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Abstract: In the present work, we propose using the cumulative distribution functions derived from
maximum entropy formalisms, utilizing thermodynamic entropy as a measure of damage to fit the
low-cycle fatigue data of metals. The thermodynamic entropy is measured from hysteresis loops
of cyclic tension–compression fatigue tests on aluminum 2024-T351. The plastic dissipation per
cyclic reversal is estimated from Ramberg–Osgood constitutive model fits to the hysteresis loops
and correlated to experimentally measured average damage per reversal. The developed damage
models are shown to more accurately and consistently describe fatigue life than several alternative
damage models, including the Weibull distribution function and the Coffin–Manson relation. The
formalism is founded on treating the failure process as a consequence of the increase in the entropy
of the material due to plastic deformation. This argument leads to using inelastic dissipation as
the independent variable for predicting low-cycle fatigue damage, rather than the more commonly
used plastic strain. The entropy of the microstructural state of the material is modeled by statistical
cumulative distribution functions, following examples in recent literature. We demonstrate the utility
of a broader class of maximum entropy statistical distributions, including the truncated exponential
and the truncated normal distribution. Not only are these functions demonstrated to have the
necessary qualitative features to model damage, but they are also shown to capture the random
nature of damage processes with greater fidelity.
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1. Introduction

The wrought aluminum alloy 2024-T351 is an important light structural metal commonly used in
aerospace and other weight-critical applications [1]. A common approach to modeling the low-cycle
fatigue (LCF) life of this material and many other metals is the Coffin–Manson relationship [1,2]:

∆εp

2
= ε f ′

(
2N f

)c
(1)

This equation is intended to cover the range of life from 1 to about 20,000 reversals, where
macroscopic plastic strain is measurable. However, as has been pointed in the literature [2], Equation (1)
is less successful in fitting data in the very low reversal count range of 1 to about 200. The inadequacy
of Equation (1) for modeling a representative LCF data set for 2024-T351 is demonstrated below and
motivates an alternative LCF modeling approach.
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In Figure 1, the results from a sequence of low-cycle fatigue tests and two monotonic tension tests
on tension specimens of 2024-T351 aluminum are shown. The data is also fitted to a Coffin–Manson
model in the figure.Entropy 2019, 21, x FOR PEER REVIEW 2 of 25 

 

 
Figure 1. Coffin–Manson plot of data from eighteen low-cycle fatigue tests and two monotonic tests 
of aluminum 2024-T351 (R2=0.92). The two data points to the single reversal are from monotonic tests. 
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constructing the model form. Below, we argue that the maximum entropy concept may provide such 
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first case is represented by applications of a class of statistical methods based on information entropy 
(reviewed in detail in the following section), which may be applied to fatigue data or any other 
experimental data with inherent uncertainty. These applications may not refer to the physical entropy 
of the material. Alternatively, the physical entropy at a material point in a device or structure may be 
used to model the progress of damage at that point. In the latter instance, the process of damage and 
degradation in material behavior is a fundamental consequence of the second law of 
thermodynamics, resulting in the increase in entropy of isolated systems with time [3]. In contrast to 
the more commonly used parameters of stress and plastic strain, the argument is that specimen 
entropy has a deeper connection to the physics of the damage process. 

One of earliest studies to use maximum entropy (or max entropy) probabilistic distributions to 
study fatigue fracture is [4]. Entropy as a purely statistical concept is used in [5] to model the 
variability of fatigue crack growth. A version of the maximum entropy method is shown to be a viable 
alternative to Bayesian updating for analyzing an evolving data population. However, the authors 
do not connect the concept of entropy to material damage. In [6], the maximum entropy method was 
used to build a statistical model of the strength distribution in brittle rocks. Since maximum entropy 
represents a general principle that can lead to many possible probabilistic distributions based on the 
choice of constraints, studies in the literature have included attempts at specifying constraints on 
either two or even four moments of the distribution [4,7] in an attempt to compute the parameters of 
the distribution. In general, in [5–7], the thermodynamic entropic dissipation at a material point is 
not directly used to build a predictive fatigue life relationship. 

Figure 1. Coffin–Manson plot of data from eighteen low-cycle fatigue tests and two monotonic tests of
aluminum 2024-T351 (R2 = 0.92). The two data points to the single reversal are from monotonic tests.

It is clear that the data exhibits a curvature that is not captured by the straight line fit of the
Coffin–Manson equation. An ideal model would be one based on a sound physical principle that
assures the “best possible” fit to experimentally obtained fatigue test data, considering the statistical
uncertainty inherent in the data. An ideal procedure would also provide systematic guidance on
constructing the model form. Below, we argue that the maximum entropy concept may provide such a
guiding principle.

The concept of entropy occurs in two different contexts in the literature reviewed below. The
first case is represented by applications of a class of statistical methods based on information entropy
(reviewed in detail in the following section), which may be applied to fatigue data or any other
experimental data with inherent uncertainty. These applications may not refer to the physical entropy
of the material. Alternatively, the physical entropy at a material point in a device or structure may be
used to model the progress of damage at that point. In the latter instance, the process of damage and
degradation in material behavior is a fundamental consequence of the second law of thermodynamics,
resulting in the increase in entropy of isolated systems with time [3]. In contrast to the more commonly
used parameters of stress and plastic strain, the argument is that specimen entropy has a deeper
connection to the physics of the damage process.

One of earliest studies to use maximum entropy (or max entropy) probabilistic distributions to
study fatigue fracture is [4]. Entropy as a purely statistical concept is used in [5] to model the variability
of fatigue crack growth. A version of the maximum entropy method is shown to be a viable alternative
to Bayesian updating for analyzing an evolving data population. However, the authors do not connect
the concept of entropy to material damage. In [6], the maximum entropy method was used to build
a statistical model of the strength distribution in brittle rocks. Since maximum entropy represents
a general principle that can lead to many possible probabilistic distributions based on the choice of
constraints, studies in the literature have included attempts at specifying constraints on either two or
even four moments of the distribution [4,7] in an attempt to compute the parameters of the distribution.
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In general, in [5–7], the thermodynamic entropic dissipation at a material point is not directly used to
build a predictive fatigue life relationship.

Basaran and co-workers were among the first to make a connection, using the Boltzmann entropy
formula, between physical entropy as measured by plastic dissipation and damage in ductile alloys [8,9].
Later, Khonsari and co-workers [10,11] demonstrated that the thermodynamic entropy generated
during a low-cycle fatigue test can serve as a measure of degradation. They proposed that the
thermodynamic entropy is a constant when the material reaches its fracture point, independent of
geometry, load, and frequency. The hypothesis on critical thermodynamic entropy was tested in [10]
on aluminum 6061-T6 through bending, torsion, and tension–compression fatigue tests. In our prior
work [12], we used the maximum entropy statistical framework to derive a fatigue life model using
material entropy as a predictive variable. This approach is inspired by the work of Jaynes [13], where
the information theory concept of entropy was applied to the energy levels of a thermodynamic system,
showing that known results from statistical mechanics could be obtained. Information theory entropy
was, thus, proportional to thermodynamic entropy. While in some papers [8,9] the accumulated
damage is empirically related to entropic dissipation, in [12], the damage D(t) naturally results from
the maximum entropy probability distribution as the corresponding cumulative distribution function
(CDF). The fatigue life model in [12] is expressed as a damage function and is given in Equation (2)
below. The authors describe this approach as a maximum entropy fracture model.

D(t) = 1− exp
(
−

Wt

ρTkψ

)
(2)

In Equation (2), the damage parameter D(t) is the non-decreasing CDF that ranges from zero (virgin
state) to one (failed state). The independent variable is the inelastic dissipation in the material, which
is proportional to the entropy of the material through the J2 plasticity theory and the Clausius–Duhem
inequality. The single material parameter kψ in Equation (2) was obtained from isothermal mechanical
cycling tests and then used to model fatigue crack propagation under thermal cycling conditions in an
electronic assembly. Figure 2 shows a comparison of the estimated and actual number of cycles, as
well as crack fronts, at an intermediate stage, with the same area of cracks from both the finite element
simulation and thermal cycling fatigue test. To the best of the authors’ knowledge, such a connection
between physical entropy dissipation and fatigue crack propagation in ductile alloys has not been
made in prior literature.
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Figure 2. Comparison of crack fronts predicted by a single-parameter maximum entropy model
against the experimentally observed creep–fatigue crack in a Sn3.8Ag0.7Cu solder joint under thermal
fatigue cycling [12] (reproduced with permission). The single maximum entropy model parameter was
extracted using isothermal mechanical tests.
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In [12], it is demonstrated that it is possible to follow the physical process of fatigue crack
propagation as a maximum entropy process. However, the arguments that led to the formation of
Equation (2) assumed a constant dissipation rate, which in turn implies an exponential distribution
for the form of the statistical distribution. More generally, while the use of maximum entropy
principles provides the theoretical advantage of being maximally “non-committal” on the data
that are unavailable from the experiments [13], the assumption of exponential distribution may be
restrictive. Arguably, other distributions that conform to the max entropy principle may provide a better
description of damage. However, systematic exploration of such maximum entropy functions, as well as
thermodynamic entropy, in describing metal fatigue life data sets appears to be limited in the literature.
Thus, in this paper, building on our prior work, we propose the development of a systematic procedure
for development of maximum entropy models for describing metal fatigue based on measured
thermodyanamic entropy. We demonstrate the approach using low-cycle fatigue experimental data
for aluminum 2024-T351 material, and generalize the application of the maximum entropy principle
using a broader class of statistical distributions, including the truncated exponential and the truncated
normal distribution. We begin first with a brief review of the maximum entropy principle.

2. A Review of the Maximum Entropy Principle

The concept of entropy as applied to heat engines is due to Clausius, but the connection of
entropy to the probability of the states of a thermodynamic system began with Boltzmann. Boltzmann
demonstrated that the second law of thermodynamics for an ideal gas is a consequence of the
mechanics of the collisions of the molecules [14]. He showed that a sufficiently large number of
interrelated deterministic events will result in random states. He derived the following function,
given in Equation (3), for a uniform distribution, and argued that this quantity had the same physical
meaning as the entropy proposed by Clausius. This led to the Boltzmann H function:

H(p) =
∑

i

pi ln pi pi = p =
1
n

(3)

The above expression is closely related to Gibb’s entropy formula:

S(p) = −kb

∑
i

pi ln pi (4)

Shannon’s research in information theory led to a mathematical expression (discussed later in
Equation (6)) that is strikingly similar to the thermodynamic entropy formulas of Boltzmann and Gibbs,
described above. It is important to note that Shannon’s argument was a purely statistical one and no
physical significance was claimed. It was not until the work of Jaynes [13] that a connection between
the information entropy of Shannon and thermodynamic entropy was established.

Here, we describe the abstract development of Shannon’s formula based on a counting
argument [15], considering the information content of a whole number, which can range in value
from 0 to N. If we claim that each digit of the number is a unit of information, then it clearly takes
logb N digits to represent the number in a base b system. If the base of the logarithm is changed, the
resulting information will change by a constant, but the ratios of information for different N will be
preserved, provided the same base is used for all of them. Thus, logb N is a reasonable measure of the
information contained in a variable, which can range from 0 to N. If we consider a random experiment
with N possible equally likely, mutually exclusive outcomes, then the information contained in a
given outcome is still logb N = − logb p, with p being the probability of the event. We argue that
the information in a given event is strictly determined by p, regardless of how the remaining 1 − p
probability is allocated to other events. Thus, even if the events do not have equal probabilities, the
information for any given event is still − logb p [15]. This function has the expected property that the
information contained in the occurrence of two (or more) statistically independent events is the sum
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of the information in each of the events separately, as shown below in Equation (5). This property is
fundamentally important (as pointed out in [13]) and further reinforces the argument for the − logb p
measure of information.

I(p) = − ln pi

I
(
pip j

)
= I(pi) + I

(
p j

)
: i , j

(5)

If the events correspond to a discrete random variable, then they must be mutually exclusive,
and the probability of the union of the sequence of the events is equal to one [16]. The entropy of the
density function is taken as the expected value of the information in the events [17]. This leads to the
Shannon information entropy formula:

H(p) = E[I(p)] = −
∑

i

pi ln pi (6)

This function (and only this function) satisfies these three conditions:

1. Continuity: It is a continuous function of the pi;
2. Monotonicity: It is an increasing function of n, if all the pi are equal;
3. Composition: If an event can be decomposed into two or more lower level events, the function

H(p) will evaluate this identically, whether the lower or higher level events are used in the
computation, provided that the appropriate conditional probabilities are used to relate the higher
and lower level events.

Jaynes [13] noted that there is a symbolic similarity between the expressions for thermodynamic
(Gibbs) entropy (Equation (3)) and Shannon’s information entropy (Equation (6)), but commented
that the similarity did not necessarily imply a deeper connection. Jaynes then proceeded to show that
a connection did exist and that many results of statistical thermodynamics could be interpreted as
applications of Shannon’s information entropy concept to physical systems. The expression for the
Gibbs entropy is the result of a development involving various physical assumptions—some based
on experimental evidence, and some not. Conversely, Shannon’s entropy is based on mathematical
and logical reasoning, not physical evidence. Shannon’s model was developed to model the abstract
mathematical properties of digital communication, and prior to Jaynes, was not claimed to be
applicable to the physical sciences. Shannon defined the entropy of a discrete probability distribution
as Equation (6).

The maximum entropy method as set forth by Jaynes is as follows [13]: The probability mass
function that maximizes Equation (6), subject to constraint from Equations (7) and (8), is the best choice
if no other information is available to specify the probability distribution.∑

i

pi = 1 (7)

E[g(xi)] =
∑

i

pig(xi) : xi ∈ {x1, x2, . . . xi . . . xm} (8)

where E[g(xi)] is the expected value of, g(xi). The following probability mass function (Equation (9))
can be shown to maximize Equation (6):

pi = e−λ0−λ1 g(xi) (9)

The constants λ0 and λ1 are Lagrange multipliers associated with the constraints. Jaynes calls this
approach the maximum entropy method and calls the derived probability functions maximum entropy
distributions (MaxEnt method and MaxEnt distributions). Multiple expected value constraints may be
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applied (not simply moments, as is common in probability analysis), resulting in the following form of
the MaxEnt distribution:

pi = e−λ0−λ1 g1(xi)−...−λm gm(xi) (10)

The entropy of the resulting distribution is [13]:

Smax = λ0 + λ1E[g1(x)]+ . . .+ λmE[gm(x)] (11)

Jaynes’s argument was for the discrete case. The entropy of a continuous probability density
function is also known and is defined as [16]:

H( f (x)) = −
∫
∞

−∞

f (x) ln f (x)dx (12)

The corresponding continuous version of Equation (10) is given below [16]:

f (x) = e−λ0−λ1 g1(x)−...−λm gm(x) (13)

One important point regarding Equation (13) is that it is only a probability density function for
specific values of the parameters λk. This situation differs from the usual approach to representing
probability density functions or distribution functions, where the functions are admissible for ranges of
parameter values. Additionally, the method Jaynes sets forth assumes that the values used for moment
function constraints are not estimates subject to sampling variation. They are taken as essentially
exact values of the distribution moment functions. This assumption differs from traditional inferential
statistics, where moments or quantiles are estimated from data and sampling errors are estimated.

Jaynes showed that if we choose the probability distribution for the system microstates based
on maximizing Shannon entropy, known results from statistical mechanics can be obtained, without
new physical assumptions, and in particular, the thermodynamic entropy of the system is found
to be the Gibbs entropy of Equation (4). Shannon’s entropy for the distribution is proportional to
the physical entropy of the system, however, only if the probability distribution is applied to the
thermodynamic states of the system. Jaynes [13] argues that this shows that thermodynamic entropy is
an application of a more general principle. Further to this point, Jaynes argues that if a probability
model is required for some application, where certain expected values are known but other details are
not, the maximum entropy approach should be used to find the probability distribution. Jaynes uses
the term “maximally non-committal” to describe probability distributions obtained by this process.
What is known about the random variable in question is captured in mathematical constraints, while
the principle of maximum entropy accounts for what is not known. While information entropy is
only proportional to thermodynamic entropy in certain circumstances, Jaynes argues that choosing
the probability density function that maximizes the Shannon entropy subject to various constraints
is appropriate to any situation where a reference probability distribution is needed. The application
could be physical or not, and need not necessarily have a relationship to thermodynamic states.

3. Maximum Entropy Distributions

We argue that if a given parametric family of distributions is selected for some reason (as is
common practice), then within that family of distributions we should prefer the parameter values
that maximize entropy (subject to any constraints) over those that do not. For example, if the Weibull
distribution has already been chosen for some application, and the characteristic life is known, then
the Weibull exponent should be chosen to maximize entropy. It is noteworthy that the exponential
distribution and the normal distribution are the MaxEnt distributions corresponding to a prescribed
mean value and to the prescribed mean and variance values, respectively [18]. Given the fundamental
importance of these distributions in statistical theory, it is informative that they can be directly derived
from the principles of maximum entropy. Just as Jaynes showed that statistical thermodynamic results
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derivable by other means could be obtained from maximum entropy methods, it has also been shown
that the well-known and fundamental normal distribution, traditionally derived by other means,
can also be based on a maximum entropy argument. Even the Weibull distribution can be derived
from a maximum entropy approach if appropriate moment functions are chosen [18]. These MaxEnt
distributions are listed in Table 1.

Table 1. Maximum entropy (MaxEnt) distributions corresponding to moment functions gr(x) [13,18–20].

Support Type gr(x) Distribution Function Reference

[a, b] Discrete N.A. Uniform [13]

[0,∞) Discrete x Exponential [13]

[0,∞) Continuous x Exponential [18]

[0, a] Continuous x Truncated Exponential [19]

[0,∞) Continuous x2 Half Normal [20]

(−∞,∞) Continuous x, x2 Normal [18]

[0,∞) Continuous x, x2 Left Truncated Normal [20]

[0, a] Continuous x, x2 Left and Right Truncated
Normal [20]

[0,∞) Continuous ln(x), xβ Weibull [18]

Note the references to truncated distributions in Table 1. A distribution is described as truncated
if the value of its density or mass function is forced to zero (when otherwise it would be non-zero)
outside of a specific range. Thus, the truncated normal distribution functions can be thought of as
ordinary normal probability density functions (PDFs) that are clipped to zero probability outside of
their non-zero range. As described later, they are multiplied by a normalizing constant to correct for
the missing density. Truncation at x = 0 is necessary for applications to non-negative variables. The
cumulative distribution function (CDF) of a truncated normal random variable has a finite slope at
x = 0. If a second truncation at x = a is specified, then the CDF is forced to be exactly equal to 1 for all
x ≥ a. We begin the discussion of MaxEnt distributions with the truncated exponential distribution.

3.1. MaxEnt Form of Truncated Exponential Distribution

The truncated exponential distribution can be constructed in an analogous fashion for positive
values of λ (parent PDF is a decreasing function). An example is plotted in Figure 3. However, it
is possible for a truncated exponential distribution to be an increasing function within its non-zero
range (Figure 4). Clipping the positive exponent at some specified value enables its use as a PDF.
This corresponds to a negative-valued lambda, which is not admissible in the non-truncated case. If
the specified mean was to the right of the midpoint of the non-zero range, then the lambda would
be negative.

It should also be noted that changing the location of a distribution function without changing
its shape has no effect on the entropy value. Thus, a left endpoint other than zero could be used
for any of the distributions that have zero value for negative x. Naturally, this shift would change
the moment function values. Note that specifying a right truncation value changes the shape of the
remaining distribution function and should be thought of as adding an extra parameter. Thus, a
truncated exponential distribution is a two-parameter distribution.

Below is the truncated exponential distribution for PDF and CDF:

ftrunc(x,λ, a) = λ Exp(−λx)
1−Exp(−λa) f or 0 ≤ x ≤ a

Ftrunc(x,λ, a) = 1−Exp(−λx)
1−Exp(−λa) f or 0 ≤ x ≤ a

(14)



Entropy 2019, 21, 967 8 of 24

Below is the expected value of a truncated exponential random variable:

E(x) =
1
λ

(
1− (λa + 1)Exp(−λa)

1− Exp(−λa)

)
(15)
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Note that the uniform distribution is a limiting case of the truncated exponential distribution and
corresponds to the lambda approaching zero. An example is shown in Figure 5.

lim
λ→0

ftrunc(x,λ, a) = 1
a f or 0 ≤ x ≤ a

lim
λ→0

E(x) = a
2

(16)
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3.2. MaxEnt Form of Truncated Normal Distribution

The truncated normal distribution can be explained in terms of the normal PDF. For x ≥ 0, the PDF
has the same shape as a non-truncated normal PDF, but scaled to make up the density lost for x < 0
(Figure 6). The truncation of the portion of the density less than zero changes the mean and standard
deviation from the parameters that the truncated distribution inherits from the normal distribution.
Adding a second truncation point at x = a forces the function to be equal to 1 for all x ≥ a and adds a
corner to the CDF at x = a (Figure 7). Additionally, the correction factor must be larger to correct for
missing density x < 0 and also x ≥ a.
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The PDF and the CDF for the left truncated normal distribution can be shown to be:

Normal CDF in terms o f standard normal CDF
Fnorm(x,µ, σ) = Φ

( x−µ
σ

)
Ftrunc(x,µ, σ) = Fnorm(x,µ,σ)−Fnorm(0,µ,σ)

1−Fnorm(0,µ,σ) f or x ≥ 0

ftrunc(x,µ, σ) =
(

1
1−Fnorm(0,µ,σ)

)
1

σ
√

2π
Exp

(
−

(x−µ)2

2σ2

)
f or x ≥ 0

(17)

The factor in the denominator of the CDF definition in Equation (17) is the area correction factor C.

C =
1

1− Fnorm(0,µ, σ)
(18)

Truncated normal distribution in two-parameter MaxEnt form is:

ftrunc(x,µ, σ) = Exp
(
−λ0 − λ1x + λ2x2

)
λ0 = −

µ2

2σ2 − ln
(

C
σ
√

2π

)
λ1 = −

µ
σ2 λ2 = 1

2σ2

(19)

Thus, just as the normal distribution is MaxEnt for moment functions x, x2, where x ranges over
(−∞, ∞), the truncated Normal distribution is MaxEnt for the same moment functions over the range
[0, ∞). Note that the µ and σ are the mean and standard deviation of the parent (un-truncated) normal
distribution, not the truncated normal distribution.

3.3. MaxEnt Form of the Weibull Distribution

Since the Weibull distribution is widely used, it is useful to know what parameter value choices
maximize the entropy of the function. It is often the case that only one of the two parameters is
known and we seek a rational approach to assigning a value to the second parameter. In this case,
we suggest that choosing the parameter value that maximizes the entropy of the distribution is the
correct approach.

The entropy of the Weibull distribution is (Figure 8, derived from Equation (2.80c) in [21]):

H = γ
(
1− 1

α

)
+ ln

( β
α

)
+ 1

γ = 0.577216 . . . Euler′s constant
(20)
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The mean of a Weibull distribution is [21]:

µ = βΓ
(
1 +

1
α

)
(21)

Thus, the entropy for a Weibull distribution with a fixed mean (moment constraint on x) is:

Hµ = γ
(
1−

1
α

)
+ ln(µ) − ln

(
Γ
(
1 +

1
α

))
− ln(α) + 1 (22)

Here, we maximize the entropy function:

dHµ

dα
= 0 (23)

Then, we recall the properties of the digamma function [21]:

ψ(x) = d
dx [ln(Γ(x))]

ψ(1 + x) = ψ(x) + 1
x

(24)

Therefore:
dHµ

dα =
γ
α2 +

ψ(1+ 1
α )

α2 −
1
α = 0

ψ
(

1
α

)
= −γ

(25)

This is only true for α = 1. Thus, within the Weibull family of distributions, for a given fixed
mean, the exponential distribution has the highest entropy, in agreement with Jaynes’s result.

The maximum entropy for fixed characteristic life is (Figure 9):

H = γ
(
1−

1
α

)
+ ln

(
β

α

)
+ 1 f or β = const. (26)

Proceeding as above:
dH
dα =

γ
α2 −

1
α = 0

γ = α
(27)

Thus, for the fixed characteristic life case, α = γ (the Euler’s constant).
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4. Application of Maximum Entropy to Low-Cycle Fatigue of 2024-T351 Aluminum

When a specimen is subjected to axial load cycles of a magnitude sufficient to cause plastic
deformation, the stress–strain history for the specimen can frequently be described as a loop, as shown
in Figure 10. To determine the fatigue life of the specimen, the load cycles are applied until the specimen
fails, or until its compliance exceeds some proportion of its initial compliance. The Coffin–Manson
relationship (Equation (1)) is commonly used to model the relationship between plastic strain range
and reversals to failure. The parameter ε f ′ is determined by fitting the curve to fatigue data. It is
frequently close in value to ε f .
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As mentioned earlier, a sequence of low-cycle fatigue tests, along with two monotonic tension
tests, was performed on tension specimens of 2024-T351 aluminum. Eighteen specimens were tested
under constant-amplitude, fully reversed fatigue conditions. In five cases, representative stress–strain
loops were collected at various cycle intervals. Two specimens were tested to failure monotonically.
The data collected is summarized in Table 2. The data is fitted to a Coffin–Manson model, as shown in
Figure 1.
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As mentioned earlier, the data exhibits a curvature that is not captured by the straight line fit of
the Coffin–Manson power law. An alternative approach to modeling data such as this, using concepts
developed from maximum entropy, is developed below. The authors of [12] showed that material
entropy is proportional to inelastic dissipation in experiments such as this, where the temperature of
the specimens is essentially constant. Thus, inelastic dissipation is exploited as a surrogate for entropy
in the development that follows.

Table 2. Low-cycle fatigue data summary [22].

k 2Nf Stress Amplitude MPa Plastic Strain Amplitude Data

1 1 537.810 0.2 Values

2 1 558.495 0.28 Values

3 76 503.335 0.01725 Values

4 38 495.061 0.0129 S-20 Loop fitted

5 124 492.993 0.0123 Values

6 144 482.650 0.012 Values

7 190 475.755 0.01067 Values [22]

8 114 477.824 0.0085 S-17 loop fitted

9 440 466.792 0.0083 Values [22]

10 560 448.175 0.00606 Values [22]

11 920 437.143 0.00472 Values [22]

12 516 453.691 0.0038 S-12 loop fitted

13 1080 441.280 0.0037 Values

14 800 441.280 0.0036 Values

15 624 454.381 0.0035 S-11 loop fitted

16 2800 398.531 0.00178 Values [22]

17 1608 430.938 0.0017 S-18 loop fitted

18 5860 403.358 0.0007 Values

19 16336 351.645 0.00015 Values

20 23400 358.540 0.00004 Values

The variable D representing the ability of the material at a point to bear load is fundamental in
the literature of damage mechanics [23]. The value of D = 0 (undamaged) represents virgin material,
while D = 1 is taken to correspond to failed material. The variable D is a non-decreasing quantity,
since damage is inherently irreversible. The Coffin–Manson equation can be rewritten in terms of
damage, and doing so will be shown to provide a departure point for further development. We begin
by rearranging Equation (1) into the following form:

1
2N f

=

∆εp

2ε′f

−
1
c

(28)

Depending on the application, the damage variable D may be expressed as a function of various
independent variables. In fatigue applications, it is common to use the following (applicable to constant
damage per load cycle) Palmgren–Miner definition of damage. It is understood that N f may depend
on other variables, such as temperature or plastic strain amplitude.

D(N) =
N
N f

(29)
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We can write the damage accumulation per reversal:

Drev =
1

2N f
(30)

Finally, Equation (28) can be recast as a damage equation as follows:

Drev =

∆εp

2ε′f

−
1
c

= f
(
∆εp

)
(31)

where f (·) denotes a functional relationship with the argument. Following [12], we propose developing
a function of the form of Equation (31), in terms of energy per reversal rather than plastic strain range.
This relationship will have the form:

Drev = f
( W f

2N f

)
(32)

In the development that follows, a general approach to deriving functions of the form of the above
equation will be proposed. In order to apply an equation of the above form to the data in Table 3, we
first need to determine the inelastic dissipation per reversal corresponding to each of the test conditions
of the form shown in Figure 10. The energy expended in inelastic dissipation for a cyclic test under
constant conditions is given by the area enclosed by the loop. Note that in Table 3, actual loop data
was only available for five of the 20 tests. In all cases, the plastic strain range and stress range (and
reversals to failure) were collected. Fortunately, the shapes of the loops follow known trends, and
thus it was possible to deduce the inelastic dissipation for the tests where loops were not available
for measurement. The inelastic dissipation for the two monotonic tests was also deduced from the
available loop data, although a different analytical approach was used.

Table 3. Inelastic dissipation and damage.

k 2Nf Range Mpa Range Ep 1/n rho Wf/2Nf Drev

1 1 538 2.00 × 10−1 26.7 0.964 1.04 × 102 1.00

2 1 558 2.80 × 10−1 26.7 0.964 1.51 × 102 1.00

3 76 1007 3.45 × 10−2 26.7 0.928 1.61 × 101 1.32 × 10−2

4 38 990 2.58 × 10−2 26.7 0.928 1.19 × 101 2.63 × 10−2

5 124 986 2.46 × 10−2 26.5 0.927 1.12 × 101 8.06 × 10−3

6 144 965 2.40 × 10−2 26.4 0.927 1.07 × 101 6.94 × 10−3

7 190 952 2.13 × 10−2 25.9 0.926 9.40 5.26 × 10−3

8 114 956 1.70 × 10−2 25.1 0.923 7.50 8.77 × 10−3

9 440 934 1.66 × 10−2 24.7 0.922 7.15 2.27 × 10−3

10 560 896 1.21 × 10−2 21.2 0.910 4.94 1.79 × 10−3

11 920 874 9.44 × 10−3 19.1 0.900 3.72 1.09 × 10−3

12 516 907 7.60 × 10−3 17.6 0.893 3.08 1.94 × 10−3

13 1080 883 7.40 × 10−3 17.4 0.891 2.91 9.26 × 10−4

14 800 883 7.20 × 10−3 17.1 0.890 2.83 1.25 × 10−3

15 624 909 7.00 × 10−3 16.9 0.888 2.83 1.60 × 10−3

16 2800 797 3.56 × 10−3 13.6 0.863 1.22 3.57 × 10−4

17 1608 862 3.40 × 10−3 13.4 0.862 1.26 6.22 × 10−4

18 5860 807 1.40 × 10−3 13.4 0.862 4.87 × 10−1 1.71 × 10−4

19 16336 703 3.00 × 10−4 13.4 0.862 9.09 × 10−2 6.12 × 10−5

20 23400 717 8.00 × 10−5 13.4 0.862 2.47 × 10−2 4.27 × 10−5
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Plotted loops for the five loop data samples are given below in Figures 11–15. In each case, several
loops were provided.
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The Ramberg–Osgood relationship (Equation (33)) is frequently successful for modeling data such
as this. This model assumes that the plastic portion of the strain range is a power law of the stress
range. There is no explicit yield point with this model. The total strain range is given by Equation (34)
and is used to model the shapes of the loops. For the purposes of fitting Equation (34), the origin of the
stress and strain range variables is placed at the lower left corner of the loop.

The Ramberg–Osgood plasticity model for stress–strain loops is [23]:

∆εp =
(∆σ

K

) 1
n

(33)
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∆εtotal =
∆σ
E

+
(∆σ

K

) 1
n

(34)
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The fits of Equation (34) to loop data were performed using the least squares approach and is
shown in Figure 16. The fits to the data were of high accuracy, as demonstrated by the R2 value of 0.997.
This confirms that Equation (34) provides a reasonable model of the shape of the loops in Figures 11–15.
The points are samples measured from the loops, while the line is the fit of Equation (34). A separate
fit was performed for the parameters in Equation (34) for each of the five loops. A common value
of Young’s modulus was fit simultaneously to the five sets of data. Specific values of n and K were
obtained for each loop.Entropy 2019, 21, x FOR PEER REVIEW 18 of 25 
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The five sets of parameters obtained from the fitted loops were used to estimate the parameter
1/n for the remaining 15 tests. The fitted 1/n value was found to be a strictly increasing function of
plastic strain range, and is plotted in Figure 17. The “interpolation” line markers show the values of
1/n used for the remaining 15 tests. The values were linearly interpolated between the maximum and
minimum values. For plastic strain ranges outside the range of the measured data, the value of the
nearest measured data value was used. As will be shown below, the predicted inelastic dissipation is
mainly determined by the plastic strain range and the stress range, and is only weakly dependent on
the value of 1/n used.
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The five loops (represented by Equation (34)) are plotted in Figure 18 below using the parameters
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The area of the loop in terms of the parameters in Equation (34) and the loading parameters are
given in Equation (35). The form of this equation has the advantage that it is relatively robust to errors
in fitting the parameter n, since both of the actual measured values of the stress range and strain range
are used.
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The loop area (dissipation per cycle) in terms of n is [23]:

A f =
1− n
1 + n

∆σ∆εp (35)

In the present case, we wish to describe the evolution of damage in terms of reversals rather than
cycles. It is apparent from Equation (36) that the inelastic dissipation per reversal is half the area of the
loop given by Equation (35), and is given in Equation (37).

Total inelastic dissipation in terms of cycles and reversals:

W f = N f A f =
(
2N f

)(1
2

A f

)
(36)

Inelastic dissipation per reversal:

W f

2N f
=

1− n
2(1 + n)

∆σ∆εp (37)

For specimens subjected to a monotonic test, the inelastic dissipation is the area under the plastic
portion of the stress–strain curve. If the plastic portion of the curve is modeled by an equation of the
form of Equation (34), the area under the plastic portion is given by Equation (38). A monotonic test to
fracture can be interpreted as a fatigue test, with failure occurring after a single reversal. Thus, the
inelastic dissipation per reversal is given by Equation (39):

The monotonic area (dissipation per reversal) in terms of n:

A f =
1

1 + n
σ f ε f (38)

The inelastic dissipation for a monotonic test:

W f

2N f
= A f =

1
1 + n

σ f ε f 2N f = 1 (39)

Note that in Equations (37) and (39), the area is computed from plastic strain range multiplied by
stress range times a factor dependent on n. The functions are given in Equation (40) and the values of
ρ are summarized in Table 4 and plotted in Figure 19.

ρmono =
1

1 + n
ρloop =

1− n
1 + n

(40)

Note that the value of ρ does not change greatly as n is varied. This observation indicates that the
computation of areas for the monotonic and cyclic tests is robust to errors in fitting the Ramberg–Osgood
parameter n. Thus, the inference of inelastic dissipation for the 15 tests for which loop data was not
available is justified.

Table 3 below includes values computed from Equations (37) and (39) for inelastic dissipation
per reversal, as well as damage per reversal, according to Equation (30). These data are plotted in
Figure 20. These points represent data corresponding to a relationship with the form of Equation (32).
The lack of fit provided by the power law indicates that a different modeling equation is required
for data of this type. In the development that follows, various expressions, including some based on
MaxEnt principals, will be proposed to model the data plotted in Figure 20.
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Figure 20. Damage per reversal as a function of inelastic dissipation per reversal with power law fit
(R2 = 0.89).

Table 4. Candidate function forms fit to data in Table 4.

Function Form (for 0 ≤ a) Sum of Sqr Error

Left Truncated Normal Drev =
Fnorm(Wc,µ,σ)−Fnorm(0,µ,σ)

1−Fnorm(0,µ,σ) 5.17

Truncated Exponential Drev =
1−exp(−λWc)

1−exp(−λa) 5.45

Power law (Coffin–Manson form) Drev = k(Wc)
−

1
c f or Wc ≤Wc crit 14.8

Weibull Drev = 1− exp(−kWc
α) 15.4

Smith–Ferrante form Drev = 1− (1 + kWc) exp(−kWc) 57.3

Discussion of Candidate Distribution Functions

Inelastic dissipation is a non-negative-valued function, so only distribution functions equal to
zero for x ≥ 0 are admissible candidates. Table 4 contains a summary of the fitted functions, as well as
the sum of squares of error remaining after the fitting. The natural logs of the data were fitted to the
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natural logs of the predicted values. Plots of the fitted curves and the data are shown in Figure 21.
Only the truncated forms of the normal distribution are considered. Distributions that are truncated
on the right, such as the truncated exponential distribution, have the additional advantage that they
are strictly equal one for x ≥ a.
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The data set being fitted has some noteworthy features. Even though the data is of low-cycle
fatigue, most of the samples still represent very small values of Drev. Additionally, the data points
show a concave upwards trend that limits the quality of the fit achievable by a power law relationship.
The fit was notably better for the right truncated exponential distribution with a negative λ. The
fitting procedure converged to a negative λ, which corresponds to a rising exponential curve that
becomes constant at Dcycle = 1. The best fits were achieved by the truncated normal distribution
and the truncated exponential distribution. The Smith–Ferrante function (popular in cohesive zone
models of fracture) is typically used to represent the traction versus separation, and is founded on the
relationship binding materials together at the microscopic scale [24]. Its integral is used here, which
has the qualitative features of a damage function. The Weibull distribution function was also tried.
Additionally, a power law expression having the form of the Coffin–Manson relation was tried. This
function would be truncated at Drev = 1.

Note that the Coffin–Manson expression typically relates plastic strain range to cycles to failure.
In Table 4, it is shown in an inverted form and expressed in terms of Wc. It is clear from the sum of
squared error column in Table 4 and from Figure 21 below that the truncated normal distribution
provided the best fit to the data, followed by the truncated exponential distribution. The (inverted)
Coffin–Manson expression and the Weibull distribution function provided the next best fits.

Parameters fit by numerical solver to the fatigue data for the truncated normal distribution
(Equation (41)) and the truncated exponential distribution (Equation (42)) are given below:

Drev =
Fnorm(x, 72.1, 27.3) − Fnorm(0, 72.1, 27.3)

1− Fnorm(0, 72.1, 27.3)
f or x ≥ 0 (41)
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Drev =
1− Exp(0.0325x)

1− Exp((−0.0325)(127.2))
f or 0 ≤ x ≤ 127.2 (42)

Although the trunated normal distribution has the best fit, the truncated exponential distribution
has some desireable properties. If monotonic tension data points are available, they can be used to
directly constrain the point where the curve is strictly equal to 1.0. The parameter λ controls the shape
of the curve between x = 0 and x = a. For λ close to zero, the curve is nearly a ramp function. For
negative λ values, it has varying degrees of concave upwards curvature. Examples of a family of such
curves are plotted in Figure 22. In the present case, λ = −0.0319, giving a strongly rising curve. A
damage function of the mathematical form of Equation (42) exists in the literature [2]. The authors
of [2] present Equation (43) as an improvement to the Coffin–Manson relationship (Equation (2)) for
modeling LCF in the sub 100 cycle range (εpa is the plastic strain amplitude). The relationship is
presented as an empirical improvement and is not derived from physical principles. The authors do
not describe it as a truncated exponential distribution function. It is clear that Equation (43) can be
rearranged to a form similar to Equation (42).

Dcycle =
Exp

(
λεpa
ε f

)
− 1

Exp(λ) − 1
(43)
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5. Concluding Remarks

In this study, the Maximum Entropy principle was shown to provide a systematic theoretical and
philosophical basis for selecting a CDF to model damage. The method was demonstrated on an LCF
data set for aluminum 2024-T351, but the proposed approach is equally applicable to ductile metals
undergoing fatigue damage. In general, the relationship between the measured plastic dissipation per
cyclic reversal and the damage per reversal is nonlinear, suggesting that the total work of fracture or
the total entropy to cause fracture varies with the loading condition. We showed that several maximum
entropy distributions, including the truncated exponential and the truncated normal distribution, are
good choices for material damage modeling. Compared to the exponential distribution, the truncated
exponential distribution has additional flexibility and can model concave upwards trending data. In
the limit, it can approximate a uniform distribution. For the aluminum 2024-T351 alloy, the truncated
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normal distribution was shown to provide the best fit to the data, relative to the more common
alternatives of Coffin–Manson equation or the Weibull distribution. Left truncation of the normal
distribution extends its applicability to the many applications where data is non-negative. Finally, a
Coffin–Manson function in terms of plastic strain (the standard form) was compared to the truncated
normal distribution and shown to provide an inferior fit.
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Nomenclature

Variable Definition
∆εp Plastic strain range
ε f ′ Fatigue ductility coefficient
c Fatigue ductility exponent

N f Total cycles (loops) to failure
D(t) Material damage parameter as a function of time or pseudo-time
∆σ Stress range—total height of stress–strain loop

∆εtotal Total elastic plus plastic strain range
σ f True fracture stress
ε f True fracture strain
W f Total inelastic dissipation (per unit volume) to failure

A f
Inelastic dissipation (per unit volume) per stress–strain loop area
of stabilized loop

2N f Total reversals to failure
H The entropy of a probability distribution
S Gibbs entropy
pi Probability mass function value of the ith random state
kb Boltzmann’s constant

I(p) The information associated with an event with probability p
gi(x) The ith moment function
λi The Lagrange multiplier corresponding to the ith moment function

f (x) The probability density function (PDF) of the random variable x

F(x)
The cumulative distribution function (CDF) of the random
variable x

µ Mean value of a random variable
σ Standard deviation of a random variable
α Weibull distribution shape parameter
β Weibull distribution scale parameter
γ Euler’s constant
K Ramberg–Osgood strength parameter
1
n Ramberg–Osgood exponent
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