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Abstract: Integrated information theory (IIT) describes consciousness as information integrated 
across highly differentiated but irreducible constituent parts in a system. However, in a complex 
dynamic system such as the brain, the optimal conditions for large integrated information systems 
have not been elucidated. In this study, we hypothesized that network criticality, a balanced state 
between a large variation in functional network configuration and a large constraint on structural 
network configuration, may be the basis of the emergence of a large Φ, a surrogate of integrated 
information. We also hypothesized that as consciousness diminishes, the brain loses network 
criticality and Φ decreases. We tested these hypotheses with a large-scale brain network model and 
high-density electroencephalography (EEG) acquired during various levels of human consciousness 
under general anesthesia. In the modeling study, maximal criticality coincided with maximal Φ. The 
EEG study demonstrated an explicit relationship between Φ, criticality, and level of consciousness. 
The conscious resting state showed the largest Φ  and criticality, whereas the balance between 
variation and constraint in the brain network broke down as the response rate dwindled. The results 
suggest network criticality as a necessary condition of a large Φ in the human brain. 
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1. Introduction 

Integrated information theory (IIT) proposes that consciousness equates with integrated 
information in a system and the integrated information is maximized when integration and 
differentiation of the systems’ components are balanced [1–6]. However, in a dynamically networked 
system such as the brain, the optimal conditions under which the integrated information is 
maximized has not been elucidated. Since the integrated information in the brain network is 
significantly associated with functional connectivity between brain regions, it is important to identify 
network conditions that can facilitate the development of large amounts of integrated information. 
In this study, we hypothesized that network criticality, a balanced state between a large variation of 
functional network configurations and a large constraint of structural network configurations, may 
be the basis of the high Φ in conscious brains. 

Criticality was originally introduced for studying phase transition in physics, which was simply 
defined as a balanced state between order and disorder in the activities of the elements that make up 
a system [7,8]. This property has been observed broadly in physical and non-physical systems and 
has been suggested as an optimal state for information storage, transmission, and integration with 
high susceptibility to external stimuli [9–13]. In particular, several computational modeling and 
empirical studies suggest that the brain dynamics associated with consciousness reside near a critical 
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state [14–19]. Furthermore, recent studies have attempted not only to identify whether the conscious 
brain resides near the critical state but also to understand systematically how various types of brain 
perturbations (sleep, anesthesia, and traumatic injuries) lead to a deviation from criticality [9,20–23]. 
Such approaches introduce the criticality hypothesis as a theoretical framework to study 
pharmacological and pathological states of unconsciousness, such as anesthesia and coma. Regarding 
the characteristics of a critical state such as highly informative, highly susceptible, highly efficient, 
and highly integrative, criticality shares many commonalities with the brain state that IIT proposes 
as conducive to consciousness. However, the relationship between criticality, Φ, and human 
consciousness has not been demonstrated explicitly. 

 
Figure 1. Schematic flow diagram for studying the relationship between criticality (defined as the pair 
correlation function, PCF), integrated information (Φ), and human consciousness. (A) Model study: 
A simple coupled oscillator model (Kuramoto model) was implemented on an anatomically informed 
human brain network structure constructed from diffusion tensor imaging (DTI). The Φ was 
calculated while modulating the level of criticality with a control parameter (coupling strength). The 
level of criticality was defined using PCF, a susceptibility measure, of the simulated brain activity. (B) 
Empirical study: 64-channel electroencephalography (EEG) data derived from seven healthy 
volunteers were recorded while gradually increasing sevoflurane concentration from 0.4% to 0.6% to 
0.8%, then decreasing it from 0.8% to 0.6% to 0.4%. The changes of PCF and Φ were compared with 
the response rate to verbal commands. 

To identify a relationship between criticality and Φ, we analyzed computationally a large-scale 
human brain network model adjusting criticality with a control parameter (Figure 1A). The criticality 
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was defined using the pair correlation function (PCF), a surrogate measure of susceptibility [24,25]. 
The relative change of Φ across states was estimated with Φ, a surrogate measure of Φ that we 
developed for high-density electroencephalography (EEG; Figure 1B). Empirically, we modulated the 
level of human consciousness in a stepwise manner with an anesthetic and calculated both Φ and 
PCF from continuous EEG data. From the modeling study and EEG analysis, we were able to 
quantitatively study the relationship between Φ, criticality, and consciousness, and suggested 
network criticality as a necessary condition for a high Φ in human brain networks. 

2. Methods 

Ethics Statement: This study was conducted at the University of Michigan Medical School and 
approved by the Institutional Review Board (HUM00061087); after careful discussion, written 
informed consent was obtained from all participants. 

Human brain network model: Many recent studies have successfully applied Kuramoto/Stuart-
Landau models to the brain in order to understand the organizational principles of multiscale brain 
function, surrogates of information flow, and complex dynamics at the whole brain network level 
[16,26,27]. Similarly, we hypothesized that the application of simple oscillatory models, which can 
modulate the criticality with a control parameter, to an anatomically informed brain network 
structure could inform the relationship between brain network criticality and integrated information. 

We used a large-scale brain network model that implements a coupled simple oscillator model 
on the scaffold of an anatomically informed human brain network structure. The human brain 
network consists of 78 parcels of the cerebral cortex constructed from diffusion tensor imaging (DTI) 
of 80 young adults [28].  

𝜃 (𝑡) = 𝜔 + 𝑆  𝐴 𝑠𝑖𝑛 𝜃 𝑡 − 𝜏 − 𝜃 (𝑡) , 𝑗 = 1,2, … , 𝑁.  (1) 

Here S is the coupling strength between oscillators and Ajk denotes the anatomical connections 
between oscillator j and k, yielding 1 if a connection exists and 0 otherwise. τjk is the time delay 
between node j and k. θj(t) is the phase of oscillator j at time t. ωj is the intrinsic frequency of oscillator 
j. The Kuramoto model is the canonical model for coupled oscillators as a first-order approximation 
of more complex couple oscillatory systems. In general, at a sufficient coupling strength, a system of 
near-identical coupled limit-cycle oscillators can be approximated by this general phase model [29]. 
In other words, simulation results with the Kuramoto model hold for other complex network models 
when simplified with first-order approximation or mean-field approximation. Considering that EEG 
reflects superficial activity, the EEG network is a good case for the application of the Kuramoto 
model. 

Simulation procedures: All parameters for the models were set to simulate alpha oscillations in 
the brain. Alpha oscillation models have successfully explained empirically observed brain network 
behaviors such as functional connectivity, traveling waves, and network state transitions based on 
electroencephalography (EEG) and magnetoencephalography (MEG) [16,21,30–37]. Thus, alpha 
oscillations were analyzed to understand the behaviors of Φ and the criticality at the brain network 
level. The natural frequencies of the oscillators in our simulation were given as a Gaussian 
distribution around 10 Hz with a standard deviation of 0.5 Hz. Time delay was set proportional to 
the physical distances between nodes with a propagation speed of 8.6 m/s [38]. The coupling strength 
between the oscillators was continuously changed from 0 to 18 with an increase of 0.2 within a single 
configuration. For each coupling strength, we calculated criticality and integrated information. One 
hundred configurations were simulated with randomly selected initial frequencies and phases. The 
results were averaged over all the configurations. 

Experimental procedures: We conducted a secondary analysis of high-density EEG data from a 
study of sevoflurane-induced unconsciousness in humans; the details of the experiment can be found 
in the supplementary text of this article and the previously published Blain-Moraes et al. [39]. The 
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current study tested different hypotheses and, unlike the original study, included computational 
analyses of brain network models. 

Sevoflurane dataset: 64-channel EEG were recorded from seven healthy volunteers as 
sevoflurane concentrations in high-flow oxygen (8 L/min) were gradually increased from 0.4% to 
0.6% to 0.8% (the average range at which unconsciousness was induced) or beyond, then decreased 
from 0.8% to 0.6% to 0.4%. The EEG was recorded with eyes closed. The loss and recovery of 
consciousness were defined as the loss and recovery of response to the verbal command ‘squeeze 
your left (or right) hand twice,’ on a recorded loop every 30 seconds, with right/left hand commands 
randomized. 

Due to the heavy computational load of integrated information, we did not use the whole EEG 
recording during the experiment. To reduce computation time, we chose the first 12-second-long EEG 
epoch of every minute, which was enough to represent the continuous changes in integrated 
information and criticality. Considering the important role of the alpha band (8–12 Hz) in the global 
information integration [16,21,30–37], we also focused on the alpha frequency band (8–12 Hz) in the 
EEG analysis. The average reference was used for re-referencing and the windowed sinc–FIR filter 
(in the MATLAB toolbox from EEGLAB) was used to avoid a possible shifting of the signal.  

Criticality: Criticality, a boundary state between order and disorder, has long been proposed to 
play an important role in neural dynamics and brain function. Empirical evidence supports the 
hypothesis that the brain operates at or near the critical point, not only at the neuronal network level 
[22,40,41], but also at the large-scale or global network level [9,12,42–44]. Until now, most studies 
have focused on scale-free behavior, showing power law distribution of empirically observed 
variables. It has also been recently proposed that high correlation between functional and structural 
brain networks [14,16,23,26,45] and a large pair correlation function (PCF) [24,46] is evidence of 
criticality. In both the brain network model and empirical EEG data, we estimated criticality with 
PCF, which is the variance of global phase synchronization and is equivalent to susceptibility in 
statistical physics: 𝑃𝐶𝐹 = 𝑁 {< 𝑅𝑒 [𝑧(𝑡) > − < 𝑅𝑒[𝑧(𝑡) > }, (2) 

where Re[z(t)] is the real part of the z(t) in Eq. (3).  𝑧 = 𝑟 𝑒 =  ∑  𝑒 , (3) 

where Ψ is the order parameter phase. The absolute value r = |z| represents the degree of 
synchronization. The r is equal to zero when the phases of nodes are uniformly distributed and one 
when all the nodes have the same phase. 

Calculation of Φ: IIT defines integrated information (Φ) as the effective information (𝜑) of the 
minimum information partition (MIP) in a system [1–3,5,47]. The MIP is also defined as the partition 
having minimum effective information among all possible partitions. 

Φ [X;x] = 𝜑 [ X;x, MIP(x) ], (4) 

MIP (x) = arg min{ 𝜑 (X;x, P) }, (5) 

where X is the system, x is a state, and P is a partition P = {𝑀 , … ,  𝑀  }. 
Identifying the MIP requires searching all possible partitions and comparing their effective 

information φ. This is the most time-consuming and computationally demanding process in the 
application to high-density EEG. Furthermore, considering the fact that EEG data recorded during 
anesthetic state transitions are non-Gaussian and continuous time series, we used the 𝛷  as a 
measure of integrated information [48]. 𝛷  is a measure of integrated information for systems with 
a non-Gaussian distribution of time series. The covariance of the time series of the empirical 
integrated information is substituted with the prediction error of the linear regression of time series. 𝜑 [𝑋; 𝜏, { 𝑀 , 𝑀  } = ∑ log {𝑑𝑒𝑡 ∑(𝐸 )} − ∑ log{𝑑𝑒𝑡 ∑(𝐸 ) }, (6) 
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where τ is the time delay between the past and present states, and 𝑀 ,  are the bi-partitioned subsets. 
E is the prediction error of linear regression, 𝑋  = α + A⋅𝑋  + 𝐸 . 𝑑𝑒𝑡 ∑ 𝐸  is the determinant of 

the covariance (∑) of predictions errors (𝐸 ). The computed 𝛷  values from original signals were 
compared with the 𝛷  values of surrogate data sets, and non-significant 𝛷  values were set as zero. 
Notably, 𝛷  is based on IIT 2.0 that is different from the latest version IIT 3.0.  

Over the last decade, the improvement of unrealistic computation time was an important issue 
because of the need to search an enormous number of partitions to identify the MIP. In our previous 
study, we proposed a surrogate measure Φ to circumvent the explosive computational time of Φ for 
high-density EEGs. Φ estimates the relative change of Φ across states by considering the average 
feature of many small sample units rather than trying to identify the MIP and its effective information 
for all EEG channels. A sample unit consists of a small number of EEG channels randomly selected 
from 64 channels and the total number of sample units is taken as large enough to represent the 
behavior of the entire high-density EEG montage. In this study, we limited our interest only to the 
relative changes of Φ values across states, rather than attempting to calculate the exact Φ value for 
each brain state, which would be impossible to measure using the superficial and spatially imprecise 
brain activity recorded by EEGs. We also verified our result by comparing it with the Φ calculated by 
phi toolbox, provided in Kitazono et al. [49]. In this toolbox, the Queyranne’s submodular 
optimization algorithm was applied to reduce the number of partitions (Supplementary Figure 1). 

For each sample unit, we were able to calculate the MIP and its effective information—that is, 
the Φ of the sample unit. For instance, in this study, we selected eight random EEG channels for a 
sample unit and acquired 200 sample units that were randomly selected from the baseline states. The 
same 200 sample units determined in the baseline were then compared across EEG windows to 
investigate the increase or decrease of Φ values. Since the number of possible bipartitions of eight 
channels is 127, calculating Φ for all EEG windows of seven subjects during state transitions is 
possible within a relatively short computational time. 

The average Φ is defined as follows. 

Φ = 1𝑘  𝛷 (𝑛) − 1𝑘  𝑚𝑒𝑑𝑖𝑎𝑛 𝛷 ( )(𝑛) ,  (7) 

where n is the number of EEG channels for a sample unit and k is the number of sample units of the 
n EEG channels. 𝛷 (𝑛) measures the effective information of MIP for the n EEG channels, by 
definition, the integrated information of the sample unit. Here, we chose n = 8 and k = 200 following 
our previous study [50]. 𝛷 (𝑛) is the spurious 𝛷 (𝑛) estimated from randomly shuffled EEG data 
sets. Subtracting the randomness, Φ reflects the average integrated information of 200 sample units 
taken from the high-density EEG data that exceeds the spurious information integrated from the 
surrogate data. Since Φ estimates the relative change of Φ, it is appropriate for our purposes to detect 
the maximum Φ to compare with the maximum criticality. 

Functional connectivity: Phase lag index (PLI), a measure of phase locking between two signals, 
was used to define the functional connectivity in the EEG network [51]. We chose a Hilbert transform 
to extract the instantaneous phase of the EEG from each channel and calculate the phase difference 𝛥𝜃 (𝑡) between channels i and j, where 𝛥𝜃 (𝑡) =  𝜃 (𝑡) − 𝜃 (𝑡), t = 1,2,…,n, and n is the number of 
samples within one epoch. 𝑃𝐿𝐼  between two nodes i and j is then calculated using Equation (7):  𝑃𝐿𝐼 = < 𝑠𝑖𝑔𝑛  𝛥𝜃 (𝑡) >  , 0 ≤  𝑃𝐿𝐼 ≤ 1, (8) 

where, the sign() function yields: 1 if 𝛥𝜃 (𝑡) > 0; 0 if 𝛥𝜃 (𝑡) = 0; and –1 if 𝛥𝜃 (𝑡) < 0. The mean < > 
is taken over all t = 1,2,…,n. If the instantaneous phase of one signal is consistently ahead of the other 
signal, the phases are considered locked and 𝑃𝐿𝐼 ≈ 1. However, if the signals randomly alternate 
between a phase lead and phase lag relationship, there is no phase locking and 𝑃𝐿𝐼 ≈ 0.  

Surrogate data: To control for spurious connectivity of EEG, 20 surrogate data sets were 
generated with a random shuffling method, in which a time point is randomly chosen in each EEG 
channel; the EEG epochs are then shuffled before and after the time point. The shuffled data have the 
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same amplitude distribution and power spectrum of the original EEG, but there are disruptions of 
the original connectivity between two EEG signals.  

Network construction: We expected that different EEG frequency bands and different states 
would have different levels of spurious connectivity [52]. Thus, after subtracting the median PLI of 
20 surrogate data sets, if the remaining PLI was larger than 0.1 then the connectivity of two EEG 
signals was set as 1; otherwise, it was set as 0. The threshold (0.1) was chosen to avoid isolated nodes 
in the EEG network in the baseline states. The node degree of an EEG channel was defined as the 
number of functional links with other channels in the network. 

EEG simulation: To test if the PLI network of EEG in conscious states is similar to the structural 
brain network in a critical state, we simulated 78 source signals in the structural brain network in a 
critical state and projected it into the 64 sensor signals on the scalp. We could then directly compare 
the PLI networks of EEG and the PLI network of the simulated EEG (the 64 sensor signals on the 
scalp). The signals generated from the Kuramoto model and structural brain network represent 
source activities of the brain, which are under the surface of where EEG is measured. In reality, the 
electrical potentials generated by the neural activity in the brain conduct outwards through the brain 
tissue and the skull and finally appear at the scalp surface where the EEG signal is measured. In order 
to compare experimental EEG and the model signals, we generated surface level signals from the 
simulated source signals. We used three concentric spherical head models; the three layers consist of 
the brain, skull, and scalp. The conductivity of the three layers was set to be 0.33, 0.0042, and 0.33 
S/m, respectively [53]. The source activity was represented as a dipole moment. The coordinate of the 
dipole moment in the brain was determined by the region’s standard coordinates and the orientation 
of the dipole moment was randomly assigned. The forward model simulation was conducted by 
using the Field Trip Toolboox [54]. 

Statistical Analysis: We performed a one-way ANOVA (“anova1.m”, MATLAB toolbox) with 
Tukey-Kramer correction (“multcompare.m” with alpha = 0.05 and ctype = “tukey-kramer” in 
MATLAB) for the comparison of the PCF and Φ among different states. The statistical tests were 
carried out for the modeling and empirical analysis separately. The adjusted p-values of 0.05 or lower 
(* p < 0.05, ** p < 0.01, and *** p < 0.001) were considered to be statistically significant (S1 Table and S2 
Table). 

3. Results Model Study: Correlation Between Criticality and 𝚽 

We simulated various brain network dynamics by adjusting the control parameter (i.e., coupling 
strength). First, we determined the critical state of the model by identifying the coupling strength that 
yielded a maximum criticality. The criticality of the system was defined by PCF, which reflects the 
susceptibility of the brain network dynamics to perturbation. As the coupling strength of the network 
was increased, the PCF reached a maximum at an intermediate coupling strength, while the order 
parameter increased monotonically (dotted line in Figure 2A). In Figure 2A, we illustrated the 
intermediate coupling strength (blue region) as the critical state of this brain network model and 
selected an incoherent (green region) and highly synchronized (red region) states of lower PCFs as a 
supercritical and subcritical state, respectively. The Φ value was also maximized at a point between 
sub- and supercritical states, at a similar coupling strength that corresponds to the maximum PCF. 
To test the robustness of our method, we applied another method for estimating Φ, which is based 
on Queyranne’s submodular optimization algorithm in Kitazono’s Φ-toolbox [49]. We found the 
result was consistent with the maximum Φ at the critical state (See Supplementary Figure 1 for 
details). 

Here, we assumed that the maximum Φ  might arise due to the balance between the large 
variation of functional network configurations and the large constraints of structural network 
configurations, as a characteristic of a critical state. The disrupted balance in an incoherent or highly 
synchronized brain network results in a small Φ. Figure 2B presents the functional brain networks 
based on the phase lag index (PLI). The functional connectivity at the maximum PCF (in the critical 
state) resembles the structural brain network of DTI, whereas the functional connectivity at the lower 
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PCFs (in the sub-and supercritical states) are relatively homogeneous and not similar with the 
structural brain network. 

 
Figure 2. Criticality, Φ , and structured functional connectivity in the brain network. (A) When 
modulating the coupling strength (a control parameter), the maximum Φ  coincides with the 
maximum criticality, as measured by the pair correlation function (PCF), while the order parameter 
(dotted line) increases in a monotonic way. (B) Only in the critical state (blue region in Figure 2A), a 
salient structured functional connectivity, which resembles the structural brain network, emerges in 
the brain network. Color bar indicates the node degree. 

4. A Network Mechanism of the Maximal 𝚽 in a Critical State  

In a critical state, a network synchronization is balanced by incoherent and synchronous 
connections through partial phase locking. At a coarse-grained level, the distribution of incoherent 
and synchronous connections is shaped by the network topology; oscillations at the nodes with dense 
connections become slower and more synchronous, while oscillations at the nodes with sparse 
connections are faster and incoherent [16,26]. As a consequence, a coarse- grained functional network 
resembles a structural network in a critical state [14,55,56]. 

Figure 3A presents the Spearman correlation coefficients between the node degrees (in the 
structural brain network) and the PLIs of the 78 nodes (in the functional brain network) as coupling 
strength increases. The Spearman correlation coefficient is at a maximum in the critical state (blue 
region), while both the super- and subcritical states (green and red regions, respectively) are 
associated with smaller correlations. The results imply that the constraint of the structural network 
on a functional network is maximized in the critical state, with higher degree nodes having a larger 
PLI. Figure 3B presents the scatter plots of the PLIs versus the node degrees of the 78 nodes in the 
three states. A large positive correlation coefficient appears only in the critical state (Figure 3B blue, 
r = 0.57, p-value < 0.001). However, the large correlation does not mean that the functional network is 
static. Figure 3C presents the temporal evolution of the Spearman correlation coefficients between 
the instantaneous phases of alpha oscillations in the functional brain network and the node degrees 
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in the structural brain network for the three states. The varying correlation coefficients indicate the 
temporal change of the phase lead-lag relationships among 78 brain regions upon the structural brain 
network. The large variation of functional networks is one of the characteristics of a critical state and 
measured by a large PCF. As a result, the large variation of the functional brain network at a small-
time scale (~seconds; Figure 3C) under the large constraint from the structural brain network (Figure 
3B) in a large time scale (~minutes) in the critical state may be the network condition for the maximal Φ in the brain network. 

 
Figure 3. Correlations between the functional and structural brain networks near to and far from a 
critical state. (A) The Spearman correlation coefficient between the 78 phase lag index (PLI) values in 
the functional brain network and the 78 node degrees in the structural brain network is maximal in 
the critical state (black line, blue shaded region). (B) The scatter plots (the 78 PLI values versus the 78 
node degrees) for the supercritical (green), critical (blue), and subcritical (red) states. The large 
correlation in the critical state implies a large constraint of the structural network on the functional 
network. (C) The Spearman correlation coefficients between the instantaneous phases of alpha 
oscillations and the node degrees of the 78 nodes in the structural brain network. The large temporal 
variation indicates a large repertoire of functional connectivity, which is a characteristic of a critical 
state. 

5. EEG Study: Correlation Between Criticality, 𝚽, and Human Consciousness  

To investigate the relationship between criticality, integrated information, and level of human 
consciousness, we compared the PCF and Φ  of high-density EEG and the response rate during 
general anesthesia. The behavioral response rate, which is inversely proportional to the drug 
concentration, was used as a surrogate for the level of consciousness. In Figure 4A, the conscious 
resting state and the conscious recovery state have a higher PCF and Φ than in the unconscious states. 
For the continuous EEG data, the change of PCF correlates with the change of Φ. Moreover, both the 
measures reflect the response rate during the significant state transition. These results are consistent 
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with the model prediction and empirically demonstrate for the first time a direct relationship between 
PCF, Φ, and the level of human consciousness. 

The model study also predicted a large correlation of the structural brain network with the 
functional brain network in consciousness, which corresponds to the functional brain network in a 
critical state. However, since we recorded only the scalp EEG, we were not able to test the correlation 
between functional (PLI) and structural (node degree) brain networks. Instead, we compared the PLI 
networks of the EEG and a simulated EEG. For the simulation of EEG in the conscious state, we first 
simulated the source signals in the structural brain network in a critical state (the same simulation in 
Figures 2 and 3) and then projected the source signals onto the scalp (see the Method in details). If 
the model prediction is correct, both the PLI networks should be largely correlated.  

Indeed, we found high Spearman correlation coefficients between the PLI network of the EEG 
in the conscious states and the PLI network of the simulated EEG in a critical state. This correlation 
decreases along with the reduced response rate in the unconscious states (Figure 4B). The high 
correlation coefficients in conscious states indicate a strong constraint of the structural brain network 
on the EEG. 

 
Figure 4. Criticality, integrated information, and level of human consciousness during general 
anesthesia. (A) The PCF and Φ of 64-channel EEG correlate with the response rate (grey area), which 
was modulated with increasing anesthetic concentrations. (B) The Spearman correlation coefficients 
between the PLI networks of the EEG and the simulated EEG based on the anatomical brain network 
and critical state. The conscious states (baseline, induction, and recovery) show larger correlations, 
which imply a stronger constraint of the structural brain network on the EEG in conscious states. As 
a result, the balance between the large constraint of the structural brain network and the large 
repertoire (i.e., large PCF) of the functional brain network may be the network basis of the large Φ of 
EEG in the conscious brains. 
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6. Discussion  

Summary of the findings: Previous studies investigated the relationships between criticality and 
consciousness [12–17,19,23,33,57], or integrated information and consciousness [1–6,50,58], or 
criticality and integrated information [19,59–61], respectively. No one has yet studied the 
relationships between criticality, integrated information, and consciousness at the same time. In this 
paper, we demonstrated empirically explicit relationships between criticality, integrated information, 
and consciousness at various levels of human consciousness modulated with a general anesthetic, 
and also performed a computational model study to understand how the brain at a critical state 
facilitates the development of a large amount of integrated information at a network level. In the 
modeling study, we simulated the brain network activities near and far from a critical state and 
quantified the criticality and integrated information with PCF and Φ. We found that when the brain 
network reaches a maximal PCF, the Φ  is also maximized under the largest constraint of the 
structural brain network (that is, with the largest correlation between the functional and structural 
brain networks). To verify the modeling results, we gradually modulated the level of consciousness 
in humans with a general anesthetic and compared the PCF and Φ of high-density EEG with the 
behavioral response rate. We found that, in the conscious resting states, the subjects have the highest 
PCF and Φ𝑠 when the behavioral response rates are highest. We also showed that the functional brain 
network of EEGs in conscious states largely correlates with the functional brain network of the 
simulated EEGs, which were modeled to reflect the underlying structural brain network in a critical 
state. From both the modeling study and EEG analysis, we proposed that the balance between the 
large variation of functional brain network (as measured as the large PCF) and the large constraint 
from the structural brain network in a critical state is a necessary condition to generate the high Φ of 
conscious states. 

Criticality and maximal Φ: In the application to our brain network model, since we did not give 
any causal relationships among nodes initially, a non-zero Φ may emerge through only the 
interaction of 78 nodes in the brain network. This raises the following questions. How does a non-
zero Φ emerge spontaneously in the brain network? What is the network basis that facilitates the 
emergence of a non-zero Φ? In this study, we proposed that the phase lead-lag relationship that is 
shaped by the structural brain network might create conditions that facilitate the emergence of a non-
zero Φ in the brain network. 

Previous studies have examined how brain network topology modulates the frequencies and 
phases of local node dynamics, subsequently shaping a pattern of global information flow and 
functional connectivity. A mathematical relationship between the node degree and the phase of node 
dynamics was identified analytically [16,26], which enables us to estimate analytically the phase of a 
node (in a functional network) with only its node degree and local connectivity (in a structural 
network). This was tested with diverse brain networks (human, monkey, and mouse), which 
demonstrated that when considering long-term and spatially coarse-grained brain activities 
(>minutes) the global phase lead–lag relationship and information flow pattern (measured by transfer 
entropy and Granger causality) were predictable based only on the structural brain network 
topologies of the three species. In particular, the difference between the “hub node” and “peripheral 
node” becomes most salient at a critical state. In other words, the structural complexity of overall 
coupled node dynamics is maximized at a critical state. The differences between frequency and phase 
among coupled node dynamics naturally give rise to information flow in the brain network, 
consequently dividing the nodes in the brain network into ‘senders’ and ‘receivers’ of information 
flow. However, in sub- and supercritical states, there is no information flow between node dynamics 
because of a highly synchronized state (i.e., no difference that would allow for information flow) and 
incoherent state (i.e., no interaction that would allow for information flow). Therefore, a non-zero Φ may emerge between these two extreme states and be maximized at a balanced state. Extrapolating 
from results based on the phase lead-lag relationship, emerging a non-zero Φ  without external 
stimuli is likely not random but rather is organized by a mathematical relationship between network 
structure and dynamics in a critical state [16,26,62,63]. 
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A large variation under a large constraint: In our modeling study and EEG analysis, we found 
that a large variation of the functional brain network occurs in spite of a strong constraint from the 
structural brain network. Notably, the large variation and the strong constraint were observed at 
different time scales. When we investigated the correlation coefficient between the instantaneous 
phases and the node degrees of the 78 nodes, the correlation coefficient at each time point varied 
widely at a short time scale (~seconds; Figure 3C). By contrast, the averaged instantaneous phases 
and the node degrees at a longer time scale (~minutes) have a large positive correlation coefficient (r 
= 0.57, Figure 3B), which implied a bias toward positive values in the short time scale variation. Our 
previous EEG study demonstrated that the correlation coefficient between the EEG network and the 
structural brain network was pronounced when calculated with large temporal windows (>60 
seconds) but diminished when calculated with small windows (<5 s). Interestingly, the scale-
dependency appeared only in the baseline conscious states, not in the altered states of consciousness 
such as anesthetized state, minimally conscious state, and unresponsive wakefulness syndrome [23]. 
The conscious brain can be characterized by diverse repertoires of global functional connectivity on 
a short time scale. However, when combining all repertoires of small windows in a large window, 
the different functional connectivity patterns across small windows may be averaged out and only 
the common functional connectivity patterns that are constrained by the structural brain network 
remain. Such an averaged functional connectivity in a large window can be simulated by the mean-
field method upon a structural brain network. Nevertheless, how the large variance and the large 
constraint contribute to the large integrated information in conscious states remains elusive. Further 
studies are required to understand the mechanistic association between the functional variance, 
structural constraint, and Φ in a network. 

Deviations from criticality and Φ: When brain dynamics deviate from a critical state, the capacity 
to shape global node dynamics into a structure that resembles the network structure is lost. In a 
supercritical state, there is no functional interaction between nodes. In a subcritical state, node 
dynamics cannot be structured due to strong functional interactions between nodes that eliminate 
functional heterogeneity. As a result, the Φ of a brain not in a critical state―regardless of whether the 
deviation is toward subcriticality or supercriticality―will decrease in proportion to the distance from 
the critical state. 

Many empirical studies support the criticality hypothesis in consciousness by comparing the 
dynamics of various conscious states with unconscious states (such as sleep, anesthesia, seizure, and 
coma). They have commonly shown that unconsciousness is associated with a deviation from 
criticality, which is quantified with various methods (power law, susceptibility, pair correlation 
function, and correlation between the functional and structural brain networks) [15,22,40,57,64–72]. 
However, no one has yet associated criticality, human consciousness, and Φ because of the explosive 
computational demands required for Φ calculations. In a previous study, we introduced a method 
that statistically estimates the increase/decrease of Φ for a continuous EEG, termed Φ, and showed 
the applicability to characterizing levels of consciousness with high-density EEG and also enabled us 
to study a relationship with network criticality [50]. Our current results show that the empirical and 
computational model studies support the hypothesis that the characteristic network properties in a 
critical state naturally give rise to a structured, asymmetric phase lead–lag relationship among 
oscillators and, in turn, maximize Φ in the conscious brain. 

Limitations: This study has several limitations. First, Φ does not measure the precise Φ. Instead, 
we estimated the relative change of Φ, focusing on the increase/decrease along with the change in 
criticality in the network model and based on empirical EEG during anesthetic-induced 
unconsciousness. Even so, this relative measure is sufficient for the purpose of this study, which is to 
examine the relationship between Φ, criticality, and levels of consciousness. Considering the 
significant differences among the six versions of Φ in the recent comparison [73], we tested another 
Φ that was introduced recently [49] and found the results were consistent. However, testing other 
versions of Φ may enhance the reliability of our study. Second, in this study, we derived a relationship 
between asymmetric phase lead–lag relationships and Φ, but this relationship did not explain how 
the phase lead–lag relationship generated a causal relationship defined by information partition for 
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Φ. It may require an analytic study to identify conditions to link phase lead–lag and Φ. Third, to find 
an association between Φ, criticality, and consciousness, we used the subjects’ response rate during 
exposure to a general anesthetic as a surrogate for the level of consciousness. However, it is well 
known that unresponsiveness does not necessarily correlate with lack of consciousness. Although 
previously studied in the context of vegetative and minimally conscious states, our research team has 
recently identified covert consciousness during propofol sedation in which overt motoric responses 
were absent but brain network responses suggestive of volition were present [74]. Future studies 
might incorporate EEG data, behavioral responsiveness, and neuroimaging protocols to determine 
covert consciousness in order to more precisely identify the relationship between critical dynamics, 
consciousness, and Φ. Fourth, the number of subjects (7) in the empirical data analysis was low. To 
improve reliability, more subjects may be required in future studies. Testing the relationship level of 
consciousness, criticality, and Φ with other states of consciousness such as sleep and vegetative states 
may also be required. Finally, the structural brain network used in the modeling study includes only 
the cortex. Including subcortical networks such as thalamocortical and hippocampocortical 
connections, etc. could improve the modeling performance for complex state transitions during 
general anesthesia. 

7.Conclusion 

We demonstrated for the first time an explicit relationship between criticality, integrated 
information, and human consciousness with computational modeling and EEG analysis. We propose 
that network criticality, that is, a balanced state between large variation of functional network 
configurations and strong constraint of structural network configurations, is a network condition for 
integrated information. Understanding this relationship may open a new way to study diverse states 
of consciousness situated near to and far from a critical state in terms of integrated information. It 
may also provide a theoretical foundation for controlling the level of consciousness and integrated 
information by modulating criticality at a network level. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1. Statistical 
tests of Pair Correlation Function(PCF) and integrated information(Φ ̅) among supercritical, critical, and 
subcritical states in model, Table S2. Statistical tests of Pair Correlation Function(PCF) and integrated 
information( Φ ) among baseline, induction, anesthesia, and recovery states in experiment. The baseline, 
induction, anesthesia, and recovery states are the average of 10-min with 0%, 0.4%, 0.8%, 0% drug concentrations, 
respectively, Figure S1. In order to test the robustness for the relationship between integrated information and 
criticality (measured by pair correlation function), we tested another integrated information measure, Φ_SI, 
recently introduced with its toolbox [50]. We compared the two integrated information measures, (A) Φ in Figure 
2 and (B) Φ_SI based on Queyrannes’s submodular optimization algorithm [48, 50]. For Φ_SI, we iterated the 
simulation 10 times. The error bar indicates the standard deviation at each coupling strength. Both the integrated 
information measures based on different algorithms demonstrate the maximal Φ values near the critical state. 
Notably, we did not remove trivial partitions (e.g., partitioning the 78 nodes into 1 node and 77 nodes) in the 
calculation of Φ_SI, which frequenctly observed with the model data. However, for the prescise calculation of 
Φ_SI, it should be handled carefully in the future application. 
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