d̄(E ′i |R1, R2, t1, t2) =
1
2

2

∑
i=1

∫

E ′i

[
di(E ′i |R1, R2, t1, t2) + dj(E ′i |R1, R2, t1, t2)

]
p1(h1)p2(h2)dh1dh2. (18)

4.3. Total Outage Event (E ′12)

In this case, neither digital codeword is decodable, and the source sequences are reconstructed as

Ŝi,k = qiYk k = 1, . . . , n,

i = 1, 2. The MSE of the optimal estimator is

di(E ′12|R1, R2, t1, t2) = σ2 − qic∗i

where qi and ci are found in Appendix C.3. For given (R1, R2, t1, t2), the total FA-MMSE can be found
by evaluating

d̄(E ′12|R1, R2, t1, t2) =
1
2 ∑

i

∫

E ′12
di(E ′12|R1, R2, t1, t2)p1(h1)p2(h2)dh1dh2.

Finally, the total FA-MMSE of the superposition-based HDA scheme can be obtained by solving

DHDA(sup)(P1, P2) = min
R1,R2,t1,t2

d̄(R1, R2, t1, t2), (19)
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where

d̄(R1, R2, t1, t2) = d̄(E12|R1, R2, t1, t2) + d̄(E ′1|R1, R2, t1, t2) + d̄(E ′2|R1, R2, t1, t2) + d̄(E ′12|R1, R2, t1, t2).

5. JSC Coding

5.1. JSC-VQ

One problem of digital coding with no knowledge of CSI at the transmitter is the unavoidable
outage condition, which also exists in HDA coding schemes that use the quantization error of the digital
encoder as the analog component. Although the problem does not exist in uncoded transmission, on a
GMAC, uncoded transmission becomes inferior to SSC coding as the CSNR increases (for example,
see Figures 3 and 4). A simple way to improve the performance of uncoded transmission at high
CSNR is suggested in [10]. Rate-distortion optimal VQ is applied to each source to be transmitted
over the GMAC; the VQ codewords are scaled to meet the individual power constraints and directly
transmitted over the channel. As the source codewords and channel codewords are the same in this
case, optimal detection at the receiver can be used for joint source-channel decoding. More importantly,
even if detection of VQ codewords fails, some estimate of the sources can still obtained from the
observed channel output. The interest in [10] is the transmission of correlated sources over a
NF-GMAC, or equivalently a BF-GMAC with CSI available at the transmitters. However, as we will
demonstrate here, this approach can outperform HDA coding, even when the sources are uncorrelated,
i.e., when the transmitters do not observe instantaneous CSI. In the following, we determine the
FA-MMSE for this joint source-channel VQ (JSC-VQ) scheme. Our analysis considers the general
case of two correlated Gaussian sources with the correlation coefficient ρ (the result for uncorrelated
source can be obtained by setting ρ = 0.) The JSC-VQ scheme has an additional advantage with
correlated sources, since it allows the two correlated sources to statistically cooperate over a GMAC,
i.e., create on the average constructive interference at the channel output. Furthermore, whenever one
of the codewords is decoded correctly, the effective CSNR for the other codeword increases. As in
HDA coding, the achievable MMSE is determined by three possible outage conditions at the decoder.
However, the advantage here is that, even when none of the two codewords can be decoded correctly
some estimates of the two sources can still be obtained from the observed channel output.

The JSC-VQ encoder i vector-quantizes the source sequence SSSi using a rate-Ri codebook, scales the
resulting codeword UUUo

i to satisfy its power constraint Pi, and transmits the scaled codeword XXXi = αiUUUo
i

over the BF-GMAC, where

αi =

√
Pi

σ2(1− 2−2Ri )
, (20)

i = 1, 2. Note that, when SSS1 and SSS2 are correlated, so will be the channel inputs XXX1 and XXX2, and therefore
the advantage of this scheme. Upon observing the resulting channel output YYY, the decoder first uses
the same VQ codebooks used by the encoders to jointly detect the transmitted codewords (UUUo

1,UUUo
2)

by considering their correlation (detection step). In the second step, the detected VQ codewords
are used to estimate the source sequences SSS1 and SSS2 (estimation step). Note that (SSS1, SSS2,UUUo

1,UUUo
2,YYY)

are asymptotically jointly Gaussian, and therefore the optimal (MMSE) estimator is linear. Let the
codeword pair found in the detection step be (ÛUU1, ÛUU2). In general, the estimated source sequences are
given by

ŜSSi = qi1ÛUU1 + qi2ÛUU2 + qi3YYY, i = 1, 2. (21)

where coefficients qi1 , qi2, and qi3 of the optimal linear estimator are to be determined. For given
(R1, R2, α1, α2) used by the encoders, it is not guaranteed that (UUUo

1,UUUo
2) can be correctly decoded in all

channel states, and therefore qi1 , qi2, and qi3 will depend on the state (outage event) of the decoder.
Let H12, H′i , and H′12, respectively, be the set of (h1, h2), for which the outage events E12, E ′i , and
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E ′12 occur for given (fixed) (R1, R2, α1, α2). Define the encoder parameter vector ttt = (R1, R2, α1, α2).
The FA-MMSE for given ttt can then be given by

d̄(ttt) =
1
2

2

∑
i=1

{∫

H12

di(E12|ttt)dhhh +
∫

H′1
di(E ′1|ttt)dhhh +

∫

H′2
di(E ′2|ttt)dhhh +

∫

H′12

di(E ′12|ttt)dhhh

}
. (22)

The minimum achievable FA-MMSE can be found by

D JSC−VQ(P1, P2) = min
ttt

d̄(ttt). (23)

We next consider all possible outage events to determine the conditional MMSEs in Equation (22).

• No-outage event E12: The set of all rate pairs for which E12 occurs are given by the following lemma.

Lemma 2. For given (P1, P2), (h1, h2), (α1, α2), and ρ, both of the source-channel VQ codewords can be
detected with an asymptotically vanishing error probability, if (R1, R2) satisfy

Ri < 1
2 log2

(
(1−ρ̃2)PiΓi+1

1−ρ̃2

)
i = 1, 2

R1 + R2 < 1
2 log2

(
P2Γ1+P2Γ2+2ρ̃Γ12

√
P1P2+1

1−ρ̃2

)
,

(24)

where ρ̃ is given by Equation (9).

Proof. See Appendix D.

Denote all (R1, R2) pairs that satisfy the above constraints by R(E12). Let the codeword pair
found in the detection step be (ÛUU1, ÛUU2). If (R1, R2) ∈ R(E12) then ÛUU1 = UUUo

1 and ÛUU2 = UUUo
2. In this

case, the linear estimator need not use the channel output YYY (qi3 = 0), and the source sequences
can be reconstructed as

ŜSSi = qi1UUUo
1 + qi2UUUo

2, i = 1, 2

The MMSE of the linear estimator for (R1, R2) ∈ R(E12) is given by Equation (A24).
• Partial outage event E ′i : The set of all rate pairs for which E ′i (i = 1, 2) occurs are given by the

following lemma.

Theorem 1. For given (P1, P2), (h1, h2), (α1, α2), and ρ, the codeword Uo
i is decodable and Uo

j is
undecodable if and only if

Ri <
1
2

log2

(
P1Γ1 + P2Γ2 + 2Γ12ρ̃

√
P1P2 + 1

ΓjPj(1− ρ̃2) + 1

)
(25)

Rj >
1
2

log2

(
(1− ρ̃2)PjΓj + 1

1− ρ̃2

)
(26)

for i ∈ {1, 2}.

Proof. The proof, considering the case i = 1 and j = 2, is given in Appendix D.

Denote all (R1, R2) pairs which satisfy above constraints by R(E ′i ). If (R1, R2) ∈ R(E ′i ), then
ÛUUi = UUUo

i and ÛUUi = 000. The source sequences are reconstructed as

ŜSSi = qi1UUUo
i + qi3YYY, i = 1, 2.
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The expressions for the MMSE of the linear estimator for (R1, R2) ∈ R(E ′i ) are given by
Equations (A25) and (A26).

• Total outage event E ′12: The set of all rate pairs for which E ′12 occurs is given by the following lemma.

Lemma 3. For given (P1, P2), (h1, h2), (α1, α2), and ρ, neither codeword can be decoded if

R1 >
1
2

log2

(
Γ1P1 + Γ2P2 + 2Γ12

√
P1P2) + 1

Γ2P2(1− ρ̃2) + 1

)

R2 >
1
2

log2

(
Γ2P1 + Γ2P2 + 2Γ12

√
P1P2) + 1

Γ1P1(1− ρ̃2) + 1

)

R1 + R2 >
1
2

log2

(
Γ1P1 + Γ2P2 + 2Γ12ρ̃

√
P1P2) + 1

(1− ρ̃2)

)
.

Proof. Follows from Equations (24) and (25) in the previous two lemmas.

Denote all (R1, R2) pairs which satisfy above constraints by R(E ′12). The source sequences are
reconstructed as

ŜSSi = qi3YYY, i = 1, 2.

The expressions for the MMSE of the linear estimator for (R1, R2) ∈ R(E ′12) are given
Equation (A27).

5.2. HDA-JSC-VQ Coding

Finally, we consider an HDA scheme based on the aforementioned JSC-VQ scheme, which
possibly provides the lowest known upper bound to the distortion power function D(P1, P2) for a
pair of correlated Gaussian sources and a fading GMAC. In this scheme, a scaled (analog) version
of each source is superimposed on the JSC-VQ codewords in the scheme discussed in Section 5.1.
In particular, the resulting HDA scheme (which we will refer to as HDA-JSC-VQ coding) can be
shown to outperform the JSC-VQ at all CSNRs on a non-fading GMAC [10]. This improvement can
be attributed to the optimality of analog transmission as SNR→ 0. In this section, we determine the
minimum achievable FA-MMSE of the HDA-JSC-VQ coding over the BF-GMAC. In this case, there is
an additional gain due to combining an analog transmission with JSV-VQ as this prevents the complete
outages that would otherwise occur with JSV-VQ. We will also demonstrate that this scheme achieves
a better FA-MMSE than any other known scheme, even for the uncorrelated Gaussian sources.

Using the same notation as in the previous section, the channel codeword generated by the
encoder i of our HDA-JSC-VQ system can be given by

XXXi = αiSSSi + βiUUUo
i ,

where UUUo
i is the VQ codeword for SSSi, and αi and βi are constants. Using the transmit power constraint,

we have

βi =

√
Pi − α2

i σ22−2Ri

σ2(1− 2−2Ri )
− αi,

and the digital–analog power allocation factor αi must be chosen to minimize the FA-MMSE. Given
the observed channel output YYY = h1XXX1 + h2XXX2 +WWW, the receiver first decodes (UUUo

1,UUUo
2) as (ÛUU1, ÛUU2)

and then linearly estimates the source sequence SSSi as

ŜSSi = qi1ÛUU1 + qi2ÛUU2 + qi3YYY,
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where the coefficients qil , l = 1, 2 are chosen to minimize the reconstruction MMSE for given (h1, h2).
The evaluation FA-MMSE can proceed as in the case of JSC-VQ system. Specifically, by redefinition
of the encoder parameters as ttt = (R1, R2, α1, β1, α2, β2), the conditional FA-MMSE can be found by
Equation (22). The minimum achievable FA-MMSE in this case is given by

DHDA−JSC−VQ(P1, P2) = min
ttt

d̄(ttt). (27)

What remains is to determine the conditional MMSEs in Equation (22), by considering every
possible outage event. We obtain the required MMSEs by proving a set of lemmas.

• No-outage event E12: For fixed (h1, h2), the bounds on VQ rates required to guarantee
error-free decoding of (UUUo

1,UUUo
2) can be found through a slight generalization of the results

in ([10], Theorem IV.6) to account for channel-gains and complex-valued random variables.
In particular we can prove the following lemma.

Lemma 4. For given (P1, P2), (α1, β1), (α2, β2), (h1, h2), ρ , the VQ codeword-pair (UUUo
1,UUUo

2) can be
decoded error-free whenever (R1, R2) satisfies

R1 <
1
2

log2



∣∣β′1
∣∣2 k11(1− ρ̃2) + N′

N′(1− ρ̃2)




R2 <
1
2

log2



∣∣β′2
∣∣2 k22(1− ρ̃2) + N′

N′(1− ρ̃2)




R1 + R2 <
1
2

log2



∣∣β′1
∣∣2 k11 +

∣∣β′2
∣∣2 k22 + 2Re{β′1(β′2)

∗}ρ̃√k11k22) + N′

N′(1− ρ̃2)


 ,

where

N′ = |h1|2 α2
1ν1 +|h2|2 α2

2ν2 + 2Re{h∗1h2}α1α2ν3 + N,

ν1, ν1, and ν3 are given by the set of expression following (45) in [10], but with

β′1 = h1α1(1− a1ρ̃) + h1β1 + h2α2a2 (28)

β′2 = h2α2(1− a2ρ̃) + h2β2 + h1α1a1, (29)

for a1 and a2 given by Equations (48)–(50) in [10].

For (R1, R2) satisfying the bounds in Lemma 4, the minimum achievable MMSE is given
by Equation (A28).

• Partial outage event E ′i : Rate pairs (R1, R2) for which only one codeword can be decoded is given
by the following lemma.
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Lemma 5. For given (P1, P2), (α1, β1), (α2, β2), (h1, h2), and ρ, the necessary and sufficient conditions
where only codeword UUUo

i , but not UUUo
j , is correctly decodable are

Ri <
1
2

log2




∣∣β′1
∣∣2 k11 +

∣∣β′2
∣∣2 k22 + 2Re{β′1(β′∗2 )}ρ̃

√
k11k22) + N′

∣∣∣β′i
∣∣∣
2

k jj(1− ρ̃2) + N′




Rj >
1
2

log2




∣∣∣β′i′
∣∣∣
2

k jj(1− ρ̃2) + N′

N′(1− ρ̃2)




For (R1, R2) satisfying the bounds in Lemma 5, the minimum achievable MMSE is given
by Equation (A29).

• Total outage event E ′12: Rate pairs (R1, R2) for which neither codeword can be decoded is given
by the following lemma.

Lemma 6. For given (P1, P2), (α1, β1), (α2, β2), (h1, h2), and ρ, neither UUUo
i nor UUUo

j can be decoded if

R1 >
1
2

log2



∣∣β′1
∣∣2 k11 +

∣∣β′2
∣∣2 k22 + 2Re{β′1(β′2)

∗}ρ̃√k11k22) + N′
∣∣β′2
∣∣2 k22(1− ρ̃2) + N′




R2 >
1
2

log2




∣∣β′1
∣∣2 k11 +

∣∣β′2
∣∣2 k22 + 2Re{β′1(β′2)

∗}ρ̃√k11k22) + N′
∣∣∣β′1
∣∣∣
2

k11(1− ρ̃2) + N′




R1 + R2 >
1
2

log2



∣∣β′1
∣∣2 k11 +

∣∣β′2
∣∣2 k22 + 2Re{β′1(β′2)

∗}ρ̃√k11k22) + N′

N′(1− ρ̃2)


 .

For (R1, R2) satisfying the bounds in Lemma 6, the minimum achievable MMSE is given
by Equation (A30).

Lemmas 4–6 can be proven (details omitted for brevity) by considering the “genie-aided” decoder
argument in ([10], Appendix F), in conjunction with the rate conditions for three-types decoding events
established in Appendix D of this paper. In particular, the decoding events of HDA-JSC-VQ scheme
can be mapped to those of the JSC-VQ scheme in Section 5.1, by re-expressing the channel output in
the form YYY = β′1UUUo

1 + β′2UUUo
2 +WWW ′ such that the additive noise WWW ′ satisfies the properties required by

the proofs in Appendix D. It can be verified (see [10], Lemma F.1) that the desired representation for YYY
is obtained by choosing β′1 and β′2 as in Equations (28) and (29), respectively.

6. Comparison of Bounds and Discussion

In summary, Equations (3), (19), (23), and (27) are all computable upper bounds to the (unknown)
distortion power function D(P1, P2) of Gaussian sources and a Rayleigh fading GMAC, under the
constraint that CSI is not observable at the transmitters (the function minimizations required to evaluate
these bounds have been carried out by using global optimization software). These bounds have been
numerically evaluated for certain examples and the results are presented in Figures 3–5. For simplicity
of presentation, we consider the symmetric case of P1 = P2 and Γ̄1 = Γ̄2 = 1 (CSNR is thus the same
as P). We consider sources with variance σ2 = 1.

Recall that if CSI is available at the transmitters as well, SSC coding is optimal for uncorrelated
sources, whereas uncoded transmission is not. The performance curves in Figure 3 confirm that this is
not the case if CSI is not available to the transmitters. The lack of CSI forces the coded transmitters



Entropy 2019, 21, 992 16 of 32

to choose an encoding rate (based on prior knowledge of the CSI distribution) to minimize the MSE
considering the unavoidable receiver outages. In the lower-power regime where outage probability is
very high, uncoded transmission therefore achieves a better distortion than coded transmission. At the
high-power regime, however, the two sources cannot be completely separated from the sum created
by the MAC if transmitted completely uncoded and hence the MMSE of uncoded system reaches a
constant (which in this case is σ2/2 = 0.5 or −3 dB.) As seen in Figure 3 (right) conventional HDA
coding essentially remains uncoded transmission up to about P = 6.5 dB (all power allocated to analog
part), and then diverges thereafter due to the increasing power allocation to the digital part. While
the exact DPF is not known, the HDA-JSC-VQ provides lowest known upper bound to the DPF. Note
that JSC-VQ bound coincides with the HDA-JSC-VQ bound for high P where all available power gets
allocated to the VQ codewords.
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Figure 3. Fading-averaged (FA)-mean minimum square error (MMSE) for uncorrelated unit-variance
Gaussian sources and Rayleigh-fading GMAC with Γ̄ = 1.0.

For correlated sources, SSC coding would not be optimal even if CSI was known to the transmitters.
Figure 4 shows that at ρ = 0.9, SSC coding has a significant gap (~3–6 dB) to the JSC-VQ and
HDA-JSC-VQ bounds. Figure 5 left and right shows the achievable FA-MMMSE of each system as a
function of the source correlation coefficient, at low and high transmitter powers, respectively. It is
known that on a fixed GMAC, uncoded transmission is optimal for power-to-noise ratios P/N ≤

ρ

1−ρ2 [10]. For example, if ρ = 0.9, uncoded transmission must be optimal for the fixed channel if
P/N ≤ 6.75 dB. Clearly, uncoded transmission can only be optimal for a fraction of time in a system
with fading and fixed (non-adaptive) transmitters and therefore cannot be optimal in a FA-MMSE sense.
As Figure 4 shows, the uncoded system performs identical to the JSC-VQ system in the low-power
regime (P less than about 15 dB in this example). This should be expected, as the the limiting optimal
JSC-VQ system (as P → 0) is the uncoded system, i.e., the receiver operates in outage nearly all the
time, and therefore the optimal system has a rate that approaches infinity. The HDA-JSC-VQ system,
on the other hand, exhibits a different behavior. The analog–digital power allocation and VQ rates in
the HDA-JSC-VQ system ensure that the receiver achieves an optimal operating point with respect to
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all four outage events. This allows the HDA-JSC-VQ system to achieve a lower FA-MMSE at a given P,
compared to both JSC-VQ and uncoded system in the lower power regime, as evident from Figure 4.
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Figure 4. FA-MMSE for correlated unit-variance Gaussian sources with ρ = 0.9 and Rayleigh-fading
GMAC with Γ̄ = 1.0.
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Figure 5. P = 10 dB (left) and P = 30 dB (right).
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So far, we have considered the symmetric case, that is, P1 = P2. As an example for an asymmetric
case, Figure 6 shows the FA-MMSE of JSC-VQ and HDA-JSC-VQ schemes for P2 = P1/10 (i.e., P2 is
10 dB below P1) when ρ = 0.9 and Γ̄ = 1. Note that at high CSNR, the high correlation between the two
sources allows the receiver to achieve D2 ≈ D1, despite the transmitter powers being very different.
When comparing this figure to Figure 4, note that the total transmitter output power (P1 + P2) is lower
here (1.1P1 compared to 2P1), which explains the higher total FA-MMSE compared to Figure 4.

0 5 10 15 20 25 30

P1=10P2 [dB]

-16
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-8
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-M
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S

E
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B
]

 D (JSC-VQ)
D1 (JSC-VQ))

D2 (JSC-VQ)

D (HDA-JSC-VQ)
D1 (HDA-JSC-VQ)

D2 (HDA-JSC-VQ))

Figure 6. FA-MMSE for correlated unit-variance Gaussian sources with ρ = 0.9 and Γ̄ = 1.0, when the
output power of the transmitter for source 2 has 10 dB lower than that for source 1 (i.e., P1 = 10P2).

Although practical code construction methods related to our problem have been reported in
previous work, e.g., [18–20], those methods perform well only when CSI is available at both the
transmitter and the receiver. Furthermore, [18,19] also suffer an additional performance loss due to
being zero-delay coding schemes. The results presented in this paper serve as a guide to developing
good practical multiple-access block codes for transmitting Gaussian-like sources in systems with no
CSI at the transmitters. If the average CSNR is low, uncoded transmission can achieve nearly the same
performance as an HDA-JSC-VQ system. The relative performance of the uncoded system improves
with the source correlation. However, at moderate to high CSNRs, HDA-JSC-VQ will have a definite
advantage, regardless of source correlation. Optimal VQ and typical sequence detection, as considered
here to analyze HDA-JSC-VQ, are obviously not practically realizable. A potential approach to
practically realizing a HDA-JSC-VQ system is by using trellis-coded quantization (TCQ) [21] at the
transmitters (with optimal rates and power allocations found as described in this paper) and joint
maximum likelihood (ML) sequence detection at the receiver [22]. On the one hand, TCQ allows
computationally efficient way of quantizing long source sequences with distortion close to the
distortion rate bound for optimal VQ; on the other hand, the joint detection of a pair of long VQ
codewords can be efficiently implemented using a suitable variant of the Vitterbi algorithm operating
on a combined trellises of two TCQs. Our preliminary experimental results suggest that this approach
can achieve performance very close to the FA-MMSE bound derived in this paper. A complete set of
experimental results will be reported in a future paper.
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Appendix A. Outage Probabilities in SSC Coding of Gaussian Sources

From ([4], Equations 15.147–15.149), it directly follows that the the necessary and sufficient
conditions for various outage events are as follows.

• E12 (both codewords decodable):

PiΓi ≥ 22Ri − 1, i = 1, 2

P1Γ1 + P2Γ2 ≥ 22(R1+R2) − 1

• E ′i (only one codeword decodable):

PiΓi
1 + PjΓj

≥ 22Ri − 1, i = 1, 2

PjΓj < 22Rj − 1

• E ′12 (neither codeword decodable):

PiΓi
1 + PjΓj

< 22Ri − 1, i = 1, 2

P1Γ1 + P2Γ2 < 22(R1+R2)
1 − 1

It is straightforward to verify that (γ1, γ2) pairs corresponding to these events are as shown in
Figure A1, where we define µi = Pi/N.

�2

�1

E12

E 0
1

E 0
12

E 0
2

22R2 � 1

µ2

22R1 � 1

µ1
22R2

(22R1 � 1)

µ1

22R1
(22R2 � 1)

µ2

Figure A1. (γ1, γ2) pairs corresponding to outage events in separate source-channel (SSC) coding of
Gaussian sources.

The probability of the event E is given by

Pr(E|R1, R2) =
∫

E
p1(γ1)p2(γ2)dγ1dγ2.
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where, for Rayleigh fading, the pdf of γi is pi(γi) = 1
γ̄ exp

(
− γi

γ̄

)
. By evaluating the integral over

each region, both Pr(E12|R1, R2) and Pr(E ′i |R1, R2) can be obtained in closed-form. The former has
cumbursome expression (not shown here), but the latter is given by

Pr(E ′i |R1, R2) = e−
2Ri(2

2Rj−1)
µi



1− e

− (22Ri−1)
µj



 , i = 1, 2.

Straightforwardly, Pr(E ′12|R1, R2) = 1− Pr(E12|R1, R2)− Pr(E ′1|R1, R2)− Pr(E ′2|R1, R2).

Appendix B. Proof of Lemma 1

We first state a lemma that is required to prove Lemma 1.

Lemma A1. Let
∆(x, y) = 2−2x(1− ρ2 + ρ22−2y)

and Rsum = R1 + R2. Given a distributed VQ (for a pair of zero-mean, variance σ2 Gaussian sources whose
correlation coefficient is ρ) with rates R1 and R2, the distortion pair (D1, D2) is achievable if and only if

(D1, D2) ∈
{
D1(R1, R2) ∩D2(R1, R2) ∩Dprod(R1, R2)

}
(A1)

where

D1(R1, R2) =
{

D1 : D1 ≥ σ2∆(R1, R2)
}

D2(R1, R2) =
{

D2 : D2 ≥ σ2∆(R2, R1)
}

Dprod(R1, R2) =
{
(D1, D2) : D1D2 ≥ σ4∆(Rsum, Rsum)

}
.

Proof. This lemma follows from the achievable rate region given by ([8], Theorem 1).

Proof of Lemma 1: Let (d1, d2) be all distortion pairs achievable by a distributed VQ with rates
(R1, R2). From Lemma A1, it follows that all achievable distortion pairs satisfy

d1 ≥ ∆1 = σ2∆(R1, R2) (A2)

d2 ≥ ∆2 = σ2∆(R2, R1) (A3)

d1d2 ≥ ∆12 = σ4∆(Rsum, Rsum). (A4)

For a given (R1, R2) pair, all (d1, d2) that satisfy these constraints are above the curve shown in
Figure A2 [achievable distortion region for (R1, R2)]. The minimum achievable total MSE is found
by minimizing d1 + d2 subject to the constraints Equations (A2)–(A4) (feasibility set). It should be
clear that the optimal solution occurs when δ is such that the line d1 + d2 = δ touches the boundary
of the feasibility set. Depending on the relative values of ∆1, ∆2 and ∆12, this will occur at the
point A, B, or C as follows,

A if ∆2 <
√

∆12 < ∆1 and δ = ∆2 +
∆12

∆2
[Figure A2a],

B if ∆1 <
√

∆12 < ∆2 and δ = ∆1 +
∆12

∆1
[Figure A2c],

C if
√

∆12 > max{∆1, ∆2} and δ = 2
√

∆12 [Figure A2b].
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The inequalities in the first two statements are equivalent to max{∆1, ∆2} <
√

∆12 < max{∆1, ∆2}.
Therefore, the minimum d1 + d2 is

δ∗ = ∆∗ +
∆12

∆∗
,

where ∆∗ as given by Equation (4).
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d2
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�12

p
�12�12
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�12

p
�12

�12

�1

�12

�2

d1 + d2 = � d1 = d2
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�
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d1d2 = �12
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�12

p
�12

�12
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�12

�2

d1 + d2 = � d1 = d2
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d1d2 = �12
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(a) (b) (c)

Figure A2. Distortion pairs achievable in distributed VQ of two correlated Gaussian sources at a fixed
rate pair (R1, R2).

Appendix C. Optimal Linear Estimators for HDA Coding

In this appendix, we determine the MSE of the optimal linear estimator in conventional
HDA coding.

1. No-outage event (E12): Linear estimator used in the HDA system, estimates the source sample
Si,k, k = 1, . . . , n using the observation vector YYYo = (S̃1,k S̃2,k Ỹ)T . Define the asymptotic
autocovariance matrix KKK = E{YYYoYYYH

o }n and the cross-covariance vector ccci = E{S̃∗i,kYYYo}n
.

For optimal VQ of Gaussian sources, Equations (5)–(8) hold and the following can be verified.

k11 = E{|S̃1|2}n = σ2(1− 2−2R1)

k12 = k21 = E{S̃∗1 S̃2}n = σ2ρ(1− 2−2R1)(1− 2−2R2)

k13 = k∗31 = E{S̃∗1Ỹ}n = αa2h2ρ2−2R2 k11

k22 = E{|S̃2|2}n = σ2(1− 2−2R2)

k23 = k∗32 = E{S̃∗2Ỹ}n = αa1h1ρ2−2R1 k22

k33 = E{|Ỹ|2}n = γ1t1P1 + γ2t2P2 + 2γ12ρz
√

t1t2P1P2 + N,

c11 = E{S∗1 S̃1}n = k11

c12 = E{S∗1 S̃2}n = ρk22

c13 = c∗31 = E{S∗1Ỹ}n = (αa1h12−2R1 + αa2h2ρ2−2R2)σ2

c21 = E{S∗2 S̃1}n = ρk11

c22 = E{S∗2 S̃2}n = k22

c23 = c∗32 = E{S∗2Ỹ}n = (αa2h22−2R2 + αa1h1ρ2−2R1)σ2.

Let the optimal linear estimator coefficients be qqqi = (qi1 qi2 q13)
T . Then, we have qqqi = KKK−1ccc∗i ,

i = 1, 2.
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2. Partial outage event (E ′i ): In this case, define YYYo = (S̃i,k Ỹk)
T , i ∈ {1, 2}, and KKKi = E{YYYoYYYH

o }n,
which is a 2× 2 matrix whose elements are

k11 = E{|S̃i|2}n = σ2(1− 2−2Ri )

k12 = k∗21 = E{S̃∗i Ỹ}n = αajhjρ2−2Rj k11

k22 = E{|Ỹ|2}n = γitiPi + γjPj + 2γ12ρz
√

t1t2P1P2 + N.

Let optimal linear estimates for Si,k and Sj,k, k = 1, . . . , n be qqqi = (qi1 qi2)
T and qqq′i = (q′i1 q′i2)

T .
Then, we have qqqi = KKK−1

i ccc∗i and qqqj = KKK−1
i (ccc′i)

∗, where ccci = (ci1 ci2)
T and ccc′i = (c′i1 c′i2)

T with

ci1 = E{S∗i S̃i}n = ρk11

ci2 = E{S∗i Ỹ}n = αaihiσ
22−2Ri + αajhjρσ22−2Rj

c′i1 = E{S∗j S̃i}n
= ρk11

c′i2 = E{S∗j Ỹ}
n
= αaihiρσ22−2Ri + αajhjσ

22−2Rj .

3. Total outage event (E ′12): The optimal source estimates are given by Ŝi,k = qiYk, i = 1, 2 for
k = 1, . . . , n, where qi = k−1ci and

k = E{|Y|2}n = γ1P1 + γ2P2 + 2γ12ρz
√

t1t2P1P2 + N

ci = E{S∗i Y}n = αaihiσ
22−2Ri + αajhjρσ22−2Rj .

Appendix D. Proof of Lemma 2 and Theorem 1

We start by summarizing the proof of ([10], Theorem IV.4). The code construction, encoding,
and decoding in the JSC-VQ scheme are as follows. Let ε > 0 be a fixed constant and rates R1 and R2 be
fixed. The VQ codebook Ci ⊂ Cn, i = 1, 2, is generated by independently drawing 2nRi vectors of length
n from the surface of the origin-centered sphere of radius ri =

√
nσ2(1− 2−2Ri) in Cn. The encoder for

source i uses Ci and vector quantizes the source sequence sssi to generate a codeword uuuo
i ∈ Ci. The code

vector is then scaled to meet the power constraint and transmitted over the GMAC without any further
encoding. Crucial to the proof given in [10] is the geometric view of the VQ encoder. To this end,
consider the cosine angle between any pair of non-zero vectors www and vvv, defined by

cos(www, vvv) =
Re{〈www, vvv〉}
‖www‖‖vvv‖ .

Let the F (sssi, Ci) be all uuui ∈ Ci for which cos(sssi, uuui) is between
√

1− 2−2Ri (1± ε). The VQ encoder
for source i quantizes the sequence sssi into the codeword uuuo

i as follows. If F (sssi, Ci) = ∅ then set
uuuo

i = 000; otherwise, uuuo
i is the codevector uuui ∈ F (sssi, Ci) with the smallest | cos(sssi, uuui) −

√
1− 2−2Ri |.

The channel input is then formed as xxxi = αiuuuo
i , where αi is given by Equation (20). Upon reception

of the GMAC output yyy due to both transmitters, the receiver derives the source estimate (ŝss1, ŝss2) in
two steps: First, the receiver obtains a guess (ûuu1, ûuu2) for the channel input codeword pair (uuuo

1, uuuo
2) by

finding the jointly typical codeword pair (uuu1, uuu2) ∈ C1 × C2 such that α1uuu1 + α2uuu2 has the smallest
Euclidean distance to the channel output yyy. A jointly typical pair is defined as (uuu1, uuu2), for which
|ρ̃− cos(uuu1, uuu2)| ≤ 7ε, where ε > 0 and ρ̃ is given by Equation (9), which is the correlation between
the transmitted VQ codewords (uuuo

1, uuuo
2). Note that, guessing the channel inputs based on the output

yyy in this case is akin to channel decoding in SSC coding, but the use of the correlation ρ̃ to define a
jointly typical set amounts to JSC decoding. In the second step, the source estimates are improved by
computing the MMSE linear estimates of the source sequences, given yyy and the already decoded VQ
codewords (ûuu1, ûuu2).
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Given the channel output yyy, let EÛ be the error event that there exists a jointly-typical codeword
pair (ûuu1, ûuu2) 6= (uuuo

1, uuuo
2) for which

‖yyy− α1ûuu1 − α2ûuu2‖ ≤ ‖yyy− α1uuuo
1 − α2uuuo

2‖.

It can be shown that, for sufficiently large n, the probability of joint decoding error Pr(EÛ)→ 0 as
n→ ∞ if the rates (R1, R2) satisfy the constraints ([10], Lemma D.1)

Ri <
1
2

log2

(
Pi(1− ρ̃2) + N

N(1− ρ̃2)

)
, i = 1, 2 (A5)

R1 + R2 <
1
2

log2

(
P1 + P2 + 2ρ̃

√
P1P2 + N

N(1− ρ̃2)

)
. (A6)

Appendix D.1. Proof of Lemma 2

Consider the decoder JSC-VQ in a system where the GMAC exhibits block fading hi for transmitted
codeword αiuuuo

i . The channel output is given by yyy = α1h1uuuo
1 + α2h2uuuo

2 + www, where uuuo
i ∈ Cn, hi ∈ C,

i = 1, 2, and www ∈ Cn. The set of (R1, R2) pairs for which both VQ codewords are decodable can be
obtained straightforwardly by replacing u1u1u1

o and u2u2u2
o with their scaled versions h1u1u1u1

o and h2u2u2u2
o in the

proof of ([10], Lemma D.1).

Appendix D.2. Proof of Theorem 1

Without a loss of generality, we prove, in the following, Theorem 1 for the case i = 1 and j = 2.
Suppose we wish to determine the set of all rate pairs (R1, R2) for which only uuuo

1 can be correctly
decoded for a given channel state hhh. In particular, given hhh

(i) what is the largest R1 for which the joint decoding procedure described above can guarantee that
Pr[ûuu1 = uuuo

1]→ 1 as n→ ∞ regardless of R2?
(ii) if uuuo

1 is provided to the decoder, what is lowest R2 above which the correct decoding of ûuuo
2 cannot

be guaranteed?

The answer to the question (ii) can already be found in [10], Lemma D.5., i.e., the necessary and
sufficient condition for incorrect decoding of uuuo

2 given uuuo
1 is

R2 >
1
2

log2

(
|h2|2P2(1− ρ̃2) + N

N(1− ρ̃2)

)
=

1
2

log2

(
P2Γ2 +

1
1− ρ̃2

)
.

which establishes Equation (26) (note that for uncorrelated sources, as expected, the RHS of the above
inequality is the capacity of the AWGN channel for uuuo

2 obtained by canceling α1h1uuuo
1 from the GMAC

output.) We next answer the question (i) posed above to establish Equation (25).
We start by defining E∗

Û1
as the event that consists of all tuples (s1, s2, C1, C2, z) for which there

exists a VQ codeword pair (ũ1, ũ2) ∈ C1 × C2 such that ũ1 6= uo
1. More precisely,

E∗Û1
=



(s1, s2, C1, C2, z) : ∃ũ1 ∈ C1\{uo

1} and ∃ũ2 ∈ C2 s.t.

|ρ̃− cos](ũ1, ũ2)| ≤ 7ε and ‖y− (h1α1ũ1 + h2α2ũ2)||2 ≤ ||y− (h1α1uo
1 + h2α2uo

2)‖2



.

Now, observing that Pr[ûuu1 = uuuo
1]→ 1 is equivalent to Pr[E∗

Û1
]→ 0, we establish Equation (25) in

Theorem 1 by proving the following lemma.
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Lemma A2. For every δ > 0 and 0 < ε < 0.3, there exists an n′4(δ, ε) ∈ N such that for all n > n′4(δ, ε)

Pr[E∗Û1
] < 9δ, whenever R1 ∈ R1(ε),

where

R1(ε) =



R1 <

1
2

log2

(
|h1|2P1 + |h2|2P2 + 2Re{h1h∗2}

√
P1P2 + N

|h2|2P2(1− ρ̃2) + N
− ξ15ε

)
,

and ξ15 is a positive constant determined by P1, P2, h1, h2, and N.

Proof. Consider the following three auxiliary events related to source sequences, encoder output
sequences, and channel error sequences. The first auxiliary error event, ES, is the same as ([10], (83))
with the exception that, in our case, (s1, s2) ∈ Cn ×Cn and corresponds to an atypical source output
sequence. The second auxiliary event EZ is the same as ([10], (84)) but with Z ∈ Cn and corresponds
to an atypical additive noise sequences. The third auxiliary event EX is given by the union of three
events; Equations (85)–(87) in [10]. Now, by defining E c

ν as the complement of Eν and using Pr[Eν] to
denote Pr[(S1, S2, C1, C2, Z) ∈ Eν], we can write

Pr[E∗Û1
] = Pr[E∗Û1

∩ E c
S ∩ E c

X ∩ E c
Z] + Pr[E∗Û1

|ES ∪ EX ∪ EZ]Pr[ES ∪ EX ∪ EZ]

≤ Pr[E∗Û1
∩ E c

S ∩ E c
X ∩ E c

Z] + Pr[ES] + Pr[EX] + Pr[EZ]

≤ Pr[E∗Û1
∩ E c

S ∩ E c
X ∩ E c

Z] + 8δ, (A7)

≤ 9δ, (A8)

where Equation (A7) follows from Lemmas D.2, D.3, and D.4 in [10], whereas Equation (A8) is due to
Lemma A3 proven below.

Lemma A3. For every δ > 0 and every ε > 0 there exists n′′4 (δ, ε) ∈ N such that for all n > n′′4 (δ, ε)

Pr[E∗
Û1
∩ E c

S ∩ E c
X ∩ E c

Z] ≤ δ, if R1 < 1
2 log2

(
|h1|2P1+|h2|2P2+2Re{h1h∗2}

√
P1P2+N

|h2|2P2(1−ρ̃2)+N − ξ15ε

)
(A9)

where ξ15 is a positive constant determined by P1, P2, h1, h2, and N.

Proof. We can prove that

Pr
[
E∗Û1
∩ E c

Z ∩ E c
S ∩ E c

X

]
≤ Pr

[
E∗′Û1
∩ E c

Z ∩ E c
S ∩ E c

X

]
(A10)

≤ Pr
[
E∗′Û1
| E c

X1

]
, (A11)

where Equation (A10) is due to the new Lemma A4 proven below and Equation (A11) is due to the
fact that E c

X ∈ E c
X1

. Now, the proof of Equation (A9) can be obtained by combining Equation (A11) and
Lemma D.7 in [10] with www = yyy

h1α1
. Specifically, it then follows that, for every δ > 0 and every ε > 0,

there exists some n′4(δ, ε) such that for n > n′4(δ, ε), Pr
[
E∗

Û1
∩ E c

Z ∩ E c
S ∩ E c

X

]
< δ whenever

R1 < −1
2

log2

(
|h2|2P2(1− ρ̃2) + N

|h1|2P1 + |h2|2P2 + 2Re{h1h∗2}
√

P1P2) + N
+ ξ14ε

)

≤ 1
2

log2

(
|h1|2P1 + |h2|2P2 + 2Re{h1h∗2}

√
P1P2) + N

|h2|2P2(1− ρ̃2) + N
− ξ15ε

)
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where ξ15 is a positive constant determined by P1, P2, h1, h2, and N.

Lemma A4. Let ϕj ∈ [0, π] be the angle between y and u1(j) and let the set E∗′
Û1

be defined as

E∗′Û1
≡



(s1, s1, C1, C2, z) : ∃u1(k) ∈ C1\{uo

1} and u2(l) ∈ C2 s.t.

cos ϕj ≥
√√√√ |h1|2P1 + Re{h1h∗2}ρ̃

√
P1P2 − ξ ′′ε√

|h1|2P1(|h1|2P1 + |h2|2P2 + 2Re{h1h∗2}ρ̃
√

P1P2 + N) + ξ2ε
and cos(u1(k), u2(l)) ≥ ρ̃− 7ε



,

where ξ ′′ and ξ5 depend only on P1, P2, and N. Then, for every sufficiently small ε > 0

Pr
[
E∗Û1
∩ E c

Z ∩ E c
S ∩ E c

X

]
≤ Pr

[
E∗′Û1
∩ E c

Z ∩ E c
S ∩ E c

X

]
.

Proof. First we note that, for the error event E∗
Û1

to occur, there must exist codewords u1(k) ∈ C1\{uo
1},

and codeword u2(l) ∈ C2 (whose decodability is unknown) such that

|ρ̃− cos](ũ1, ũ2)| ≤ 7ε (see Lemma A5) (A12)

and

‖y− (h1α1ũ1 + h2α2ũ2)‖2 ≤ ‖y− (h1α1uo
1 + h2α2uo

2)‖2. (A13)

Now consider the following series of statements related Equations (A12) and (A13).

Statement A: For every (s1, s2, C1, C2, z) ∈ EX ∩ EZ, it holds that

(
‖y− (h1α1ũ1 + h2α2ũ2)‖2 ≤ ‖y− (h1α1uo

1 + h2α2uo
2)‖2)

)
⇒

(
Re{〈yyy∗, α1h1u1(j)〉} ≥ n(|h1|2P1 + Re{h1h∗2}

√
P1P2 − ξ13ε)

) (A14)

where ξ13 only depends on P1, P2, h1, h2, and z.

First, by rewriting the LHS of Equation (A14), we have

Re{〈yyy∗, α1h1u1(j) + α2h2u2(l)〉}
≥ ‖h1α1uo

1 + h2α2uo
2‖2 + Re{〈zzz∗, h1α1uo

1 + h2α2uo
2〉}

+ 1
2

{
‖h1α1u1(j) + h2α2u2(l)‖2 − ‖h1α1uo

1 + h2α2uo
2‖2
}

≥ ‖h1α1uo
1 + h2α2uo

2‖2 − n(h1
√

P1Nε + h2
√

P2Nε)

+Re{〈[h1α1u1(j)]∗, h2α2u2(l)〉} − Re{〈[h1α1uo
1]
∗, h2α2uo

2〉}
≥ ‖h1α1uo

1 + h2α2uo
2‖2 − nξ1ε + nRe{〈h∗1h2〉}

(
ρ̃
√

P1P2(1− 7ε)− ρ̃
√

P1P2(1 + 7ε)
)

≥ ‖h1α1uo
1 + h2α2uo

2‖2 − nξ2ε.

(A15)

Next, by rewriting LHS of the above inequality Equation (A15),

Re{〈
(
h1α1uo

1 + h2α2uo
2
)∗ , α1h1u1(j) + α2h2u2(l)〉}

≥ ‖h1α1uo
1 + h2α2uo

2‖2 − Re(〈z, α1h1u1(j) + α2h2u2(l)〉)− nξ2ε
≥ ‖h1α1uo

1 + h2α2uo
2‖2 − (h1

√
P1Nε + h2

√
P2Nε)− nξ2ε

≥ ‖h1α1uo
1 + h2α2uo

2‖2 − nξ3ε

(A16)

Figure A3 illustrates an example of vectors h1α1u1(j), h2α2u2(j) and in the complex vector space
Cn. Let angles φ, θ, and γ are defined as φ = ^(h1α1u1(j), h1α1uo

1 + h2α2uo
2), θ = ^(h1α1u1(j) +
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h2α2u2(j), h1α1uo
1 + h2α2uo

2) and γ = ^(h1α1u1(j), h1α1u1(j) + h2α2u2(j)). The respective cosine
values of φ, θ and γ are given by

cos φ =
Re
{
〈
(
h1α1uo

1 + h2α2uo
2
)∗ , α1h1u1(j)〉

}

‖h1α1uo
1 + h2α2uo

2‖.‖α1h1u1(j)‖

cos θ =
Re
{
〈
(
h1α1uo

1 + h2α2uo
2
)∗ , α1h1u1(j) + α2h2u2(l)〉

}

‖h1α1uo
1 + h2α2uo

2‖.‖α1h1u1(j) + α2h2u2(l)‖
(A17)

cos γ =
Re
{
〈
(
α1h1u1(j)

)∗ , α1h1u1(j) + α2h2u2(l)〉
}

‖α1h1u1(j)‖.‖α1h1u1(j) + α2h2u2(l)‖

Recalling that ‖αiui‖ =
√

nPi, ‖αiuo
i ‖ =

√
nPi for i ∈ {1, 2}, |ρ̃ − cos^(u1(j), u2(l))| < 7ε,

and |ρ̃− cos^(uo
1, uo

2)| < 7ε (see Lemma A5), it can be shown that

∣∣∣
∥∥h1α1uo

1 + h2α2uo
2
∥∥2 −

∥∥h1α1u1(j) + h2α2u2(l)
∥∥2
∣∣∣ ≤ nξ4ε (A18)

h1↵1u1(k)

h1↵1u1(k) + h2↵2u(l)

h1↵1u
o
1 + h2↵2u

o

!
�

✓

Figure A3. The definition of asymptotic angles used to prove Lemma A4.

By substituting Equations (A16) and (A18) in Equation (A17), we can write

cos θ ≥
∥∥h1α1uo

1 + h2α2uo
2

∥∥2 − nξ3ε
∥∥∥h1α1uo

1 + h2α2u∗2
∥∥∥
√∥∥∥h1α1uo

1 + h2α2uo
2

∥∥∥+ nξ4ε

≥ 1− ξ5ε√
1 + ξ6ε

.

For ε→ 0 choose ξ7 such that 1√
1+ξ6ε

> 1− ξ7ε, then it follows that

cos θ ≥ (1− ξ5ε)(1− ξ7ε) ≥ 1− ξ8ε.

With φ ≤ γ + θ, theequality holds true when vectors h1α1u1(j), h1α1u1(j) + h2α2u2(l) and
h1α1u∗1 + h2α2u∗2 are on the same plane. Note that 0 ≤ γ ≤ π and 0 ≤ θ < π

2 , it follows that

cos φ ≥ cos(γ + θ)

= cos γ cos θ − sin γ sin θ = cos γ cos θ − sin γ
√

1− cos2 θ

≥ cos γ(1− ξ8ε)− sin γ
√

ξ8ε. (A19)

As ε → 0 let (cos γξ8ε− sin γ
√

ξ8ε) → ξ9ε, where ξ9 is only a function of P1, P2, h1, h2 and N.
Now Equation (A19) can be written as

cos φ ≥ cos γ− ξ9ε. (A20)
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By revisiting the definition of φ and γ, Equation (A20) can be rewritten as

Re
{
〈h1α1u1(j), h1α1uo

1 + h2α2uo
2〉
}

‖h1α1u1(j)‖.‖h1α1uo
1 + h2α2uo

2‖
≥ Re

{
〈h1α1u1(j), h1α1u1(j) + h2α2u2(l)

}

‖h1α1u1(j)‖.‖h1α1u1(j) + h2α2u2(l)‖
− ξ9ε (A21)

Recalling that
∣∣∣
∥∥h1α1uo

1 + h2α2uo
2

∥∥2 −
∥∥h1α1u1(j) + h2α2u2(l)

∥∥2
∣∣∣ ≤ nξ4ε, (A21) can be written as

Re
{
〈
(

h1α1u1(j)
)∗, h1α1uo

1 + h2α2uo
2〉
}
≥ Re

{
〈
(
h1α1u1(j)

)∗ , h1α1u1(j) + h2α2u2(l)〉
}
− nξ10ε

≥ n
(

P1 + Re{h∗1h2}ρ̃
√

P1P2(1− 7ε)
)
− nξ10ε

= n
(

P1 + Re{h∗1h2}ρ̃
√

P1P2

)
− nξ11ε.

AS z ∈ Ez, Re{〈z∗, h1α1u1(j))〉} ≥ −n|h1|
√

P1Nε, we can bound the real component of the inner
product between the received signal vector y and h1α1u1(j) as follows,

Re
{
〈
(
h1α1u1(j)

)∗ , y〉
}
= Re

{
〈
(
h1α1u1(j)

)∗ , h1α1uo
1 + h2α2uo

2〉
}
+ Re

{
〈
(
h1α1u1(j)

)∗ , z〉
}

≥ n
(

P1 + Re{h∗1h2}ρ̃
√

P1P2

)
− nξ11ε− n|h1|

√
P1Nε

= n
(

P1 + Re{h∗1h2}ρ̃
√

P1P2

)
− nξ12ε.

Statement B: For every (s1, s2, C1, C2, z) ∈ E c
X ∩ E c

Z, we have the straightforward relation

‖y‖2 ≤ n(|h1|2 P1 +|h2|2 P2 + 2ρ̃Re{h∗1h2}
√

P1P2 + N + ξ13ε)

where ξ13 is only a function of P1, P2, h1, and h2.
Statement C: For every (s1, s2, C1, C2, z) ∈ E c

X, it follows from the power constraint that

∥∥h1α1u1(j)
∥∥ ≤|h1|

√
nP1.

Statement D: For every (s1, s2, C1, C2, z) ∈ E c
X ∩ E c

Z, the following implication holds

∣∣ρ̃− cos^(h1u1(j), h1u2(l))
∣∣ < 7ε and

∥∥y− (α1h1u1(j) + α2h2u2(l))
∥∥2 ≤

∥∥y− (α1h1uo
1 + α2h2uo

2)
∥∥2 ⇒ cos^(y, h1α1u1(j)) ≥ ∆(ε),

where

∆(ε) ≡
√√√√ |h1|2P1 + Re{h1h∗2}ρ̃

√
P1P2 − ξ ′′ε√

|h1|2P1(|h1|2P1 + |h2|2P2 + 2Re{h1h∗2}ρ̃
√

P1P2 + N) + ξ ′′2 ε

This statement follows from rewriting the cos^(y, h1α1u1(k)) as

cos^(y, h1α1u1(k)) =
Re {〈yyy∗, h1α1uuu1(k)〉}
‖y‖

∥∥h1α1u1(k)
∥∥

and then lower bounding Re
{
〈yyy∗, h1α1uuu1(k)〉

}
using Statement A and upper bounding‖y‖ and∥∥h1α1u1(j)

∥∥ using Statements B and C, respectively.

Now, by Statement D and the definition of E∗
ÛUU1

, we conclude that

(
E∗Û1
∩ E c

Z ∩ E c
S ∩ E c

X

)
⊆
(
E∗′Û1
∩ E c

Z ∩ E c
S ∩ E c

X

)
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and therefore

Pr
[
E∗Û1
|E c

Z ∩ E c
S ∩ E c

X

]
≤ Pr

[
E∗′Û1
|E c

Z ∩ E c
S ∩ E c

X

]
.

Lemma A5. Let (ũuu1, ũuu2) ∈ C1 × C2 be observed VQ codewords for any tuple (sss1, sss2, C1, C2). Then, for every
δ > 0 and ε > 0 there exists an n′0(δ, ε) ∈ N such that for all n > n0(δ, ε) ∈ N

∣∣ρ̃− cos^(ũ1, ũ2)
∣∣ ≤ 7ε,

where ρ̃ = ρ(1− 2−2R1)(1− 2−2R2).

Proof. Let ũi = νisi + vi, i ∈ {1, 2}, where νi is chosen such that 〈si, vi〉 = 0, i.e.,

νi =
‖ũi‖
‖si‖

cos^(si, ũi), i ∈ {1, 2}.

Then, we can write

Re
{
〈ũ1, ũ2〉

}

‖ũ1‖‖ũ2‖
=

1
‖ũ1‖‖ũ2‖

Re
{(

ν1ν2〈s1, s2〉+ ν1〈s1, v2〉+ ν2〈v1, s2〉+ 〈v1, v2〉
)}

. (A22)

Define the set of events

A1 =



(s1, s2, C1, C2) :

∣∣∣∣∣ρ̃−
ν1ν2

‖ũ1‖‖ũ2‖
〈s1, s2〉

∣∣∣∣∣ > 4ε





A2 =



(s1, s2, C1, C2) :

∣∣∣∣∣
ν1

‖ũ1‖‖ũ2‖
Re
{
〈s1, v2〉

}
∣∣∣∣∣ > ε





A3 =



(s1, s2, C1, C2) :

∣∣∣∣∣
ν2

‖ũ1‖‖ũ2‖
Re
{
〈s2, v1〉

}
∣∣∣∣∣ > ε





A4 =



(s1, s2, C1, C2) :

∣∣∣∣∣
1

‖ũ1‖‖ũ2‖
Re
{
〈v1, v2〉

}
∣∣∣∣∣ > ε



 .

Let E(X1,X2)
be the event that two channel-input sequences XXX1 and XXX2 are jointly typical.

From Equation (A22), we observe that E(X1,X2)
⊂ (A1 ∪A2 ∪A3 ∪A4) and therefore

Pr
[
E(X1,X2) ∩ E c

S ∩ E c
X1
∩ E c

X2

]
≤ Pr

[
A1|E c

S ∩ E c
X1
∩ E c

X2

]
+ Pr

[
A2|E c

S

]
+ Pr

[
A3|E c

S

]
+ Pr

[
A4|E c

S

]
. (A23)

The RHS terms of Equation (A23) can be upper-bounded by an arbitrarily small positive number
δ, see Lemmas D.20 and D.21 in [10]. Thus, Pr

[
E(X1,X2)

∩ E c
S ∩ E c

X1
∩ E c

X2

]
≤ 3δ. Furthermore,

from Lemmas D.2 and D.4 in [10], we have Pr[ES] < δ, Pr[EX1 ] < 6δ, and Pr[EX2 ] < 6δ.

Thus, it follows that, as n→ ∞, Pr
[
E(X1,X2)

]
→ 0 and hence

Pr
[∣∣ρ̃− cos^(ũ1, ũ2) ≤ 7ε

∣∣
]
→ 0,

which establishes the desired results.
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Appendix E. MMSE of Linear Estimation Step in JSC-VQ and HDA-JSC-VQ Decoders

Appendix E.1. JSC-VQ System

The MMSE of the system in Section 5.1 can be obtained by using asymptotic arguments similar to
those used in ([10], Appendix D.D).

Let S̃i be the vector-quantized value of Si, and Yk = α1h1S̃1,k + α2h2S̃2,k + Wk, k = 1, . . . , n.
For optimal VQ of Gaussian sources, Equations (5)–(8) hold and the following asymptotic covariances
can be verified.

k11 = E{|S̃1|2}n = σ2(1− 2−2R1)

k12 = k21 = E{S̃∗1 S̃2}n = σ2ρ(1− 2−2R1)(1− 2−2R2)

k13 = k∗31 = E{S̃∗1Y}n = (α1h1 + α2h2ρ)k11

k22 = E{|S̃2|2}n = σ2(1− 2−2R2)

k23 = k∗32 = E{S̃∗2Y}n = (α2h2 + α1h1ρ)k22

k33 = E{|Y|2}n = α2
1γ1σ2 + 2α1α2γ12ρσ2 + α2

2γ2σ2 + N,

c11 = E{S∗1 S̃1}n = k11

c12 = E{S∗1 S̃2}n = ρk22

c13 = E{S∗1Y}n = (α1h1 + α2h2ρ)σ2

c21 = E{S∗2 S̃1}n = ρk11

c22 = E{S∗2 S̃2}n = k22

c23 = E{S∗2Y}n = (α2h2 + α1h1ρ)σ2.

Using these results, the MMSE of the linear estimator for different outage events can be determined
as follows.

• Outage event E12: Define the column vector ỹyyk = (S̃1,k S̃2,k)
T whose covariance matrix is

KKK12 =

[
k11 k12

k21 k22

]

and let ccc′i = (ci1 ci2)
T . The optimal linear estimator is Ŝi,k = (qi1 qi2)

Tỹyyk whose coefficients are
given by (qi1 qi2)

T = KKK−1
12 ccc′i. The MMSE of this estimator is

di(E12|R1, R2, α1, α2) = σ2 − qi1ci1 − qi2ci2 = σ22−2Ri

[
1− ρ2(1− 2−2Rj)

1− ρ̃2

]
, i = 1, 2. (A24)

• Partial outage event E ′1: Define the column vector ỹyyk = (S̃1,k Yk)
T whose covariance matrix is

KKK′1 =

[
k11 k13

k31 k33

]

and let ccc′i = (ci1 ci3)
T . The optimal linear estimator is Ŝi,k = (qi1 qi3)

Tỹyyk whose coefficients are
given by (qi1 qi3)

T = (KKK′1)
−1ccc′i. The MMSE of this estimator is

di(E ′1|R1, R2, α1, α2) = σ2 − qi1ci1 − qi,3ci3, i = 1, 2. (A25)
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• Partial outage event E ′2: Define the column vector ỹyyk = (S̃2,k Yk)
T whose covariance matrix is

KKK′2 =

[
k22 k23

k32 k33

]

and let ccc′i = (ci2 ci3)
T . The optimal linear estimator is Ŝi,k = (qi2 qi3)

Tỹyyk whose coefficients are
given by (qi2 qi3)

T = (KKK′2)
−1ccc′i. The MMSE of this estimator is

di(E ′2|R1, R2, α1, α2) = σ2 − qi2ci2 − qi3ci3, i = 1, 2. (A26)

• Total outage event E ′12: The optimal linear estimator is Ŝi,k = qi3Yk, where (qi3 = ci3
k33

and the
MMSE is

di(E ′12|R1, R2, α1, α2) = σ2 − |ci3|2
k33

, i = 1, 2. (A27)

Appendix E.2. HDA-JSC-VQ System

The MMSE of the HDA-JSC-VQ system can be determined in the same way as in the case of
JSC-VQ system by modifying the covariances to account for the difference in the channel output.
For the HDA-JSC-VQ system, we have

Yk = α1h1S̃1,k + α2h2S̃2,k + β1h1S1,k + β2h2S2,k + Wk, k = 1, . . . , n.

Therefore, k11, k12, k22, c11, c12, c21, and c22 will be the same as in the previous section, but the
channel output dependent quantities now become

k13 = k∗31 = [(α1 + β1)h1 + α2h2ρ]k11 + β2h2k12

k23 = k∗32 = [(α2 + β2)h2 + α1h1ρ]k22 + β1h1k12

k33 = α2
1γ1σ2 + 2α1β1γ1k11 + 2α1α2γ12ρσ2 + 2α1β2γ12ρk22 + β2

1γ1k11

+ 2β1α2γ12ρk11 + 2β1β1β2γ12k12 + 2α2β2γ12k22 + α2
2γ2σ2 + β2

2γ2k22 + N,

c13 = (α1h1 + α2h2ρ)σ2 + β1h1k11 + β2h2ρk22

c23 = (α2h2 + α1h1ρ)σ2 + β1h1ρk11 + β2h2k22.

Parallel to Equations (A24)–(A27), the MMSE for each outage event can be obtained as follows.

• Outage event E12: Both S̃1 and S̃2 are decoded correctly. Unlike in the JSC-VQ system, the linear
estimator is Ŝi,k = (qi1 qi2 qi2)

Tỹyyk and the optimal coefficients are given by (qi1 qi2 qi3)
T = KKK−1ccci,

where ỹyyk = (S̃1,k S̃2,k Yk)
T , and KKK is the 3× 3 matrix whose (l, m)-elements is klm. and ccc′i =

(ci1 ci2 ci2)
T . The MMSE is thus

di(E12|R1, R2, α1, α2, β1, β2) = σ2 − qi1ci1 − qi2ci2 − qi3ci3, i = 1, 2, (A28)

• Partial outage event E ′1: Only S̃1 is decoded correctly and hence

di(E ′1|R1, R2, α1, α2, β1, β2) = σ2 − qi1ci1 − qi3ci3, i = 1, 2, (A29)
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• Partial outage event E ′2: Only S̃2 is decoded correctly and hence

di(E ′2|R1, R2, α1, α2, β1, β2) = σ2 − qi2ci2 − qi3ci3, i = 1, 2, (A30)

• Total outage event E ′12: Neither S̃1 nor S̃2 is decoded correctly, and therefore

di(E ′12|R1, R2, α1, α2, β1, β2) = σ2 − qi3ci3, i = 1, 2, (A31)
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