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Abstract: In this paper, we will study the key enumeration problem, which is connected to the key
recovery problem posed in the cold boot attack setting. In this setting, an attacker with physical
access to a computer may obtain noisy data of a cryptographic secret key of a cryptographic scheme
from main memory via this data remanence attack. Therefore, the attacker would need a key-recovery
algorithm to reconstruct the secret key from its noisy version. We will first describe this attack
setting and then pose the problem of key recovery in a general way and establish a connection
between the key recovery problem and the key enumeration problem. The latter problem has
already been studied in the side-channel attack literature, where, for example, the attacker might
procure scoring information for each byte of an Advanced Encryption Standard (AES) key from
a side-channel attack and then want to efficiently enumerate and test a large number of complete
16-byte candidates until the correct key is found. After establishing such a connection between the key
recovery problem and the key enumeration problem, we will present a comprehensive review of the
most outstanding key enumeration algorithms to tackle the latter problem, for example, an optimal
key enumeration algorithm (OKEA) and several nonoptimal key enumeration algorithms. Also,
we will propose variants to some of them and make a comparison of them, highlighting their strengths
and weaknesses.
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1. Introduction

A side-channel attack may be defined as any attack by which an attacker is able to obtain private
information of a cryptographic algorithm from its implementation instead of exploiting weaknesses in
the implemented algorithm itself. Most of these attacks are based on a divide-and-conquer approach
through which the attacker obtains ranking information about the chunks of the secret key and then
uses such information to construct key candidates for that key. This secret key is the result of the
concatenation of all the key parts, while a chunk candidate is a possible value of a key part that
is chosen because the attack suggests a good probability for that value to be correct. Particularly,
we will focus on a particular side-channel attack, known as cold boot attack. This is a data remanence
attack in which the attacker is able to read sensitive data from a source of computer memory after
supposedly having been deleted. More specifically, exploiting the data remanence property of dynamic
random-access memories (DRAMs) , an attacker with physical access to a computer, may procure
noisy data of a secret key from main memory via this attack vector. Hence, after obtaining such data,
the attacker’s main task is to recover the secret key from its noisy version. As it will be revealed by the
literature in Section 2, the research effort, after the initial work showing the practicability of cold boot
attacks [1], has focused on designing tailor-made algorithms for efficiently recovering keys from noisy
versions for a range of different cryptographic schemes whilst exploring the limits of how much noise
can be tolerated.
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The above discussion raises the following question: can we devise a general approach to key
recovery in the cold boot attack setting, i.e., a general algorithmic strategy that can be applied to
recovering keys from noisy versions of those keys for a range of different cryptographic schemes?
In this research paper, we work toward answering this question by studying the key enumeration
problem, which is connected to the key recovery problem in the cold boot attack setting.
Therefore, this paper, to the best of our knowledge, is the first to present a comprehensive review
of the most outstanding key enumeration algorithms to tackle the key enumeration problem.
Explicitly, our major contributions in this research work are the following:

1. We present the key recovery problem in a general way and establish a connection between the
key recovery problem and the key enumeration problem.

2. We describe the most outstanding key enumeration algorithms methodically and in detail
and also propose variants to some of them. The algorithms included in this study are an
optimal key enumeration algorithm (OKEA); a bounded-space near-optimal key enumeration
algorithm; a simple stack-based, depth-first key enumeration algorithm; a score-based key
enumeration algorithm; a key enumeration algorithm using histograms; and a quantum key
enumeration algorithm. For each studied algorithm, we describe its inner functioning, showing its
functional and qualitative features, such as memory consumption, amenability to parallelization;
and scalability.

3. Finally, we make an experimental comparison of all the implemented algorithms, drawing
special attention to their strengths and weaknesses. In our comparison, we benchmark
all the implemented algorithms by running them in a common scenario to measure their
overall performance.

Note that the goal of this research work is not only to study the key enumeration problem and
its connection to the key recovery problem but also to show the gradual development of designing
key enumeration algorithms, i.e., our review also focuses on pointing out the most important design
principles to look at when designing key enumeration algorithms. Therefore, our review examines the
most outstanding key enumeration algorithms methodically, via describing their inner functioning,
the algorithm-related data structures, and the benefits and drawbacks from using such data structures.
Particularly, this careful examination shows us that, by properly using data structures and by making
the restriction on the order in which the key candidates are enumerated less strict, we may devise better
key enumeration algorithms in terms of overall performance, scalability, and memory consumption.
This observation is substantiated in our experimental comparison.

This paper is organised as follows. In Section 2, we will first describe the cold boot attack setting
and the attack model we will use throughout this paper. In Section 3,we will describe the key recovery
problem in a general way and establish a connection between the key recovery problem and the key
enumeration problem. In Section 4, we will examine several key enumeration algorithms to tackle
the key enumeration problem methodically and in detail, e.g., an optimal key enumeration algorithm
(OKEA), a bounded-space near-optimal key enumeration algorithm, a quantum key enumeration
algorithm, and variants of other key enumeration algorithms. In Section 5, we will make a comparison
of them, highlighting their strengths and weaknesses. Finally, in Section 6, we will draw some
conclusions and give some future research lines.

2. Cold Boot Attacks

A cold boot attack is a type of data remanence attack by which sensitive data are read from
a computer’s main memory after supposedly having been deleted. This attack relies on the data
remanence property of DRAMs that allows an attacker to retrieve memory contents that remain
readable in the seconds to minutes after power has been removed. Since this attack was first described
in the literature by Halderman et al. nearly a decade ago [1], it has received significant attention. In this
setting, more specifically, an attacker with physical access to a computer can retrieve content from a



Entropy 2019, 21, 972 3 of 40

running operating system after performing a cold reboot to restart the machine, i.e., not shutting down
the operating system in an orderly manner. Since the operating system was shut down improperly,
it will skips file system synchronization and other activities that would occur on an orderly shutdown.
Therefore, following a cold reboot, such an attacker may use a removable disk to boot a lightweight
operating system and then copy stored data in memory to a file. As another option or possibility,
such an attacker may take the memory modules off the original computer and quickly put them in
a compatible computer under the attacker’s control, which is then started and put into a state of
readiness for operation in order to access the memory content. Also, this attacker may perform a
further analysis against the data that was dumped from memory to find various sensitive information,
such as cryptographic keys contained in it [1]. This task may be performed by making use of various
forms of key finding algorithms [1]. Unfortunately for such an attacker, the bits in memory will
degrade once the computer’s power is interrupted. Therefore, if the adversary retrieves any data from
the computer’s main memory after the power is cut off, the extracted data will probably have random
bit variations. This is, the data will be noisy, i.e., differing from the original data.

The lapse of time for which cell memory values are maintained while the machine is off depends
on the particular memory type and the ambient temperature. In fact, the research paper [1] reported
the results of multiple experiments that show that, at normal operating temperatures (25.5 ◦C to
44.1 ◦C), there is little corruption within the first few seconds but this phase is then followed by a
quick decay. Nevertheless, by employing cooling techniques on the memory chips, the period of mild
corruption can be extended. For instance, by spraying compressed air onto the memory chips, they
achieved an experiment at −50◦C and showed that less than 0.1% of bits degrade within the first
minute. At temperatures of approximately −196◦C, attained by the use of liquid nitrogen, less than
0.17% of bits decay within the first hour. Remarkably, once power is switched off, the memory will be
divided into regions and each region will have a “ground state”, which is associated with a bit. In a 0
ground state, the 1 bits will eventually decay to 0 bits while the probability of a 0 bit switching to a 1
bit is very small but not vanishing (a common probability is circa 0.001 [1]). When the ground state is
1, the opposite is true.

From the above discussion, it follows that only a noisy version of the original key may be
retrievable from main memory once the attacker discovers the location of the data in it, so the main
task of the attacker then is to tackle the mathematical problem of recovering the original key from a
noisy version of that key. Therefore, the centre of interest of the research community after the initial
work pointing out the feasibility of cold boot attacks [1] has been to develop bespoke algorithms for
efficiently recovering keys from noisy versions of those keys for a range of different cryptographic
schemes whilst exploring the limits of how much noise can be tolerated.

Heninger and Shacham [2] focused on the case of RSA keys, introducing an efficient algorithm
based on Hensel lifting to exploit redundancy in the typical RSA private key format. This work was
followed up by Henecka, May, and Meurer [3] and by Paterson, Polychroniadou, and Sibborn [4],
with both research papers also paying particular attention to the mathematically highly structured
RSA setting. The latter research paper, in particular, indicated the asymmetric nature of the error
channel intrinsic to the cold boot setting and presented the problem of key recovery for cold boot
attacks in an information theoretic manner.

On the other hand, Lee et al. [5] were the first to discuss cold boot attacks in the discrete logarithm
setting. They assumed that an attacker had access to the public key gx, a noisy version of the private
key x, and that such an attacker knew an upper bound for the number of errors in the private key.
Since the latter assumption might not be realistic and the attacker did not have access to further
redundancy, their proposed algorithm would likely be unable to recover keys in the true cold boot
scenario, i.e., only assuming a bit-flipping model. This work was followed up by Poettering and
Sibborn [6]. They exploited redundancies present in the in-memory private key encodings from two
elliptic curve cryptography (ECC) implementations from two Transport Layer Security (TLS) libraries,
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OpenSSL and PolarSSL, and introduced cold boot key-recovery algorithms that were applicable to the
true cold boot scenario.

Other research papers have explored cold boot attacks in the symmetric key setting, including
Albrecht and Cid [7], who centred on the recovery of symmetric encryption keys in the cold boot
setting by employing polynomial system solvers, and Kamal and Youssef [8], who applied SAT solvers
to the same problem.

Finally, recent research papers have explored cold boot attacks on post-quantum cryptographic
schemes. The paper by Albrecht et al. [9] evaluated schemes based on the ring—and module—variants
of the Learning with Errors (LWE) problem. In particular, they looked at two cryptographic schemes:
the Kyber key encapsulation mechanism (KEM) and New Hope KEM. Their analysis focused on two
encodings to store LWE keys. The first encoding stores polynomials in coefficient form directly in
memory, while the second encoding performs a number theoretic transform (NTT) on the key before
storing it. They showed that, at a 1% bit-flip rate, a cold boot attack on Kyber KEM parameters had a
cost of 243 operations when the second encoding is used for key storage compared to 270 operations
with the first encoding. On the other hand, the paper by Paterson et al. [10] focused on cold boot attacks
on NTRU. Particularly the authors of the research paper [10] were the first that used a combination
of key enumeration algorithms to tackle the key recovery problem. Their cold boot key-recovery
algorithms were applicable to the true cold boot scenario and exploited redundancies found in the
in-memory private key representations from two popular NTRU implementations. This work was
followed up by that of Villanueva-Polanco [11], which studied cold boot attacks against the strongSwan
implementation of the BLISS signature scheme and presented key-recovery algorithms based on key
enumeration algorithms for the in-memory private key encoding used in this implementation.

Cold Boot Attack Model

Our cold boot attack model assumes that the adversary can procure a noisy version of the encoding
of a secret key used to store it in memory. We further assume that the corresponding public parameters
are known exactly, without noise. We do not take into consideration here the significant problem of
how to discover the exact place or position of the appropriate region of memory in which the secret
key bits are stored, though this would be a consideration of great significance in practical attacks.
Our goal is then to recover the secret key. Note that it is sufficient to obtain a list of key candidates
in which the true secret key is located, since we can always test a candidate by executing known
algorithms linked to the scheme we are attacking.

We assume throughout that a 0 bit of the original secret key will flip to a 1 with probability
α = P(0 → 1) and that a 1 bit of the original private key will flip with probability β = P(1 → 0).
We do not assume that α = β; indeed, in practice, one of these values may be very small (e.g., 0.001)
and relatively stable over time while the other increases over time. Furthermore, we assume that the
attacker knows the values of α and β and that they are fixed across the region of memory in which
the private key is located. These assumptions are reasonable in practice: one can estimate the error
probabilities by looking at a region where the memory stores known values, for example, where the
public key is located, and where the regions are typically large.

3. Key Recovery Problem

3.1. Some Definitions

We define an array A as a data structure consisting of a finite sequence of values of a specified
type, i.e., A = [a0, . . . , anA−1]. The length of an array, nA, is established when the array is created.
After creation, its length is fixed. Each item in an array is called an element, and each element is
accessed by its numerical index, i.e., A[i] = ai, with 0 ≤ i < nA. Let A0 = [a0

0, . . . , a0
n0−1] and



Entropy 2019, 21, 972 5 of 40

A1 = [a1
0, . . . , a1

n1−1] be two arrays of elements of a specified type. The associative operation ‖ is
defined as follows.

[a0
0, . . . , a0

n0−1] ‖ [a1
0, . . . , a1

n1−1] = [a0
0, . . . , a0

n0−1, a1
0, . . . , a1

n1−1].

Both a list L and a table T are defined as a resizable array of elements of a specified type. Given a
list L = [e0, . . . , enl−1], this data structure supports the following methods.

• The method L.size() returns the number of elements in this list, i.e., the value nl .
• The method L.add(enl ) appends the specified element enl to the end of this list, i.e.,

L = [e0, e1, . . . , enl ] after this method returns.
• The method L.get(j), with 0 ≤ j < L.size(), returns the element at the specified position j in this

list, i.e., ej.
• The method L.clear() removes all the elements from this list. The list will be empty after this

method returns, i.e., L = [].

3.2. Problem Statement

Let us suppose that a noisy version of the encoding of the secret key r = b0b1b2 . . . bW can
be represented as a concatenation of N = W/w chunks, each on w bits. Let us name the chunks
r0, r1, . . . , rN−1 so that ri = bi·wbi·w+1 . . . bi·w+(w−1). Additionally, we suppose there is a key-recovery
algorithm that constructs key candidates c for the encoding of the secret key and that these key
candidates c can also be represented by concatenations of chunks c0, c1, . . . , cN−1 in the same way.

The method of maximum likelihood (ML) estimation then suggests picking as c the value that
maximizes P(c|r). Using Bayes’ theorem, this can be rewritten as P(c|r) = P(r|c)P(c)

P(r) . Note that
P(r) is a constant and that P(c) is also a constant, independent of c. Therefore, the ML estimation
suggests picking as c the value that maximizes P(r|c) = (1 − α)n00 αn01 βn10(1 − β)n11 , where n00

denotes the number of positions where both c and r contain a 0 bit and where n01 denotes the number
of positions where c contains a 0 bit and r contains a 1 bit, etc. Equivalently, we may maximize
the log of these probabilities, viz. log(P(r|c)) = n00 log(1− α) + n01 log α + n10 log β + n11 log(1− β).
Therefore, given a candidate c, we can assign it a score, namely Sr(c) := log(P(r|c)).

Assuming that each of the, at most, 2w candidate values for chunk ci,
0 ≤ i < N , can be enumerated, then its own score also can be calculated as
S′ri (ci) = ni

00 log(1− α) + ni
01 log α + ni

10 log β + ni
11 log(1− β), where the ni

ab values count
occurrences of bits across the ith chunks ci and ri. Therefore, we have Sr(c) = ∑N−1

i=0 S′ri (ci).
Hence, we may assume we have access to N lists of chunk candidates, where each list contains up
to 2w entries. A chunk candidate is defined as a 2-tuple of the form (score, value), where the first
component score is a real number (candidate score) while the second component value is an array
of w-bit strings (candidate value). The question then becomes can we design efficient algorithms
that traverse the lists of chunk candidates to combine chunk candidates ci, obtaining complete key
candidates c having high total scores obtained by summation? This question has been previously
addressed in the side-channel analysis literature, with a variety of different algorithms being possible
to solve this problem and the related problem known as key rank estimation [12–26].

Let Li = [ci
0, ci

2, . . . , ci
mi−1] be the list of chunk candidates for chunk i, 0 < mi ≤ 2w. Let ci0

j0
, . . . , cin

jn

be chunk candidates 0 ≤ i0 < · · · < in < N , 0 ≤ ji < mi. The function combine(ci0
j0

, . . . , cin
jn) returns a

new chunk candidate c such that c = (ci0
j0

.score + . . . + cin
jn .score, ci0

j0
.value ‖ . . . ‖ cin

jn .value). Note that
when i0 = 0, i1 = 1, . . . , iN−1 = N − 1, c will be a full key candidate.

Definition 1. The key enumeration problem entails traversing the N lists Li, 0 ≤ i < N , while picking a
chunk candidate ci

ji
from each Li to generate full key candidates c = combine(ci0

j0
, . . . , cin

jn). Moreover, we call
an algorithm generating full key candidates c a key enumeration algorithm (KEA).
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Note that the key enumeration problem has been stated in a general way; however, there are
many other variants to this problem. These variants relate to the manner in which the key candidates
are generated by a key enumeration algorithm.

A different version of the key enumeration problem is enumerating key candidates c such that
their total accumulated scores follow a specific order. For example, for many side-channel scenarios,
it is necessary to enumerate key candidates c starting at the one having the highest score, followed by
the one having the second highest score, and so on. In these scenarios, we need a key enumeration
algorithm to enumerate high-scoring key candidates in decreasing order based on their total
accumulated scores. For example, such an algorithm would allow us to find the top M highest
scoring candidates in decreasing order, where 1 ≤ M� 2W . Furthermore, such an algorithm is known
as an optimal key enumeration algorithm.

Another version of the same problem is enumerating all the key candidates c such that their total
accumulated scores satisfy a specified property rather than a specific order. For example, for some
side-channel scenarios, it would be useful to enumerate all key candidates of which their total
accumulated scores lie in an interval [B1, B2]. In these scenarios, the key enumeration algorithm
has to enumerate all key candidates of which their total accumulated scores lie in that interval,
however such enumeration may be not performed in a specified order; still, it does need to ensure that
all fitting key candidates will be generated once it has completed. This is, the algorithm will generate
all the key candidates of which their total accumulated scores satisfy the condition in any order.
Such an algorithm would allow us to find the top M highest scoring candidates in any order if the
interval is well defined, for example. Moreover, such an algorithm is commonly known as a nonoptimal
key enumeration algorithm.

We note that the key enumeration problem arises in other contexts. For example, in the area
of statistical cryptanalysis. In particular, the problem of merging two lists of subkey candidates
was encountered by Junod and Vaudenay [27]. The small cardinality of the lists (213) was such
that the simple approach that consists of merging and sorting the lists of subkeys was tractable.
Another related problem is list decoding of convolutional codes by means of the Viterbi algorithm [28].
However, such algorithms are usually designed to output a small number of most likely candidates
determined a priori, whilst our aim is at algorithms able to perform long enumerations, i.e., only those
key enumeration algorithms designed to be able to perform enumerations of 230 or more key candidates.

4. Key Enumeration Algorithms

In this section, we review several key enumeration algorithms. Since our target is algorithms
able to perform long enumerations, our review procedure consisted of examining only those research
works presenting key enumeration algorithms designed to be able to perform enumerations of 230

or more key candidates. Basically, we reviewed research proposals mainly from the side-channel
literature methodically and in detail, starting from the research paper by Veyrat-Charvillon et al. [18],
which was the first to look closely at the conquer part in side-channel analysis with the goal of testing
several billions of key candidates. Particularly, its authors noted that none of the key enumeration
algorithms proposed in the research literature until then were scalable, requiring novel algorithms to
tackle the problem. Hence, they presented an optimal key enumeration algorithm that has inspired
other more recent proposals.

Broadly speaking, optimal key enumeration algorithms [18,28] tend to consume more memory
and to be less efficient while generating high-scoring key candidates, whereas nonoptimal key
enumeration algorithms [12–17,26,29] are expected to run faster and to consume less memory.
Table 1 shows a preliminary taxonomy of the key enumeration algorithms to be reviewed in this section.
Each algorithm will be detailed and analyzed below according to its overall performance, scalability,
and memory consumption.
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Table 1. Brief description of reviewed key enumeration algorithms (KEAs).

Properties

Algorithm Name Is it order optimal? Is it customizable?
Optimal KEA Yes No, inherently serial

Bounded-Space Near-Optimal KEA Near-optimal if not parallelized No
Stack-Based KEA No Yes, parametrized by a given interval

Threshold No Yes, parametrized by a given interval
Weight-Based KEA Near-optimal if properly parametrized Yes, parametrized by a given interval

KEA with Histograms No Yes, parametrized by a given interval
Quantum KEA No Yes, parametrized by a given interval

4.1. An Optimal Key Enumeration Algorithm

We study the optimal key enumeration algorithm (OKEA) that was introduced in the research
paper [18]. We will firstly give the basic idea behind the algorithm by assuming the encoding of the
secret key is represented as two chunks; hence, we have access to two lists of chunk candidates.

4.1.1. Setup

Let L0 = [c0
0, c0

1, . . . , c0
m0−1] and L1 = [c1

0, c1
1, . . . , c1

m1−1] be the two lists respectively. Each list
is in decreasing order based on the score component of its chunk candidates. Let us define an
extended candidate as a 4-tuple of the form C := (c0

j0
, c1

j1
, j0, j1) and its score as c0

j0
.score + c1

j1
.score.

Additionally, let Q be a priority queue that will store extended candidates in decreasing order based on
their score.

This data structure Q supports three methods. Firstly, the method Q.poll() retrieves and removes
the head from this queue Q or returns null if this queue is empty. Secondly, the method Q.add(e)
inserts the specified element e into the priority queue Q. Thirdly, the method Q.clear() removes all
the elements from the queue Q. The queue will be empty after this method returns. By making use of
a heap, we can support any priority-queue operation on a set of size n in O(log2(n)) time.

Furthermore, let X and Y be two vectors of bits that grow as needed. These are employed to track
an extended candidate C in Q. C is in Q only if both Xj0 and Yj1 are set to 1. By default, all bits in a vector
initially have the value 0.

4.1.2. Basic Algorithm

At the initial stage, queue Q will be created. Next, the extended candidate (c0
0, c1

0, 0, 0) will be
inserted into the priority queue and both X0 and Y0 will be set to 1. In order to generate a new key
candidate, the routine nextCandidate, defined in Algorithm 1, should be executed.

Let us assume that m0, m1 > 1. First, the extended candidate (c0
0, c1

0, 0, 0) will be retrieved and
removed from Q, and then, X0 and Y0 will be set to 0. The two if blocks of instructions will then be
executed, meaning that the extended candidates (c0

1, c1
0, 1, 0) and (c0

0, c1
1, 0, 1) will be inserted into Q.

Moreover, the entries X0, X1, Y0, and Y1 will be set to 1, while the other entries of X and Y will remain
as 0. The routine nextCandidate will then return c0,0 = combine(c0

0, c1
0), which is the highest score

key candidate, since L0 and L1 are in decreasing order. At this point, the two extended candidates
(c0

1, c1
0, 1, 0) and (c0

0, c1
1, 0, 1) (both in Q) are the only ones that can have the second highest score.

Therefore, if Algorithm 2 is called again, the first instruction will retrieve and remove the extended
candidate with the second highest score, say (c0

0, c1
1, 0, 1), from Q and then the second instruction will

set X0 and Y1 to 0. The first if condition will be attempted, but this time, it will be false since X1 is set to
1. However, the second if condition will be satisfied, and therefore, (c0

0, c1
2, 0, 2) will be inserted into Q

and the entries X0 and Y2 will be set to 1. The method will then return c0,1 = combine(c0
0, c1

1), which is
the second highest score key candidate.
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Algorithm 1 outputs the next highest-scoring key candidate from L0 and L1.

1: function NextCandidate(Q)
2: (c0

j0 , c1
j1 , j0, j1)← Q.poll();

3: Xj0 ← 0; Yj1 ← 0;
4: if (j0 + 1) < L0.size() and Xj0+1 = 0 then
5: c0

j0+1 ← L0.get(j0 + 1);
6: Q.add((c0

j0+1, c1
j1 , j0 + 1, j1));

7: Xj0+1 ← 1; Yj1 ← 1;
8: end if
9: if (j1 + 1) < L1.size() and Yj1+1 = 0 then

10: c1
j1+1 ← L1.get(j1 + 1);

11: Q.add((c0
j0 , c1

j1+1, j0, j1 + 1));
12: Xj0 ← 1; Yj1+1 ← 1;
13: end if
14: return cj0,j1 = combine(c0

j0 , c1
j1 );

15: end function

At this point, the two extended candidates (c0
1, c1

0, 1, 0) and (c0
0, c1

2, 0, 2) (both in Q) are the only ones
that can have the third highest score. As for why, we know that the algorithm has generated c0,0 and c0,1

so far. Since L0 and L1 are in decreasing order, we have that either c0,0.score ≥ c0,1.score ≥ c1,0.score ≥
c0,2.score or c0,0.score ≥ c0,1.score ≥ c0,2.score ≥ c1,0.score. Also, any other extended candidate yet
to be inserted into Q cannot have the third highest score for the same reason. Consider, for example,
(c0

1, c1
1, 1, 1): this extended candidate will be inserted into Q only if (c0

1, c1
0, 1, 0) has been retrieved and

removed from Q. Therefore, if Algorithm 1 is executed again, it will return the third highest scoring
key candidate and have the extended candidate with the fourth highest score placed at the head of Q.
In general, the manner in which this algorithm travels through the m0 ×m1 matrix of key candidates
guarantees to output key candidates in a decreasing order based on their total accumulated score,
i.e., this algorithm is an optimal key enumeration algorithm.

Regarding how fast queue Q grows, let Ns
Q be the number of extended candidates in Q after the

function nextCandidate has been called s ≥ 0 times. Clearly, we have that N0
Q = 1, since Q only

contains the extended candidate (c0
0, c1

0, 0, 0) after initialisation. Also, Nm1·m2
Q = 0 because, after m1 ·m2

calls to the function, there will be no more key candidates to be enumerated. Note that, during the
execution of the function nextCandidate, an extended candidate will be removed from Q and two new
extended candidates might be inserted into Q. Considering the way in which an extended candidate
is inserted into the queue, Q may contain at most one element in each row and column at any stage;
hence, Ns

Q ≤ min(m0, m1) for 0 ≤ s ≤ m1 ·m2.

4.1.3. Complete Algorithm

Note that Algorithm 1 works properly if both input lists are in decreasing order. Hence, it may
be generalized to a number of lists greater than 2 by employing a divide-and-conquer approach,
which works by recursively breaking down the problem into two or more subproblems of the same or
related type until these become simple enough to be solved directly. The solutions to the subproblems
are then combined to give a solution to the original problem [30]. To explain the complete algorithm,
let us consider the case when there are five chunks as an example. We have access to five lists of chunk
candidates Li, 0 ≤ i < 5, each of which has a size of mi. We first call initialise(0, 4), as defined
in Algorithm 2. This function will build a tree-like structure from the five given lists (see Figure 1).

Each node Ni,..., f is a 6-tuple of the form (Ni,...,q, Nq+1,..., f , Qi,..., f , Xi,..., f , Yi,..., f , Li,..., f ), where Ni,...,q and
Nq+1,..., f are the children nodes, Qi,..., f is a priority queue, Xi,..., f and Yi,..., f are bit vectors, and Li,..., f a
list of chunk candidates. Additionally, this data structure supports the method size(), which returns
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the maximum number of chunk candidates that this node can generate. This method is easily
defined in a recursive way: if Ni,..., f is a leaf node, then the method will return Li,..., f .size() or else,
the method will return Ni,...,q.size()× Nq+1,..., f .size(). To avoid computing this value each time this
method is called, a node will internally store the value once it has been computed for the first time.
Hence, the method will only return the stored value from the second call onwards. Furthermore,
the function getCandidate(Ni,..., f , j), as defined in Algorithm 3, returns the jth best chunk candidate
(chunk candidate of which its score rank is j) from the node Ni,..., f .

R

N0,1,2

N0,1

L0 L1

L2

N3,4

L3 L4

Figure 1. Binary tree built from Li, 0 ≤ i < 5.

In order to generate the first N best key candidates from the root node R, with R := N0,...,4,
we simply run nextCandidate(R), as defined in Algorithm 4, N times. This function internally
calls the function getCandidate with suitable parameters each time it is required. Calling
getCandidate(Ni,..., f , j) may cause this function to internally invoke nextCandidate(Ni,..., f ) to
generate ordered key candidates from the inner node Ni,..., f on the fly. Therefore, any inner node
Ni,..., f should keep track of the chunk candidates returned by getCandidate(Ni,..., f , j) when called by
its parent; otherwise, the j best chunk candidates from Ni,..., f would have to be generated each time
such a call is done, which is inefficient. To keep track of the returned chunk candidates, each node
Ni,..., f updates its internal list Li,..., f (see lines 5 to 7 in Algorithm 3).

Algorithm 2 creates and initialises each node of the tree-like structure.
1: function initialise(i, f )
2: if f = i then
3: Li ← (null, null, null, null, null, Li);
4: return Li;
5: else
6: q← b i+ f

2 c;
7: Ni,...,q ← initialise(i, q);
8: Nq+1,..., f ← initialise(q + 1, f );
9: ci,...,q

0 ← getCandidate(Ni,...,q, 0) ;
10: cq+1,..., f

0 ← getCandidate(Nq+1,..., f , 0);
11: Qi,..., f .add((ci,...,q

0 , cq+1,..., f
0 , 0, 0));

12: Xi,..., f
0 ← 1; Yi,..., f

0 ← 1;
13: Ni,..., f ← (Ni,...,q, Nq+1,..., f , Qi,..., f , Xi,..., f , Yi,..., f , Li,..., f );
14: return Ni,..., f ;
15: end if
16: end function
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Algorithm 3 outputs the jth best chunk candidate from the node Ni,..., f .

1: function getCandidate(Ni,..., f , j)
2: if Ni,..., f is a leaf then
3: return Li,..., f .get(j);
4: end if
5: if j ≥ Li,..., f .size() then
6: Li,..., f .add(nextCandidate(Ni,..., f ));
7: end if
8: return Li,..., f .get(j) ;
9: end function

Algorithm 4 outputs the next highest-scoring chunk candidate from the node Ni,..., f .

1: function nextCandidate(Ni,..., f )
2: (cx

jx
, cy

jy
, jx, jy)← Qi,..., f .poll(); (x = {i, . . . , q}, y = {q + 1, . . . , f }).

3: Xi,..., f
jx
← 0; Yi,..., f

jy
← 0;

4: if (jx + 1) < Ni,...,q.size() and Xi,..., f
jx+1 = 0 then

5: cx
jx+1 ← getCandidate(Ni,...,q, jx + 1);

6: Qi,..., f .add((cx
jx+1, cy

jy
, jx + 1, jy));

7: Xi,..., f
jx+1 ← 1; Yi,..., f

jy
← 1;

8: end if
9: if (jy + 1) < Nq+1,..., f .size() and Yi,..., f

jy+1 = 0 then
10: cy

jy+1 ← getCandidate(Nq+1,..., f , jy + 1);
11: Qi,..., f .add((cx

jx
, cy

jy+1, jx, jy + 1));
12: Xi,..., f

jx
← 1; Yi,..., f

jy+1 ← 1;
13: end if
14: return combine(cx

jx
, cy

jy
);

15: end function

4.1.4. Memory Consumption

Let us suppose that the encoding of a secret key is W = 2a+b bits in size and that we set
w = 2a; therefore, N = 2b. Hence, we have access to N lists Li, 0 ≤ i < 2b, each of which has
mi chunk candidates. Suppose we would like to generate the first N best key candidates. We first
invoke initialise(0,N − 1) (Algorithm 2). This call will create a tree-like structure with b + 1 levels
starting at 0.

• The root node R := N0,...,2b−1 at level 0.
• The inner nodes NId := Nid

λ with Id = {id · 2b−λ, . . . , (id + 1) · 2b−λ − 1}, where λ, 0 < λ < b, is the
level and id, 0 ≤ id < 2λ, is the node identification at level λ.

• The leaf nodes Li at level b for 0 ≤ i < 2b.

This tree will have 20 + 21 + · · ·+ 2b = 2b+1 − 1 nodes.
Let Mk be the number of bits consumed by chunk candidates stored in memory after calling the

function nextCandidate with R as a parameter k times. A chunk candidate at level 0 ≤ λ ≤ b is of
the form (score, [e0, . . . , e2b−λ−1]) with score being a real number and el being bit strings. Let Bλ be the
number of bits a chunk candidate at level λ occupies in memory.

First note that invoking initialise(0,N − 1) causes each internal node’s list to grow, since

1. At creation of nodes Li (lines 2 to 4), Li is created by setting Li’s internal list to Li and by setting
Li’s other components to null.
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2. At creation of both R and nodes Nid
λ , for 0 < λ < b− 1 and 0 ≤ id < 2λ, the execution of the

function getCandidate (lines 9 to 10) makes their corresponding left child (right child) store a
new chunk candidate in their corresponding internal list. That is, for 0 < λ ≤ b− 1, 0 ≤ id < 2λ,
the Nid

λ ’s internal list has a new element.

Therefore, M0 = ∑b−1
λ=1 2λBλ + Bb(∑

2b−1
i=0 mi).

Suppose the best key candidate is about to be generated, then nextCandidate(R) will be executed
for the first time. This routine will remove the extended candidate (cx

0 , cy
0, 0, 0) out of R’s priority

queue. If it enters the first if (lines 4 to 8), it will make the call getCandidate(N0
1, 1) (line 5), which

may cause each node, except for the leaf nodes, of the left sub-tree to store at most a new chunk
candidate in its corresponding internal list. Hence, retrieving the chunk candidate cx

1 may cause
at most 2λ−1 chunk candidates per level λ, 1 ≤ λ < b, to be stored. Likewise, if it enters the
second if (lines 9 to 13), it will call the function getCandidate(N1

1 , 1) (line 10), which may cause each
node, except for the leaf nodes, of the right sub-tree to store at most a new chunk candidate in its
corresponding internal list. Therefore, retrieving the chunk candidate cy

1 (line 10) may cause at most
2λ−1 chunk candidates per level λ, 1 ≤ λ < b, to be stored. Therefore, after generating the best key
candidate, p(1)λ ≤ 2λ chunk candidates per level λ, 1 ≤ λ < b, will be stored in memory; hence,

M0 ≤ M1 = M0 + ∑b−1
λ=1 p(1)λ Bλ ≤ 2 ∑b−1

λ=1 2λBλ + Bb(∑
2b−1
i=0 mi) bits are consumed by chunk candidates

stored in memory.
Let us assume that k − 1 key candidates have already been generated; therefore, Mk−1 bits

are consumed by chunk candidates in memory, with Mk−1 = M0 + ∑k−1
d=1 ∑b−1

λ=1 p(d)λ Bλ. Let us now
suppose the kth best key candidate is about to be generated; then, the method nextCandidate(R) will
be executed for the kth time. This routine will remove the best extended candidate (cx

jx , cy
jy , jx, jy) out

of the R’s priority queue. It will then attempt to insert two new extended candidates into R’s priority
queue. As seen previously, retrieving the chunk candidate cx

jx+1 may cause at most 2λ − 1 chunk

candidates per level λ, 1 ≤ λ < b, to be stored. Likewise, retrieving the chunk candidate cy
jy+1 may also

cause at most 2λ−1 chunk candidates per level λ, 1 ≤ λ < b, to be stored. Therefore, after generating
the kth best key candidate, p(k)λ ≤ 2λ chunk candidates per level λ, 1 ≤ λ < b, will be stored in memory;
hence,

Mk = Mk−1 +
b−1

∑
λ=1

p(k)λ Bλ = M0 +
k

∑
d=1

b−1

∑
λ=1

p(d)λ Bλ

bits are consumed by chunk candidates stored in memory.
It follows that, if N key candidates are generated, then

MN = M0 +
N

∑
d=1

b−1

∑
λ=1

p(d)λ Bλ =
b−1

∑
λ=1

2λBλ + Bb(
2b−1

∑
i=0

mi) +
N

∑
d=1

b−1

∑
λ=1

p(d)λ Bλ,

bits are consumed by chunk candidates stored in memory in addition to the extended candidates
stored internally in the priority queue of the nodes R and Nid

λ . Therefore, this algorithm may consume
a large amount of memory if it is used to generate a large number of key candidates, which may
be problematic.

4.2. A Bounded-Space Near-Optimal Key Enumeration Algorithm

We next will describe a key enumeration algorithm introduced in the research paper [13]. This
algorithm builds upon OKEA and can enumerate a large number of key candidates without exceeding
the available space. The trade-off is that the enumeration order is only near-optimal rather than optimal
as it is in OKEA. We firstly will give the basic idea behind the algorithm by assuming the encoding of
the secret key is represented as two chunks; hence, we have access to two lists of chunk candidates.
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4.3. Basic Algorithm

Let L0 = [c0
0, c0

1, . . . , c0
m0−1] and L1 = [c1

0, c1
1, . . . , c1

m1−1] be the two lists, and let ω > 0 be an
integer such that ω | m0 and ω | m1. Each list is in decreasing order based on the score component of
its chunk candidates. Let us set mmin = min(m0, m1) and define Rk0,k1 as

Rk0,k1 := {0, . . . , k0 ·ω− 1} × {0, . . . , k1 ·ω− 1},

where k0, k1 are positive integers. The key space is divided into layers layerω
k of width ω. Figure 2 depicts

each layer as a different shade of blue. Formally,

layerω
k := {(c0

j0 , c1
j1) | (j0, j1) ∈ Rk,k \ Rk−1,k−1},

for 1 ≤ k ≤ mmin
w . The remaining layers are defined as follows.

If m0 ≥ m1,
layerω

k := {(c0
j0 , c1

j1) | (j0, j1) ∈ Rk, mmin
ω
\ Rk−1, mmin

ω
},

for mmin
ω < k ≤ m0

ω or else

layerω
k := {(c0

j0 , c1
j1) | (j0, j1) ∈ R mmin

ω ,k \ R mmin
ω ,k−1},

for mmin
ω < k ≤ m1

ω .

(a) m0 < m1 (b) m0 = m1

(c) m0 > m1

Figure 2. Geometric representation of the key space divided into layers of width ω = 3.

The ω-layer key enumeration algorithm: Divide the key space into layers of width ω.
Then, go over layerω

k , one by one, in increasing order. For each layerω
k , enumerate its key candidates

by running OKEA within the layer layerω
k . More specifically, for each layerω

k , 1 ≤ k ≤ mmin
ω , the

algorithm inserts the two corners, i.e., the extended candidates (c0
(k−1)·ω , c1

0, (k− 1) ·ω, 0), (c0
0, c1

(k−1)·ω , 0,
(k− 1) · ω), into the data structure Q. The algorithm then proceeds to extract extended candidates
and to insert their successors as usual but limits the algorithm to not exceed the boundaries of the
layer layerω

k when selecting components of candidates. For the remaining layers, if any, the algorithm
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inserts only one corner, either the extended candidate (c0
(k−1)·ω, c1

0, (k − 1) · ω, 0) or the extended

candidate (c0
0, c1

(k−1)·ω, 0, (k− 1) ·ω), into the data structure Q and then proceeds as usual while not
exceeding the boundaries of the layer. Figure 2 also shows the extended candidates (represented as the
smallest squares in a strong shade of blue within a layer) to be inserted into Q when a certain layer will
be enumerated.

4.4. Complete Algorithm

When the number of chunks is greater than 2, the algorithm applies a recursive decomposition of
the problem (similar to OKEA). Whenever a new chunk candidate is inserted into the candidate set,
its value is obtained by applying the enumeration algorithm to the lower level. We explain an example
to give an idea of the general algorithm. Let us suppose the encoding of the secret key is divided into
4 chunks; then, we have access to 4 lists of chunk candidates, each of which is of size mi with ω | mi.

To generate key candidates, we need to generate the two lists of chunk candidates for the lower
level L0,1 and L2,3 on the fly as far as required. For this, we maintain a set of next potential candidates,
for each dimension, Q0,1 and Q2,3, so that each next chunk candidate obtained from Q0,1 (or Q2,3) is stored
in the list L0,1(or L2,3). Because the enumeration is performed by layers, the sizes of the data structures
Q1,2 and Q3,4 are bounded by 2 ·ω. However, this is not the case for the lists L0,1 and L2,3, which grow
as the number of candidates enumerated grows, hence becoming problematic as seen in Section 4.1.4.

To handle this, each layerω
k is partitioned into squares of size ω×ω. The algorithm still enumerates

the key candidates in layerω
1 first, then in layerω

2 , and so on, but in each layerω
k , the enumeration will be

square-by-square. Figure 3 depicts the geometric representation of the key enumeration within layer3
3,

where a square (strong shade of blue) within a layer represents the square being processed by the
enumeration algorithm. More specifically, for given nonnegative integers I and J, let us define Sw

I,J as

Sω
I,J := {(cjx , cjy) | I ·ω ≤ jx < (I + 1) ·ω, J ·ω ≤ jy < (J + 1) ·ω}.

Let us set mmin = min(m0 ·m1, m2 ·m3); hence,

layerω
k = Sω

k−1,0 ∪ Sω
k−1,1 ∪ · · · ∪ Sω

k−1,k−1 ∪ Sω
k−2,k−1 ∪ · · · ∪ Sω

0,k−1,

for 1 ≤ k ≤ mmin
ω . The remaining layers, if any, are also partitioned in a similar way.

(a) Step 1 (b) Step 2
Figure 3. Geometric representation of the key enumeration within layer3

3.

The in-layer algorithm then proceeds as follows. For each layerω
k , 1 ≤ k ≤ mmin

ω , the in-layer
algorithm first enumerates the candidates in the two corner squares S = Sω

k−1,0 ∪ Sω
0,k−1 by applying

OKEA on S. At some point, one of the two squares is completely enumerated. Assume this is Sω
k−1,0.

At this point, the only square that contains the next key candidates after Sω
k−1,0 is the successor Sω

k−1,1.
Therefore, when one of the squares is completely enumerated, its successor is inserted in S, as long as
S does not contain a square in the same row or column. For the remaining layers, if any, the in-layer
algorithm first enumerates the candidates in the square S = Sω

k−1,0 (or Sω
0,k−1) by applying OKEA on it.

Once the square is completely enumerated, its successor is inserted in S, and so on. This in-layer
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partition into squares reduces the space complexity, since instead of storing the full list of chunk
candidates of the lower levels, only the relevant chunk candidates are stored for enumerating the two
current squares.

Because this in-layer algorithm enumerates at most two squares at any time in a layer, the tree-like
structure is no longer a binary tree. A node Ni,..., f is now extended to an 8-tuple of the form
(Ni,...,q

0 , Nq+1,..., f
0 , Ni,...,q

1 , Nq+1,..., f
1 , Qi,..., f , Xi,..., f , Yi,..., f , Li,..., f ), where Ni,...,q

b and Nq+1,..., f
b for b = 0, 1 are

the children nodes used to enumerate at most two squares in a particular layer, Qi,..., f is a priority
queue, Xi,..., f and Yi,..., f are bit vectors, and Li,..., f is a list of chunk candidates. Hence, the function
that initialises the tree-like structure is adjusted to create the two additional children for a given node
(see Algorithm 5).

Algorithm 5 creates and initialises each node of the tree-like structure.
1: function initialise(i, f )
2: if f = i then
3: Li ← (null, null, null, null, null, null, null, Li);
4: return Li ;
5: else
6: q← b i+ f

2 c;
7: Ni,...,q

0 ← initialise(i, q) ;
8: Nq+1,..., f

0 ← initialise(q + 1, f ) ;
9: Ni,...,q

1 ← initialise(i, q) ;
10: Nq+1,..., f

1 ← initialise(q + 1, f ) ;
11: ci,...,q

0 ← getCandidate(Ni,...,q
0 , 0, 2) ;

12: cq+1,..., f
0 ← getCandidate(Nq+1,..., f

1 , 0, 2) ;
13: Qi,..., f .add((ci,...,q

0 , cq+1,..., f
0 , 0, 0));

14: Xi,..., f
0 ← 1; Yi,..., f

0 ← 1;
15: Ni,..., f ← (Ni,...,q

0 , Nq+1,..., f
0 , Ni,...,q

1 , Nq+1,..., f
1 , Qi,..., f , Xi,..., f , Yi,..., f , Li,..., f );

16: return Ni,..., f ;
17: end if
18: end function

Algorithm 6 outputs the jth chunk candidate from the node Ni,..., f .

1: function getCandidate(Ni,..., f , j, sw)
2: if Ni,..., f is a leaf then
3: return Li,..., f .get(j);
4: end if
5: if sw = 0 then
6: restart(Ni,..., f );
7: else
8: if sw = 1 then
9: Li,..., f .clear();

10: end if
11: end if
12: j← j mod ω;
13: if j ≥ Li,..., f .size() then
14: Li,..., f .add(nextCandidate(Ni,..., f ));
15: end if
16: return Li,..., f .get(j) ;
17: end function
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Algorithm 7 outputs the next chunk candidate from the node Ni,..., f .

1: function nextCandidate(Ni,..., f )
2: (cx

jx
, cy

jy
, jx, jy)← Qi,..., f .poll(); (x = {i, . . . , q}, y = {q + 1, . . . , f })

3: Xi,..., f
jx
← 0; Yi,..., f

jy
← 0;

4: I ← b jx
ω c; J ← b jy

ω c; b = (I ≥ J)?0 : 1;
5: if SI,J is completely enumerated then
6: lastI ← Ni,...,q

0 .size()/ω− 1;
7: lastJ ← Nq+1,..., f

1 .size()/ω− 1;
8: if I = J or (I > lastJ and J = lastJ ) or (J > lastI and I = lastI ) then
9: if (jx + 1) < (lastI + 1) ·ω then

10: cx
jx+1 ← getCandidate(Ni,...,q

0 , jx + 1, 1);
11: cy

0 ← getCandidate(Nq+1,..., f
0 , 0, 0);

12: Qi,..., f .add((cx
jx+1, cy

0, jx + 1, 0));
13: Xi,..., f

jx+1 ← 1; Yi,..., f
0 ← 1;

14: end if
15: if (jy + 1) < (lastJ + 1) ·ω then
16: cx

0 ← getCandidate(Ni,...,q
1 , 0, 0);

17: cy
jy+1 ← getCandidate(Nq+1,..., f

1 , jy + 1, 1);
18: Qi,..., f .add((cx

0 , cy
jy+1, 0, jy + 1));

19: Xi,..., f
0 ← 1; Yi,..., f

jy+1 ← 1;
20: end if
21: else
22: if no candidates in same row/column as Successor(SI,J) then
23: (cx

k , cy
l , k, l)← getHighestScoreCandidate(Successor(SI,J));

24: Qi,..., f .add((cx
k , cy

l , k, l));
25: Xi,..., f

k ← 1; Yi,..., f
l ← 1;

26: end if
27: end if
28: else
29: if (jx + 1, jy) ∈ SI,J and Xi,..., f

jx+1 is set to 0 then
30: cx

jx+1 ← getCandidate(Ni,...,q
b , jx + 1, 2);

31: Qi,..., f .add((cx
jx+1, cy

jy
, jx + 1, jy));

32: Xi,..., f
jx+1 ← 1; Yi,..., f

jy
← 1;

33: end if
34: if (jx, jy + 1) ∈ SI,J and Xi,..., f

jy+1 is set to 0 then
35: if I = J then
36: cy

jy+1 ← getCandidate(Nq+1,..., f
1 , jy + 1, 2);

37: else
38: cy

jy+1 ← getCandidate(Nq+1,..., f
b , jy + 1, 2);

39: end if
40: Qi,..., f .add((cx

jx
, cy

jy+1, jx, jy + 1));
41: Xi,..., f

jx
← 1; Yi,..., f

jy+1 ← 1;
42: end if
43: end if
44: return combine(cx

jx
, cy

jy
);

45: end function

Moreover, the function getCandidate(Ni,..., f , j, sw) is also adjusted so that each node’s internal list
Li,..., f has at most ω chunk candidates at any stage of the algorithm (see Algorithm 6). This function
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internally makes the call to restart(Ni,..., f ) if sw = 0. The call to restart(Ni,..., f ) causes Ni,..., f to restart
its enumeration, i.e., after restart(Ni,..., f ) has been invoked, calling nextCandidate(Ni,..., f ) will return
the first chunk candidate from Ni,..., f . Also, the function getHighestScoreCandidate(Sω

I,J) returns
the highest-scoring extended candidate from the square Sω

I,J . Note this function is called to get the
highest-scoring extended candidate from the successor of Sω

I,J . At this point, the content of the internal

list of Nq+1,..., f
0 is cleared if b = 0. Otherwise, the content of the internal list of Ni,...,q

1 is cleared, if b = 1.
Finally, Algorithm 7 precisely describes the manner in which this enumeration works.

4.4.1. Parallelization

The original authors of the research paper [13] suggest having OKEA run in parallel per square
within a layer, but this has a negative effect on the algorithm’s near-optimality property and even on
its overall performance since there are squares within a layer that are strongly dependent on others,
i.e., for the algorithm to enumerate the successor square, say, SI,J+1 within a layer, it requires having
information that is obtained during the enumeration of SI,J . Hence, this strategy may incur extra
computation and is also difficult to implement.

4.4.2. Variant

As a variant of this algorithm, we propose to slightly change the definition of layer. Here,
a layer consists of all the squares within a secondary diagonal, as shown in Figure 4. The variant
will follow the same process as the original algorithm, i.e., enumeration layer by layer starting
at the first secondary diagonal. Within each layer, it will first enumerate the two square corners
S = Sk−1,0 ∪ S0,k−1 by applying OKEA on it. Once one of two squares is enumerated, let us say
Sk−1,0, its successor Sk−2,1 will be inserted in S as long as such insertion is possible. The algorithm
will continue the enumeration by applying OKEA on the updated S and so on. This algorithm is
motivated by the intuition that enumerating secondary diagonals may improve the quality of order of
output key candidates, i.e., it may be closer to optimal. This variant, however, may have a potential
disadvantage in the multidimensional case because it strongly depends on having all the previously
enumerated chunk candidates of both dimension x and y stored. To illustrate this, let us suppose that
this square Sk−2,1 is to be inserted. Then, the algorithm needs to insert its highest-scoring extended
candidate, (cx

(k−2)·ω , cy
ω , (k− 2) ·ω, ω), into the queue. Hence, the algorithm needs to somehow have

both cx
(k−2)·ω and cy

ω readily accessible when needed. This implies the need to store them when they
are being enumerated (in previous layers). Comparatively, the original algorithm only requires having
the ω previously generated chunk candidates of both dimension x and y stored, which is advantageous
in terms of memory consumption.

(a) Step 1 (b) Step 2
Figure 4. Geometric representation of the key enumeration for variant.

4.5. A Simple Stack-Based, Depth-First Key Enumeration Algorithm

We next present a memory-efficient, nonoptimal key enumeration algorithm that generates key
candidates of which their total scores are within a given interval [B1, B2] that is based on the algorithm
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introduced by Martin et al. in the research paper [16]. We note that the original algorithm is fairly
efficient while generating a new key candidate; however, its overall performance may be negatively
affected by its use of memory, since it was originally designed to store each new generated key
candidate, each of which is tested only once the algorithm has completed the enumeration. Our
variant, however, makes use of a stack (last-in-first-out queue) during the enumeration process. This
helps in maintaining the state of the algorithm. Each newly generated key candidate may be tested
immediately, and there is no need for candidates to be stored for future processing.

Our variant basically performs a depth-first search in an undirected graph G originated from the
N lists of chunk candidates Li = [ci

0, ci
n, . . . , ci

mi−1]. This graph G has ∑N−1
i=0 mi vertices, each of which

represents a chunk candidate. Each vertex vi
j is connected to the vertices vi+1

k , 0 ≤ i < N − 1, 0 ≤ j <

mi, 0 ≤ k < mi+1. At any vertex vi
j, the algorithm will check if ci

j.score plus an accumulated score is

within the given interval [B1, B2]. If so, it will select the chunk candidate ci
j for the chunk i and travel

forward to the vertex vi+1
0 , or else, it will continue exploring and attempt to travel to the vertex vi

j+1.

Otherwise, it will travel backwards to a vertex from the previous chunk vi−1
k , 0 ≤ k < mi−1, when

there is no suitable chunk candidate for the current chunk i.
As can be noted, this variant uses a simple backtracking strategy. In order to speed up the

pruning process, we will make use of two precomputed tables minArray(maxArray). The entry
minArray[i](maxArray[i]) holds the global minimum (maximum) value that can be reached from
chunk i to chunk N − 1. In other words,

minArray[i] = min{
N−1

∑
j=i

cj
kj

.score : cj
kj
∈ Lj}, 0 ≤ i < N ,

maxArray[i] = max{
N−1

∑
j=i

cj
kj

.score : cj
kj
∈ Lj}, 0 ≤ i < N ,

with minArray[N ] = maxArray[N ] = 0.
Additionally, note that when each list of chunk candidates Li = [ci

0, ci
1, . . . , ci

mi−1], 0 ≤ i < N , is
in decreasing order based on the score component of its chunk candidates, we can compute the entry
minArray(maxArray) by computing

maxArray[i] =
N−1

∑
j=i

cj
0.score

and

minArray[i] =
N−1

∑
j=i

cj
mj−1.score

Therefore, the basic variant is sped up by computing maxS (minS), which is the
maximum(minimum) score that can be obtained from the current chunk candidate, and then by
checking if the intersection of the intervals [minS, maxS] and [B1, B2] is not empty.

4.5.1. Setup

We now introduce a couple of tools that we will use to describe the algorithm, using the following
notations. Swill denote a stack. This data structure supports two basic methods [30]. Firstly, the method
S.pop() removes the element at the top of this stack and returns that element as the value of this function.
Secondly, the method S.push(e) pushes e onto the top of this stack. This stack S will store 4-tuples of
the form (score, i, j, indices), where score is the accumulated score at any stage of the algorithm, i and
j are the indices for the chunk candidate ci

j, and indices is an array of positive integers holding the
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indices of the selected chunk candidates, i.e., the chunk candidate ck
indices[k] is assigned to chunk k and

for each k, 0 ≤ k ≤ i.

4.5.2. Complete Algorithm

Firstly, at the initialisation stage, the 4-tuple (0, 0, 0, []) will be inserted into the stack S. The main
loop of this algorithm will call the function nextCandidate(S, B1, B2), defined in Algorithm 8, as long
as the stack S is not empty. Specifically the main loop will call this function to obtain a key candidate
of which its score is in the range [B1, B2]. Algorithm 8 will then attempt to find such a candidate,
and once it has found such a candidate, it will return the candidate to the main loop (at this point, S
may not be empty). The main loop will get the key candidate, process or test it, and continue calling
the function nextCandidate(S, B1, B2) as long as S is not empty. Because of the use of the stack S,
the state of Algorithm 8 will not be lost; therefore, each time the main loop calls it, it will return a
new key candidate of which its score lies in the interval [B1, B2]. The main loop will terminate once
all possible key candidates of which their scores are within the interval [B1, B2] have already been
generated, which will happen once the stack is empty.

Algorithm 8 outputs a key candidate in the interval [B1, B2].

1: function NextCandidate(S, B1, B2)
2: while S is not empty do
3: (aScore, i, j, indices)← S.pop();
4: if j < Li.size()− 1 then
5: S.push((aScore, i, j + 1, indices));
6: end if
7: uScore← aScore + ci

j.score;
8: maxS← uScore + maxArray[i + 1];
9: minS← uScore + minArray[i + 1];

10: if maxS ≥ B1 and minS ≤ B2 then
11: if uScore ≤ B2 then
12: if i = N − 1 then
13: if B1 ≤ uScore then
14: indices← indices ‖ [j];
15: c← combine(c0

indices[0], . . . , cN−1
indices[N−1]);

16: break;
17: end if
18: else
19: S.push((aScore, i + 1, 0, indices ‖ [j]));
20: end if
21: end if
22: end if
23: end while
24: return c;
25: end function

4.5.3. Memory Consumption

We claim that, at any stage of the algorithm, there are at most N 4-tuples stored in the
stack S. Indeed, after the stack is initialised, it only contains the 4-tuple (0, 0, 0, []). Note that,
during the execution of a while iteration, a 4-tuple is removed out of the stack and two new
4-tuples might be inserted. Hence, after s while iterations have been completed, there will be
Ns
S = 1 + (−1 + l1) + (−1 + l2) + (−1 + l3) + (−1 + l4) + · · ·+ (−1 + ls) 4-tuples, where 0 ≤ lr ≤ 2,

for 1 ≤ r ≤ s.
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Suppose now that the algorithm is about to execute the kth while iteration
during which the first valid key candidate will be returned. Therefore,
Nk−1
S = 1 + (−1 + l1) + (−1 + l2) + (−1 + l3) + (−1 + l4) + · · ·+ (−1 + lk−1) ≤ N . During the

execution of the kth while iteration, a 4-tuple will be removed and only a new 4-tuple will be
considered for insertion in the stack. Therefore, we have that Nk

S = Nk−1
S − 1 + lk ≤ N − 1 + lk ≤ N ,

since 0 ≤ lk ≤ 1. Applying a similar reasoning, we have Nn
S ≤ N for n > k.

4.5.4. Parallelization

One of the most interesting features of the previous algorithm is that it is parallelizable.
The original authors suggested as a parallelization method to run instances of the algorithm over
different disjoint intervals [16]. Although this method is effective and has a potential advantage as the
different instances will produce nonoverlapping lists of key candidates with the instance searching
over the first interval producing the most-likely key candidates, it is not efficient since each instance
will inevitably repeat a lot of the work done by the other instances. Here, we propose another
parallelization method that partitions the search space to avoid the repetition of work.

Suppose that we want to have t parallel, independent tasks T1, T2, T3, . . . , Tt to search over a given
interval in parallel. Let Li = [ci

0, ci
1, . . . , ci

mi−1] be the list of chunk candidates for chunk i, 0 ≤ i ≤ N − 1.
We first assume that t ≤ m0, where m0 is the size of L0. In order to construct these tasks, we

partition L0 into t disjoint, roughly equal-sized sublists L0
j , 1 ≤ j ≤ t. We set each task Tj to perform its

enumeration over the given interval but only consider the lists of chunk candidates L0
j , L1, . . . , LN−1.

Note that the previous startegy can be easily generalised for m0 < t � ∏N−1
k=0 mk. Indeed, first,

find the smallest integer l, with 0 < l < N − 1, such that ∏l−1
k=0 mk < t ≤ ∏l

k=0 mk. We then construct
the list of chunk candidates L0,...,l as follows. For each (l + 1)-tuple (c0

j0
, c1

j1
, . . . , cl

jl
), with ck

jk
∈ Lk, 0 ≤

jk < mk, 0 ≤ k ≤ l, the chunk candidate cj0,j1,...,jl is constructed by calculating cj0,j1,...,jl .score =

∑l
k=0 c

k
jk

.score and by setting cj0,j1,...,jl .value = [c0
j0

.value, . . . , cl
jl
.value], and then, cj0,j1,...,jl is added to

L0,...,l . We then partition L0,...,l into t disjoint, roughly equal-sized sublists L0,...,l
j , 1 ≤ j ≤ t and finally

set each task Tj to perform its enumeration over the given interval but only consider the lists of chunk
candidates L0,...,l

j , Ll+1, . . . , LN−1. Note that the workload assigned to each enumerating task is a

consequence of the selected method for partitioning the list L0,...,l .
Additionally, both parallelization methods can be combined by partitioning the given interval

[B1, B2] into ns disjoint subintervals and by searching each such subinterval with tk tasks, hence
amounting to ∑ns

k=1 tk enumerating tasks.

4.6. Threshold Algorithm

Algorithm 8 shares some similarities with the algorithm Threshold introduced in the research
paper [14], since Threshold also makes use of an array ( partialSum) similar to the array minArray to
speed up the pruning process. However, Threshold works with nonnegative integer values (weights)
rather than scores. Threshold restricts the scores to weights such that the smallest weight is the likeliest
score by making use of a function that converts scores into weights [14].

Assuming the scores have already been converted to weights, Threshold first sorts each list of
chunk candidates Li = [ci

0, ci
1, . . . , ci

mi−1], 0 ≤ i < N in ascending order based on the score/weight
component of its chunk candidates. It then computes the entries of partialSum by first setting
partialSum[N − 1] = 0 and then by computing

partialSum[i] = partialSum[i + 1] + ci
0.score f or i = N − 2,N − 3, . . . , 0

Threshold then enumerates all the key candidates of which their accumulated total weight lies
in a range of the form [0, Wt), where Wt is a parameter. To do so, it performs a similar process to
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Algorithm 8 by using its precomputed table (partialSum) to avoid useless paths, hence improving the
pruning process. This enumeration process performed by Threshold is described in Algorithm 9.

According to its designers, this algorithm may perform a nonoptimal enumeration to a depth
of 240 if some adjustments are made in the data structure L used to store the key candidates.
However, its primary drawback is that it must always start enumerating from the most likely key.
Consequently, whilst the simplicity and relatively strong time complexity of Threshold is desirable,
in a parallelized environment, it can only serve as the first enumeration algorithm (or can only be used
in the first search task). Threshold, therefore, was not implemented and, hence, is not included in the
comparison made in Section 5.

Algorithm 9 enumerates all key candidate in the interval [0, Wt].

1: function threshold(i, w, K, Wt, L)
2: for j = 0 to mi do
3: newW ← w + ci

j.score;
4: if (newW + partialSum[i]) > Wt) then
5: break;
6: else
7: if i = N − 1 then
8: Ki ← j;
9: c← combine(c0

K[0], c
1
K[1], . . . , cN−1

K[N−1]);
10: L← L.add(c);
11: else
12: Ki ← j;
13: L← threshold(i + 1, newW, K, Wt, L);
14: end if
15: end if
16: end for
17: return L;
18: end function

4.7. A Weight-Based Key Enumeration Algorithm

In this subsection, we will describe a nonoptimal enumeration algorithm based on the algorithm
introduced in the research paper [12]. This algorithm differs from the original algorithm in the
manner in which this algorithm builds a precomputed table (iRange) and uses it during execution to
construct key candidates of which their total accumulated score is equal to a certain accumulated score.
This algorithm shares similarities with the stack-based, depth-first key enumeration algorithm
described in Section 4.5 because both algorithms essentially perform a depth-first search in the
undirected graph G. However, this algorithm controls pruning by the accumulated total score that a
key candidate must reach to be accepted. To achieve this, the scores are restricted to positive integer
values (weights), which may be derived from a correlation value in a side-channel analysis attack.

This algorithm starts off by generating all key candidates with the largest possible accumulated
total weight W1 and then proceeds to generate all key candidates of which their accumulated total
weight are equal to the second largest possible accumulated total weight W2, and so forth, until it
generates all key candidates with the minimum possible accumulated total weight WN . To find
a key candidate with a weight equal to a certain accumulated weight, this algorithm makes use
of a simple backtracking strategy, which is efficient because impossible paths can be pruned early.
The pruning is controlled by the accumulated weight that must be reached for the solution to be
accepted. To achieve a fast decision process during backtracking, this algorithm precomputes tables
for minimal and maximal accumulated total weights that can be reached by completing a path to the
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right, like the tables minArray and maxArray introduced in Section 4.5. Additionally, this algorithm
precomputes an additional table, iRange.

Given 0 ≤ i ≤ N and minArray[i] ≤ w ≤ maxArray[i], the entry iRange[i][w] points to a list of
integers L(i,w) = [k(i,w)

0 , k(i,w)
1 , . . . , k(i,w)

n ], where each entry represents a distinct index of the list Li,

i.e., 0 ≤ k(i,w)
j 6= k(i,w)

l < mi for j 6= l. The algorithm uses these indices to construct a chunk candidate
with an accumulated score w from chunk i to chunk N − 1.

In order to compute this table, we use the observation that for a given entry k(i,w)
j of iRange[i][w],

the list iRange[i + 1][cw], with cw = w− ci
k(i,w)

j

.score, must be defined and be nonempty. So we first

set the entry iRange[N ][0] to [0] and then proceed to compute the entries for i = N − 1, . . . , 0 and
w = minArray[i], . . . , maxArray[i]. Algorithm 10 describes precisely how this table is precomputed.

Algorithm 10 precomputes the table iRange.

1: function PrecomputeIRange( )
2: iRange[N ][0]← [0];
3: for i = N − 1 to 0 do
4: for w = minArray[i] to maxArray[i] do
5: L(i,w) ← [];
6: for k = 0 to mi − 1 do
7: cw← w− ci

k.score;
8: if iRange[i + 1][cw].size() > 0 then
9: L(i,w).add(k);

10: end if
11: end for
12: if L(i,w).size() > 0 then
13: IRange[i][w]← L(i,w);
14: end if
15: end for
16: end for
17: return IRange

18: end function

4.7.1. Complete Algorithm

Algorithm 11 describes the backtracking strategy more precisely, making use of the precomputed
tables for pruning impossible paths. The integer array TWeights contains accumulated weights in
a selected order, where an entry w ∈ TWeights must satisfy that the list iRange[0][w] is non-empty,
i.e., iRange[0][w].size() > 0. This helps in constructing a key candidate with an accumulated score w
from chunk 0 to chunk N − 1. In particular, TWeights may be set to [W1, W2, . . . , WN ], i.e., the array
containing all possible accumulated scores that can be reached from chunk 0 to chunk N − 1.

Furthermore, the order in which the elements in the array TWeights are arranged is important.
For this array [W1, W2, . . . , WN ], for example, the algorithm will first enumerate all key candidates with
accumulated weight W1 and then all those with accumulated weight W2 and so on. This guarantees a
certain quality, since good key candidates will be enumerated earlier than worse ones. However, key
candidates with the same accumulated weight will be generated in no particular order, so a lack of
precision in converting scores to weights will lead to some decrease of quality.
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Algorithm 11 enumerates key candidates for given weights.

1: function KeyEnumeration(TWeights, iRange)
2: for w ∈ TWeights do
3: i← 0;
4: k[0]← (0, iRange[0][w].get(0)); 2-tuple (e1, e2)

5: cw← w;
6: while i ≥ 0 do
7: while i < N − 1 do
8: cw← cw− ci

k[i].e2
.score;

9: i← i + 1;
10: k[i]← (0, iRange[i][cw].get(0));
11: end while
12: c← combine(c0

k[0].e2
, c1

k[1].e2
, . . . , cN−1

k[N−1].e2
);

13: Test(c);
14: while i ≥ 0 and k[i].e1 ≥ (iRange[i][cw].size()− 1) do
15: i← i− 1;
16: if i ≥ 0 then
17: cw← cw + ci

k[i].e2
.score;

18: end if
19: end while
20: if i ≥ 0 then
21: k[i]← (k[i].e1 + 1, iRange[i][cw].get(k[i].e1 + 1));
22: end if
23: end while
24: end for
25: end function

Algorithm 11 makes use of the table k with N entries, each of which is a 2-tuple of the form
(e1, e2) with e1 and e2 integers. For a given tuple k[i], the component k[i].e1 is an index of some
list iRange[i][w], with minArray[i] ≤ w ≤ maxArray[i], while k[i].e2 is the corresponding value,
i.e., k[i].e2 = iRange[i][w].get(k[i].e1). The value of k[i].e1 allows the algorithm to control if the list
iRange[i][w] has been traveled completely or not, while the second component allows the algorithm to
retrieve the chunk candidate of index k[i].e2 of Li. This is done to avoid recalculating k[i].e2 each time
it is required during the execution of the algorithm.

We will now analyse Algorithm 11. Suppose that w ∈ TWeights; hence, iRange[0][w].size() > 0.
The algorithm will then set k[0] to (0, e(0)2 ), with e(0)2 being the integer from the entry of index 0 of
iRange[0][w], and then set cw to w (lines 3 to 5). We claim that the main while loop (lines 6 to 23) at
each iteration will compute k[i] for 0 ≤ i ≤ N − 1 such that the key candidate c constructed at line 12
will have an accumulated score w.

Let us set cw0 = w. We know that the list iRange[0][cw0] is non-empty; hence, for any entry e(0)2
in the list iRange[0][cw0], the list iRange[1][cw1] is non-empty, where

minArray[1] ≤ cw1 = cw0 − c0
e(0)2

.score ≤ maxArray[1].

Likewise, for any entry e(1)2 in the list iRange[1][cw1], the list iRange[2][cw2] is non-empty, where

minArray[2] ≤ cw2 = cw1 − c1
e(1)2

.score ≤ maxArray[2].
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Hence, for 0 ≤ i < N , we have that, for any given entry e(i)2 in the list iRange[i][cwi], the list
iRange[i + 1][cwi+1] is non-empty, where

minArray[i + 1] ≤ cwi+1 = cwi − ci
e(i)2

.score ≤ maxArray[i + 1].

Note that, when i = N − 1, the list iRange[i + 1][0] = [0] is non-empty and cwi+1 = 0.

Given k[0], k[1], . . . , k[j] are already set for some 0 ≤ j < N − 1; the first inner while loop
(lines 7 to 11) will set k[i] = (0, e(i)2 ), where e(i)2 holds the entry of index 0 of iRange[i][cwi], for 0 < j <
i ≤ N − 1. Therefore, once the while loop ends, i = N − 1 and cwi+1 = cwN = cwi − ci

e(i)2

.score = 0.

Hence, the key candidate constructed from the second components k[l].e2, 0 ≤ l ≤ N − 1, will have
an accumulated score w. In particular, the first time k[0] is set, and so, the first inner while loop will
calculate k[1], . . . , k[N − 1].

Since there may be more than one key candidate with an accumulated score w, the second
inner while loop (lines 14 to 19) will backtrack to a chunk 0 ≤ i < N , from which a new key
candidate with accumulated score w can be constructed. This is done by simply moving backwards
(line 15) and updating cwi+1 to cwi = cwi+1 + ci

k[i].e2.score until there is an i, 0 ≤ i < N , such that
k[i].e1 < iRange[i][cwi].size()− 1.

1. If there is such an i, then the instruction at line 21 will update k[i] to (k[i].e1 +

1, iRange[i][cwi].get(k[i].e1 + 1)). This means that the updated value for the second component
of k[i] will be a valid index in Li, so ci

k[i].e2 will be the new chunk candidate for chunk i. Then,
the first inner while loop (lines 7 to 11) will again execute and compute the indices for the
remaining chunk candidates in the lists Li+1, . . . , LN−1 such that the resulting key candidate will
have the accumulated score w.

2. Otherwise, if i < 0, then the main while loop (lines 6 to 23) will end and w will be set to
a new value from TWeights, since all key candidates with an accumulated score w have just
been enumerated.

4.7.2. Parallelization

Suppose we would like to have t tasks T1, T2, T3, · · · , Tt executed in parallel to enumerate
key candidates of which the accumulated total weights are equal to those in the array TWeights.
We can split the array TWeights into t disjoint sub-arrays TWeightsi and then set each task Ti to run
Algorithm 11 through the sub-array TWeightsi. As an example of a partition algorithm to distribute the
workload among the tasks, we set the sub-array TWeightsi to contain elements with indices congruent
to i mod t from TWeights. Additionally, note that, if we have access to the number of candidates to be
enumerated for each score in the array TWeights beforehand, we may design a partition algorithm for
distributing the workload among the tasks almost evenly.

4.7.3. Run Times

We assume each list of chunk candidates Li = [ci
0, ci

1, . . . , ci
mi−1], 0 ≤ i < N , is in decreasing

order based on the score component of its chunk candidates. Regarding the run time for computing the
tables maxArray and minArray, note that each entry of the table minArray(maxArray) can be computed
as explained in Section 4.5. Therefore, the run time of such an algorithm is Θ(N ).

Regarding the run time for computing iRange, we will analyse Algorithm 10. This algorithm is
composed of three For blocks. For each i, 0 ≤ i < N , the For loop from line 4 to line 15 will be executed
ri times, where ri = maxArray[i]− minArray[i] + 1. For each iteration, the innermost For block (lines 6
to 11) will execute simple instructions mi times. Therefore, once the innermost block has finished, its
run time will be T3 ·mi + C3, where T3 and C3 are constants. Then, the if block (lines 12 to 14) will be
attempted and its run time will be C2, where C2 is another constant. Therefore, the run time for an
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iteration of the For loop (lines 4 to 15) will be T3 ·mi + C2 + C3. Therefore, the run time of Algorithm 10
is ∑N−1

i=0 ri(T3 ·mi + C2 + C3). More specifically,

N−1

∑
i=0

(maxArray[i]− minArray[i] + 1)(T3 ·mi + C2 + C3).

As noted, this run time depends heavily on ri = maxArray[i]− minArray[i] + 1. Now, the size of
the range [minArray[i], maxArray[i]] relies on the scaling technique used to get a positive integer from
a real number. The more accurate the scaling technique is, the more different integer scores there will
be. Hence, if we use an accurate scaling technique, we will probably get larger ri.

We will analyse the run time for Algorithm 11 to generate all key candidates of which their total
accumulated weight is w. Let us assume there are Nw key candidates of which their total accumulated
score is equal to w.

First, the run time for instructions at lines 3 to 5 is constant. Therefore, we will only focus on the
while loop (lines 6 to 23). In any iteration, the first inner while loop (lines 7 to 11) will execute and
compute the indices for the remaining chunk candidates in the lists Li, . . . , LN−1, with i starting at
any number in [0,N − 2], such that the resulting key candidate will have the accumulated score w.
Therefore, its run time is at most C · (N − 1), where C is a constant, i.e., it is O(N ). The instruction
at line 12 will combine all chunks from 0 to N − 1, and hence, its run time is also O(N ). The next
instruction Test(c) will test c, and its run time will depend on the scenario in which the algorithm is
being run. Let us assume its run time is O(T(N )), where T is a function.

Regarding the second inner while loop (lines 14 to 19), this loop will backtrack to a chunk i with
0 ≤ i < N , from which a new key candidate with accumulated score w can be constructed. This
is done by simply moving backwards while computing some simple operations. Therefore, the run
time for the second inner while loop is at most D · (N − 1), where D is a constant, i.e., it is O(N ).
Therefore, the run time for generating all key candidates of which the total accumulated score is w will
be O(Nw · (N + T(N ))).

4.7.4. Memory Consumption

Besides the precomputed tables, it is easy to see that Algorithm 11 makes use of negligible memory
while enumerating key candidates. Indeed, testing key candidates is done on the fly to avoid storing
them during enumeration. However, the table iRange may have many entries.

Let Ne be the number of entries of the table iRange. Line 2 of Algorithm 10 will create the entry
iRange[N][0] that points to the list [0]. Hence, after the instruction at line 2 has been executed, Ne = 1.
Let us consider the For block from line 4 to line 15. For each i, 0 ≤ i < N, let Wi be the set of different
values w in the range [minArray[i], maxArray[i]] such that L(i,w) is non-empty. After the iteration for i
has been executed, the table iRange will have |Wi| new entries, each of which will point to a non-empty
list, with 0 < |Wi| ≤ ri. Therefore, Ne = 1 + ∑N−1

i=0 |Wi| after Algorithm 10 has completed its execution.
Note that |Wi|may increase if the range [minArray[i], maxArray[i]] is large. The size of this interval

relies on the scaling technique used to get a positive integer from a real number. The more accurate the
scaling technique is, the more different integer scores there will be. Hence, if we use an accurate scaling
technique, we will probably get larger ri, making it likely for |Wi| to increase. Therefore, the table
iRange may have many entries.

Regarding the number of bits used in memory to store the table iRange, let us suppose that an
integer is stored in Bint bits and that a pointer is stored in Bp bits. Once Algorithm 10 has completed
its execution, we know that iRange[i][w] will point to the list L(i,w), with 0 ≤ i ≤ N and w ∈ Wi.
Moreover, by definition, we know that the list L(N ,0) will be the list [0], while any other list L(i,w),
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0 ≤ i < N and w ∈ Wi, will have n(i,w) entries, with 1 ≤ n(i,w) ≤ mi. Therefore, the number of bits
iRange occupies in memory after Algorithm 11 has completed its execution is

Tb = Bint + Bp +
N−1

∑
i=0

∑
w∈Wi

(n(i,w) · Bint + Bp).

Since 1 ≤ n(i,w) ≤ mi, we have

Bint + Bp +
N−1

∑
i=0
|Wi| · (Bint + Bp) ≤ Tb ≤ Bint + Bp +

N−1

∑
i=0
|Wi| · (mi · Bint + Bp).

4.8. A Key Enumeration Algorithm using Histograms

In this subsection, we will describe a nonoptimal key enumeration algorithm introduced in the
research paper [17].

4.8.1. Setup

We now introduce a couple of tools that we will use to describe the sub-algorithms used in the
algorithm of the research paper [17], using the following notations: H will denote a histogram, Nb will
denote a number of bins, b will denote a bin, and x will denote a bin index.

Linear Histograms

The function Hi = createHist(Li, Nb) creates a standard histogram from the list of chunk
candidates Li with Nb linearly spaced bins.

Given a list of chunk candidates Li, the function createHist will first calculate both the minimum
score min and maximum score max among all the chunk candidates in Li. It will then partition the
interval I = [min, max] into subintervals I0 = [min, min + σ), I1 = [min + σ, min + 2σ), . . . , INb−1 =

[min + (Nb − 1)σ, max], where σ = max−min
Nb

. It then will proceed to build the list LHi of size Nb.
The entry 0 ≤ x < Nb of LHi will point to a list that contains all chunk candidates from Li such that
their scores lie in Ix. The returned standard histogram Hi is therefore stored as the list LHi of which
its entries will point to lists of chunk candidates. For a given bin index x, LHi .get(x) outputs the list
of chunk candidates contained in the bin of index x of Hi. Therefore, Hi[x] = LHi .get(x).size() is
the number of chunk candidates in the bin of index x of Hi. The run time for createHist(Li, Nb) is
Θ(mi + Nb).

Convolution

This is the usual convolution algorithm which computes H1:2 = conv(H1, H2) from two
histograms H1 and H2 of sizes n1 and n2, respectively, where H1:2[k] = ∑k

i=0 H1[i] · H2[k − i].
The computation of H1:2 is done efficiently by using Fast Fourier Transformation (FFT) for polynomial
multiplication. Indeed, the array [Hj[0], Hj[1], . . . , Hj[nj − 1]] is seen as the coefficient representation
of Pj = Hj[0] + Hj[1]x + . . . + Hj[nj − 1]xnj−1 for j = 1, 2. In order to get H1:2, we multiply the
two polynomials of degree-bound n = max(n1, n2) in time Θ(nlogn), with both the input and
output representations in coefficient form [30]. The convoluted histogram H1:2 is therefore stored
as a list of integers.

Getting the Size of a Histogram

The method size() returns the number of bins of a histogram. This method simply returns
L.size(), where L is the underlying list used to represent the histogram.
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Getting Chunk Candidates from a Bin

Given a standard histogram Hi and an index 0 ≤ x < Hi.size(), the method Hi.get(x) outputs
the list of all chunk candidates contained in the bin of index x of Hi, i.e., this method simply returns
the list LHi .get(x).

4.8.2. Complete Algorithm

This key enumeration algorithm uses histograms to represent scores, and the first step of the
key enumeration is a convolution of histograms modelling the distribution of the N lists of scores.
This step is detailed in Algorithm 12.

Algorithm 12 computes standard and convoluted histograms.

1: function createHistograms(L0, L1, . . . , LN−1, Nb)
2: H0 ← createHist(L0, Nb);
3: H1 ← createHist(L1, Nb);
4: H0:1 ← conv(H0, H1);
5: for i = 2 to N − 1 do
6: Hi ← createHist(Li, Nb);
7: H0:i ← conv(Hi, H0:i−1);
8: end for
9: return H = [H0, H1, . . . , HN−1, H0:1, . . . , H0:N−1];

10: end function

Based on this first step, this key enumeration algorithm allows enumerating key candidates
that are ranked between two bounds R1 and R2. In order to enumerate all keys ranked between the
bounds R1 and R2, the corresponding indices of bins of H0:N−1 have to be computed, as described
in Algorithm 13. It simply sums the number of key candidates contained in the bins starting from
the bin containing the highest scoring key candidates until we exceed R1 and R2 and returns the
corresponding indices xstart and xstop.

Algorithm 13 computes the indices’ bounds.

1: function computeBounds(R1, R2)
2: start← H0:N−1.size();
3: cntstart ← 0;
4: while cntstart < R1 do
5: start← start− 1;
6: cntstart ← cntstart + H0:N−1[start];
7: end while
8: xstart ← start;
9: while cntstart < R2 do

10: start← start− 1 ;
11: cntstart ← cntstart + H0:N−1[start];
12: end while
13: xstop ← start;
14: return xstart, xstop;
15: end function

Given the list of histograms of scores H and the indices of bins of H0:N−1 between which we
want to enumerate, the enumeration simply consists of performing a backtracking over all the bins
between xstart and xstop. More precisely, during this phase, we recover the bins of the initial histograms
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(i.e., before convolution) that were used to build a bin of the convoluted histogram H0:N−1. For a given
bin b with index x of H0:N−1, we have to run through all the non-empty bins b0, . . . , bN−1 of indices
x0, . . . , xN−1 of H0, . . . , HN−1 such that x0 + . . . + xN−1 = x. Each bi will then contain at least one
and at most mi chunk candidates of the list Li that we must enumerate. This leads to storing a table
kf of N entries, each of which points to a list of chunk candidates. The list pointed to by the entry
kf[i] holds at least one and at most mi chunk candidates contained in the bin bi of the histogram Hi.
Any combination of these N lists, i.e., picking an entry from each list, results in a key candidate.

Algorithm 14 describes more precisely this bin decomposition process. This algorithm simply
follows a recursive decomposition. That is, in order to enumerate all the key candidates within a
bin b of index x of H0:N−1, it first finds two non-empty bins of indices xN−1 and x− xN−1 of HN−1
and H0:N−2, respectively. All the chunk candidates in the bin of index xN−1 of HN−1 will be added
to the key factorisation, i.e., the entry kf[N − 1] will point to the list of chunk candidates returned
by HN−1.get(xN−1). It then continues the recursion with the bin of index x − xN−1 of H0:N−2 by
finding two non-empty bins of indices xN−2 and x− xN−1− xN−2 of H0:N−2 and H0:N−3, respectively,
and by adding all the chunk candidates in the bin of index xN−2 of HN−2 to the key factorisation,
i.e., kf[N − 2] will now point to the list of chunk candidates returned by HN−2.get(xN−2) and so
forth. Eventually, each time a factorisation is completed, Algorithm 14 calls the function processKF,
which takes as input the table kf. The function processKF, as defined in Algorithm 15, will compute
the key candidates from kf. This algorithm basically generates all the possible combinations from
the N lists kf[i]. Note that this algorithm may be seen as a particular case of Algorithm 11. Finally,
the main loop of this key enumeration algorithm simply calls Algorithm 14 for all the bins of H0:N−1,
which are between the enumeration bounds xstart, xstop.

Algorithm 14 performs bin decomposition.

1: function DecomposeBin(H, i, xbin, kf)
2: if i = 1 then
3: x ← H0.size()− 1;
4: while (x ≥ 0) and (x + H1.size()) ≥ xbin do
5: if H0[x] > 0 and H1[xbin − x] > 0 then
6: kf[0]← H0.get(x);
7: kf[1]← H1.get(xbin − x);
8: processKF(kf);
9: end if

10: x ← x− 1;
11: end while
12: else
13: x ← Hi.size()− 1;
14: while (x ≥ 0) and (x + H0:i−1.size()) ≥ xbin do
15: if Hi[x] > 0 and H0:i−1[xbin − x] > 0 then
16: kf[i]← Hi.get(x);
17: DecomposeBin(H, i− 1, xbin − x, kf);
18: end if
19: x ← x− 1;
20: end while
21: end if
22: end function

4.8.3. Parallelization

Suppose we would like to have t tasks T1, T2, T3, · · · , Tt executing in parallel to enumerate key
candidates that are ranked between two bounds R1 and R2 in parallel. We can then calculate the
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indices xstart and xstop and then create the array X = [xstart, xstart − 1, . . . , xstop]. We then partition the
array X into t disjoint sub-arrays Xi and finally set each task Ti to call the function decomposeBin for all
the bins of H0:N−1 with indices in Xi.

As has been noted previously, the algorithm employed to partition the array X directly allows
efficient parallel key enumeration, where the amount of computation performed by each task may be
well balanced. An example of a partition algorithm that could almost evenly distribute the workload
among the tasks is as follows:

1. Set i to 0.
2. If X is non-empty, pick an index x in X such that H0:N−1[x] is the maximum number or else return

X1, X2, . . . , Xt.
3. Remove x from the array X, and add it to the array Xi+1.
4. Update i to (i + 1) mod t, and go back to Step 2.

Algorithm 15 processes table kf.

1: function proccessKF(kf)
2: i← 0;
3: I[i]← 0;
4: while i ≥ 0 do
5: while i < N − 1 do
6: i← i + 1;
7: I[i]← 0;
8: end while
9: c← combine(kf[0].get(I[0]), . . . , kf[N − 1].get(I[N − 1]));

10: Test(c);
11: while i ≥ 0 and I[i] ≥ (kf[i].size()− 1) do
12: i← i− 1;
13: end while
14: if i ≥ 0 then
15: I[i]← I[i] + 1;
16: end if
17: end while
18: end function

4.8.4. Memory Consumption

Besides the precomputed histograms, which are stored as arrays in memory, it is easy to see that
this algorithm makes use of negligible memory (only table kf) while enumerating key candidates.
Additionally, it is important to note that each time the function processKF is called, it will need to
generate all key candidates obtained by picking chunk candidates from the N lists pointed to by the
entries of kf and to process all of them immediately, since the table kf may have changed. This implies
that, if the processing of key candidates is left to be done after the complete enumeration has finished,
each version of the table kf would need to be stored, which, again, might be problematic in terms of
memory consumption.

Regarding how many bits in memory the precomputed histograms consumes, we will
analyse Algorithm 12. First, note, for a given list of chunk candidates Li and Nb, the function
createHist(Li, Nb) will return the standard histogram Hi. This standard histogram will be stored as
the list LHi of size Nb. An entry x of LHi will point to a list of chunk candidates. The total number of
chunk candidates held by all the lists pointed to by the entries of LHi is mi. Therefore, the number of
bits to store the list LHi is Bp · Nb + Bc ·mi, where Bp is the number of bits to store a pointer and Bc
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is the number of bits to store a chunk candidate (score, [e]). The total number of bits to store all lists
LHi , 0 ≤ i < N , is

N−1

∑
i=0

(Bp · Nb + Bc ·mi) = N · Bp · Nb + Bc ·
N−1

∑
i=0

mi (1)

Concerning the convoluted histograms, let us first look at H0:1 = conv(H0, H1). We know
that H0:1 is stored as a list of integers and that these entries can be seen as the coefficients of the
resulting polynomial from multiplying the polynomial P0 = H0[0] + H0[1]x + . . . + H0[Nb − 1]xNb−1

by P1 = H1[0] + H1[1]x + . . . + H1[Nb − 1]xNb−1. Therefore, the list of integers used to store H0:1

has 2 · Nb − 1 entries. Following a similar reasoning to the previous one, we can conclude that the
list of integers used to store H0:2 = conv(H2, H0:1) has 3 · Nb − 2 entries. Therefore, for a given
i, 1 ≤ i ≤ N − 1 , the list of integers used to store H0:i = conv(Hi, H0:i−1) has (i + 1) · Nb − i entries.
The total number of entries of all the convoluted histograms H0:1, H0:2, . . . , H0:N−1 is

N−1

∑
i=1

((i + 1)Nb − i) = (Nb − 1) · N · (N − 1)
2

+ Nb · (N − 1).

As expected, the total number of entries strongly depends on the values Nb and N . If an integer
is stored in Bint bits, then the number of bits for storing all the convoluted histograms is

Bint · (Nb − 1) · N · (N − 1)
2

+ Bint · Nb · (N − 1) (2)

4.8.5. Equivalence with the Path-Counting Approach

The stack-based key enumeration algorithm and the score-based key enumeration algorithm
can be also used for rank computation (instead of enumerating each path, the rank version counts
each path). Similarly, the histogram algorithm can also be used for rank computation by simply
summing the size of the corresponding bins in H0:N−1. These two approaches were believed to be
distinct from each other. However, Martin et al. in the research paper [31] showed that both approaches
are mathematically equivalent, i.e., they both compute the exact same rank when choosing their
discretisation parameter correspondingly. Particularly, the authors showed that the binning process in
the histogram algorithm is equivalent to the “map to weight” float-to-integer conversion used prior to
their path counting algorithm (Forest) by choosing the algorithms’ discretisation parameter carefully.
Additionally, in this paper, a performance comparison between their enumeration versions was
carried out. The practical experiments indicated that Histogram performs best for low discretisation
and that Forest wins for higher parameters.

4.8.6. Variant

A recent paper by Grosso [26] introduced a variant of the previous algorithm. Basically, the author
of [26] makes a small adaptation of Algorithm 14 to take into account the tree-like structure used
by their rank estimation algorithm. Also, the author claims this variant has an advantage over the
previous one when the memory needed to store histograms is too large.

4.9. A Quantum Key Search Algorithm

In this subsection, we will describe a quantum key enumeration algorithm introduced in the
research paper [29] for the sake of completeness. This algorithm is constructed from a nonoptimal
key enumeration algorithm, which uses the key rank algorithm given by Martin et al. in the research
paper [16] to return a single key candidate (the rth) with a weight in a particular range. We will first
describe the key rank algorithm. This algorithm restricts the scores to positive integer values (weights)
such that the smallest weight is the likeliest score by making use of a function that converts scores into
weights [16].
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Assuming the scores have already been converted to weights, the rank algorithm first constructs
a matrix b with size of N ×W2 for a given range [W1, W2) as follows. For i = N − 1 and 0 ≤ w < W2,
the entry bi,w contains the number of chunk candidates such that their total score plus w lies in the
given range. Therefore, bi,w is given by the number of chunk candidates ci

j, 0 ≤ j < mi, such that

W1 − w ≤ ci
j.score < W2 − w.

On the other hand, for i = N − 2,N − 3, . . . , 0, and 0 ≤ w < W2, the entry bi,w contains the
number of chunk candidates that can be constructed from the chunk i to the chunk N − 1 such
that their total score plus w lies in the given range. Therefore, bi,w may be calculated as follows.
For 0 ≤ j < mi, bi,w = bi,w + bi+1,w+ci

j .score if w + ci
j.score < W2.

Algorithm 16 describes precisely the manner in which the matrix b is computed. Once matrix b is
computed, the rank algorithm will calculate the number of key candidates in the given range by simply
returning b0,0. Note that b0,0, by construction, contains the number of chunk candidates, with initial
weight 0, that can be constructed from the chunk 0 to the chunk N − 1 such that their total weight lies
in the given range. Algorithm 17 describes the rank algorithm.

Algorithm 16 creates the matrix b.
1: function initialise(W1, W2)
2: i← N − 1;
3: b← [[0]W2 ]N ;
4: for w = 0 to W2 − 1 do
5: for j = 0 to mi − 1 do
6: if W1 − w ≤ ci

j.score < W2 − w then
7: bi,w ← bi,w + 1;
8: end if
9: end for

10: end for
11: for i = N − 2 to 0 do
12: for w = 0 to W2 − 1 do
13: for j = 0 to mi − 1 do
14: if w + ci

j.score < W2 then
15: bi,w ← bi,w + bi+1,w+ci

j .score;
16: end if
17: end for
18: end for
19: end for
20: return b;
21: end function

Algorithm 17 returns the number of key candidates in a given range.

1: function rank(W1, W2)
2: b← initialise(W1, W2);
3: return b0,0;
4: end function

With the help of Algorithm 17, an algorithm for requesting particular key candidates is introduced,
which is described in Algorithm 18. It returns the rth key candidate with weight between W1 and
W2. Note that the correctness of the function getKey follows from the correctness of b and that the
algorithm is deterministic, i.e., given the same r, it will return the same key candidate k. Also, note that
the rth key candidate does not have to be the rth most likely key candidate in the given range.
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Equipped with the getkey algorithm, the authors of [29] introduced a nonoptimal key
enumeration algorithm to enumerate and test all key candidates in the given range. This algorithm
works by calling the function getKey to obtain a key candidate in the given range until there are no
more key candidates in the given range. Also, for each obtained key candidate k, it is tested by using a
testing function T returning either 1 or 0. Algorithm 19 precisely describes how this nonoptimal key
enumeration algorithm works.

Algorithm 18 returns the rth key candidate with weight between W1 and W2.

1: function getKey( b, W1, W2, r)
2: if r > b0,0 then
3: return ⊥ ;
4: end if
5: k← [0]N ;
6: w← 0;
7: for i = 0 to N − 2 do
8: for j = 0 to mi − 1 do
9: if r < bi+1,w+ci

j .score then
10: ki ← j;
11: w← w + ci

j.score;
12: break j;
13: end if
14: r ← r− bi+1,w+ci

j .score;
15: end for
16: end for
17: i← N − 1;
18: for j = 0 to mi − 1 do
19: v← (W1 − w ≤ ci

j.score < W2 − w)?1 : 0;
20: if r ≤ v then
21: ki ← j;
22: break j;
23: end if
24: r ← r− v;
25: end for
26: return k;
27: end function

Combining together the function keySearch with techniques for searching over partitions
independently, the authors of the research paper [29] introduced a key search algorithm, described
in Algorithm 20. The function KS works by partitioning the search space into sections of which the
size follows a geometrically increasing sequence using a size parameter a = O(1). This parameter is
chosen such that the number of loop iterations is balanced with the number of keys verified per block.
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Algorithm 19 enumerates and tests key candidates with weight between W1 and W2.

1: function keySearch( W1, W2, T)
2: b← initialise(W1, W2);
3: r ← 1;
4: while True do
5: k← getKey(b, W1, W2, r);
6: if k = ⊥ then
7: break;
8: end if
9: if T(k) = 1 then

10: break;
11: end if
12: r ← r + 1;
13: end while
14: return k;
15: end function

Algorithm 20 searches key candidates in a range with a size of e approximately.

1: function KS( e, T)
2: W1 ←Wmin;
3: W2 ←Wmin + 1;
4: step← 0;
5: Choose We such that rank(0, We) is approx e;
6: while W1 ≤We do
7: k← keySearch(W1, W2, T);
8: if k 6= ⊥ then
9: return k;

10: end if
11: step← step + 1;
12: W1 ←W2;
13: Choose W2 such that rank(W1, W2) is approx astep;
14: end while
15: return ⊥;
16: end function

Having introduced the function KS, the authors of the research paper [29] transformed it into
a quantum key search algorithm that heavily relies on Grover’s algorithm [32]. This is a quantum
algorithm to solve the following problem: Given a black box function which returns 1 on a single
input x and 0 on all other inputs, find x. Note that, if there are N possible inputs to the black box
function, the classical algorithm uses O(N) queries to the black box function since the correct input
might be the very last input tested. However, in a quantum setting, a version of Grover’s algorithm
solves the problem usingO(N1/2) queries, with certainty [32,33]. Algorithm 21 describes the quantum
search algorithm, which achieves a quadratic speedup over the classical key search (Algorithm 20) [29].
However, it would require significant quantum memory and a deep quantum circuit, making its
practical application in the near future rather unlikely.
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Algorithm 21 performs a quantum search of key candidates in a range with a size of e approximately.

1: function QKS( e, T)
2: W1 ←Wmin;
3: W2 ←Wmin + 1;
4: step← 0;
5: Choose We such that rank(0, We) is approx e;
6: while W1 ≤We do
7: b← initialise(W1, W2);
8: f(·)← T(getKey(b, W1, W2, ·));
9: Call Grover using f for one or zero marked elements in range [W1, W2);

10: if marked element t found then
11: return getKey(b, W1, W2, t);
12: end if
13: step← step + 1;
14: W1 ←W2;
15: Choose W2 such that rank(W1, W2) is approx astep;
16: end while
17: return ⊥;
18: end function

5. Comparison of Key Enumeration Algorithms

In this section, we will make a comparison of the previously described algorithms. We will show
some results regarding their overall performance by computing some measures of interest.

5.1. Implementation

All the algorithms discussed in this paper were implemented in Java. This is because the
Java platform provides the Java Collections Framework to handle data structures, which reduces
programming effort, increases speed of software development and quality, and is reasonably
performant. Furthermore, the Java platform also easily supports concurrent programming, providing
high-level concurrency application programming interfaces (APIs).

5.2. Scenario

In order to make a comparison, we will consider a common scenario in which we will run the key
enumeration algorithms to measure their performance. Particularly, we generate a random secret key
encoded as a bit string of 128 bits, which is represented as a concatenation of 16 chunks, each on 8 bits.

We use a bit-flipping model, as described in Section 3.2. We particularly set α and β to particular
values, namely 0.01 and 0.01, respectively. We then create an original key k (AES key) by picking
a random value for each chunk i, where 0 ≤ i < 16. Once this key k has been generated, its bits
will be flipped according to the values α and β to obtain a noisy version of it, r. We then use the
procedure described in Section 3.2 to assign a score to each of the 256 possible candidate values for
each chunk i. Therefore, once this algorithm has ended its execution, there will be 16 lists, each having
256 chunk candidates.

These 16 lists are then given to an auxiliary algorithm that does the following. For 0 ≤ i < 16,
this algorithm outputs 2e, with 1 ≤ e ≤ 8 chunk candidates for the chunk i, ensuring that the original
chunk candidate for this chunk is one of the 2e chunk candidates. This is, the secret key k is one
out of all the 216·e key candidates. Therefore, we finally have access to 16 lists, each having 2e chunk
candidates, on which we run each of the key enumeration algorithms. Additionally, on execution,
the key candidates generated by a particular key enumeration algorithm are not “tested” but rather
“verified” by comparing them to the known key. Note that this is done only for the sake of testing these
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algorithms; however, in practice, it may be not possible to have such an auxiliary algorithm and the
key candidates have to be tested rather than verified.

5.3. Results per Algorithms

In order to measure the key enumeration algorithms’ overall performance, we simply generate
multiple random instances of the scenario. Once a random instance has been generated, each key
enumeration algorithm is run for a fixed number of key candidates. For each run of any algorithm, some
statistics are collected, particularly the elapsed time to enumerate a fixed number of key candidates.
This was done on a machine with an Intel Xeon CPU E5-2667 v2 running at 3.30 GHz with 8 cores.
The set of simulations are run by setting e to 3. Therefore, each list has a size of 8 chunk candidates.

By running the optimal key enumeration algorithm (OKEA) from Section 4.1, we find the
following issues: it is only able to enumerate at most 230 key candidates, and its overall performance
decreases as the number of key candidates to enumerate increases. In particular, the number of key
candidates considered per millisecond per core ranges from 2336 in a 220 enumeration through 1224 in
a 225 enumeration to 582 in a 230 key enumeration. The main reason for this is that its memory usage
grows rapidly as the number of key candidates to generate increases. Indeed, using terminology from
Section 4.1.4, we have W = 128 = 27, w = 8 = 23, so a = 3, b = 4, so this instance of OKEA creates a
tree composed of the root node R, the internal nodes Nid

λ for 0 < λ ≤ 3, 0 ≤ id < 2λ, and the leaf nodes
Li for 0 ≤ i < 16.

A chunk candidate is a 2-tuple of the form (score, value), where score is a float and value is an
integer array. Both a float variable and an integer variable are stored in 32 bits. Now, at level 4,
the value has only one entry; therefore, B4 = 32 + 32 = 64. At level 3, the value has 2 entries; therefore,
B3 = 32 + 2(32) = 96. At level 2, the value has 4 entries; therefore, B2 = 5(32) = 160. Finally, at level
1, the value has 8 entries; therefore, B1 = 9(32) = 288. After N key candidates have been generated,
the number of bits MN used to store chunk candidates by the algorithm will be

Mn =
3

∑
λ=1

2λBλ + B4(
15

∑
d=0

8) +
N

∑
d=1

3

∑
λ=1

p(d)λ Bλ

= 9664 +
N

∑
d=1

(288 · p(d)1 + 160 · p(d)2 + 96 · p(d)3 )

Since 1 ≤ p(d)λ ≤ 2λ, for 1 ≤ λ ≤ 3, 1 ≤ d ≤ N, then

9664 + 544 · N ≤ 9664 +
N

∑
d=1

(288 · p(d)1 + 160 · p(d)2 + 96 · p(d)3 ) ≤ 9664 + 1984 · N

We also need to include the number of bits used to store extended candidates internally in each
priority queue Nid

λ .Q for 0 < λ ≤ 3, 0 ≤ id < 2λ and the priority queue R.Q. Therefore, we conclude
that, despite all the efforts made for implementing this algorithm in an ingenious way, the algorithm’s
scalability is mostly affected by its inherent design rather than by a particular implementation.

On the other hand, the bounded-space key enumeration algorithm (BSKEA) with ω = 4,
described in Section 4.2, is able to enumerate 230, 233, 236 key candidates. However, it has a dramatic
decrease in its overall performance as the number of key candidates to enumerate increases, similar to
OKEA’s behaviour. In particular, it is able to enumerate about 4800 key candidates per millisecond
per core on average in a 230 enumeration, but this value drops to about 1820 key candidates on
average in a 236 enumeration. The possible reasons for this behaviour are its intrinsic design,
its memory consumption, and its implementation. The variant of the bounded-space key enumeration
algorithm, introduced in Section 4.4.2, has the same problem as OKEA, i.e., its overall performance
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(hence, its scalability) is degraded by its excessive memory consumption and it is only able to enumerate
up to 230 key candidates.

Regarding the key enumeration algorithm using histograms from Section 4.8, we first analyse
the algorithm computing the histograms, i.e., Algorithm 12, and the algorithm computing xstart, xstop.
These two algorithms were run for Nb = 10, 20, . . . , 100, R1 = 1 and R2 = 230 for 100 times. We notice
that the run time increases as Nb increases, especially for Algorithm 12, as Figure 5 shows. On the other
hand, the other algorithm shows some negligible variations in its run time. Moreover, as expected,
we note that the parameter Nb makes the number of bins of H0:N−1 increase; therefore, setting this
parameter to a proper value helps in guaranteeing the number of key candidates to enumerate, while
running through the enumeration bounds xstart, xstop will be closer to R2−R1 +1 = 230 = 1, 073, 741, 824.
Table 2 shows the number of bins of H0:N−1 and the total number of key candidates to be enumerated
between bounds xstart, xstop on average.

Figure 5. Variation of run times for Algorithm 12 of KEA with histograms from Section 4.8. The y-axis
represents the run time (milliseconds), while the x-axis represents Nb.

Table 2. Variation of the total number of key candidates to be enumerated between bounds xstart, xstop

on average.

Value for Nb Size of List LH0:N−1 Total Count of Key Candidates

10 145 1,412,497,166
20 224 1,310,161,019
30 305 1,260,927,932
40 384 1,228,979,005
50 464 1,207,956,426
60 545 1,191,780,722
70 625 1,178,891,769
80 705 1,169,493,889
90 784 1,162,092,971
100 864 1,156,185,368

Concerning the memory consumed by the arrays used to store histograms, we know that the
total number of bits to store all lists LHi , 0 ≤ i < 16 is given by Equation (1) from Section 4.8.4.
Therefore, we set Bp, which is the number of bits to store a pointer, to 32 bits and set Bc, the number of
bits to store a chunk candidate (score, value), to 64. Therefore,N · Bp ·Nb + Bc ·∑N−1

i=0 = 512 ·Nb + 8192.
Now, the number of bits for storing all the convoluted histograms is given by Equation (2) from
Section 4.8.4. We set Bint = 32; therefore, 32 · (Nb− 1) (15)(16)

2 + (32 · 15) ·Nb = 3840 · (Nb− 1) + 480 ·Nb.
Table 3 shows the number of bits for storing both standard histograms and convoluted histograms for
values Nb = 10, 30, 50, 70, and 100.
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Table 3. Memory consumption in bits for storing histograms.

Values for Nb Bit Count for Standard Histograms Bit Count for Convoluted Histograms Total Bit Count

10 13,312 39,360 52,672
30 23,552 125,760 149,312
50 33,792 212,160 245,952
70 44,032 298,560 342,592

100 59,392 428,160 487,552

We now report results concerning the enumeration algorithm of KEA with histograms,
i.e., Algorithm 14. To run this algorithm, we first set the parameter R1 to 1, R2 to 2z, where z = 30, 33, 36,
and Nb to 60. Once the pre-computation algorithms have ended their execution, we run Algorithm 14
for each index bin in the range calculated by Algorithm 13. Therefore, we find that this algorithm is
able enumerate 230, 233, 236 key candidates and that its enumeration rate is between 3500 and 3800 key
candidates per millisecond per core. Additionally, as seen, its memory consumption is low.

Concerning the stack-based key enumeration algorithm from Section 4.5, we first compute suitable
values for B1 and B2 by employing the convoluted histogram H0:N−1 generated by Algorithm 12.
We then run Algorithm 8 with parameters B1 and B2 but limit the enumeration over this interval to
not exceed the number of key candidates to enumerate; this number is obtained from the previous
enumeration. Therefore, we find that this algorithm is able to enumerate 230, 233, 236 key candidates
and that its enumeration rate is between 3300 and 3500 key candidates per millisecond per core.

Regarding its memory consumption, the stack-based key enumeration algorithm only uses
two precomputed arrays, minArray and maxArray, both of which have N + 1 = 17 double entries.
Additionally, as pointed out in Section 4.5.3, at any stage of the algorithm, there are at most 16 4-tuples
stored in the stack S. Note that a 4-tuple consists of a double entry, two int entries, and an entry
holding an int array indices. This array, indices, may have at most 16 entries, each holding an
integer value. Therefore, its memory consumption is low.

Lastly, concerning the score-based key enumeration algorithm from Section 4.7, we first run
its pre-computation algorithms, i.e., the algorithms for computing the tables minArray, maxArray,
and iRange. As was pointed out in Section 4.7.4, the size of table iRange, hence the run time for
calculating it, depends heavily on the scaling technique used to get a positive integer (weight) from a
real number (score). We particularly use score · 10s with s = 4 to get an integer score (weight) from a
real-valued score. We find that the table iRange has around 15, 066 entries on average. Each of these
entries point to a list of integers of which the number of entries is about 4 on average. Therefore,
we have that the number of bits to store this table is 64 + (32 · 5)(15, 066) = 2, 410, 624 on average.
Furthermore, we run Algorithm 11 but limit it to not exceed the number of key candidates to enumerate.
As a result, we find that this algorithm can enumerate between 2600 and 3000 key candidates per
millisecond per core.

5.4. Discussion

From the results discussed in Section 5, it can be seen that all key enumeration algorithms except
for the optimal key enumeration algorithm (OKEA) and the variant of BSKEA have a much better
overall performance and are able to enumerate a higher number of key candidates. In particular,
we find that all of them are able to enumerate 230, 233, 236 key candidates, while OKEA and the
variant of BSKEA are only able to enumerate up to 230. Their poor performance is caused by their
excessive consumption of memory. In particular, OKEA is the most memory-consuming algorithm,
hence degrading its overall performance and scalability. In general, scalability is low in optimal key
enumeration algorithms [18,28], considering that not too many candidates can be enumerated as a
result of the exponential growth in their memory consumption. However, by relaxing the restriction
on the order in which the key candidates will be enumerated, we are able to design nonoptimal key
enumeration algorithms, having better overall performance and scalability. In particular, relaxing
this restriction on the order allows for the construction of parallelizable and memory-efficient key
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enumeration algorithms, as was evinced in this paper and the results previously described. Moreover,
all the algorithms save for OKEA [12–17] as described in this paper are nonoptimal ones, and their
respective descriptions and empirical results show that they are expected to have a better overall
performance and to consume much less computational resources. Table 4 briefly summarises some
qualitative and functional attributes of the described algorithms.

Additionally, note that, when an array is used to store a private key and each entry of this array
contains much more data than required in the sense that the number of bits used to store a reduced set
of numbers is greater than required, this redundancy as well as the small number of candidates per
chunk allow us to generate more “reliable” scores for the candidates per chunk (which would make the
key enumeration algorithms find the correct key after enumerating much fewer candidates). From an
implementer’s view, this may be mitigated by reducing the redundancy used to store a particular
private key.

Table 4. Qualitative and functional attributes of key enumeration algorithms.

Properties

Algorithm Name Parallelizable Memory Consumption Scalability
Optimal KEA No High Low

Bounded-Space
Near-Optimal KEA Yes, but loses its near-optimality property Moderate Moderate
Stack-Based KEA Yes Low High

Threshold Yes, but only works for a first task Depends how L is stored High
Weight-Based KEA Yes Low High

KEA with Histograms Yes Low High
Quantum KEA Yes High High

6. Conclusions

In this paper, we investigated the key enumeration problem, since there is a connection between
the key enumeration problem and the key recovery problem. The key enumeration problem arises in
the side-channel attack literature, where, for example, the attacker might procure scoring information
for each byte of an AES key from a power analysis attack [34] and then want to efficiently enumerate
and test a large number of complete 16-byte candidates until the correct key is found.

In summary, we first stated the key enumeration problem in a general way and then studied
and analysed several algorithms to solve this problem, such as the optimal key enumeration
algorithm (OKEA); the bounded-space near-optimal key enumeration algorithm; the simple
stack-based, depth-first key enumeration algorithm; the score-based key enumeration algorithm;
and the key enumeration algorithm using histograms. For each studied algorithm, we described its
inner functioning, showing its functional and qualitative features, such as memory consumption,
amenability to parallelization, and scalability. Furthermore, we proposed variants of some of them
and implemented all of them on Java. We then experimented with them and made an experimental
comparison of all of them, drawing special attention to their strengths and weaknesses.

As a future research, it would be interesting to find cryptanalysis scenarios to which we could
apply key enumeration algorithms together with other techniques. For example, we can think of
evaluating the post-quantum cryptographic schemes submitted to the second round of the National
Institute of Standards and Technology (NIST) post-quantum cryptography standardization process in
the cold boot attack setting [10]. Furthermore, we can think of exploring the use of key enumeration
algorithms in cache attacks to achieve full key recovery when insufficient information is gathered [35].
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