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Abstract: Atrial fibrillation (AF) is related to a very complex local electrical activity reflected in
the rich morphology of intracardiac electrograms. The link between electrogram complexity and
efficacy of the catheter ablation is unclear. We test the hypothesis that the Kolmogorov complexity
of a single atrial bipolar electrogram recorded during AF within the coronary sinus (CS) at the
beginning of the catheter ablation may predict AF termination directly after pulmonary vein isolation
(PVI). The study population consisted of 26 patients for whom 30 s baseline electrograms were
recorded. In all cases PVI was performed. If AF persisted after PVI, ablation was extended beyond
PVs. Kolmogorov complexity estimated by Lempel–Ziv complexity and the block decomposition
method was calculated and compared with other measures: Shannon entropy, AF cycle length,
dominant frequency, regularity, organization index, electrogram fractionation, sample entropy and
wave morphology similarity index. A 5 s window length was chosen as optimal in calculations. There
was a significant difference in Kolmogorov complexity between patients with AF termination directly
after PVI compared to patients undergoing additional ablation (p < 0.01). No such difference was
seen for remaining complexity parameters. Kolmogorov complexity of CS electrograms measured at
baseline before PVI can predict self-termination of AF directly after PVI.

Keywords: atrial fibrillation; catheter ablation; electrogram complexity; Kolmogorov complexity;
Shannon entropy; symbolic dynamics

1. Introduction

Atrial fibrillation (AF) is the most complex and common sustained arrhythmia [1] and one of the
main causes of cardiac-related hospitalization. Mechanisms of AF perpetuation are still not clear [2,3].
Catheter ablation is one of the most frequently performed treatment procedures in patients with AF [4],
with the success rate (non-recurrence after 2 years period) up to 90% in paroxysmal AF and up to
64% in persistent AF after multiple procedures [5]. Haïssaguerre [6] et al. indicated that electrical
activity in the region of pulmonary veins (PV) may trigger AF, leading to the need for pulmonary vein
isolation (PVI), the cornerstone of AF ablation. In patients with AF at the beginning of the ablation,
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AF termination is regarded as a favorable endpoint of the procedure. However, PVI does not always
lead to the termination of AF, and additional ablation is often performed in hope to improve ablation
efficacy. This makes the procedure more difficult, increases the risk of complications and its efficacy is
still a matter of debate with some studies questioning the need for additional substrate ablation [7,8].

As ablation emerged as one of the main strategies in AF treatment, studies on signals recorded
during this procedure are getting more important and methods related to the complexity of the
signal are used with increasing frequency. For example, Lankveld et al. showed that AF complexity
parameters, calculated on the basis of surface electrocardiogram (ECG), can verify whether the patient
is likely to benefit from catheter ablation [9]. Several methods quantifying electrogram complexity
were also developed to find the areas with complex atrial electrograms, which are often considered
among the suggested targets for additional ablation sites. The most known is the detection of complex
fractionated electrical activity (CFAE) by Nademanee et al. [10]. In 2012, Narayan et al. [2] proposed
an innovative approach, implying that a rapid firing foci drives the atria, maintaining AF through
short re-entrant circuits (rotors and drivers) [2]. Location of these sources did not coincide with CFAE
locations [11]. Ablation of these sources has been suggested as a solution capable of terminating
AF without PVI. However, a number of later studies did not confirm this hypothesis, resulting in
an ongoing discussion of the applicability of this method [12,13]. In the meantime, pulmonary vein
isolation (PVI) is still the reference procedure for catheter ablation of AF. In this view, methods
predicting the outcome, duration and extent of an ablation procedure are of clinical importance.

In this study, we measure complexity of a single electrogram at the coronary sinus (CS) at the
beginning of the electrophysiological procedure. We propose Kolmogorov complexity approximations
(Lempel–Ziv complexity and block decomposition method) as measures useful during the ablation
procedure and we compare it with other complexity parameters used in clinical practice. The aim of
this study is to assess whether the Kolmogorov complexity of an electrogram recorded in CS can be
used to predict termination of AF directly after PVI and to identify the most powerful complexity
measure in this regard.

2. Materials and Methods

2.1. Study Population and Catheter Ablation Procedure

All recordings were collected in Royal Adelaide Hospital during catheter ablation of atrial
fibrillation. Catheter ablation followed fixed, step-wise protocol providing opportunity to investigate
the effect of each ablation stage on AF complexity. The study population consisted of 26 patients with
AF (paroxysmal 12 patients; persistent 14 patients) with a mean age of 62 ± 9 years. For 17 patients
ablation terminated AF. In paroxysmal patients, AF was induced prior to the ablation. The rest of the
group was in AF prior to the procedure. Atrial bipolar electrograms were recorded during the whole
ablation procedure. A 10-pole catheter with 2–5–2 mm interelectrode spacing was placed distal in CS
with the proximal bipole at the CS ostium. For privacy protection, patient personal information was
removed from the database.

Thirty second intracardiac electrograms recorded with the sampling rate 1 kHz were analyzed at
baseline, before any ablation was done and after each stage of ablation: Ablation of left pulmonary
veins (LPV), right pulmonary veins (RPV), ablation at the LA roof, ablation at the fossa region and
ablation of complex fractionated atrial electrograms (CFAE). In patients in whom AF was induced
prior to ablation, the electrograms for analysis were taken after 5 min of AF perpetuation. Additional
30 s electrograms recorded 30 s prior to AF termination were analyzed as the last stage. In this study,
we present results based only on electrograms recorded at baseline and on information about the
ablation process (whether only PVI was performed or ablation at more sites was conducted). Results
for electrograms recorded prior to termination are presented in Supplementary Materials in Table S2.

In the calculations, we tested different window lengths and chose 5 s as optimal. See Section 2.3
statistical analysis and Section 3 results for details. All baseline electrograms were assessed with
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different measures, which were compared between patients in whom AF terminated directly after PVI
and those in whom additional stages of ablation were performed.

2.2. Complexity of Electrograms

Complexity assessment of AF intracardiac electrograms has mostly been used in previous studies
to determine the target area during an ablation procedure [10,14]. In this study, we used the complexity
measure as an estimator of the ablation outcome after PVI. For this purpose, we applied a number of
measures for atrial electrograms complexity assessment, including such that have already been applied
in clinical practice. All these methods are presented below. All parameters used in the calculations are
available in the Supplementary Materials (Table S1).

2.2.1. Linear Methods

For intracardiac signals analysis linear methods have most commonly been used. Although they
omit some significant dependencies between signal components and thus are often insufficient, they
are relatively easy to determine, and they can give quick and valuable information about the signal.
We proposed a classical time-based linear method (mean AF cycle length), and frequency based linear
methods (dominant frequency with additional indices).

AFCL (atrial fibrillation cycle length) was measured as the mean of the intervals between
consecutive local activations (the time interval between consecutive activation deflections).

DF (dominant frequency) is the frequency at which the largest peak can be found in power spectral
analysis after applying FFT (fast Fourier transform) [15]. For more organized AF, lower DF values are
expected [16]. Additional indices based on spectral analysis were used to ensure the reliability of DF
estimation [17]:

DF RI (dominant frequency regularity index) is the ratio calculated as the area under the estimation
of the biggest peak of the power spectrum (with a ±0.75 Hz band width) divided by the area under the
whole power spectral density curve from the minimum to the maximum frequency [17,18].

DF OI (dominant frequency organization index) was calculated similarly to RI, but it took into
account the power of DF harmonics [18].

2.2.2. Non-Linear Methods

During AF nonlinearity of the heart increases [19]. Based on that, we proposed non-linear methods
as being more appropriate in the context of the electrogram complexity analysis. Looking for a measure
that can give better insight into the nature of the electrogram, we proposed some information content
and entropy methods (Lempel–Ziv complexity, block decomposition method, Shannon entropy and
sample entropy), one method based on signal morphology (wave morphology similarity index) and a
number of CFAE parameters.

Kolmogorov complexity K(s) of a string s is defined as the length of the shortest binary description
of s [20]. It is an absolute and objective quantification of the amount of information in this string [20].
We proposed two methods to approximate Kolmogorov complexity of an electrogram: Lempel–Ziv
complexity and block decomposition method. Both methods require input data to be defined on an
alphabet. Thus, to enable them to assess electrogram complexity, before calculations, a conversion to
0–1 alphabet (a binary string) was performed. The conversion procedure is presented below.

First, downsampling to frequency 0.5 kHz, i.e., removing every second sample from the raw signal,
was performed. Then an electrogram was transformed into a series of “0” and “1” (binary string s),
where the 1 s correspond roughly to local activation events, according to the formula:

si =

{
1; ISPi > Ai

0; ISPi ≤ Ai
, (1)
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where Ai is a moving threshold, calculated for every signal sample, and ISP is the instantaneous
signal power of the electrogram [21]. ISP can be statistically interpreted as a moving variance and
has the properties of a high-pass filter. The assumption is that the spikes of the ISP curve reflect the
depolarization events [22]. ISP is then compared with an adaptive threshold Ai, describing the power
of background noise for a particular moment in time. To find Ai, application of an adaptive procedure
should be performed. This procedure reduces noise, acting as a high-pass filter [21], according to
the rules:

M0 = X0; Mi = Mi−1 + D1(Xi −Mi−1), (2)

ISP0 = 0; ISPi = ISPi−1 + D1
(
(Xi −Mi−1)

2
− ISPi−1

)
. (3)

M (adaptive mean) and ISP are defined with D1 as an adaptation constant (0 < D1 < 1; according
to the authors of the method, in our analysis D1 = 0.75 was used) [21]. X is the raw signal after initial
noise reduction and normalization. The moving threshold is defined as:

Ai = MISPi + 0, 1Vi, (4)

where MISP is the mean instantaneous signal power and V is the adaptive power variance [21]. These
quantities were calculated using:

MISP0 = ISP0; MISPi = MISPi−1 + D2(ISPi −MISPi−1). (5)

V0
2 = 0; Vi

2 = Vi−1
2 + D2

(
(ISPi −MISPi)

2
−V2

i−1

)
. (6)

The parameter D2 was set at 0.02, according to the authors of the method [21] (the optimal value
of D2 was found based on several tests performed on selected signals scored by an expert cardiologist).
The converted binary signal has the same length as the downsampled raw signal, for instance a 5 s
electrogram recorded with the frequency of 1 kHz corresponds to 2500 samples. To approximate K(s)
of the binary string, we proposed the following approaches:

LZC (Lempel–Ziv complexity) is the compression algorithm that has traditionally been used to
approximate the Kolmogorov complexity of an object [23]. Recent studies [23] have shown a number of
limitations of compression algorithms in the light of Kolmogorov complexity, however under specific
conditions it is still a very good estimation of K(s). LZC is based on the method introduced by Pitschner
and Berkowitsch [21] to automatically quantify the degree of AF organization. The method applies the
principles of symbolic dynamics [24], transforming the electrogram into a binary string and calculating
the complexity of such a string.

After conversion, complexity for a binary string is calculated using the Lempel–Ziv algorithm [21,22].
This is done by finding the number of the so-called words in this string. For each element of the string,
a check is performed whether the new sequence (composed of the word already analyzed and the
next symbol) has appeared in the signal before. If not, then that sequence becomes the new word and
complexity is raised by 1. Otherwise, another symbol is added and the check whether the sequence
has occurred performed again. The calculation of LZC can be mathematically described by formula:

LZC0 = 1; LZCk+1 =

{
LZCk; Sl+1 . . . Sk+1εS1 . . . Sk

LZCk + 1; Sl+1 . . . Sk+1 < S1 . . . Sk
, (7)

where l is the index of the last sample of the last word found. For example, the sequence S1 = 11001 with
length n = 5 can be split into three different sequences: (1)(10)(01), providing Lempel–Ziv complexity
LZCS1 = 3. In contrast, the simple sequence S2 = 00000 of the same length should be transformed into
the words (0)(0000), which gives the result of LZCS2 = 2.

In a comparative analysis of the signals, normalized LZC may be useful. It can be defined as:

LZCnorm =
LZC

B
, (8)
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where normalization factor B is the maximal number of words for a symbol sequence in a binary
alphabet, and can be calculated as:

B =
n

log2 n
, (9)

where n is the length of the signal [22]. Key steps of the LZC method are depicted in Appendix A in
Figure A1.

Figure 1 illustrates the differences between two 2 s electrograms of different complexities
(Figure 1A,B), comparing graphically the results of the LZC method (Figure 1C–F). Despite an apparently
similar level of complexity assessed during the visual inspection of Figure 1A,B, a quantitative analysis
of LZC shows that there is a significant difference between the complexities of those signals.
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Figure 1. Comparison of two electrograms with different Lempel–Ziv complexities. In the top graphs,
2 s windows of bipolar electrograms are shown. In the middle, the corresponding Lempel–Ziv
complexity (LZC) plots for both cases and, in the bottom figures, the normalized LZ complexity
plots. The normalized LZC at the beginning of the given fragment rapidly increased in both signals,
but, for signal 1, it next significantly decreased, while, for signal 2, it oscillated around half of the
maximum value.

BDM (Block Decomposition Method) is a modern information theory method, which aims to find
a set of small computer programs that produces the components of a larger object [23]. The first studies
using BDM for the analysis of physiological signals have been published recently [25]. BDM is an
extension of the coding theorem method (CTM), which has first been used for the compression of very
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short strings. CTM is calculated based on the algorithmic frequency of production of a string s and its
algorithmic (Kolmogorov) complexity K(s), which is defined as the length of the shortest program p
that outputs the string s on a universal Turing machine U. CTM approximates Kolmogorov complexity
using the following dependency: The more frequent the string is, the lower Kolmogorov complexity it
has. Formally, CTM for a binary string s is represented by the following formula:

CTM(s, t, k) = − log2 D(t, k)(s), (10)

where (t, k) is the space of all t-state k-symbol Turing machines, t, k > 1 and D(t, k)(s) is the function
assigned to every finite binary string s [23].

Since CTM is computationally expensive, the block decomposition method has been developed
to manage reproducing larger objects. BDM decomposes an object into smaller programs, strongly
relying on CTM-using it to calculate algorithmic complexity approximations of smaller pieces of a
large object and reconstructing an approximation of the Kolmogorov complexity for the larger object.
Fixing t and k, we could define the 1-dimensional BDM of a string s with the following formula:

BDM(s, l, m) =
∑

i

[
CTM

(
si, m, k

)
+ log(ni)

]
, (11)

where ni is the multiplicity of si, si is the subsequence i after decomposition of s into subsequences si,
each of length l, and m is an overlapping parameter (m = l means no overlapping) [23].

In this study, after converting the electrograms to binary strings, BDM was calculated using
software available online and described in [23,26]. We chose l = 12 as optimal decomposition length.

ShEn (Shannon entropy) is a statistical measure of information uncertainty. Shannon entropy
quantifies the properties of the probability distribution of the signal (a normalized histogram) providing
a measure of information content [27]. Electrograms in which the signal has a few states (i.e., narrow,
regular deflections of similar amplitude) have a narrow distribution in the voltage histogram, and
low ShEn values. Electrograms in which the signal adopts a broad distribution of states (irregular
morphology and amplitude, fractionation) have a wide distribution in the voltage histogram, and large
ShEn values [28].

SampEn (sample entropy) requires the selection of three parameters: The length of the sequences
to be compared (m), the patterns similarity tolerance (r) and the number of samples under analysis
(N), which in our study were chosen according to Alcaraz et al. [29]. Sample entropy is based on the
conditional probability that if two sequences of signal samples of length m (taken at two different time
points of a signal) are similar (the amplitude of the corresponding samples is not different than by a
predefined threshold), these two sequences will remain similar if the sequences of length m + 1 will be
considered at the same time points [30]. The more organized AF is, the lower is sample entropy [16].

WMSI (wave morphology similarity index) is an algorithm for the evaluation of the organization
of atrial electrograms during AF based on the similarity of electrogram morphology. It relates
morphologies of all possible pairs of electrogram deflections extracted from the recording and estimates
their similarity. The algorithm describes the regularity by measuring the extent of repetitiveness over
time of its consecutive activation waves morphology [31].

CFAE (complex fractionated atrial electrograms) have been suggested to indicate tissue areas
associated with the AF substrate [10]. CFAE are postulated to represent areas contributing to AF
maintenance, however this relationship is still not fully understood and it is questioned [32]. There
is also no consensus on the definition of CFAEs. One of the proposed definitions describes CFAEs
as the atrial fractionated electrogram composed of two or more deflections and/or a perturbation of
the baseline with a continuous deflection of a prolonged activation complex [27]. A second method
describes CFAE as an electrogram with a very short cycle length (smaller than 120 ms) [27]. We used
the second definition in our study. We investigated five approaches to quantify CFAEs:
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NavX CFAE (NavX complex fractionated atrial electrograms)—mean complex fractionated
electrogram calculated as the averaged time interval between the marked deflections, given in
percent [32], used in the EnSite NavX electroanatomical mapping system. In the figures, the abbreviation
“NAVX” is used.

The following four algorithms are accommodated in the CARTO electroanatomical
mapping system:

CEA (continuous electrical activity)—defined by the presence of two or more successive deflections
for which the interval length is shorter than 50 ms. CEA is expressed as percentage of continuous
activity [32].

ICL (interval confidence level)—the number of intervals identified between consecutive complexes
defined as CFAE [10],

ACI (average complex interval)—the average of all intervals that have been identified between
consecutive CFAE complexes, given in ms [32],

SCI (shortest complex interval)—the shortest interval of all that have been identified between
consecutive CFAE complexes, given in ms [10].

2.3. Statistical Analysis

The difference between complexity parameters was tested using ANOVA. Patients were divided
into two groups: The first group consisted of 16 cases for which AF terminated directly after PVI
(nine patients with paroxysmal AF and seven patients with persistent AF) and the second group of
10 patients for whom an isolation of the PV was not sufficient to terminate AF and further steps of
ablation were attempted (three patients with paroxysmal AF and seven patients with persistent AF).
In all cases, the statistical significance lower than 0.05 was considered as significant.

To check whether the group separation factor (defined as ablation at additional sites) was chosen
correctly, sensitivity and specificity was calculated and ROC (receiver operating characteristic) analysis
was performed. Accuracy was measured as the area under the ROC curve (AUC). AUC larger than
0.7 signified that the group separation factor was accurate. For those methods for which we found
statistical significance or a trend, the optimal point for ROC (OPT ROC) was calculated as the cut-off

point closest to the true positive rate of 1 and false positive rate of 0.
All parameters were calculated in 2, 5, 10 and 30 s segments (the first single-window of the signal).

Additionally, the results were accompanied by the mean of the moving window segments over the full
30 s recording, with an overlap equal to one half of the window length.

3. Results

There was a significantly higher Kolmogorov complexity (approximated by LZC and BDM) of CS
electrograms in patients for whom AF did not terminate after PVI alone and who underwent ablation
at additional sites than for the patients for whom AF terminated after PVI (p < 0.05 for each tested
window length; see Figure 2A,B). In case of Shannon entropy, a tendency towards significance was
found (e.g., for 5 s window p = 0.052; see Figure 2C). There was no significant difference between
groups for all other parameters (AFCL, DF, RI, OI, all CFAE parameters, SampEn and WMSI; see
Figure 3).

ROC analysis resulted in an accuracy of 0.763 for LZC, 0.806 for BDM and 0.756 for ShEn (see
Figure 4). Results for the other parameters (AFCL, DF, RI, OI, all CFAE parameters, SampEn and
WMSI) are shown in Figure 5. For all parameters other than LZC, BDM and ShEn, the area under the
ROC was lower than 0.7.



Entropy 2019, 21, 970 8 of 21

Entropy 2019, 21, 970 7 of 23 

 

CEA (continuous electrical activity)—defined by the presence of two or more successive 
deflections for which the interval length is shorter than 50 ms. CEA is expressed as percentage of 
continuous activity [32]. 

ICL (interval confidence level)—the number of intervals identified between consecutive 
complexes defined as CFAE [10], 

ACI (average complex interval)—the average of all intervals that have been identified between 
consecutive CFAE complexes, given in ms [32], 

SCI (shortest complex interval)—the shortest interval of all that have been identified between 
consecutive CFAE complexes, given in ms [10]. 

2.3. Statistical Analysis 

The difference between complexity parameters was tested using ANOVA. Patients were divided 
into two groups: The first group consisted of 16 cases for which AF terminated directly after PVI (nine 
patients with paroxysmal AF and seven patients with persistent AF) and the second group of 10 
patients for whom an isolation of the PV was not sufficient to terminate AF and further steps of 
ablation were attempted (three patients with paroxysmal AF and seven patients with persistent AF). 
In all cases, the statistical significance lower than 0.05 was considered as significant. 

To check whether the group separation factor (defined as ablation at additional sites) was chosen 
correctly, sensitivity and specificity was calculated and ROC (receiver operating characteristic) 
analysis was performed. Accuracy was measured as the area under the ROC curve (AUC). AUC 
larger than 0.7 signified that the group separation factor was accurate. For those methods for which 
we found statistical significance or a trend, the optimal point for ROC (OPT ROC) was calculated as 
the cut-off point closest to the true positive rate of 1 and false positive rate of 0. 

All parameters were calculated in 2, 5, 10 and 30 s segments (the first single-window of the 
signal). Additionally, the results were accompanied by the mean of the moving window segments 
over the full 30 s recording, with an overlap equal to one half of the window length. 

3. Results 

There was a significantly higher Kolmogorov complexity (approximated by LZC and BDM) of 
CS electrograms in patients for whom AF did not terminate after PVI alone and who underwent 
ablation at additional sites than for the patients for whom AF terminated after PVI (p < 0.05 for each 
tested window length; see Figure 2A,B). In case of Shannon entropy, a tendency towards significance 
was found (e.g., for 5 s window p = 0.052; see Figure 2C). There was no significant difference between 
groups for all other parameters (AFCL, DF, RI, OI, all CFAE parameters, SampEn and WMSI; see 
Figure 3). 

 Figure 2. Lempel–Ziv complexity (A), block decomposition method (B) and Shannon entropy (C) of 5 s
coronary sinus electrograms for patients for whom atrial fibrillation (AF) terminated after pulmonary
vein isolation (PVI) and for patients for whom ablation at more sites was conducted. ANOVA analysis
revealed a significant difference between groups in LZC and the block decomposition method (BDM)
and a trend towards significance was found for the Shannon entropy (ShEn) method. The thick red line
represents the median for each group, outliers are marked as individual small circles; box boundaries
correspond to Q1 and Q3 (lower and upper quartile); the upper whisker is located at the smaller of the
maximum group value and Q3 + 1.5 IQR (interquartile range) value, whereas the lower whisker is
located at the larger of the smallest group value and Q1 -1.5 IQR. Q1 and Q3 are the first and the third
quantile, IQR is the length of the box and equals Q3-Q1.
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Figure 3. Results for the parameters for which no significant difference was found between the patients
with AF terminated after pulmonary veins isolation and the patients for whom ablation at more sites
was conducted. The results presented refer to the analysis of the first 5 s signal fragment of the CS
electrogram. For clarity of presentation, all measures were scaled to the (0–1) range.

Table 1 summarizes the results of ANOVA and ROC analysis obtained for all 14 examined
parameters for the first 5 s window of the 30 s signals. For LZC, BDM and ShEn, the sensitivity,
specificity and the value for OPT ROC are also presented.
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fragment of the coronary sinus (CS) electrogram.
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Figure 5. ROC analysis of the classification performance for AF cycle length, dominant frequency
parameters dominant frequency (DF), regularity index (RI), organization index (OI), complex
fractionated atrial electrogram (CFAE) estimated by CARTO parameters, CFAE estimated by NAVX,
sample entropy (SampEn) and wave morphology similarity index (WMSI). Classification was performed
between two groups of patients: the one for whom AF terminated after PVI and for those patients for
whom ablation at more sites was conducted. The results presented refer to the analysis for the first 5 s
signal fragment of the CS electrogram.

To explore how the length of the analyzed electrogram affects the performance of each tested
method, we compared the values of AUC for every method for four different signal lengths: 2 s, 5 s,
10 s and 30 s (Figure 6). The same check was performed for ANOVA (p-value) results (a graphical
presentation is available in Figure A2 in Appendix B). For both approaches, in case of LZC, BDM and
ShEn the differences between the results obtained for particular window lengths were insignificant.
Correlation analysis revealed that both methods that approximate Kolmogorov complexity, i.e.,
Lempel–Ziv complexity and the block decomposition method, were very strongly correlated (the
correlation coefficient equaled 0.98 or more for all examined window lengths). A strong correlation
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between those methods and Shannon Entropy was also found (with the correlation coefficient larger
than 0.71 for both examined pairs for different window lengths).

Table 1. Results of ANOVA (p-values) and ROC (area under ROC) analysis for all examined methods.
* For the area under ROC larger than 0.7, sensitivity, specificity and value for optimum ROC (OPT
ROC) are presented. Table refers to results obtained for 5 s window analysis.

Method p-Value Area Under
ROC

Sensitivity
OPT ROC

Specificity
OPT ROC

Value for
OPT ROC

LZC 0.010 0.76 0.70 0.81 75
BDM 0.008 0.81 0.70 1.00 2076

ShanEn 0.052 0.76 0.70 0.81 2.47
AFCL 0.944 0.51 -* -* -*

DF 0.665 0.56 -* -* -*
DF RI 0.737 0.49 -* -* -*
DF OI 0.084 0.34 -* -* -*

NavX CFAE 0.876 0.60 -* -* -*
CEA 0.481 0.51 -* -* -*
ICL 0.813 0.55 -* -* -*
ACI 0.484 0.42 -* -* -*
SCI 0.293 0.57 -* -* -*

SampEn 0.978 0.53 -* -* -*
WMS 0.160 0.28 -* -* -*
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Figure 6. Comparison of area under ROC for all methods for different window lengths: 2 s, 5 s, 10 s
and 30 s. In case of LZC, BDM and ShEn, the differences are minimal and only for those three methods
in each window AUC is higher than 0.7.

The tables with the results for ANOVA and ROC for all windows are presented in Appendix C
(Table A1) and the correlation tables for all methods are available in Appendix D (Tables A3–A6).
In addition, for each method the mean values of the results obtained using a sliding window for
the same window lengths were calculated. Results can be found in Table A2 in Appendix C. The
approaches using the first window and a sliding window gave comparable results. In this study, we
decided to focus only on the first 5 s of the signal, as we perceived this time period as optimal both to
quickly obtain complexity parameters and to contain a significant number of signal activations.

4. Discussion

Understanding the mechanisms initiating and sustaining AF remains a challenge. Despite over
100 years of research in this field, there is still disagreement on the basic AF mechanisms [2,3].

Catheter ablation of AF, one of the main AF treatment strategies, is a complex and difficult
procedure. Its favorable end-point is an abrupt termination of AF, which has been linked with
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long-term success [33]. However, several studies demonstrated that extensive ablation does not
improve long-term efficacy [8,33].

As the number of various approaches to AF catheter ablation increases [2,5,10,34–36], methods
predicting procedure success are valuable in the context of patient selection and procedure planning.
Recent studies often focused on predicting success during long-term follow-up [37,38]. In our study
we do not indicate a long-term success of the procedure but that the ablation procedure duration
would be extended beyond pulmonary veins. Specifically, we aimed to predict, using only electrogram
properties measured at a single site, if the sole ablation of PVI will lead to AF termination directly
after pulmonary vein isolation. Due to unsatisfactory atrial fibrillation ablation results, especially in
patients with persistent AF, currently in the literature the necessity of an individualized approach to
AF ablation is emphasized. Hence, our study is a step in this direction [39,40].

In our study, we investigated whether various complexity parameters could predict catheter
ablation outcome. Receiver operating characteristic analysis showed that Kolmogorov complexity
approximations and Shannon entropy distinguished reasonably well patients in whom PVI terminate
AF from those in whom it was not sufficient for AF termination. For those methods, the area under
ROC was larger than 0.75. However, ANOVA analysis demonstrated that a significant difference
between such patients, for whom AF spontaneously terminated directly after PVI, in comparison
to those in whom additional steps of ablation were undertaken, can be found only for Kolmogorov
complexity (p < 0.011). The remaining complexity parameters examined did not differ between the
groups, with Shannon entropy showing a result marginally close to significance (p < 0.053). Between
Kolmogorov complexity and Shannon entropy a strong correlation was found (with a correlation
coefficient oscillating about 0.8).

4.1. Kolmogorov Complexity in AF Electrogram Complexity Assessment

In our study, we demonstrated that Kolmogorov complexity of electrograms recorded at the
beginning of the procedure could suggest how a patient will respond to PVI and a more extensive
ablation. We presented two approaches of approximating Kolmogorov complexity K(s) of a binary
string s. The first of them is a lossless compression algorithm that has traditionally been used
to approximate K(s), providing its upper bounds. However, this algorithm has some limitations,
specifically it fails to estimate K(s) of small objects and has been proven to be closer to entropy estimators
than to K(s) recently [23]. The second proposed K(s) estimation is the block decomposition method,
a measure that combines Shannon entropy in the long range with local estimations of algorithmic
complexity and, contrary to compression algorithms, can deal with any signal length [23]. In this study,
the binary signals we operated on were relatively long (1000 to 15,000 samples), which resulted in
very strong correlation between LZC and BDM. Therefore, in the context of the database examined,
we considered LZC to be an as good approximation of Kolmogorov complexity as BDM, and we left
the open question which algorithm will be better in clinical applications: LZC, which is conceptually
and computationally easier, or BDM, more complex, but a universal method. However, we wanted to
highlight again that LZC and BDM are not equivalent in most cases, especially for very short signals.

In this study, we proved that Kolmogorov complexity of AF was strongly related to the complexity
of the signal in a clinical context. We compared this measure with other methods applied to the analysis
of electrogram complexity.

4.2. Literature Overview

The set of 12 other methods chosen in this paper to be compared with Kolmogorov complexity
represents different approaches based on time and frequency analysis (AFCL, DF, RI and OI), wave
morphology and recurrence (WMI), entropy (ShEn and SampEn) and a number of CFAE measures as
defined by the NavX or CARTO systems.

Due to the suboptimal efficacy of AF catheter ablation, much effort goes into studies attempting
to identify the regions of atria responsible for AF maintenance as promising targets for ablation. The
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most known method of identifying such regions is complex fractionated atrial electrograms (CFAE),
a measure reported by Nademanee [36]. It generated a very widespread response, and extensive
studies were performed to verify whether CFAEs indicate AF-perpetuating sites. However, further
studies did not reproduce the success, with a recent randomized trial (STAR AF II) demonstrating
no extra benefits of additional CFAE ablation over pulmonary vein isolation alone in persistent AF
patients [8]. Narayan et al. showed using monophasic action potential (MAP) catheters that sites
showing CFAE reflect rather far-field signals, AF acceleration or disorganization than localized rapid
AF sources [41]. Lau et al. showed that CFAE correlates poorly with substrate complexity measures
like conduction velocity or electrical dissociation [32].

Common use of CFAE methods proves that the clinicians consider signal complexity as an
important diagnostic value. However, definitions of CFAE measures are determined mostly on the
basis of clinical practice. This suggests that the use of other methods that are able to measure complexity
in the context of electrogram analysis is of outstanding importance.

There have been a number of studies that focused mainly on the regularity of AF [42–44]. Another
popular group of methods used in AF electrogram complexity assessment are entropy-based measures.
Several entropy-based methods have been defined in the literature, such as: Approximate entropy
(ApEn), Shannon entropy (SE), sample entropy (SampEn) and multiscale entropy (MSE). Although all
of them are related to the same concept, the mathematical formulations vary among them [45]. In the
case of AF electrograms, entropy may be associated with the disorganization of the atrial electrical
activity [45]. An entropy-based approach in the electrogram assessment was represented, for example
by Cervigón et al., who proposed sample entropy measured in the right atrium as a predictor of AF
recurrence outcome after PVI [37]. In another study, Ng et al. reported ShEn to be able to identify
CFAE sites for ablation automatically [27]. A study by Ganesan et al. showed that the pivot of the rotor
is consistently associated with high Shannon entropy of bipolar electrograms [46]. In another study
concerning rotors localization, approximate entropy has been proposed [47]. An improved version of
multiscale entropy was used in a study aimed to discriminate fractionated electrograms in paroxysmal
versus persistent atrial fibrillation [48].

In the meantime, linear methods are still often used in AF complexity analysis. For example,
Matsuo et al. [49] reported cycle length measured on the surface ECG to be a predictor of long-term
success in persistent AF patients. As AF is associated with electrical remodeling, which is reflected in
significant signal information during spectral analysis of AF, in many recent studies spectral indices
(like DF, RI and OI) have been used [9,38,50]. What is important, Szilágyi et al. showed that spectral
measures performed better than clinical factors for predicting AF recurrence.

4.3. Physiological Meaning of the Results

One of the main aspects of the physiological meaning of our results is a link between electrogram
complexity and likelihood of termination after PVI. Several studies demonstrated a link between
the complexity of electrogram morphology and the degree of electroanatomical remodeling of the
underlying myocardial tissue. This includes tissue fibrosis, endo-epicardial dissociation, altered action
potential kinetics and repolarization abnormalities. All these factors lead to the formation of a substrate
for extra-pulmonary AF drivers. Thus, the higher the complexity of CS electrograms, the higher
likelihood of extra-pulmonary veins drivers and thus the lower the chance of AF termination after PVI.

The understanding of how much AF is dependent on triggers localized in the region of PVI
is limited by diverse ablation methodologies that do not seem to result in durable pulmonary vein
isolation [51]. In this view, it is important to search for indicators of other mechanisms of AF
perpetuation than those localized in PVI. Our study indicates, that an immediate success of the
termination of AF due to PVI isolation may be predicted by a remote measurement in the CS, and
therefore the existence of other mechanisms for AF perpetuation than these limited to the PVI region
can also be detected remotely by the analysis of the complexity of the electrogram. If this hypothesis is
true, more complex mechanisms of AF perpetuation, whether localized or not, will result in a non-local
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increase of electrogram complexity, and mechanisms that perpetuate AF affect the conduction on a
global, atrial level, rather than only locally either functionally or mechanistically.

4.4. Clinical Implications

The required time length of the measurement is one of the key elements of practical usability
for algorithms analyzing electrograms in a clinical context. Therefore, we performed calculations
not only on the whole 30 s recordings gathered during each ablation procedure, but also on shorter
portions of the electrogram. We analyzed the first 2 s, to check if such a short signal (relevant in
case of e.g., problems with maintaining a good contact between the catheter and the atrial wall) can
be useful, as well as 10 s and 30 s signals to see if there is an increased value in analyzing longer
recordings. The results for all examined windows were comparable, so we chose the 5 s length as
optimal. In further study, it may be interesting to check how Kolmogorov complexity changes during
the whole measurement. The area under the ROC for all window lengths for each parameter are
indicators of the stability of the method and its vulnerability to the length of measurement.

Our study indicates that Kolmogorov complexity of an electrogram measured at CS at baseline
was larger when AF did not spontaneously cardiovert after PVI (see Figure 2, Table 1). As a result,
this indicates that additional steps of ablation after PVI might be required to terminate AF. Thus,
this indirectly indicates that the required ablation procedure might take a longer time. Therefore,
the measurement of Kolmogorov complexity could be used as an indicator of the expected ablation
duration and how demanding the procedure might be. Based on the optimal ROC point (OPT ROC
point) calculation, we found LZC equal to 75 and BDM equal to 2076 as optimal values on the ROC
when using the first 5 s window of the signal.

The results of this study represent a step towards standardization of AF electrogram analysis,
needed to adequately address the clinical relevance of ablation performance assessment and
management [16].

5. Conclusions

Low Kolmogorov complexity of an electrogram measured at the coronary sinus at the beginning
of ablation can predict whether a non-induced termination of AF will occur directly after pulmonary
vein isolation. The result obtained, combined with the short recording time required for Kolmogorov
complexity calculation (5 s) and the fixed measurement site (coronary sinus) made this method
potentially applicable in clinical practice.

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/21/10/970/s1,
Table S1: Parameters used for the calculation of complexity methods, Table S2: Results of prior to termination
recordings, Data S1: AF patients’ baseline electrograms.
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ACI Average Complex Interval
AF Atrial Fibrillation
AFCL Atrial Fibrillation Cycle Length
BDM Block Decomposition Method
CEA Continuous Electrical Activity
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CFAE Complex Fractionated Atrial Electrograms
CS Coronary Sinus
DF Dominant Frequency
ICL Interval Confidence Level
LPV Left Pulmonary Vein
LZC Lempel–Ziv Complexity
OI Organization Index
PV Pulmonary Veins
PVI Pulmonary Veins Isolation
RI Regularization Index;
RPV Right Pulmonary Vein
SampEn Sample Entropy
ShEn Shannon Entropy
SCI Shortest Complex Interval
WMSI Wave Morphology Similarity Index
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for clarity of method presentation. In (a), an atrial electrograms measured at the coronary sinus is 
shown. In the second image row (b), instantaneous signal power (ISP) and mean instantaneous signal 

Figure A1. Key steps of the Lempel–Ziv complexity calculation. A 2 s window example is presented
for clarity of method presentation. In (a), an atrial electrograms measured at the coronary sinus is
shown. In the second image row (b), instantaneous signal power (ISP) and mean instantaneous signal
power (MISP) are depicted. The following image rows show the Lempel–Ziv complexity (c) and the
normalized Lempel–Ziv complexity (d).
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Figure A2. p-values calculated for the performance of all the methods for discriminating patients with
AF terminated after only PVI and for patients for whom ablation at more sites was conducted. p-values
(ANOVA results) were calculated for all methods for different window lengths: 2 s, 5 s, 10 s and 30 s. In
the cases of LZC, BDM and ShEn the differences were small. Only for LZC and BDM for each window
length the p-value was lower than 0.05, however for ShEn a marginal significance was found (p-value <

0.1 for each window length).

Appendix C

Table A1. Results of ANOVA (p-values) and ROC (area under ROC curve) analysis for all examined
methods for 2 s, 5 s and 30 s window length (the first 30 s the electrogram).

FIRST WINDOW 2 s 10 s 30 s

Method p-Value Area Under
ROC Curve p-Value Area Under

ROC Curve p-Value Area Under
ROC Curve

LZC 0.026 0.74 0.009 0.78 0.006 0.79
BDM 0.023 0.76 0.007 0.79 0.006 0.83

ShanEn 0.123 0.73 0.066 0.73 0.068 0.74
AFCL 0.702 0.44 0.700 0.54 0.986 0.52

DF 0.521 0.48 0.865 0.52 0.775 0.52
DF RI 0.405 0.58 0.368 0.59 0.032 0.74
DF OI 0.930 0.48 0.506 0.60 0.096 0.69

NavX CFAE 0.232 0.38 0.203 0.64 0.203 0.66
CEA 0.580 0.53 0.611 0.51 0.597 0.51
ICL 0.200 0.36 0.443 0.47 0.562 0.48
ACI 0.834 0.55 0.973 0.49 0.737 0.47
SCI 0.625 0.56 0.320 0.59 0.779 0.48

SampEn 0.887 0.58 0.826 0.52 0.743 0.53
WMS 0.163 0.33 0.054 0.26 0.698 0.26
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Table A2. Results of ANOVA (p-values) and ROC (area under ROC curve) analysis for all examined
methods for 2 s, 5 s and 10 s window lengths, for mean window sliding along the 30 s long signal, with
an overlap equal to half of the window length.

MEAN WINDOW 2 s 5 s 10 s

Method p-Value Area Under
ROC Curve p-Value Area Under

ROC Curve p-Value Area Under
ROC Curve

LZC 0.005 0.82 0.005 0.82 0.005 0.84
BDM 0.007 0.80 0.004 0.83 0.003 0.85

ShanEn 0.064 0.77 0.052 0.77 0.040 0.79
AFCL 0.964 0.53 0.990 0.52 0.822 0.52

DF 0.821 0.52 0.841 0.51 0.815 0.48
DF RI 0.435 0.57 0.099 0.69 0.099 0.69
DF OI 0.866 0.55 0.880 0.57 0.214 0.65

NavX CFAE 0.579 0.58 0.252 0.69 0.180 0.67
CEA 0.579 0.53 0.584 0.51 0.573 0.53
ICL 0.641 0.47 0.618 0.48 0.601 0.48
ACI 0.233 0.33 0.933 0.49 0.724 0.44
SCI 0.306 0.55 0.442 0.58 0.940 0.52

SampEn 0.729 0.53 0.728 0.53 0.729 0.53
WMS 0.068 0.25 0.071 0.26 0.063 0.26
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Appendix D

Table A3. Full correlation table for all methods, for 2 s length first window of the signal.
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LZC – 0.98 0.72 −0.25 −0.06 0.65 0.16 −0.33 0.31 0.04 −0.56 −0.36 0.08 −0.64
BDM 0.98 – 0.71 −0.26 −0.03 0.67 0.16 −0.38 0.28 0.01 −0.52 −0.31 0.08 −0.61

ShanEn 0.72 0.71 – −0.17 −0.01 0.41 −0.03 −0.02 0.57 0.28 −0.59 −0.58 0.25 −0.63
AFCL −0.25 −0.26 −0.17 – −0.42 −0.26 0.66 0.33 −0.15 −0.42 0.13 0.14 −0.24 −0.03

DF −0.06 −0.03 −0.01 −0.42 – 0.24 −0.77 −0.20 0.07 0.43 −0.04 −0.13 0.07 0.15
DF RI 0.65 0.67 0.41 −0.26 0.24 – −0.10 0.01 −0.08 0.03 −0.17 0.00 −0.31 −0.40
DF OI 0.16 0.16 −0.03 0.66 −0.77 −0.10 – 0.05 −0.07 −0.43 −0.10 0.07 −0.07 −0.19
NavX −0.33 −0.38 −0.02 0.33 −0.20 0.01 0.05 – −0.21 −0.04 0.38 0.19 −0.40 0.04
CEA 0.31 0.28 0.57 −0.15 0.07 −0.08 −0.07 −0.21 – 0.30 −0.61 −0.62 0.84 −0.36
ICL 0.04 0.01 0.28 −0.42 0.43 0.03 −0.43 −0.04 0.30 – −0.35 −0.57 0.19 −0.14
ACI −0.56 −0.52 −0.59 0.13 −0.04 −0.17 −0.10 0.38 −0.61 −0.35 – 0.87 −0.47 0.44
SCI −0.36 −0.31 −0.58 0.14 −0.13 0.00 0.07 0.19 −0.62 −0.57 0.87 – −0.45 0.43

SampEn 0.08 0.08 0.25 −0.24 0.07 −0.31 −0.07 −0.40 0.84 0.19 −0.47 −0.45 – −0.18
WMS −0.64 −0.61 −0.63 −0.03 0.15 −0.40 −0.19 0.04 −0.36 −0.14 0.44 0.43 −0.18 –

Table A4. Full correlation table for all methods, for 5 s length first window of the signal.
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LZC – 0.99 0.78 −0.05 −0.08 0.03 −0.08 −0.10 0.37 0.07 −0.20 0.07 0.03 −0.62
BDM 0.99 – 0.82 −0.04 −0.09 0.03 −0.09 −0.07 0.40 0.09 −0.24 0.07 0.05 −0.59

ShanEn 0.78 0.82 – −0.11 −0.06 0.01 −0.11 0.16 0.61 0.35 −0.38 −0.17 0.22 −0.61
AFCL −0.05 −0.04 −0.11 – −0.83 0.12 0.19 −0.22 0.02 −0.40 −0.17 −0.03 −0.06 0.07

DF −0.08 −0.09 −0.06 −0.83 – 0.12 −0.29 0.12 −0.21 0.26 0.26 0.28 −0.04 0.11
DF RI 0.03 0.03 0.01 0.12 0.12 – 0.27 0.16 −0.37 −0.35 0.35 0.58 −0.58 0.22
DF OI −0.08 −0.09 −0.11 0.19 −0.29 0.27 – −0.01 −0.04 −0.21 0.15 0.08 −0.11 0.29
NavX −0.10 −0.07 0.16 −0.22 0.12 0.16 −0.01 – −0.21 0.01 0.26 0.20 −0.45 0.17
CEA 0.37 0.40 0.61 0.02 −0.21 −0.37 −0.04 −0.21 – 0.65 −0.72 −0.68 0.78 −0.41
ICL 0.07 0.09 0.35 −0.40 0.26 −0.35 −0.21 0.01 0.65 – −0.47 −0.69 0.49 −0.29
ACI −0.20 −0.24 −0.38 −0.17 0.26 0.35 0.15 0.26 −0.72 −0.47 – 0.59 −0.66 0.26
SCI 0.07 0.07 −0.17 −0.03 0.28 0.58 0.08 0.20 −0.68 −0.69 0.59 – −0.66 0.40

SampEn 0.03 0.05 0.22 −0.06 −0.04 −0.58 −0.11 −0.45 0.78 0.49 −0.66 −0.66 – −0.23
WMS −0.62 −0.59 −0.61 0.07 0.11 0.22 0.29 0.17 −0.41 −0.29 0.26 0.40 −0.23 –
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Table A5. Full correlation table for all methods, for 10 s length first window of the signal.
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LZC – 0.99 0.77 −0.04 −0.15 0.11 0.37 0.54 0.35 0.05 −0.15 −0.15 0.06 −0.59
BDM 0.99 – 0.79 −0.02 −0.17 0.06 0.38 0.48 0.37 0.05 −0.16 −0.14 0.09 −0.59

ShanEn 0.77 0.79 – −0.11 −0.09 0.20 0.12 0.17 0.61 0.35 −0.40 −0.50 0.24 −0.55
AFCL −0.04 −0.02 −0.11 – −0.64 0.00 0.25 0.14 −0.06 −0.56 −0.11 0.27 −0.21 −0.09

DF −0.15 −0.17 −0.09 −0.64 – 0.20 −0.52 −0.10 −0.08 0.31 0.10 −0.07 0.05 0.20
DF RI 0.11 0.06 0.20 0.00 0.20 – −0.11 0.17 −0.14 −0.12 0.07 0.27 −0.36 −0.03
DF OI 0.37 0.38 0.12 0.25 −0.52 −0.11 – 0.07 −0.03 −0.26 0.15 0.10 0.08 −0.50
NavX 0.54 0.48 0.17 0.14 −0.10 0.17 0.07 – −0.33 −0.48 0.22 0.24 −0.48 −0.16
CEA 0.35 0.37 0.61 −0.06 −0.08 −0.14 −0.03 −0.33 – 0.58 −0.80 −0.60 0.79 −0.26
ICL 0.05 0.05 0.35 −0.56 0.31 −0.12 −0.26 −0.48 0.58 – −0.36 −0.71 0.46 −0.07
ACI −0.15 −0.16 −0.40 −0.11 0.10 0.07 0.15 0.22 −0.80 −0.36 – 0.57 −0.68 0.12
SCI −0.15 −0.14 −0.50 0.27 −0.07 0.27 0.10 0.24 −0.60 −0.71 0.57 – −0.48 0.32

SampEn 0.06 0.09 0.24 −0.21 0.05 −0.36 0.08 −0.48 0.79 0.46 −0.68 −0.48 – −0.13
WMS −0.59 −0.59 −0.55 −0.09 0.20 −0.03 −0.50 −0.16 −0.26 −0.07 0.12 0.32 -0.13 –

Table A6. Full correlation table for all methods, for 30 s signal.
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LZC – 0.99 0.80 −0.12 −0.04 0.46 0.27 0.53 0.35 0.11 −0.33 −-0.31 0.07 −0.57
BDM 0.99 – 0.79 −0.09 −0.06 0.46 0.27 0.53 0.33 0.07 −0.31 −0.28 0.05 −0.58

ShanEn 0.80 0.79 – −0.15 −0.06 0.39 0.31 0.17 0.59 0.43 −0.40 −0.52 0.20 −0.61
AFCL −0.12 −0.09 −0.15 – −0.87 0.33 0.06 0.13 −0.10 −0.45 −0.20 0.19 −0.24 −0.09

DF −0.04 −0.06 −0.06 −0.87 – −0.35 −0.20 −0.08 0.02 0.34 0.18 −0.14 0.23 0.26
DF RI 0.46 0.46 0.39 0.33 −0.35 – 0.20 0.41 −0.02 −0.26 −0.30 −0.36 −0.29 −0.45
DF OI 0.27 0.27 0.31 0.06 −0.20 0.20 – −0.12 0.47 0.04 −0.28 0.21 0.25 −0.35
NavX 0.53 0.53 0.17 0.13 −0.08 0.41 −0.12 – −0.31 −0.43 −0.14 −0.11 −0.42 −0.14
CEA 0.35 0.33 0.59 −0.10 0.02 −0.02 0.47 −0.31 – 0.60 −0.73 −0.33 0.77 −0.33
ICL 0.11 0.07 0.43 −0.45 0.34 −0.26 0.04 −0.43 0.60 – −0.21 −0.31 0.46 −0.18
ACI −0.33 −0.31 −0.40 −0.20 0.18 −0.30 −0.28 −0.14 −0.73 −0.21 – 0.42 −0.50 0.23
SCI −0.31 −0.28 −0.52 0.19 −0.14 −0.36 0.21 −0.11 −0.33 −0.31 0.42 – −0.14 0.24

SampEn 0.07 0.05 0.20 −0.24 0.23 −0.29 0.25 −0.42 0.77 0.46 −0.50 −0.14 – −0.15
WMS −0.57 −0.58 −0.61 −0.09 0.26 −0.45 −0.35 −0.14 −0.33 −0.18 0.23 0.24 −0.15 –
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