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Abstract: The ranking of decision-making units (DMUs) is one of the most significant issues in
efficiency evaluation. However, the calculation results from the traditional Data envelopment
analysis(DEA), method sometimes include multiple efficient DMUs or multiple DMUs with the same
efficiency value, in which case the approach is weak in distinguishing among these DMUs. Therefore,
this study proposes a DEA cross-efficiency ranking method based on the relative entropy evaluation
method and the grey relational analysis method. First, the approach uses the cross-efficiency matrix
as the decision matrix of multiple criteria decision-making (MCDM), and the relationship between
DMU and the ideal solution is analyzed by the grey relational analysis method and the relative
entropy evaluation method. Then, the degree of the criteria is determined by Shannon entropy, and
the weighted grey correlation degree and the weighted relative entropy are obtained. Finally, with
the comprehensive relative closeness degree between the DMU and the ideal solution, we can sort all
the DMUs accordingly. In a comparative analysis, it shows that this method analyzes the similarity
between DMUs and the ideal solution from the information distance and the similarity of the data
sequence curve, and has certain advantages for analyzing the ranking of DMUs.
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1. Introduction

In practical applications, the reasonable efficiency evaluation and ranking of decision-making units
(DMUs)are of great significance for the comprehensive analysis of decision-makers. Data envelopment
analysis (DEA), as introduced by Charnes et al. [1], is a significant method for evaluating the relative
efficiency of DMUs. It can evaluate the efficiency of the DMU and identify the DMU as efficient and
inefficient. However, it lacks the power to further discriminate them. To overcome this problem,
Sexton et al. [2] proposed cross-efficiency analysis method, which is an effective method to distinguish
the performance among all DMUs. This method evaluates the efficiency of the DMU through
self-assessment and peer assessment and ranks the DMUs by the aggregation cross efficiency scores.
Therefore, the cross-evaluation method is widely utilized for ranking performances of the DMUs,
but there still exist some disadvantages in many cases, such as the weights are not unique or the
average cross efficiency may lose the association with weights, which cannot clearly provide the rules
to help decision-makers improve their performance [3,4].

Multiple criteria decision making(MCDM) is a branch of decision-making theory which has been
a significant and active research field [5–7]. In recent years, many multiple criteria decision-making
methods have been proposed, such as AHP, TOPSIS, and GRA. Although DEA and MCDM are
developed independently, many studies have shown that these methods can be combined with
practical applications and leverage each other’s interests [8], such as in ranking performance of
DMUs [5,8–10].
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The relative entropy evaluation method is a popular method in decision-making, which introduces
relative entropy into the TOPSIS method to measure the closeness to the ideal solution [11,12]. Since
the relative entropy is not the geometric distance between the two systems which improve the
distinguishing of the points located on the vertical line, the relative entropy can accurately measure the
degree of difference between the two systems [11]. Grey relational analysis is a very important system
analysis method in grey system theory [13]. It can apply to some uncertain problems and imperfect
systems [14,15]. This method reflects the close relationship between systemic factors according to
the degree of similarity or closeness of the sequence curve geometry, which can reflect the internal
variation of each scheme well [16–18].

Therefore, this study proposes a new DEA cross-efficiency ranking method based on relative
entropy evaluation method and grey relational analysis method instead of the average cross efficiency.
This method can analyze the cross-efficiency matrix through the perspective of multiple criteria
decision-making(MCDM). First, the cross-efficiency matrix is analyzed by the two methods, the grey
correlation method and the relative entropy TOPSIS method. Then the study also applies the Shannon
entropy, which determines the weight of the criteria to get the weighted grey correlation degree and
the weighted relative entropy between DMU and the ideal solution. Finally, we can get the results
of ranking DMUs based on the comprehensive relative closeness values between DMUs and the
ideal solution. This method analyzes the similarity between DMUs and the ideal solution from the
information distance and the similarity of the data sequence curve, and makes full use of the evaluation
information of DMU in cross-efficiency matrix, which has certain analytical advantages for the ranking
of DMUs.

In the sections that follow, the related literature is reviewed in Section 2. Section 3 briefly reviews
the DEA cross-efficiency evaluation. Section 4 proposes the weighted grey correlation analysis and the
weighted relative entropy evaluation method, and constructs a cross-efficiency ranking method based
on these methods. Section 5 analyzes two examples to illustrate the approach proposed in this study.
Some conclusions of this paper are presented in Section 6.

2. Literature Review

Data envelopment analysis(DEA) is a non-parametric method for evaluating the efficiency of a
group of homogeneous DMUs with multiple inputs and outputs [4]. Since Charnes et al. [1] developed
the CCR model in 1978, DEA methods have been widely used in various fields [19–21]. However,
there may be multiple effective units or multiple DMUs with the same efficiency value in many
DEA applications, in which case the approach cannot further distinguish among these DMUs, so the
overall ranking for the DMUs cannot be achieved intuitively. To solve this problem, Sexton et al. [2]
proposed to introduce peer evaluation into efficiency evaluation, this method can better overcome
the shortcomings of self-evaluation in the CCR model. And with the average cross-efficiency value,
it provided a ranking for all DMUs. Since these advantages, the cross-efficiency evaluation has been
widely implemented in various fields, such as environmental performance assessment [22], the optimal
selection of suppliers [23].

However, this method still has some areas to be further improved and there are also many theoretical
studies about the cross-efficiency evaluation [24]. These approaches for cross-efficiency evaluation
mainly focus on the instability of cross-efficiency evaluation values. For instance, Doyle et al. [25]
developed two improvement models based on benevolent and aggressive strategies. Wang et al. [26]
proposed a neutral DEA model that overcomes the difficulty of the choice between the aggressive and
benevolent model of Doyle et al. [25], and also achieved a full ranking for all the DMUs. Liang et al. [27]
presented a game cross-efficiency approach to get a reasonable cross-efficiency value. Wu et al. [28]
developed a DEA cross-efficiency model based on Pareto improvement, which makes the cross-efficiency
values for the DMUs closer to Pareto optimality. Wang et al. [29] proposed a secondary goal for DEA
cross-efficiency method, in which the weights are determined by the distance to the virtual ideal DMU
and non-ideal DMU.
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Besides the above research approaches, another research direction is an integrated method for
cross-efficiency values. Wu et al. [30] considered the link between self-evaluation and peer evaluation
and introduced entropy weight into cross-efficiency evaluation to eliminate the average hypothesis.
Song et al. [31] proposed a variance coefficient method based on Shannon entropy to determine the
weight, which improved the idea of Wu et al. [30]. Song et al. [32] proposed a cross efficiency matrix
that integrates the efficiency of MAX and MIN models, and Shannon entropy is applied to efficiency
aggregation. Lee et al. [33] considered that different cross-efficiency assessment models may provide
different information and integrate the efficiencies for different DEA models by the entropy weight.

These studies are based on the weighted average integration research for the traditional average
cross-efficiency value. In addition, there is a ranking method combined with the MCDM method instead
of the average cross-efficiency scores. Many studies have shown that these methods can be combined
with practical applications and leverage each other’s interests [8]. For example, Wu et al. [34] presented
an improved TOPSIS method and used it to rank the cross-efficiency of DMUs. Jahanshahloo et al. [35]
proposed a new super-efficient method based on the TOPSIS method to rank the cross-efficiency of
DMUs and extend it to the case where data are interval. Lotfi et al. [36] proposed a new ranking
method based on DEA and TOPSIS efficient decision units that only rank efficient DMUs. Rakhshan
et al. [8] proposed a new TOPSIS-DEA method to rank efficient DMUs, and discussed the properties
and advantages of the proposed method. An et al. [37] proposes a comprehensive ranking of DMU in
combination with DEA and AHP.

Therefore, this study proposes a new DEA cross-efficiency ranking method based on relative
entropy evaluation method and grey relational analysis method. The approach combines the
characteristics of the two methods to determine the relative closeness. It shows that the similarity
between DMUs and the ideal solution from the information distance and the similarity of the data
sequence curve, and makes full use of the evaluation information of DMU in cross-efficiency matrix,
so this method has certain analytical advantages for the ranking of DMUs.

3. DEA Cross-Efficiency Evaluation

Suppose there are n DMUs to be evaluated with m inputs and s outputs, let xp = (x1p, x2p, . . . , xmp)
T

be the inputs vector of the p-th DMU, yp = (y1p, y2p, . . . , ysp)
T is the outputs vector of the p-th DMU,

and they are all positive.
For each DMUp (p = 1, 2, . . . , n), the efficiency value can be measured by the following CCR model,

max
s∑

r=1
µrpyrp

s.t.
s∑

r=1
µrpyrj −

m∑
i=1

νipxi j ≤ 0, j = 1, 2, . . . , n,
m∑

i=1
νipxip = 1

νip,µrp ≥ 0, i = 1, . . . , m, r = 1, 2, . . . , s,

(1)

where νip(i = 1, 2, . . . , m) and µrp(r = 1, 2, . . . , s) denote the weights of the m inputs and s outputs,
respectively, for DMUp.

After calculating model (1), ν∗1p, ν∗2p, . . . , ν∗mp, µ∗1p,µ∗2p, . . . ,µ∗sp is a group of optimal weights for
DMUp. And the optimal efficiency value θ∗p of DMUp can be obtained. For DMUp, the peer evaluation
is as follows.

θpk =

s∑
r=1

µ∗rkyrp

m∑
i=1

ν∗ikxip

, k = 1, 2, . . . , n (2)
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where θpk is the k-cross efficiency of DMUp indicates that the DMU is evaluated by DMUk. Therefore,
the following cross-efficiency matrix can be constructed.

E =


θ11 θ12 · · · θ1n
θ21 θ22 · · · θ2n

...
...

...
...

θn1 θn2 · · · θnn

, (3)

According to the idea of Sexton et al. [2], the average cross-efficiency of DMUp is

Ecross
p =

1
n

n∑
k=1

Epk, p = 1, 2, . . . , n. (4)

4. Cross-Efficiency Ranking Method Based on Grey Correlation Degree and Relative Entropy

It can be observed that the sets of weights are provided by DMUs are the criteria for ranking
in cross-efficiency analysis. Therefore, ranking of DMUs by these criteria, is in fact, an MCDM
problem, and each MCDM refers to making preference decisions over the available alternatives that
are characterized by multiple criteria [35].

Now, suppose there are n DMUs, n evaluation criteria, and the cross-efficiency matrix is regarded
as the decision matrix, thus the structure of the alternative performance matrix is depicted in Table 1.
In this section, we will analyze the cross-efficiency matrix by integrating the grey relational analysis
method with the relative entropy evaluation method.

Table 1. Structure of the cross-efficiency matrix as the alternative performance.

Alternative
Criterion The Criteria of

DMU1

The Criteria of
DMU2

. . . The Criteria of
DMUn

DMU1 θ11 θ12 . . . θ1n
DMU2 θ21 θ22 . . . θ2n

...
...

...
...

...
DMUn θn1 θn2 . . . θnn

4.1. DEA Cross-Efficiency Based on Grey Correlation Degree

The grey system theory was developed by Deng [13], which is a very typical system analysis
method. The idea of the grey correlation system method is to calculate the correlation coefficient
between each criterion and the best performance, and then compare the degree of correlation between
standard objects and all evaluation object [16–18]. According to the grey correlation degree, the concrete
steps for analyzing the cross- efficiency matrix are the following.

Step 1. Normalize the cross-efficiency matrix as Formula (5).

ei j =
θi j√

n∑
i=1

(
θi j

)2
, i = 1, . . . , n, (5)

Therefore, we can obtain the normalized data matrix as

E′ =


e11 e12 · · · e1n
e21 e22 · · · e2n
...

...
...

...
en1 en2 · · · enn

, (6)
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Step 2. Determine the ideal solution as follows,

I=
{
( e+1 , e+2 , . . . , e+n )} =

{
( max

1≤i≤n
ei j, j ∈ T1), (min

1≤i≤n
ei j, j ∈ T2)

}
, (7)

where T1 is the set of benefit attributes, T2 is the set of cost attributes.
Step 3. Construct the grey correlation degree matrix as Formula (8).

ς+i j =

min
i

min
j

∣∣∣∣ei j − e+j

∣∣∣∣+ ρmax
i

max
j

∣∣∣∣ei j − e+j

∣∣∣∣∣∣∣∣ei j − e+j

∣∣∣∣+ min
i

min
j

∣∣∣∣ei j − e+j

∣∣∣∣ , (8)

where ρ is the distinguishing coefficient, the usual value range is 0~1. In most situations, take ρ = 0.5.
The grey correlation degree matrix can be constructed as follows.

ς =


ς11 ς12 · · · ς1n
ς21 ς22 · · · ς2n

...
...

...
...

ςn1 ςn2 · · · ςnn

, (9)

Step 4. For DMUi, the grey correlation degree between it and the ideal solution can be expressed as

ς+i =
n∑

j=1

ω jς
+
i j , i = 1, 2, . . . , n, (10)

where ω j, ( j = 1, 2, . . . , n) is the weight of j-the criteria.
Obviously, the larger the ς+i mean DMUi and the ideal solution are highly related. Hence, the

bigger the ς+i value, the better the DMUi is. And the best DMU is the one with the largest grey
correlation degree to the ideal solution.

4.2. DEA Cross-Efficiency Based on Relative Entropy

The relative entropy evaluation method was proposed by Zhao et al. [11], which is a MCDM
method that combines relative entropy [38] with TOPSIS method. The method uses the relative entropy
to measure the relative distance between the evaluated scheme and the ideal scheme, and the relative
closeness degree is applied to identify order relations among all schemes [11,12]. Next, we propose the
weighted relative entropy evaluation method to analyze the cross-efficiency matrix, the concrete steps
are as follows:

Step 1. Normalize the cross-efficiency matrix as Formula (5).
Step 2. Determine the ideal solution as Formula (7).
According to the relative entropy evaluation method [32,33], the relative entropy between the

ideal solution and DMUi can be expressed as follows.

di =
n∑

j=1

e+j log
e+j
ei j

+ (1− e+j ) log
1− e+j
1− ei j

, i = 1, 2, . . . , n. (11)

Step3. Calculate the weighted relative entropy degree between DMUi and the ideal solution by
Formula (12).

d∗i =
n∑

j=1

e+j log
e+j
ei j

+ (1− e+j ) log
1− e+j
1− ei j

ω j, i = 1, 2, . . . , n, (12)

where ω j, ( j = 1, 2, . . . , n) is the weight of j-th criteria.
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It is clearly shown that the smaller the d∗i mean the smaller distance between DMUi and the ideal
solution. Therefore, the smaller the d∗i value, the better the DMUi is. And the best DMU is the one with
the smallest relative entropy value to the ideal solution.

4.3. Weights of Criteriasbased on Entropy

In fact, each criterion provides different information in a MCDM problem. Shannon entropy
is an effective measurement when applying evaluation in uncertainty decision-making processes.
According to the idea of Shannon entropy [39], the following applies Shannon entropy to analyze the
cross-efficiency matrix.

Therefore, the entropy of the j-th criteria is defined as:

f j = −
1

ln n

n∑
i=1

ρi j · lnρi j, k = 1, 2, . . . , n, (13)

where ρi j =
θi j

n∑
i=1

θi j

, i = 1, . . . , n, j = 1, 2, . . . , n.

Thus, the weight ω j of the j-th criteria is calculated by Formula (14).

ω j = (1− f j)/
n∑

j=1

(1− f j), j = 1, 2, . . . , n. (14)

And
n∑

j=1
ω j = 1.

Therefore, the weights set of the criteria is obtained as ω= (ω1,ω2, . . . ,ωn).

4.4. DEA Cross-Efficiency Ranking Method Based on Grey Correlation Degree and Relative Entropy

In this work, we construct a cross-efficiency method based on combining the grey relational
analysis method with the relative entropy evaluation method. According to the above steps of grey
relational analysis method and relative entropy evaluation method, the corresponding weighted grey
correlation degree and the weighted relative entropy are calculated.

Now, normalize them as follows.

C+
i =

ς+i
max
1≤i≤n

ς+i
, D∗i =

min
1≤i≤n

d∗i

d∗i
, i = 1, 2, . . . , n, (15)

As can be seen from Formula (15), the larger Ci and D∗i mean DMUi is closer to the ideal solution.
Thus, combined determined dimensionless grey correlation degree and relative entropy by the

following Formula (16).
Si = αC+

i + βD∗i , i = 1, 2, . . . , n, (16)

where α+ β = 1, α and β reflect the preference degree of the decision-maker to grey correlation degree
and relative entropy, respectively.

Finally, determine the rank of all DMUs on the basis of their comprehensive relative closeness
from the ideal solution. According to the result of Si, the bigger the comprehensive relative closeness
degree is, the better the DMUi is. Hence, the best DMU is the one with the biggest comprehensive
relative closeness to the ideal solution.

5. Example

In this section, to illustrate the method proposed in this paper, we examine two examples in order
to provide a ranking for DMUs.
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5.1. Example1

Meng et al. [40] provide a small example, which presents data for six recent road construction
projects with three inputs and three outputs, as Table 2 shows (the data taken from Meng et al. [40]),
where inputs are investment return period, amount of investment, network adaptability, and outputs
are network structure, surroundings environmental harmonizing, society needs. Next, we will analyze
the efficiency of six recent road construction projects.

Table 2. Input and output data of decision-making units (DMUs).

DMU
Inputs Output

x1 x2 x3 y1 y2 y3

1 9.1 21 86 0.67 0.865 82
2 7.05 13.7 68 0.695 0.85 82
3 5.85 10.5 73.5 0.71 0.82 78.5
4 4.75 9.5 80 0.715 0.84 86
5 9.25 29.4 82.4 0.65 0.9 88.5
6 5.75 14.7 80.5 0.695 0.81 78.5

After calculating the CCR model, the cross-efficiency matrix is listed in Table 3.

Table 3. The cross-efficiency matrix.

DMU 1 2 3 4 5 6

1 0.8047 0.7985 0.7330 0.7352 0.7907 0.7738
2 1.0000 1.0000 1.0000 0.9715 1.0000 1.0000
3 0.8925 0.9776 1.0000 1.0000 0.8857 1.0000
4 0.8400 1.0000 0.9479 1.0000 0.8915 1.0000
5 0.8738 0.8475 0.6738 0.7286 0.8907 0.7908
6 0.8050 0.9111 0.8599 0.9216 0.8087 0.9225

According to the cross-efficiency matrix, the elements in the diagonal are the CCR efficiency scores
of DMUs, which can be seen as a self-evaluation. Table 3 reports DMU2, DMU3, DMU4 are all efficient
DMUs. Thus, in order to further distinguish between these DMUs, we analyze the cross-efficiency
matrix by our proposed approach.

Step 1. Normalize the cross-efficiency matrix. We can obtain the normalized matrix as follows.

0.3768 0.3521 0.3407 0.3333 0.3666 0.3435
0.4682 0.4410 0.4648 0.4405 0.4637 0.4439
0.4179 0.4311 0.4648 0.4534 0.4107 0.4439
0.3933 0.4410 0.4405 0.4534 0.4133 0.4439
0.4091 0.3738 0.3132 0.3303 0.4130 0.3510
0.3769 0.4018 0.3997 0.4178 0.3749 0.4095


Step 2. Determine the ideal solution as Formula (7).

I= (e+1 , e+2 , e+3 , e+4 , e+5 , e+6 ) = (0.4682, 0.4410, 0.4648, 0.4534, 0.4637, 0.4439)

Step 3. Construct the grey correlation matrix between DMU and the ideal solution. According to
the grey correlation analysis, we can obtain the grey correlation matrix by Formula (8) as follows.
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0.4532 0.4603 0.3791 0.3870 0.4385 0.4302
1 1 1 0.8543 1 1

0.6010 0.8845 1 1 0.5885 1
0.5029 1 0.7577 1 0.6010 1
0.5619 0.5229 0.3333 0.3812 0.5992 0.4494
0.4536 0.6590 0.5379 0.6807 0.4607 0.6877


Step 4. Calculate the weights set of criteria. The weight ω j of the j-th criteria is calculated by

Formula (13) and (14), so we can get the weights set as follows.

ω= (ω1,ω2,ω3,ω4,ω5,ω6) = (0.0825, 0.1025, 0.3137, 0.2510, 0.0847, 0.1656).

Step 5. Calculate the grey correlation degree between the DMU and the ideal solution is as follows.

ς+1 = 0.4090, ς+2 = 0.9634, ς+3 = 0.9204, ς+4 = 0.8492, ς+5 = 0.4261, ς+6 = 0.5975,

From the results of the grey correlation degree, ς+2 is the largest of them, which denotes DMU2 is
highly relevant to the ideal solution, ς+1 is the smallest of them, showing that the correlation between
DMU1 and the ideal solution is small.

Step 6. Calculate the relative entropy between DMU and the ideal solution. According to
Formula (12), the weighted relative entropy between each DMU and the ideal solution is

d∗1 = 0.01148, d∗2 = 0.00004, d∗3 = 0.00040, d∗4 = 0.00077, d∗5 = 0.01255, d∗6 = 0.00301,

From the values of the relative entropy, d∗2 is the smallest of them, which shows that DMU2 is
closer to the ideal solution than other DMUs. d∗5 is the biggest of them, showing that DMU5 is farther
away from the ideal solution than others.

Step 7. Normalize ς+i and d∗i according to Formula (15).

C+
1 = 0.4245, C+

2 = 1, C+
3 = 0.9553, C+

4 = 0.8814, C+
5 = 0.4422, C+

6 = 0.6201,

D∗1 = 0.0032, D∗2 = 1, D∗3 = 0.0911, , D∗4 = 0.0481, D∗5 = 0.0029, D∗6 = 0.0123.

Further, by integrating grey correlation degree with relative entropy by Formula(16),we can get
the results as follows.

S+
1 = 0.2139, S+

2 = 1, S+
3 = 0.5232, S+

4 = 0.4648, S+
5 = 0.2226, S+

6 = 0.3162.

Through the calculation of grey relative degree and relative entropy, first, it can be found that the
effective unit is further distinguished, DMU2 is the most relevant to the ideal solution, and DMU3

and DMU4 are inferior to DMU2. Then, with the TOPSIS results as shown in Table 4, it indicates that
the efficiency trends based on relative entropy evaluation method and TOPSIS are consistent, but the
efficiency change based on relative entropy is more obvious, which is more convincing. Combined
with the grey correlation degree, the data similarity analysis can fully reflect the data situation change
and geometric similarity. Finally, it can be concluded that all DMUs are ranked as DMU2 > DMU3 >

DMU4 > DMU6 > DMU5 > DMU1.
In order to assess the ranking merits of our proposed method, we apply different methods to rank

DMUs. All the ranking results are listed in Table 4.
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Table 4. The ranking results of DMUs.

DMU CCR Average Aggressive Benevolent TOPSIS S*
i

1 0.804650 (6) 0.772630 (6) 0.693390 (6) 0.789990 (6) 0.003179 (5) 0.213873 (6)
2 1.000000 (1) 0.995250 (1) 0.926070 (3) 1.000000 (1) 0.000004 (1) 1.000000 (1)
3 1.000000 (1) 0.959290 (2) 0.934010 (2) 0.955550 (2) 0.000280 (2) 0.523184 (2)
4 1.000000 (1) 0.946550 (3) 0.953610 (1) 0.955240 (3) 0.000680 (3) 0.464766 (3)
5 0.890660 (5) 0.800860 (5) 0.676450 (5) 0.840180 (5) 0.003406 (6) 0.222587 (5)
6 0.922450 (4) 0.871440 (4) 0.792570 (4) 0.880120 (4) 0.001451 (4) 0.316201 (4)

Table 4 reports that the CCR efficiencies, the rankings provided by the three different models and
our proposed method, from which it is seen that there are three efficient DMUs in the CCR efficiency
that cannot be further discriminated, where as our proposed approach provides the ranking result of
DMUs. And the ranking result is identical to the three methods, the average cross-efficiency, benevolent
method, and our proposed method, the ranking is DMU2 > DMU3>DMU4 > DMU 6> DMU5 > DMU1.

However, the TOPSIS method by Wu et al. [26] results in a different ranking for some DMU in the
six DMUs, such as the worst DMU is DMU5 instead of DMU1. By comparing the results, we find that
the closeness results based on relative entropy are the same as TOPSIS, and DMU1 is closer to the ideal
solution than DMU5. However, by analyzing the grey correlation degree, it is found that the DMU5 is
more related to the ideal solution from the similarity of the sequence curve. Moreover, as shown in
Table 3, the DMU5 is better than the DMU1 under various standards. Therefore, with comprehensive
information, DMU5 is preferable to DMU1.

5.2. Example 2

Shang and Sueyoshi [41] provide an example, where they describe data for the technology of
manufacturing systems with two inputs and four outputs, as Table 5 shows (the data taken from Shang
and Sue Yoshi [41], Wu et al. [30]). Inputs are the annual operating and depreciation cost (in units of
$100,000), the floor space requirements of each specific system (in thousands of square feet). Outputs
are the improvements in qualitative benefits (%), work in the process reduced (10), the average number
of tardy jobs reduced (%) and the average yield increased (100) [30]. Next, we will analyze the efficiency
of these DMUs.

Table 5. Input and output data of DMUs.

DMU
Inputs Outputs

x1 x2 y1 y2 y3 y4

1 17.02 5.0 42 45.3 14.2 30.1
2 16.46 4.5 39 40.1 13.0 29.8
3 11.76 6.0 26 39.6 13.8 24.5
4 10.52 4.0 22 36.0 11.3 25.0
5 9.50 3.8 21 34.2 12.0 20.4
6 4.79 5.4 10 20.1 5.0 16.5
7 6.21 6.2 14 26.5 7.0 19.7
8 11.12 6.0 25 35.9 9.0 24.7
9 3.67 8.0 4 17.4 0.1 18.1
10 8.93 7.0 16 34.3 6.5 20.6
11 17.74 7.1 43 45.6 14.0 31.1
12 14.85 6.2 27 38.7 13.8 25.4

The cross-efficiency matrix is calculated by the CCR model, as shown in Table 6.
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Table 6. The cross-efficiency matrix.

DMU 1 2 3 4 5 6 7 8 9 10 11 12

1 1.000 1.000 1.000 1.000 0.661 0.656 0.691 1.000 0.668 0.764 1.000 1.000
2 0.958 1.000 0.959 0.984 0.625 0.641 0.665 0.977 0.613 0.704 0.966 0.984
3 0.982 0.890 0.982 0.953 0.929 0.863 0.937 0.949 0.827 0.905 0.924 0.953
4 0.922 1.000 0.927 1.000 0.850 0.859 0.898 1.000 0.851 0.956 0.896 1.000
5 1.000 0.963 1.000 1.000 1.000 0.915 1.000 1.000 0.894 1.000 0.927 1.000
6 0.914 0.851 0.932 0.967 0.826 1.000 0.969 0.962 0.972 0.951 0.954 0.967
7 0.987 0.882 1.000 1.000 0.892 1.000 1.000 1.000 1.000 1.000 1.000 1.000
8 0.921 0.911 0.927 0.950 0.641 0.710 0.713 0.961 0.791 0.860 0.945 0.950
9 0.373 0.644 0.422 0.724 0.022 0.732 0.440 0.753 1.000 0.849 0.672 0.724

10 0.751 0.736 0.760 0.795 0.576 0.683 0.668 0.833 0.919 0.954 0.783 0.795
11 0.976 0.923 0.977 0.953 0.625 0.632 0.660 0.951 0.638 0.714 0.983 0.953
12 0.800 0.772 0.801 0.801 0.736 0.692 0.747 0.794 0.646 0.720 0.759 0.801

The cross-efficiency matrix shows that the elements in the diagonal are the CCR efficiency scores
of DMUs, which can be seen as a self-evaluation. Table 6 shows DMU1, DMU2, DMU4, DMU5,
DMU6, DMU7, DMU9 are all efficient DMUs. It is impossible to achieve a full ranking for all the
DMUs. Thus, in order to get the ranking of all DMUs, we analyze the cross-efficiency matrix by our
proposed approach.

Step 1. Normalize the cross-efficiency matrix. We can obtain the normalized matrix as follows.

0.3213 0.3252 0.3191 0.3098 0.2577 0.2387 0.2491 0.3086 0.2323 0.2532 0.3185 0.3098
0.3078 0.3252 0.3061 0.3049 0.2440 0.2332 0.2400 0.3014 0.2131 0.2333 0.3078 0.3049
0.3155 0.2894 0.3134 0.2952 0.3625 0.3142 0.3379 0.2928 0.2876 0.2996 0.2941 0.2952
0.2961 0.3252 0.2957 0.3098 0.3318 0.3126 0.3238 0.3086 0.2961 0.3168 0.2854 0.3098
0.3213 0.3133 0.3191 0.3098 0.3902 0.3332 0.3608 0.3086 0.3109 0.3312 0.2952 0.3098
0.2938 0.2767 0.2972 0.2997 0.3225 0.3640 0.3497 0.2970 0.3379 0.3151 0.3039 0.2997
0.3172 0.2868 0.3191 0.3098 0.3482 0.3640 0.3608 0.3086 0.3478 0.3312 0.3185 0.3098
0.2959 0.2964 0.2958 0.2944 0.2500 0.2584 0.2573 0.2967 0.2750 0.2847 0.3009 0.2944
0.1198 0.2093 0.1347 0.2242 0.0084 0.2666 0.1588 0.2323 0.3478 0.2812 0.2140 0.2242
0.2412 0.2394 0.2426 0.2464 0.2249 0.2488 0.2409 0.2572 0.3195 0.3158 0.2493 0.2464
0.3136 0.3001 0.3116 0.2951 0.2438 0.2300 0.2381 0.2934 0.2220 0.2365 0.3131 0.2951
0.2572 0.2510 0.2556 0.2482 0.2871 0.2521 0.2694 0.2451 0.2247 0.2385 0.2418 0.2482


Step 2. Determining the ideal solution as follows,

I= (e+1 , e+2 , e+3 , e+4 , e+5 , e+6 , e+7 , e+8 , e+9 , e+10, e+11, e+12

)
= (0.3213, 0.3252, 0.3191, 0.3098, 0.3902, 0.3640, 0.3608, 0.3086, 0.3478, 0.3312, 0.3185, 0.3098).

Step 3. Construct the grey correlation degree matrix between DMU and the ideal solution.
According to the grey correlation analysis, we can calculate the correlation degree between each

DMU and the ideal solution as Formula (8) and construct the grey correlation degree matrix as follows.



1 1 1 1 0.5903 0.6036 0.6310 1 0.6231 0.7099 1 1
0.9338 1 0.9632 0.9754 0.5662 0.5933 0.6126 0.9236 0.5863 0.6610 0.9469 0.9754
0.9706 0.8422 0.9714 0.9290 0.8733 0.7931 0.8930 0.9236 0.7604 0.8579 0.8870 0.9290
0.8835 1 0.8910 1 0.7658 0.7876 0.8378 1 0.7869 0.9297 0.8524 1

1 0.9413 1 1 1 0.8609 1 1 0.8380 1 0.8915 1
0.8739 0.7973 0.8974 0.9498 0.7381 1 0.9455 0.9427 0.9508 0.9221 0.9290 0.9498
0.9791 0.8326 1 1 0.8197 1 1 1 1 1 1 1
0.8827 0.8687 0.8914 0.9254 0.5766 0.6437 0.6485 0.9413 0.7239 0.8041 0.9159 0.9254
0.4864 0.6222 0.5087 0.6904 0.3333 0.6622 0.4859 0.7145 1 0.7923 0.6464 0.6904
0.7045 0.6898 0.7141 0.7508 0.5358 0.6236 0.6144 0.7878 0.8709 0.9254 0.7341 0.7508
0.9614 0.8836 0.9625 0.9289 0.5659 0.5875 0.6088 0.9261 0.6027 06683 0.9726 0.9289
0.7485 0.7201 0.7505 0.7561 0.6492 0.6303 0.6764 0.7504 0.6079 0.6730 0.7136 0.7561
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Step 4. Calculate the weights set of all criteria. The weight ω j of the j-th criteria is calculated by
Formulas (13) and (14), so we can get the weights set as follows.

ω= (ω1,ω2,ω3,ω4,ω5,ω6,ω7,ω8,ω9,ω10,ω11,ω12

)
= (0.1014, 0.0356, 0.0843, 0.0233, 0.4111, 0.0626, 0.1077, 0.0187, 0.0666, 0.0360, 0.0296, 0.0233)

Step 5. Calculate the grey correlation degree between each DMU and the ideal solution.
The weighted grey correlation degrees between each DMU and the ideal solution by Formula
(10) are

ς+1 = 0.7315, ς+2 = 0.6993, ς+3 = 0.8833, ς+4 = 0.8309, ς+5 = 0.9752, ς+6 = 0.8462,
ς+7 = 0.9178, ς+8 = 0.7076, ς+9 = 0.5048, ς+10 = 0.6443, ς+11 = 0.6985, ς+12 = 0.6790.

From the results of the grey correlation degree, ς+5 is the largest of them indicate that DMU5 is
more similar to the ideal solution, ς+9 is the smallest of them indicate that the similarity between DMU9

and the ideal solution is smaller than others.
Step 6. Calculate the relative entropy between each DMU and the ideal solution. According to the

relative entropy, the weighted relative entropy between each DMU and the ideal solution is as follows.

d∗1 = 0.0112, d∗2 = 0.0140, d∗3 = 0.0009, d∗4 = 0.0020, d∗5 = 0.0002, d∗6 = 0.0021,
d∗7 = 0.0007, d∗8 = 0.0111, d∗9 = 0.2324, d∗10 = 0.0169, d∗11 = 0.0139, d∗12 = 0.0091.

From the score of the relative entropy, d∗5 is the smallest of them, which shows that DMU5 is closer
to the ideal solution than other DMUs. d∗9 is the biggest of them, showing that the similarity between
DMU9 and the ideal solution is smaller than others.

Step 7. Normalize ς+i and d∗i according to Formula (15).

C+
1 = 0.7501, C+

2 = 0.7171, C+
3 = 0.9057, C+

4 = 0.8520, C+
5 = 1.0000, C+

6 = 0.8677,
C+

7 = 0.9411, C+
8 = 0.7256, C+

9 = 0.5177, C+
10 = 0.6607, C+

11 = 0.7163, C+
12 = 0.6962.

D∗1 = 0.0151, D∗2 = 0.0121, D∗3 = 0.1944, D∗4 = 0.0854, D∗5 = 1.0000, D∗6 = 0.0817,
D∗7 = 0.2289, D∗8 = 0.0153, D∗9 = 0.0007, D∗10 = 0.0100, D∗11 = 0.0121, D∗12 = 0.0185.

By combining determined grey correlation degree and relative entropy by Formula (16), we can
get the results as follows.

S+
1 = 0.3826, S+

2 = 0.3646, S+
3 = 0.5501, S+

4 = 0.4687, S+
5 = 1.0000, S+

6 = 0.4747,
S+

7 = 0.5850, S+
8 = 0.3704, S+

9 = 0.2592, S+
10 = 0.3353, S+

11 = 0.3642, S+
12 = 0.3574.

According to the calculation of grey relative degree and relative entropy, first, it can be found
that the effective unit is further distinguished, DMU5 is the most relevant to the ideal solution, and
DMU1, DMU2, DMU4, DMU6, DMU7, DMU9 are inferior to DMU5. Then, with the TOPSIS results, as
shown in Table 4, it reports that the efficiency trends based on relative entropy and TOPSIS evaluation
are consistent, but the efficiency change based on relative entropy is more obvious, which is more
convincing. In addition, it can be observed that from the perspective of relative entropy, d∗4 = 0.0020,
d∗6 = 0.0021, the closeness of the two DMUs is similar. However, the degree of discrimination between
DMU6 and DMU4 is large by grey correlation analysis, and DMU6 is obviously closer to the ideal
solution than DMU4. Therefore, the evaluation result obtained from the comprehensive closeness is
obviously improved, and the gap between DMU4 and DMU6 is increased.

Finally, after comprehensive consideration, the ranking of all the DMUs is DMU5 > DMU7 >DMU3

> DMU6 > DMU4 > DMU1 > DMU8 > DMU2 > DMU11 > DMU12 > DMU10 > DMU9.



Entropy 2019, 21, 966 12 of 14

In order to assess the ranking merits of our proposed method, we apply different methods to rank
DMUs, the ranking results of DMUs are listed in Table 7.

Table 7. The ranking results of DMUs.

DMU CCR Average Aggressive Benevolent TOPSIS S*
i

1 1.00000 (1) 0.86992 (6) 0.85193 (3) 0.95498 (5) 0.00006 (6) 0.38258 (6)
2 1.00000 (1) 0.83976 (8) 0.83906 (4) 0.93555 (6) 0.00009 (8) 0.36456 (8)
3 0.98237 (9) 0.92441 (5) 0.77714 (5) 0.92452 (8) 0.00005 (5) 0.55009 (3)
4 1.00000 (1) 0.92991 (4) 0.85686 (2) 0.98118 (2) 0.00002 (3) 0.46870 (5)
5 1.00000 (1) 0.97497 (2) 0.87828 (1) 0.97697 (3) 0.00001 (1) 1.00000 (1)
6 1.00000 (1) 0.93890 (3) 0.72753 (8) 0.95560 (4) 0.00003 (4) 0.47474 (4)
7 1.00000 (1) 0.98014 (1) 0.75866 (6) 0.98786 (1) 0.00001 (2) 0.58503 (2)
8 0.96143 (10) 0.85669 (7) 0.72654 (9) 0.93078 (7) 0.00006 (7) 0.37042 (7)
9 1.00000 (1) 0.61283 (12) 0.57374 (12) 0.74874 (12) 0.00115 (12) 0.25920 (12)
10 0.95355 (11) 0.77118 (10) 0.63194 (11) 0.81473 (10) 0.00050 (10) 0.33534 (11)
11 0.98314 (8) 0.83198 (9) 0.73947 (7) 0.90770 (9) 0.00011 (9) 0.36420 (9)
12 0.80117 (12) 0.75585 (11) 0.66812 (10) 0.77344 (11) 0.00058 (11) 0.35738 (10)

Table 7 shows that seven DMUs were identified as efficient DMUs by the CCR efficiency scores,
which cannot be further discriminated. It also appears that the ranking results of DMUs from these
methods are different. Interestingly, the results show that the ranking results of several DMUs remain
relatively stable, such as DMU8, DMU9, DMU11. Therefore, it is clear that DMU9 is an efficient DMU
by the CCR efficiency scores, where as all the ranking results in Table 7 unanimously indicate that
DMU9 performs worst of the 12 DMUs.

In addition, the ranking result of our proposed method is closer to those of the TOPSIS method
(Wu et al. [26]). By comparing the results of the two methods, we find that the order of some DMUs is
different, such as DMU10 and DMU12.The rank of DMU12 is higher than DMU10 in the relative entropy
and grey correlations. Furthermore, as shown in Table 6, DMU12 is better than DMU10 under most of
the standards. Therefore, considering the comprehensive information, DMU12 is superior to DMU10.

6. Conclusions

This paper proposes a DEA cross-efficiency ranking method based on grey correlation degree and
relative entropy evaluation method. This method considers the efficiency value ordering problem of
decision-making unit as a MCDM problem. First, the relationship between DMU and the ideal solution
are analyzed by the grey relational analysis method and the relative entropy evaluation method.
Then, the study also applies the Shannon entropy, which determines the weights of criteria to get the
weighted grey correlation and the weighted relative entropy between DMU and the ideal solution.
With the comprehensive relative closeness degree of each DMU, we can sort all the DMUs accordingly.
As seen from the results of two examples, the approach combines the characteristics of the two methods
to determine the relative closeness, which makes the analysis problem more comprehensive. Moreover,
considering the mutual evaluation information about DMU through Shannon entropy, it can accurately
reflect the actual situation, so that the method can offer an effective full ranking of DMUs.
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