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Abstract: Atrial fibrillation (AF) is related to a very complex local electrical activity reflected in the 
rich morphology of intracardiac electrograms. The link between electrogram complexity and 
efficacy of the catheter ablation is unclear. We test the hypothesis that the Kolmogorov complexity 
of a single atrial bipolar electrogram recorded during AF within the coronary sinus (CS) at the 
beginning of the catheter ablation may predict AF termination directly after pulmonary vein 
isolation (PVI). The study population consisted of 26 patients for whom 30 s baseline electrograms 
were recorded. In all cases PVI was performed. If AF persisted after PVI, ablation was extended 
beyond PVs. Kolmogorov complexity estimated by Lempel–Ziv complexity and the block 
decomposition method was calculated and compared with other measures: Shannon entropy, AF 
cycle length, dominant frequency, regularity, organization index, electrogram fractionation, sample 
entropy and wave morphology similarity index. A 5 s window length was chosen as optimal in 
calculations. There was a significant difference in Kolmogorov complexity between patients with 
AF termination directly after PVI compared to patients undergoing additional ablation (p < 0.01). 
No such difference was seen for remaining complexity parameters. Kolmogorov complexity of CS 
electrograms measured at baseline before PVI can predict self-termination of AF directly after PVI. 

Keywords: atrial fibrillation; catheter ablation; electrogram complexity; Kolmogorov complexity; 
Shannon entropy; symbolic dynamics 

 

1. Introduction 

Atrial fibrillation (AF) is the most complex and common sustained arrhythmia [1] and one of the 
main causes of cardiac-related hospitalization. Mechanisms of AF perpetuation are still not clear [2,3]. 
Catheter ablation is one of the most frequently performed treatment procedures in patients with AF 
[4], with the success rate (non-recurrence after 2 years period) up to 90% in paroxysmal AF and up to 
64% in persistent AF after multiple procedures [5]. Haïssaguerre [6] et al. indicated that electrical 
activity in the region of pulmonary veins (PV) may trigger AF, leading to the need for pulmonary 
vein isolation (PVI), the cornerstone of AF ablation. In patients with AF at the beginning of the 
ablation, AF termination is regarded as a favorable endpoint of the procedure. However, PVI does 
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not always lead to the termination of AF, and additional ablation is often performed in hope to 
improve ablation efficacy. This makes the procedure more difficult, increases the risk of 
complications and its efficacy is still a matter of debate with some studies questioning the need for 
additional substrate ablation [7,8]. 

As ablation emerged as one of the main strategies in AF treatment, studies on signals recorded 
during this procedure are getting more important and methods related to the complexity of the signal 
are used with increasing frequency. For example, Lankveld et al. showed that AF complexity 
parameters, calculated on the basis of surface electrocardiogram (ECG), can verify whether the 
patient is likely to benefit from catheter ablation [9]. Several methods quantifying electrogram 
complexity were also developed to find the areas with complex atrial electrograms, which are often 
considered among the suggested targets for additional ablation sites. The most known is the detection 
of complex fractionated electrical activity (CFAE) by Nademanee et al. [10]. In 2012, Narayan et al. 
[2] proposed an innovative approach, implying that a rapid firing foci drives the atria, maintaining 
AF through short re-entrant circuits (rotors and drivers) [2]. Location of these sources did not coincide 
with CFAE locations [11]. Ablation of these sources has been suggested as a solution capable of 
terminating AF without PVI. However, a number of later studies did not confirm this hypothesis, 
resulting in an ongoing discussion of the applicability of this method [12,13]. In the meantime, 
pulmonary vein isolation (PVI) is still the reference procedure for catheter ablation of AF. In this 
view, methods predicting the outcome, duration and extent of an ablation procedure are of clinical 
importance. 

In this study, we measure complexity of a single electrogram at the coronary sinus (CS) at the 
beginning of the electrophysiological procedure. We propose Kolmogorov complexity 
approximations (Lempel–Ziv complexity and block decomposition method) as measures useful 
during the ablation procedure and we compare it with other complexity parameters used in clinical 
practice. The aim of this study is to assess whether the Kolmogorov complexity of an electrogram 
recorded in CS can be used to predict termination of AF directly after PVI and to identify the most 
powerful complexity measure in this regard. 

2. Materials and Methods  

2.1. Study Population and Catheter Ablation Procedure 

All recordings were collected in Royal Adelaide Hospital during catheter ablation of atrial 
fibrillation. Catheter ablation followed fixed, step-wise protocol providing opportunity to investigate 
the effect of each ablation stage on AF complexity. The study population consisted of 26 patients with 
AF (paroxysmal 12 patients; persistent 14 patients) with a mean age of 62 ± 9 years. For 17 patients 
ablation terminated AF. In paroxysmal patients, AF was induced prior to the ablation. The rest of the 
group was in AF prior to the procedure. Atrial bipolar electrograms were recorded during the whole 
ablation procedure. A 10-pole catheter with 2–5–2 mm interelectrode spacing was placed distal in CS 
with the proximal bipole at the CS ostium. For privacy protection, patient personal information was 
removed from the database. 

Thirty second intracardiac electrograms recorded with the sampling rate 1 kHz were analyzed 
at baseline, before any ablation was done and after each stage of ablation: Ablation of left pulmonary 
veins (LPV), right pulmonary veins (RPV), ablation at the LA roof, ablation at the fossa region and 
ablation of complex fractionated atrial electrograms (CFAE). In patients in whom AF was induced 
prior to ablation, the electrograms for analysis were taken after 5 min of AF perpetuation. Additional 
30 s electrograms recorded 30 s prior to AF termination were analyzed as the last stage. In this study, 
we present results based only on electrograms recorded at baseline and on information about the 
ablation process (whether only PVI was performed or ablation at more sites was conducted). Results 
for electrograms recorded prior to termination are presented in Supplementary Materials in Table S2. 

In the calculations, we tested different window lengths and chose 5 s as optimal. See Section 2.3 
statistical analysis and Section 3 results for details. All baseline electrograms were assessed with 
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different measures, which were compared between patients in whom AF terminated directly after 
PVI and those in whom additional stages of ablation were performed. 

2.2. Complexity of Electrograms 

Complexity assessment of AF intracardiac electrograms has mostly been used in previous 
studies to determine the target area during an ablation procedure [10,14]. In this study, we used the 
complexity measure as an estimator of the ablation outcome after PVI. For this purpose, we applied 
a number of measures for atrial electrograms complexity assessment, including such that have 
already been applied in clinical practice. All these methods are presented below. All parameters used 
in the calculations are available in the Supplementary Materials (Table S1). 

2.2.1. Linear Methods 

For intracardiac signals analysis linear methods have most commonly been used. Although they 
omit some significant dependencies between signal components and thus are often insufficient, they 
are relatively easy to determine, and they can give quick and valuable information about the signal. 
We proposed a classical time-based linear method (mean AF cycle length), and frequency based linear 
methods (dominant frequency with additional indices). 

AFCL (atrial fibrillation cycle length) was measured as the mean of the intervals between 
consecutive local activations (the time interval between consecutive activation deflections). 

DF (dominant frequency) is the frequency at which the largest peak can be found in power 
spectral analysis after applying FFT (fast Fourier transform) [15]. For more organized AF, lower DF 
values are expected [16]. Additional indices based on spectral analysis were used to ensure the 
reliability of DF estimation [17]: 

DF RI (dominant frequency regularity index) is the ratio calculated as the area under the 
estimation of the biggest peak of the power spectrum (with a ±0.75 Hz band width) divided by the 
area under the whole power spectral density curve from the minimum to the maximum frequency 
[17,18]. 

DF OI (dominant frequency organization index) was calculated similarly to RI, but it took into 
account the power of DF harmonics [18].  

2.2.2. Non-Linear Methods 

During AF nonlinearity of the heart increases [19]. Based on that, we proposed non-linear 
methods as being more appropriate in the context of the electrogram complexity analysis. Looking 
for a measure that can give better insight into the nature of the electrogram, we proposed some 
information content and entropy methods (Lempel–Ziv complexity, block decomposition method, 
Shannon entropy and sample entropy), one method based on signal morphology (wave morphology 
similarity index) and a number of CFAE parameters. 

Kolmogorov complexity K(s) of a string s is defined as the length of the shortest binary 
description of s [20]. It is an absolute and objective quantification of the amount of information in this 
string [20]. We proposed two methods to approximate Kolmogorov complexity of an electrogram: 
Lempel–Ziv complexity and block decomposition method. Both methods require input data to be 
defined on an alphabet. Thus, to enable them to assess electrogram complexity, before calculations, a 
conversion to 0–1 alphabet (a binary string) was performed. The conversion procedure is presented 
below. 

First, downsampling to frequency 0.5 kHz, i.e., removing every second sample from the raw 
signal, was performed. Then an electrogram was transformed into a series of “0” and “1” (binary 
string s), where the 1 s correspond roughly to local activation events, according to the formula: s୧ = ൜1; ISP୧ > A୧ 0; ISP୧ ≤ A୧ , (1) 

where Ai is a moving threshold, calculated for every signal sample, and ISP is the instantaneous 
signal power of the electrogram [21]. ISP can be statistically interpreted as a moving variance and has 
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the properties of a high-pass filter. The assumption is that the spikes of the ISP curve reflect the 
depolarization events [22]. ISP is then compared with an adaptive threshold Ai, describing the power 
of background noise for a particular moment in time. To find Ai, application of an adaptive procedure 
should be performed. This procedure reduces noise, acting as a high-pass filter [21], according to the 
rules: M଴ = X଴; M୧ = M୧ିଵ + Dଵ(X୧ − M୧ିଵ), (2) ISP଴ = 0; ISP୧ = ISP୧ିଵ + Dଵ((X୧ − M୧ିଵ)ଶ − ISP୧ିଵ). (3) 

M (adaptive mean) and ISP are defined with D1 as an adaptation constant (0 < D1 < 1; according 
to the authors of the method, in our analysis D1 = 0.75 was used) [21]. X is the raw signal after initial 
noise reduction and normalization. The moving threshold is defined as: A୧ = MISP୧ + 0,1V୧, (4) 

where MISP is the mean instantaneous signal power and V is the adaptive power variance [21]. These 
quantities were calculated using: MISP଴ = ISP଴;  MISP୧ = MISP୧ିଵ + Dଶ(ISP୧ − MISP୧ିଵ). (5) V଴ଶ = 0; V୧ଶ = V୧ିଵଶ + Dଶ((ISP୧ − MISP୧)ଶ − V୧ିଵଶ ). (6) 

The parameter D2 was set at 0.02, according to the authors of the method [21] (the optimal value 
of D2 was found based on several tests performed on selected signals scored by an expert 
cardiologist). The converted binary signal has the same length as the downsampled raw signal, for 
instance a 5 s electrogram recorded with the frequency of 1 kHz corresponds to 2500 samples. To 
approximate K(s) of the binary string, we proposed the following approaches: 

LZC (Lempel–Ziv complexity) is the compression algorithm that has traditionally been used to 
approximate the Kolmogorov complexity of an object [23]. Recent studies [23] have shown a number 
of limitations of compression algorithms in the light of Kolmogorov complexity, however under 
specific conditions it is still a very good estimation of K(s). LZC is based on the method introduced 
by Pitschner and Berkowitsch [21] to automatically quantify the degree of AF organization. The 
method applies the principles of symbolic dynamics [24], transforming the electrogram into a binary 
string and calculating the complexity of such a string.  

After conversion, complexity for a binary string is calculated using the Lempel–Ziv algorithm 
[21,22]. This is done by finding the number of the so-called words in this string. For each element of 
the string, a check is performed whether the new sequence (composed of the word already analyzed 
and the next symbol) has appeared in the signal before. If not, then that sequence becomes the new 
word and complexity is raised by 1. Otherwise, another symbol is added and the check whether the 
sequence has occurred performed again. The calculation of LZC can be mathematically described by 
formula: LZC଴ = 1; LZC୩ାଵ = { LZC୩; S୪ାଵ. . . S୩ାଵϵ Sଵ. . . S୩LZC୩ + 1; S୪ାଵ. . . S୩ାଵ ∉ Sଵ. . . S୩, (7) 

where l is the index of the last sample of the last word found. For example, the sequence S1 = 11001 
with length n = 5 can be split into three different sequences: (1)(10)(01), providing Lempel–Ziv 
complexity LZCS1 = 3. In contrast, the simple sequence S2 = 00000 of the same length should be 
transformed into the words (0)(0000), which gives the result of LZCS2 = 2. 

In a comparative analysis of the signals, normalized LZC may be useful. It can be defined as: LZC୬୭୰୫ = LZCB , (8) 

where normalization factor B is the maximal number of words for a symbol sequence in a binary 
alphabet, and can be calculated as:  B = ୬୪୭୥మ ୬, (9) 
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where n is the length of the signal [22]. Key steps of the LZC method are depicted in Appendix 1 in 
Figure A1. 

Figure 1 illustrates the differences between two 2 s electrograms of different complexities (Figure 
1A,B), comparing graphically the results of the LZC method (Figure 1C–F). Despite an apparently 
similar level of complexity assessed during the visual inspection of Figure 1A and 1B, a quantitative 
analysis of LZC shows that there is a significant difference between the complexities of those signals. 

 
Figure 1. Comparison of two electrograms with different Lempel–Ziv complexities. In the top graphs, 
2 s windows of bipolar electrograms are shown. In the middle, the corresponding Lempel–Ziv 
complexity (LZC) plots for both cases and, in the bottom figures, the normalized LZ complexity plots. 
The normalized LZC at the beginning of the given fragment rapidly increased in both signals, but, for 
signal 1, it next significantly decreased, while, for signal 2, it oscillated around half of the maximum 
value. 

BDM (Block Decomposition Method) is a modern information theory method, which aims to 
find a set of small computer programs that produces the components of a larger object [23]. The first 
studies using BDM for the analysis of physiological signals have been published recently [25]. BDM 
is an extension of the coding theorem method (CTM), which has first been used for the compression 
of very short strings. CTM is calculated based on the algorithmic frequency of production of a string 
s and its algorithmic (Kolmogorov) complexity K(s), which is defined as the length of the shortest 
program p that outputs the string s on a universal Turing machine U. CTM approximates 
Kolmogorov complexity using the following dependency: The more frequent the string is, the lower 
Kolmogorov complexity it has. Formally, CTM for a binary string s is represented by the following 
formula: 



Entropy 2019, 21, 970 6 of 23 

 

CTM(s, t, k) =  − logଶ D(t, k)(s), (10) 

where (t, k) is the space of all t-state k-symbol Turing machines, t, k > 1 and D(t, k)(s) is the function 
assigned to every finite binary string s [23]. 

Since CTM is computationally expensive, the block decomposition method has been developed 
to manage reproducing larger objects. BDM decomposes an object into smaller programs, strongly 
relying on CTM-using it to calculate algorithmic complexity approximations of smaller pieces of a 
large object and reconstructing an approximation of the Kolmogorov complexity for the larger object. 
Fixing t and k, we could define the 1-dimensional BDM of a string s with the following formula: BDM(s, l, m) =  ෍ሾCTM(s୧, m, k) + log(n୧)ሿ,୧  

 
(11) 

where ni is the multiplicity of si, si is the subsequence i after decomposition of s into subsequences si, 
each of length l, and m is an overlapping parameter (m = l means no overlapping) [23].  

In this study, after converting the electrograms to binary strings, BDM was calculated using 
software available online and described in [23,26]. We chose l = 12 as optimal decomposition length.  

ShEn (Shannon entropy) is a statistical measure of information uncertainty. Shannon entropy 
quantifies the properties of the probability distribution of the signal (a normalized histogram) 
providing a measure of information content [27]. Electrograms in which the signal has a few states 
(i.e., narrow, regular deflections of similar amplitude) have a narrow distribution in the voltage 
histogram, and low ShEn values. Electrograms in which the signal adopts a broad distribution of 
states (irregular morphology and amplitude, fractionation) have a wide distribution in the voltage 
histogram, and large ShEn values [28]. 

SampEn (sample entropy) requires the selection of three parameters: The length of the sequences 
to be compared (m), the patterns similarity tolerance (r) and the number of samples under analysis 
(N), which in our study were chosen according to Alcaraz et al. [29]. Sample entropy is based on the 
conditional probability that if two sequences of signal samples of length m (taken at two different 
time points of a signal) are similar (the amplitude of the corresponding samples is not different than 
by a predefined threshold), these two sequences will remain similar if the sequences of length m + 1 
will be considered at the same time points [30]. The more organized AF is, the lower is sample entropy 
[16]. 

WMSI (wave morphology similarity index) is an algorithm for the evaluation of the organization 
of atrial electrograms during AF based on the similarity of electrogram morphology. It relates 
morphologies of all possible pairs of electrogram deflections extracted from the recording and 
estimates their similarity. The algorithm describes the regularity by measuring the extent of 
repetitiveness over time of its consecutive activation waves morphology [31]. 

CFAE (complex fractionated atrial electrograms) have been suggested to indicate tissue areas 
associated with the AF substrate [10]. CFAE are postulated to represent areas contributing to AF 
maintenance, however this relationship is still not fully understood and it is questioned [32]. There is 
also no consensus on the definition of CFAEs. One of the proposed definitions describes CFAEs as 
the atrial fractionated electrogram composed of two or more deflections and/or a perturbation of the 
baseline with a continuous deflection of a prolonged activation complex [27]. A second method 
describes CFAE as an electrogram with a very short cycle length (smaller than 120 ms) [27]. We used 
the second definition in our study. We investigated five approaches to quantify CFAEs: 

NavX CFAE (NavX complex fractionated atrial electrograms)—mean complex fractionated 
electrogram calculated as the averaged time interval between the marked deflections, given in 
percent [32], used in the EnSite NavX electroanatomical mapping system. In the figures, the 
abbreviation “NAVX” is used. 

The following four algorithms are accommodated in the CARTO electroanatomical mapping 
system: 
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CEA (continuous electrical activity)—defined by the presence of two or more successive 
deflections for which the interval length is shorter than 50 ms. CEA is expressed as percentage of 
continuous activity [32]. 

ICL (interval confidence level)—the number of intervals identified between consecutive 
complexes defined as CFAE [10], 

ACI (average complex interval)—the average of all intervals that have been identified between 
consecutive CFAE complexes, given in ms [32], 

SCI (shortest complex interval)—the shortest interval of all that have been identified between 
consecutive CFAE complexes, given in ms [10]. 

2.3. Statistical Analysis 

The difference between complexity parameters was tested using ANOVA. Patients were divided 
into two groups: The first group consisted of 16 cases for which AF terminated directly after PVI (nine 
patients with paroxysmal AF and seven patients with persistent AF) and the second group of 10 
patients for whom an isolation of the PV was not sufficient to terminate AF and further steps of 
ablation were attempted (three patients with paroxysmal AF and seven patients with persistent AF). 
In all cases, the statistical significance lower than 0.05 was considered as significant. 

To check whether the group separation factor (defined as ablation at additional sites) was chosen 
correctly, sensitivity and specificity was calculated and ROC (receiver operating characteristic) 
analysis was performed. Accuracy was measured as the area under the ROC curve (AUC). AUC 
larger than 0.7 signified that the group separation factor was accurate. For those methods for which 
we found statistical significance or a trend, the optimal point for ROC (OPT ROC) was calculated as 
the cut-off point closest to the true positive rate of 1 and false positive rate of 0. 

All parameters were calculated in 2, 5, 10 and 30 s segments (the first single-window of the 
signal). Additionally, the results were accompanied by the mean of the moving window segments 
over the full 30 s recording, with an overlap equal to one half of the window length. 

3. Results 

There was a significantly higher Kolmogorov complexity (approximated by LZC and BDM) of 
CS electrograms in patients for whom AF did not terminate after PVI alone and who underwent 
ablation at additional sites than for the patients for whom AF terminated after PVI (p < 0.05 for each 
tested window length; see Figure 2A,B). In case of Shannon entropy, a tendency towards significance 
was found (e.g., for 5 s window p = 0.052; see Figure 2C). There was no significant difference between 
groups for all other parameters (AFCL, DF, RI, OI, all CFAE parameters, SampEn and WMSI; see 
Figure 3). 
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Figure 2. Lempel–Ziv complexity (A), block decomposition method (B) and Shannon entropy (C) of 
5 s coronary sinus electrograms for patients for whom atrial fibrillation (AF) terminated after 
pulmonary vein isolation (PVI) and for patients for whom ablation at more sites was conducted. 
ANOVA analysis revealed a significant difference between groups in LZC and the block 
decomposition method (BDM) and a trend towards significance was found for the Shannon entropy 
(ShEn) method. The thick red line represents the median for each group, outliers are marked as 
individual small circles; box boundaries correspond to Q1 and Q3 (lower and upper quartile); the 
upper whisker is located at the smaller of the maximum group value and Q3 + 1.5 IQR (interquartile 
range) value, whereas the lower whisker is located at the larger of the smallest group value and Q1 -
1.5 IQR. Q1 and Q3 are the first and the third quantile, IQR is the length of the box and equals Q3-Q1. 

 

Figure 3. Results for the parameters for which no significant difference was found between the 
patients with AF terminated after pulmonary veins isolation and the patients for whom ablation at 
more sites was conducted. The results presented refer to the analysis of the first 5 s signal fragment 
of the CS electrogram. For clarity of presentation, all measures were scaled to the (0–1) range. 

ROC analysis resulted in an accuracy of 0.763 for LZC, 0.806 for BDM and 0.756 for ShEn (see 
Figure 4). Results for the other parameters (AFCL, DF, RI, OI, all CFAE parameters, SampEn and 
WMSI) are shown in Figure 5. For all parameters other than LZC, BDM and ShEn, the area under the 
ROC was lower than 0.7.  

Table 1 summarizes the results of ANOVA and ROC analysis obtained for all 14 examined 
parameters for the first 5 s window of the 30 s signals. For LZC, BDM and ShEn, the sensitivity, 
specificity and the value for OPT ROC are also presented. 

To explore how the length of the analyzed electrogram affects the performance of each tested 
method, we compared the values of AUC for every method for four different signal lengths: 2 s, 5 s, 
10 s and 30 s (Figure 6). The same check was performed for ANOVA (p-value) results (a graphical 
presentation is available in Figure A2 in Appendix B). For both approaches, in case of LZC, BDM and 
ShEn the differences between the results obtained for particular window lengths were insignificant. 
Correlation analysis revealed that both methods that approximate Kolmogorov complexity, i.e., 
Lempel–Ziv complexity and the block decomposition method, were very strongly correlated (the 
correlation coefficient equaled 0.98 or more for all examined window lengths). A strong correlation 
between those methods and Shannon Entropy was also found (with the correlation coefficient larger 
than 0.71 for both examined pairs for different window lengths).  
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Figure 4. Receiver operating characteristic (ROC) analysis of classification performance for Lempel–
Ziv complexity (A), block decomposition method (B) and Shannon entropy (C). Classification was 
performed between two groups of patients: those for whom AF terminated after PVI and for patients 
for whom ablation at more sites was conducted. Presented results refer to the analysis of the first 5 s 
signal fragment of the coronary sinus (CS) electrogram. 

 
Figure 5. ROC analysis of the classification performance for AF cycle length, dominant frequency 
parameters dominant frequency (DF), regularity index (RI), organization index (OI), complex 
fractionated atrial electrogram (CFAE) estimated by CARTO parameters, CFAE estimated by NAVX, 
sample entropy (SampEn) and wave morphology similarity index (WMSI). Classification was 
performed between two groups of patients: the one for whom AF terminated after PVI and for those 
patients for whom ablation at more sites was conducted. The results presented refer to the analysis 
for the first 5 s signal fragment of the CS electrogram. 
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Table 1. Results of ANOVA (p-values) and ROC (area under ROC) analysis for all examined methods. 
* For the area under ROC larger than 0.7, sensitivity, specificity and value for optimum ROC (OPT 
ROC) are presented. Table refers to results obtained for 5 s window analysis. 

Method 
p-

Value 
Area Under 

ROC 
Sensitivity OPT 

ROC 
Specificity OPT 

ROC 
Value for OPT 

ROC 
LZC 0.010 0.76 0.70 0.81 75 
BDM 0.008 0.81 0.70 1.00 2076 

ShanEn 0.052 0.76 0.70 0.81 2.47 
AFCL 0.944 0.51 -* -* -* 

DF 0.665 0.56 -* -* -* 
DF RI 0.737 0.49 -* -* -* 
DF OI 0.084 0.34 -* -* -* 
NavX 
CFAE 0.876 0.60 -* -* -* 

CEA 0.481 0.51 -* -* -* 
ICL 0.813 0.55 -* -* -* 
ACI 0.484 0.42 -* -* -* 
SCI 0.293 0.57 -* -* -* 

SampEn 0.978 0.53 -* -* -* 
WMS 0.160 0.28 -* -* -* 

 
Figure 6. Comparison of area under ROC for all methods for different window lengths: 2 s, 5 s, 10 s 
and 30 s. In case of LZC, BDM and ShEn, the differences are minimal and only for those three methods 
in each window AUC is higher than 0.7. 

The tables with the results for ANOVA and ROC for all windows are presented in Appendix C 
(Table A1) and the correlation tables for all methods are available in Appendix D (Tables A3–A6). In 
addition, for each method the mean values of the results obtained using a sliding window for the 
same window lengths were calculated. Results can be found in Table A2 in Appendix C. The 
approaches using the first window and a sliding window gave comparable results. In this study, we 
decided to focus only on the first 5 s of the signal, as we perceived this time period as optimal both 
to quickly obtain complexity parameters and to contain a significant number of signal activations. 
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4. Discussion 

Understanding the mechanisms initiating and sustaining AF remains a challenge. Despite over 
100 years of research in this field, there is still disagreement on the basic AF mechanisms [2,3]. 

Catheter ablation of AF, one of the main AF treatment strategies, is a complex and difficult 
procedure. Its favorable end-point is an abrupt termination of AF, which has been linked with long-
term success [33]. However, several studies demonstrated that extensive ablation does not improve 
long-term efficacy [8,33]. 

As the number of various approaches to AF catheter ablation increases [2,5,10,34–36], methods 
predicting procedure success are valuable in the context of patient selection and procedure planning. 
Recent studies often focused on predicting success during long-term follow-up [37,38]. In our study 
we do not indicate a long-term success of the procedure but that the ablation procedure duration 
would be extended beyond pulmonary veins. Specifically, we aimed to predict, using only 
electrogram properties measured at a single site, if the sole ablation of PVI will lead to AF termination 
directly after pulmonary vein isolation. Due to unsatisfactory atrial fibrillation ablation results, 
especially in patients with persistent AF, currently in the literature the necessity of an individualized 
approach to AF ablation is emphasized. Hence, our study is a step in this direction [39,40]. 

In our study, we investigated whether various complexity parameters could predict catheter 
ablation outcome. Receiver operating characteristic analysis showed that Kolmogorov complexity 
approximations and Shannon entropy distinguished reasonably well patients in whom PVI terminate 
AF from those in whom it was not sufficient for AF termination. For those methods, the area under 
ROC was larger than 0.75. However, ANOVA analysis demonstrated that a significant difference 
between such patients, for whom AF spontaneously terminated directly after PVI, in comparison to 
those in whom additional steps of ablation were undertaken, can be found only for Kolmogorov 
complexity (p < 0.011). The remaining complexity parameters examined did not differ between the 
groups, with Shannon entropy showing a result marginally close to significance (p < 0.053). Between 
Kolmogorov complexity and Shannon entropy a strong correlation was found (with a correlation 
coefficient oscillating about 0.8). 

4.1. Kolmogorov Complexity in AF Electrogram Complexity Assessment 

In our study, we demonstrated that Kolmogorov complexity of electrograms recorded at the 
beginning of the procedure could suggest how a patient will respond to PVI and a more extensive 
ablation. We presented two approaches of approximating Kolmogorov complexity K(s) of a binary 
string s. The first of them is a lossless compression algorithm that has traditionally been used to 
approximate K(s), providing its upper bounds. However, this algorithm has some limitations, 
specifically it fails to estimate K(s) of small objects and has been proven to be closer to entropy 
estimators than to K(s) recently [23]. The second proposed K(s) estimation is the block decomposition 
method, a measure that combines Shannon entropy in the long range with local estimations of 
algorithmic complexity and, contrary to compression algorithms, can deal with any signal length [23]. 
In this study, the binary signals we operated on were relatively long (1000 to 15,000 samples), which 
resulted in very strong correlation between LZC and BDM. Therefore, in the context of the database 
examined, we considered LZC to be an as good approximation of Kolmogorov complexity as BDM, 
and we left the open question which algorithm will be better in clinical applications: LZC, which is 
conceptually and computationally easier, or BDM, more complex, but a universal method. However, 
we wanted to highlight again that LZC and BDM are not equivalent in most cases, especially for very 
short signals. 

In this study, we proved that Kolmogorov complexity of AF was strongly related to the 
complexity of the signal in a clinical context. We compared this measure with other methods applied 
to the analysis of electrogram complexity. 

4.2. Literature Overview 
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The set of 12 other methods chosen in this paper to be compared with Kolmogorov complexity 
represents different approaches based on time and frequency analysis (AFCL, DF, RI and OI), wave 
morphology and recurrence (WMI), entropy (ShEn and SampEn) and a number of CFAE measures 
as defined by the NavX or CARTO systems. 

Due to the suboptimal efficacy of AF catheter ablation, much effort goes into studies attempting 
to identify the regions of atria responsible for AF maintenance as promising targets for ablation. The 
most known method of identifying such regions is complex fractionated atrial electrograms (CFAE), 
a measure reported by Nademanee [36]. It generated a very widespread response, and extensive 
studies were performed to verify whether CFAEs indicate AF-perpetuating sites. However, further 
studies did not reproduce the success, with a recent randomized trial (STAR AF II) demonstrating no 
extra benefits of additional CFAE ablation over pulmonary vein isolation alone in persistent AF 
patients [8]. Narayan et al. showed using monophasic action potential (MAP) catheters that sites 
showing CFAE reflect rather far-field signals, AF acceleration or disorganization than localized rapid 
AF sources [41]. Lau et al. showed that CFAE correlates poorly with substrate complexity measures 
like conduction velocity or electrical dissociation [32]. 

Common use of CFAE methods proves that the clinicians consider signal complexity as an 
important diagnostic value. However, definitions of CFAE measures are determined mostly on the 
basis of clinical practice. This suggests that the use of other methods that are able to measure 
complexity in the context of electrogram analysis is of outstanding importance. 

There have been a number of studies that focused mainly on the regularity of AF [42–44]. 
Another popular group of methods used in AF electrogram complexity assessment are entropy-based 
measures. Several entropy-based methods have been defined in the literature, such as: Approximate 
entropy (ApEn), Shannon entropy (SE), sample entropy (SampEn) and multiscale entropy (MSE). 
Although all of them are related to the same concept, the mathematical formulations vary among 
them [45]. In the case of AF electrograms, entropy may be associated with the disorganization of the 
atrial electrical activity [45]. An entropy-based approach in the electrogram assessment was 
represented, for example by Cervigón et al., who proposed sample entropy measured in the right 
atrium as a predictor of AF recurrence outcome after PVI [37]. In another study, Ng et al. reported 
ShEn to be able to identify CFAE sites for ablation automatically [27]. A study by Ganesan et al. 
showed that the pivot of the rotor is consistently associated with high Shannon entropy of bipolar 
electrograms [46]. In another study concerning rotors localization, approximate entropy has been 
proposed [47]. An improved version of multiscale entropy was used in a study aimed to discriminate 
fractionated electrograms in paroxysmal versus persistent atrial fibrillation [48]. 

In the meantime, linear methods are still often used in AF complexity analysis. For example, 
Matsuo et al. [49] reported cycle length measured on the surface ECG to be a predictor of long-term 
success in persistent AF patients. As AF is associated with electrical remodeling, which is reflected in 
significant signal information during spectral analysis of AF, in many recent studies spectral indices 
(like DF, RI and OI) have been used [9,38,50]. What is important, Szilágyi et al. showed that spectral 
measures performed better than clinical factors for predicting AF recurrence. 

4.3. Physiological Meaning of the Results 

One of the main aspects of the physiological meaning of our results is a link between electrogram 
complexity and likelihood of termination after PVI. Several studies demonstrated a link between the 
complexity of electrogram morphology and the degree of electroanatomical remodeling of the 
underlying myocardial tissue. This includes tissue fibrosis, endo-epicardial dissociation, altered 
action potential kinetics and repolarization abnormalities. All these factors lead to the formation of a 
substrate for extra-pulmonary AF drivers. Thus, the higher the complexity of CS electrograms, the 
higher likelihood of extra-pulmonary veins drivers and thus the lower the chance of AF termination 
after PVI. 

The understanding of how much AF is dependent on triggers localized in the region of PVI is 
limited by diverse ablation methodologies that do not seem to result in durable pulmonary vein 
isolation [51]. In this view, it is important to search for indicators of other mechanisms of AF 
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perpetuation than those localized in PVI. Our study indicates, that an immediate success of the 
termination of AF due to PVI isolation may be predicted by a remote measurement in the CS, and 
therefore the existence of other mechanisms for AF perpetuation than these limited to the PVI region 
can also be detected remotely by the analysis of the complexity of the electrogram. If this hypothesis 
is true, more complex mechanisms of AF perpetuation, whether localized or not, will result in a non-
local increase of electrogram complexity, and mechanisms that perpetuate AF affect the conduction 
on a global, atrial level, rather than only locally either functionally or mechanistically. 

4.4. Clinical Implications 

The required time length of the measurement is one of the key elements of practical usability for 
algorithms analyzing electrograms in a clinical context. Therefore, we performed calculations not 
only on the whole 30 s recordings gathered during each ablation procedure, but also on shorter 
portions of the electrogram. We analyzed the first 2 s, to check if such a short signal (relevant in case 
of e.g., problems with maintaining a good contact between the catheter and the atrial wall) can be 
useful, as well as 10 s and 30 s signals to see if there is an increased value in analyzing longer 
recordings. The results for all examined windows were comparable, so we chose the 5 s length as 
optimal. In further study, it may be interesting to check how Kolmogorov complexity changes during 
the whole measurement. The area under the ROC for all window lengths for each parameter are 
indicators of the stability of the method and its vulnerability to the length of measurement. 

Our study indicates that Kolmogorov complexity of an electrogram measured at CS at baseline 
was larger when AF did not spontaneously cardiovert after PVI (see Figure 2, Table 1). As a result, 
this indicates that additional steps of ablation after PVI might be required to terminate AF. Thus, this 
indirectly indicates that the required ablation procedure might take a longer time. Therefore, the 
measurement of Kolmogorov complexity could be used as an indicator of the expected ablation 
duration and how demanding the procedure might be. Based on the optimal ROC point (OPT ROC 
point) calculation, we found LZC equal to 75 and BDM equal to 2076 as optimal values on the ROC 
when using the first 5 s window of the signal. 

The results of this study represent a step towards standardization of AF electrogram analysis, 
needed to adequately address the clinical relevance of ablation performance assessment and 
management [16]. 

5. Conclusions 

Low Kolmogorov complexity of an electrogram measured at the coronary sinus at the beginning 
of ablation can predict whether a non-induced termination of AF will occur directly after pulmonary 
vein isolation. The result obtained, combined with the short recording time required for Kolmogorov 
complexity calculation (5 s) and the fixed measurement site (coronary sinus) made this method 
potentially applicable in clinical practice. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, TableS1: Parameters 
used for the calculation of complexity methods, TableS2: Results of prior to termination recordings, DataS1: AF 
patients’ baseline electrograms.  
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ACI: Average Complex Interval;  
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AFCL: Atrial Fibrillation Cycle Length;  
BDM: Block Decomposition Method;  
CEA: Continuous Electrical Activity;  
CFAE: Complex Fractionated Atrial Electrograms;  
CS: Coronary Sinus;  
DF: Dominant Frequency;  
ICL: Interval Confidence Level;  
LPV: Left Pulmonary Vein;  
LZC: Lempel–Ziv Complexity;  
OI: Organization Index;  
PV: Pulmonary Veins;  
PVI: Pulmonary Veins Isolation;  
RI: Regularization Index;  
RPV: Right Pulmonary Vein;  
SampEn: Sample Entropy;  
ShEn: Shannon Entropy;  
SCI: Shortest Complex Interval;  
WMSI: Wave Morphology Similarity Index. 

Appendix A 

 

Figure A1. Key steps of the Lempel–Ziv complexity calculation. A 2 s window example is presented 
for clarity of method presentation. In (a), an atrial electrograms measured at the coronary sinus is 
shown. In the second image row (b), instantaneous signal power (ISP) and mean instantaneous signal 
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power (MISP) are depicted. The following image rows show the Lempel–Ziv complexity (c) and the 
normalized Lempel–Ziv complexity (d). 

Appendix B 

 
Figure A2. p-values calculated for the performance of all the methods for discriminating patients with 
AF terminated after only PVI and for patients for whom ablation at more sites was conducted. p-
values (ANOVA results) were calculated for all methods for different window lengths: 2 s, 5 s, 10 s 
and 30 s. In the cases of LZC, BDM and ShEn the differences were small. Only for LZC and BDM for 
each window length the p-value was lower than 0.05, however for ShEn a marginal significance was 
found (p-value < 0.1 for each window length). 
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Appendix C 

Table A1. Results of ANOVA (p-values) and ROC (area under ROC curve) analysis for all examined methods for 2 s, 5 s and 30 s window length (the first 30 s the 
electrogram). 

FIRST WINDOW 2 s  10 s 30 s 

Method p-Value Area Under ROC 
Curve 

p-Value Area Under ROC 
Curve 

p-Value Area Under 
ROC Curve 

LZC 0.026 0.74 0.009 0.78 0.006 0.79 
BDM 0.023 0.76 0.007 0.79 0.006 0.83 

ShanEn 0.123 0.73 0.066 0.73 0.068 0.74 
AFCL 0.702 0.44 0.700 0.54 0.986 0.52 

DF 0.521 0.48 0.865 0.52 0.775 0.52 
DF RI 0.405 0.58 0.368 0.59 0.032 0.74 
DF OI 0.930 0.48 0.506 0.60 0.096 0.69 

NavX CFAE 0.232 0.38 0.203 0.64 0.203 0.66 
CEA 0.580 0.53 0.611 0.51 0.597 0.51 
ICL 0.200 0.36 0.443 0.47 0.562 0.48 
ACI 0.834 0.55 0.973 0.49 0.737 0.47 
SCI 0.625 0.56 0.320 0.59 0.779 0.48 

SampEn 0.887 0.58 0.826 0.52 0.743 0.53 
WMS 0.163 0.33 0.054 0.26 0.698 0.26 
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Table A2. Results of ANOVA (p-values) and ROC (area under ROC curve) analysis for all examined methods for 2 s, 5 s and 10 s window lengths, for mean window 
sliding along the 30 s long signal, with an overlap equal to half of the window length. 

MEAN 
WINDOW 

2 s  5 s 10 s 

Method p-
Value 

Area Under ROC 
Curve 

p-
Value 

Area Under ROC 
Curve 

p-
Value 

Area Under ROC 
Curve 

LZC 0.005 0.82 0.005 0.82 0.005 0.84 
BDM 0.007 0.80 0.004 0.83 0.003 0.85 

ShanEn 0.064 0.77 0.052 0.77 0.040 0.79 
AFCL 0.964 0.53 0.990 0.52 0.822 0.52 

DF 0.821 0.52 0.841 0.51 0.815 0.48 
DF RI 0.435 0.57 0.099 0.69 0.099 0.69 
DF OI 0.866 0.55 0.880 0.57 0.214 0.65 

NavX CFAE 0.579 0.58 0.252 0.69 0.180 0.67 
CEA 0.579 0.53 0.584 0.51 0.573 0.53 
ICL 0.641 0.47 0.618 0.48 0.601 0.48 
ACI 0.233 0.33 0.933 0.49 0.724 0.44 
SCI 0.306 0.55 0.442 0.58 0.940 0.52 

SampEn 0.729 0.53 0.728 0.53 0.729 0.53 
WMS 0.068 0.25 0.071 0.26 0.063 0.26 

Appendix D 

Table A3. Full correlation table for all methods, for 2 s length first window of the signal. 
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LZC -- 0.98 0.72 −0.25 −0.06 0.65 0.16 −0.33 0.31 0.04 −0.56 −0.36 0.08 −0.64 
BDM 0.98 -- 0.71 −0.26 −0.03 0.67 0.16 −0.38 0.28 0.01 −0.52 −0.31 0.08 −0.61 

ShanEn 0.72 0.71 -- −0.17 −0.01 0.41 −0.03 −0.02 0.57 0.28 −0.59 −0.58 0.25 −0.63 
AFCL −0.25 −0.26 −0.17 -- −0.42 −0.26 0.66 0.33 −0.15 −0.42 0.13 0.14 −0.24 −0.03 

DF −0.06 −0.03 −0.01 −0.42 -- 0.24 −0.77 −0.20 0.07 0.43 −0.04 −0.13 0.07 0.15 
DF RI 0.65 0.67 0.41 −0.26 0.24 -- −0.10 0.01 −0.08 0.03 −0.17 0.00 −0.31 −0.40 
DF OI 0.16 0.16 −0.03 0.66 −0.77 −0.10 -- 0.05 −0.07 −0.43 −0.10 0.07 −0.07 −0.19 
NavX −0.33 −0.38 −0.02 0.33 −0.20 0.01 0.05 -- −0.21 −0.04 0.38 0.19 −0.40 0.04 
CEA 0.31 0.28 0.57 −0.15 0.07 −0.08 −0.07 −0.21 -- 0.30 −0.61 −0.62 0.84 −0.36 
ICL 0.04 0.01 0.28 −0.42 0.43 0.03 −0.43 −0.04 0.30 -- −0.35 −0.57 0.19 −0.14 
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ACI −0.56 −0.52 −0.59 0.13 −0.04 −0.17 −0.10 0.38 −0.61 −0.35 -- 0.87 −0.47 0.44 
SCI −0.36 −0.31 −0.58 0.14 −0.13 0.00 0.07 0.19 −0.62 −0.57 0.87 -- −0.45 0.43 

SampE
n 

0.08 0.08 0.25 −0.24 0.07 −0.31 −0.07 −0.40 0.84 0.19 −0.47 −0.45 -- −0.18 

WMS −0.64 −0.61 −0.63 −0.03 0.15 −0.40 −0.19 0.04 −0.36 −0.14 0.44 0.43 −0.18 -- 

 

 

Table A4. Full correlation table for all methods, for 5 s length first window of the signal. 

M
et

ho
d 

LZ
C

 

BD
M

 

Sh
an

En
 

A
FC

L 

D
F 

D
F 

R
I 

D
F 

O
I 

N
av

X 

C
EA

 

IC
L 

A
C

I 

SC
I 

Sa
m

pE
n 

W
M

S 

LZC -- 0.99 0.78 −0.05 −0.08 0.03 −0.08 −0.10 0.37 0.07 −0.20 0.07 0.03 −0.62 
BDM 0.99 -- 0.82 −0.04 −0.09 0.03 −0.09 −0.07 0.40 0.09 −0.24 0.07 0.05 −0.59 

ShanEn 0.78 0.82 -- −0.11 −0.06 0.01 −0.11 0.16 0.61 0.35 −0.38 −0.17 0.22 −0.61 
AFCL −0.05 −0.04 −0.11 -- −0.83 0.12 0.19 −0.22 0.02 −0.40 −0.17 −0.03 −0.06 0.07 

DF −0.08 −0.09 −0.06 −0.83 -- 0.12 −0.29 0.12 −0.21 0.26 0.26 0.28 −0.04 0.11 
DF RI 0.03 0.03 0.01 0.12 0.12 -- 0.27 0.16 −0.37 −0.35 0.35 0.58 −0.58 0.22 
DF OI −0.08 −0.09 −0.11 0.19 −0.29 0.27 -- −0.01 −0.04 −0.21 0.15 0.08 −0.11 0.29 
NavX −0.10 −0.07 0.16 −0.22 0.12 0.16 −0.01 -- −0.21 0.01 0.26 0.20 −0.45 0.17 
CEA 0.37 0.40 0.61 0.02 −0.21 −0.37 −0.04 −0.21 -- 0.65 −0.72 −0.68 0.78 −0.41 
ICL 0.07 0.09 0.35 −0.40 0.26 −0.35 −0.21 0.01 0.65 -- −0.47 −0.69 0.49 −0.29 
ACI −0.20 −0.24 −0.38 −0.17 0.26 0.35 0.15 0.26 −0.72 −0.47 -- 0.59 −0.66 0.26 
SCI 0.07 0.07 −0.17 −0.03 0.28 0.58 0.08 0.20 −0.68 −0.69 0.59 -- −0.66 0.40 

SampE
n 0.03 0.05 0.22 −0.06 −0.04 −0.58 −0.11 −0.45 0.78 0.49 −0.66 −0.66 -- −0.23 

WMS −0.62 −0.59 −0.61 0.07 0.11 0.22 0.29 0.17 −0.41 −0.29 0.26 0.40 −0.23 -- 
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Table A5. Full correlation table for all methods, for 10 s length first window of the signal. 
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LZC -- 0.99 0.77 −0.04 −0.15 0.11 0.37 0.54 0.35 0.05 −0.15 −0.15 0.06 −0.59 
BDM 0.99 -- 0.79 −0.02 −0.17 0.06 0.38 0.48 0.37 0.05 −0.16 −0.14 0.09 −0.59 

ShanEn 0.77 0.79 -- −0.11 −0.09 0.20 0.12 0.17 0.61 0.35 −0.40 −0.50 0.24 −0.55 
AFCL −0.04 −0.02 −0.11 -- −0.64 0.00 0.25 0.14 −0.06 −0.56 −0.11 0.27 −0.21 −0.09 

DF −0.15 −0.17 −0.09 −0.64 -- 0.20 −0.52 −0.10 −0.08 0.31 0.10 −0.07 0.05 0.20 
DF RI 0.11 0.06 0.20 0.00 0.20 -- −0.11 0.17 −0.14 −0.12 0.07 0.27 −0.36 −0.03 
DF OI 0.37 0.38 0.12 0.25 −0.52 −0.11 -- 0.07 −0.03 −0.26 0.15 0.10 0.08 −0.50 
NavX 0.54 0.48 0.17 0.14 −0.10 0.17 0.07 -- −0.33 −0.48 0.22 0.24 −0.48 −0.16 
CEA 0.35 0.37 0.61 −0.06 −0.08 −0.14 −0.03 −0.33 -- 0.58 −0.80 −0.60 0.79 −0.26 
ICL 0.05 0.05 0.35 −0.56 0.31 −0.12 −0.26 −0.48 0.58 -- −0.36 −0.71 0.46 −0.07 
ACI −0.15 −0.16 −0.40 −0.11 0.10 0.07 0.15 0.22 −0.80 −0.36 -- 0.57 −0.68 0.12 
SCI −0.15 −0.14 −0.50 0.27 −0.07 0.27 0.10 0.24 −0.60 −0.71 0.57 -- −0.48 0.32 

SampE
n 

0.06 0.09 0.24 −0.21 0.05 −0.36 0.08 −0.48 0.79 0.46 −0.68 −0.48 -- −0.13 

WMS −0.59 −0.59 −0.55 −0.09 0.20 −0.03 −0.50 −0.16 −0.26 −0.07 0.12 0.32 -0.13 -- 
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Table A6. Full correlation table for all methods, for 30 s signal. 
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LZC -- 0.99 0.80 −0.12 −0.04 0.46 0.27 0.53 0.35 0.11 −0.33 −-0.31 0.07 −0.57 
BDM 0.99 -- 0.79 −0.09 −0.06 0.46 0.27 0.53 0.33 0.07 −0.31 −0.28 0.05 −0.58 

ShanEn 0.80 0.79 -- −0.15 −0.06 0.39 0.31 0.17 0.59 0.43 −0.40 −0.52 0.20 −0.61 
AFCL −0.12 −0.09 −0.15 -- −0.87 0.33 0.06 0.13 −0.10 −0.45 −0.20 0.19 −0.24 −0.09 

DF −0.04 −0.06 −0.06 −0.87 -- −0.35 −0.20 −0.08 0.02 0.34 0.18 −0.14 0.23 0.26 
DF RI 0.46 0.46 0.39 0.33 −0.35 -- 0.20 0.41 −0.02 −0.26 −0.30 −0.36 −0.29 −0.45 
DF OI 0.27 0.27 0.31 0.06 −0.20 0.20 -- −0.12 0.47 0.04 −0.28 0.21 0.25 −0.35 
NavX 0.53 0.53 0.17 0.13 −0.08 0.41 −0.12 -- −0.31 −0.43 −0.14 −0.11 −0.42 −0.14 
CEA 0.35 0.33 0.59 −0.10 0.02 −0.02 0.47 −0.31 -- 0.60 −0.73 −0.33 0.77 −0.33 
ICL 0.11 0.07 0.43 −0.45 0.34 −0.26 0.04 −0.43 0.60 -- −0.21 −0.31 0.46 −0.18 
ACI −0.33 −0.31 −0.40 −0.20 0.18 −0.30 −0.28 −0.14 −0.73 −0.21 -- 0.42 −0.50 0.23 
SCI −0.31 −0.28 −0.52 0.19 −0.14 −0.36 0.21 −0.11 −0.33 −0.31 0.42 -- −0.14 0.24 

SampE
n 0.07 0.05 0.20 −0.24 0.23 −0.29 0.25 −0.42 0.77 0.46 −0.50 −0.14 -- −0.15 

WMS −0.57 −0.58 −0.61 −0.09 0.26 −0.45 −0.35 −0.14 −0.33 −0.18 0.23 0.24 −0.15 -- 
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