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Abstract: Lattices provide useful structure for distributed coding of correlated sources. A common lattice
encoder construction is to first round an observed sequence to a ‘fine’ lattice with dither, then produce the
result’s modulo to a ‘coarse’ lattice as the encoding. However, such encodings may be jointly-dependent.
A class of upper bounds is established on the conditional entropy-rates of such encodings when sources
are correlated and Gaussian and the lattices involved are a from an asymptotically-well-behaved sequence.
These upper bounds guarantee existence of a joint–compression stage which can increase encoder
efficiency. The bounds exploit the property that the amount of possible values for one encoding collapses
when conditioned on other sufficiently informative encodings. The bounds are applied to the scenario
of communicating through a many-help-one network in the presence of strong correlated Gaussian
interferers, and such a joint–compression stage is seen to compensate for some of the inefficiency in
certain simple encoder designs.

Keywords: lattice codes; network information theory; distributed source coding; compressed sensing

1. Introduction

Lattice codes are a useful tool for information theoretic analysis of communications networks.
Sequences of lattices can be designed to posess certain properties which make them useful for noisy
channel coding or source coding in limit with dimension. These properties have been termed ‘good for
channel coding’ and ‘good for source coding’ [1]. Sequences posessing both such properties exist, and an
arbitrary number of sequences can be nested [2]. One application of ‘good’ sequences of nested lattices is
in construction of distributed source codes for Gaussian signals. Well designed codes for such a scenario
built off of such lattices enables encoders to produce a more efficient representation of their observations
than would be possible without joint code design [3]. Such codes can provide optimal or near-optimal
solutions to coding problems [4–6]. Despite their demonstrated ability to compress signals well in these
cases, literature has identified redundancies across lattice encodings in other contexts [7–10]. In these cases,
further compression of encodings is possible. This paper studies the correlation between lattice encodings
of a certain design.

A class of upper bounds on the conditional Shannon entropies between lattice encodings of correlated
Gaussian sources is produced by exploiting linear relations between lattice encodings and their underlying
signals’ covariances. The key idea behind the analysis is that when the lattice-modulo of one random
signal is conditioned on the lattice-modulo of a related signal, the region of feasible points for the first
modulo collapses. A sketch of this support reduction is shown in Figure 1. This process is repeated until
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all information from the conditionals is integrated into the estimate of the support set. The upper bound
establishes stronger performance limits for such coding structures since it demonstrates that encoders are
able to convey the same encodings at lower messaging rates.

Figure 1. Collapse of the support of a random signal’s modulo after conditioning on the modulo of a
related signal. Modulo is shown to some lattice L with base region B. Consider a signal comprised of
two independent random components, ~a and~b, equaling β~a +~b. A possible outcome is drawn on the
far left. Unconditioned, the support for mod(β~a +~b) is the entire base region B, shown fully shaded in
gray. Once mod(~a) is observed, the component β~a is known up to an additive factor in βL. If further the
powers of~a and~b are bounded above, this leaves feasible points for mod(β~a +~b) as a subset of those of the
unconditioned variable. This subset is shaded yellow on the far right.

1.1. Contributions

The following novel contributions are provided:

• A class of upper bounds on conditional entropy-rates of appropriately designed lattice encoded
Gaussian signals.

• An application of the bounds to the problem of point-to-point communication through a
many-help-one network in the presence of interference. This strategy takes advantage of a specially
designed transmitter codebook’s lattice structure.

• A numerical experiment demonstrating the behavior of these bounds. It is seen that a
joint–compression stage can partially alleviate inefficiencies in lattice encoder design.

1.2. Background

The redundancy of lattice-modulo-encoded messages has been noticed before, usually in the context
of the following many-help-one problem: many ‘helpers’ observe correlated Gaussian signals and forward
messages to a decoder which is interested in recovering a linear combination of said signals. Towards this
end, Wagner in [7] provides an upper and lower bound on conditional entropies such as those here for a
case with two lattice encodings. Yang in [8] realized a similar compression scheme for such encodings
using further lattice processing on them and presents an insightful ‘coset planes’ abstraction. It was further
noticed by Yang in [9] that improvement towards the many-help-one problem is obtained by splitting
helper messages into two parts: one part a coarse quantization of the signal, compressed across helpers
via Slepian–Wolf joint–compression (these message parts corresponding to the ‘high bit planes’), and
another a lattice-modulo-encoding representing signal details (corresponding to ‘low bit planes’). This
paper extends these ideas to a general quantity of helpers, and treats a case where a single component of
the observations is known to have lattice structure.

Most recently, a joint–compression scheme for lattice encodings called ‘Generalized Compute
Compress and Forward’ was introduced in [10], towards coding for a multi-user additive white Gaussian
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noise channel where a decoder seeks to recover all user’s messages and is informed by helpers. The scheme
in [10] makes use of concepts from [9]. In the scheme each lattice message is split into a combination of
multiple components, each component from a different coset plane. Design of which coset planes are used
yields different performance results. Section 3 in the present work follows along the same lines, although
for a network with one user and where many interferers without codebook structure are also present.

Throughout the paper, terminology and basic lattice theory results are taken from [1]. The
lattice encoders studied are built from an ensemble of nested lattices, all both ‘good for quantization’
(Rogers-good) and ‘good for coding’ (Poltyrev-good). Such a construction is provided in [2]. An algorithm
from [3] is also used which takes as an argument the structure of some lattice modulo encodings and
returns linear combinations of the underlying signals recoverable by a certain type of processing on such
encodings. This algorithm is listed here as STAGES∗(·) and is shown in Appendix A.

1.3. Outline

The main theorem providing upper bounds on conditional entropies of lattice messages, along with
an overview of its proof is stated in Section 2. The theorem is slightly strengthened for an application to
the problem of communicating over a many-help-one network in Section 3. A numerical analysis of the
bounds is given in Section 3.2. A conclusion and discussion on the bound’s remaining inefficiencies is
given in Section 4. A table of notation is provided in Table 1. A key for the interpretation of significant
named variables is given in Table 2.

Table 1. Symbols and notation.

a := b Define a to equal b
[n] Integers from 1 to n

A,~a,
−→
A Matrix, column vector, vector, random vector

A†,~a† Transpose (All matrices involved are real)
[A]S,T Submatrix corresponding to rows S, columns T of A

~YS an |S|-vector, the sub-vector of ~Y including components with indices in S. If S has
order then this vector respects S’s order.

IK K× K identity matrix
0K K× 1 zero vector

diag~a Square diagonal matrix with diagonals~a
pinv(·) Moore-Penrose pseudoinverse
N (0, Σ) Normal distribution with zero mean, covariance Σ

X ∼ f X is a random variable distributed like f
Xn, f (xn) Vector of n independent trials of a random variable distributed like X, a function

whose input is intended to be such a variable
var(a) Variance (or covariance matrix) of (components of) a, averaged over time index.

var(a|b) Conditional variance (or covariance matrix) of (components of) a given observation b,
averaged over time index.

cov(a, b), cov (a, b|c) Covariance between a and b,, covariance between a and b conditioned on c, averaged
over time index.

E(a|b) Linear MMSE estimate of a given observations b
E⊥(a|b) Complement of E(a|b), i.e., E⊥(a|b) := a − E(a|b). An important property is that

E(a|b) and E⊥(a|b) are uncorrelated.
roundL(·), modL(·) Lattice round, modulo to a lattice L (when it is clear what base region is associated

with L).
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Table 2. Description of variables.

K Number of lattice encodings in current context.
n Scheme blocklength

Xn
k Observation at receiver k

Wk Lattice dither k
Uk Lattice encoding k
Yk Quantization of Xn

k
~Yc Ensemble of lattice quantizations, sans modulo
Σ K× K time-averaged covariance between observations Xn

1 , . . . , Xn
K

ΣQ K× K time-averaged covariance between quantizations Y1, . . . , YK
r1, . . . , rK Nesting ratios for coarse lattice Lc in the fine lattices L1, . . . , LK , equivalent to the encoding rates of

lattice codes when joint compression is not used
R1, . . . , RK Messaging rates for helpers in the Section 3 communications scenario

rmsg Nesting ratio for codebook coarse lattice Lc,msg in codebook fine lattice L f ,msg in Section 3,
equivalent to codebook rate

~hmsg Covariance between codeword and quantizations in Section 3
~αs Integer combination of ~Yc to analyze in step s of Appendix B
δ2

s Variance of~α†
s~Yc after removing prior knowledge in Appendix B

σ2
s Variance of YK uncorrelated with prior knowledge and~α†

s~Yc in Appendix B
βs Regression coefficient for~α†

s~Yc in YK after including prior knowledge at step s in Appendix B

2. Main Results

The main results are as follows:

Theorem 1. For covariance Σ ∈ RK×K, take ~Xn = (Xn
1 , . . . , Xn

K) to be n independent draws from the
joint-distribution N (0, Σ). Take rates r1, . . . , rK > 0 and any ε > 0. If n is large enough, an ensemble of
nested lattices Lc ⊂ L1, . . . , LK (with base regions Bc ⊃ B1, . . . , BK) from [2] (Theorem 1) can be designed so
that the following holds. First fix independent dithers Wk ∼ unif Bk. These dithers have var Wk = 2−2rk . Also fix
Yk := roundBk (Xn

k + Wk)−Wk and lattice modulo encodings Uk := modBc(roundBk (Xn
k + Wk)).

Now for any~α0 ∈ ZK−1, number n0 ∈ N, basis {~α1, . . . ,~αK} ⊂ ZK, fix variables:

Y0 := YK + 1
n0
~α†

0
~Y[K−1],

~Yc := (Y0 −YK, Y1, . . . , YK−1),

δ2
0 := n2

0,

σ2
k := var

(
Y0

∣∣∣∣STAGES∗
(

var
(
~Yc

∣∣∣(~α†
j
~Yc)0<j≤k

))†
~Yc

)
, k ∈ {0} ∪ [K],

δ2
k := var

(
~α†

k
~Yc

∣∣∣∣STAGES∗
(

var
(
~Yc

∣∣∣(~α†
j
~Yc)0<j<k

))†
~Yc

)
, k ∈ [K].

Then the conditional entropy-rate is bounded:

1
n

H
(
~UK

∣∣∣~U[K−1], ~W
)
≤ min

k∈{0}∪[K]

[
rK +

1
2

log σ2
k +

k

∑
j=0

max{1
2

log δ2
j , 0}

]
+ K2 · ε.

Bounds of this form hold simultaneously for any subset and reordering of message indices 1, . . . , K.

Proof for Theorem 1 is given in Appendix B. The proof is built from [3] (Theorem 1), its associated
algorithm STAGES∗(·) (listed here in Appendix A) and two lemmas which provide useful decompositions
of the involved random variables.

Lemma 1. Take variables as in the statement of Theorem 1. Then, the ensemble of lattices described can include an
‘auxiliary lattice’ L̂′ ⊂ LK with base region B̂′, nesting ratio 1

n log |B̂′ ∩ LK| → 1
2 log σ2 + ε so that
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UK = modBc

(
C + 1

n0
Ỹ + Ỹ⊥

)
,

where C,D are functions of (~U[K], ~W), and with high probability

Ỹ = −~α†
0
~Y[K−1] ∈ (D + Lc),

Ỹ⊥ = E⊥
(

Y0

∣∣∣~A) ∈ B̂,

~A = STAGES∗
(

var~Yc

)†
~Yc.

In addition, σ2 = max{2−2rK , var Ỹ⊥}.

Lemma 2. Take variables as in the statement of Theorem 1. Then, the ensemble of lattices described can
include ‘auxiliary lattices’ L̂ ⊂ Lc, L̂′ ⊂ LK with base regions B̂, B̂′, nesting ratios 1

n log |B̂ ∩ Lc| →
1
2 log δ2 + ε, 1

n log |B̂′ ∩ LK| → 1
2 log σ2 + ε so that, for any linear combination Y of ~Y[K], vector~α ∈ ZK, matrix

A ∈ R∗×K and ~A = A~Yc, then

Y = C + βỸ + Ỹ⊥,

where C,D are functions of (~A, modn0Bc(Y0), ~U[K], ~W), β is some scalar estimation coefficient, and with
high probability

Ỹ = E⊥
(
~α†Yc

∣∣∣~A) ∈ (D + Lc) ∩ B̂,

Ỹ⊥ = E⊥
(

Y
∣∣∣~A, Ỹ

)
∈ B̂′.

In addition, δ2 = var Ỹ, σ2 = max{2−2rK , var Ỹ⊥}.

Proofs for Lemmas 1, 2 are given in Appendix B. These lemmas do not strictly require that the sources
be multivariate normal. This technical generalization is relevant in the application to the communication
strategy in Section 3. Broadly, the proof of Theorem 1 goes as follows.

1. Choose some~α0 ∈ ZK−1, n0 ∈ N. Apply Lemma 1 to UK. Call Ỹ⊥ a ‘residual.’
2. Choose some~α ∈ ZK. Apply Lemma 2 to the residual to break the residual Ỹ⊥ up into the sum of a

lattice part due to~α†~Y[K−1] and a new residual, whatever is left over.
3. Repeat the previous step until the residual vanishes (up to K− 1 times). Notice that this process has

given several different ways of writing UK; by stopping at any amount of steps, UK is the modulo
sum of several lattice components and a residual.

4. Design the lattice ensemble for the encoders such that the log-volume contributed to the support of
UK by each component can be estimated. The discrete parts will each contribute log-volume 1

2 log δ2

and residuals log-volume rK + 1
2 log σ2.

5. Recognize the entropy of UK is no greater than the log-volume of its support. Choose the lowest
support log-volume estimate of those just found.

Notice that each lemma application involves choice of some integer parameters. Choices which
yield the strongest bound are unknown. Possible schemes for these decisions are the subroutines
ALPHA0(·) , ALPHA(·), listed in Appendix A. As implemented, ALPHA0(·) chooses n0 = 1 and the



Entropy 2019, 21, 957 6 of 20

integer linear combination~α0 which leaves the least residual. As implemented, ALPHA(·) chooses the
integer linear combination~α for which~α†~Y[K−1] is closest to being recoverable from current knowledge at
each lemma application. It produces the combination for which the entropy 1

2 log δ2 of the unknown part
of~α†~Y[K−1] is minimized. This may be a suboptimal choice since, while such combinations are close to
recoverable, they may not be very pertinent to a description of UK. Nonetheless, it is still a good enough
rule to produce nontrivial entropy bounds, as seen in Section 3.2.

3. Lattice-Based Strategy for Communication via Decentralized Processing

Consider a scenario where a decoder seeks to decode a message from a single-antenna broadcaster in
an additive white Gaussian noise (AWGN). The decoder does not observe a signal directly but instead
is provided information by a collection of distributed observers (‘helpers’) which forward it digital
information, each observer-to-decoder link supporting a different communications rate. This network
is depicted in Figure 2. A block diagram is shown in Figure 3. This is the problem of a single-antenna
transmitter communicating to a decoder informed out-of-band by a network of helpers in the presence of
additive white Gaussian noise and interference.

Figure 2. High level overview of the communications scenario in Section 3. A transmitter seeks to
communicate digital information to a decoder through a Gaussian channel in the presence of Gaussian
interference (one interferer drawn). The decoder is informed of the transmitter’s signal through helpers
which pass it digital information through an out-of-band local area network (LAN).

Xmsg

+

...

+

W1

WK

Q1

...

QK

Decoder X̂

h1

hK

X1,raw

XK,raw

�
U1

R1

�
UK

RK

Figure 3. Block diagram of the communications scenario. A signal Xmsg from a codebook is broadcast
through an additive white Gaussian noise (AWGN) channel in the presence of independent Gaussian
interference, creating correlated additive noise (W1, . . . , WK). The signal is observed at K receivers labeled
Q1, . . . , QK . The k-th reciver observes Xk,raw and processes its observation into a rate-Rk message Uk. The
messages are forwarded losslessly over a local area side channel to a decoder which attempts to recover
the message.

Note that this problem is different from the problem of distributed source coding of a linear
function [3,7–9,11]. In contrast to the source coding problem, the signal being preserved by the
many-help-one network in the present case has a codebook structure. This structure can be exploited
to improve the source-to-decoder communications rate. This problem has been studied [12,13], but the
best achievable rate is still unknown. In this section, we present a strategy that takes advantage of this
codebook structure.
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The core of the strategy is to apply a slight modification of Theorem 1 to the network. The transmitter
modulates its communications message using a nested lattice codebook such as one in [4]. The helpers
employ lattice encoders such as those from Theorem 1, and then perform Slepian–Wolf distributed lossless
compression [14] (Theorem 10.3) on their encodings to further reduce their rate. Because the codeword
appears as a component of all the helper’s observations, the bound on the message’s joint entropy obtained
from Theorem 1 can be strengthened, allowing one to use a more aggressive compression stage.

3.1. Description of the Communication Scheme

It is well known that a nested lattice codebook with dither achieves Shannon information capacity
in a point-to-point AWGN channel with a power-constrained transmitter [4]. One interesting aspect of
the point-to-point communications scheme described in [4] is that decoding of the noisy signal is done in
modulo space. We will see in this section how lattice encodings like those in Theorem 1 can be used to
provide such a decoder enough information to recover a communications message.

Without loss of generality, assume that the transmitter is limited to have average transmission power
1. The scheme’s codebook is designed from nested lattices L f ,msg ⊃ Lc,msg with base regions B f ,msg, Bc,msg.
L f ,msg is chosen to be good for coding and Lc,msg good for quantization. The messaging rate of this
codebook is determined by the nesting ratio of Lc,msg in L f ,msg:

Rmsg :=
1
n

log
∣∣∣L f ,msg ∩ Bc,msg

∣∣∣ .

Lattices can be designed with nesting ratios such that any rate above zero can be formed. Taking a message
M ∈ L f ,msg ∩ Bc,msg and choosing a dither Wmsg ∼ −Bc,msg of which the decoder is informed, then the
codeword associated with M takes the form:

Xn
msg(M) :=

modLc,msg

(
M + Wmsg

)√
var Wmsg

∈
BLc,msg√
var Wmsg

⊂ Rn.

We now describe observations of such a signal by helpers in the presence of AWGN interferers. For
covariance Σnoise ∈ RK×K, take

~Xn
noise = (Xn

noise,1, . . . , Xn
noise,K) ∈ (Rn)K

to be n independent draws from the joint-distributionN (0, Σnoise). In addition, take a random vector Xn
msg

as described at the beginning of Section 3.1 and a vector cmsg ∈ RK and define Σmsg := cmsgc†
msg. Now,

the k-th helper observes the vector:

Xn
k = [cmsg]kXn

msg + Xn
noise,k ∈ R

n.

Form an observations vector:

~Xn := cmsg(Xn
msg) + ~Xn

noise ∈ (Rn)K,

and finally form a cumulative time-averaged covariance matrix as

Σ := var ~Xn = cmsgc†
msg + Σnoise ∈ RK×K.



Entropy 2019, 21, 957 8 of 20

If helpers are informed of message dither Wmsg, then they are informed of the codebook for Xmsg and
its lattice structure. Using lattice encoders such as those described in Theorem 1, this codebook information
can be used to strengthen the upper bound on conditional entropies between the messages.

Theorem 2. In the context of the channel description given in Section 3.1, entropy bounds identical to those from
Theorem 1 hold for its described observer encodings. The bounds also hold re-defining:

Y0 := Xmsg,

defining the rest of the variables in the theorem as stated. The bounds also hold instead re-defining:

Yc := (Y0 −YK, Y1, . . . , YK−1, Xsrc),

vectors {~α1, . . . ,~αK+1} ⊂ ZK+1 a basis where all vectors but one ~αs, s ∈ [K + 1] have 0 as their (K + 1)-th
component and~αs = [0, 0, . . . , 0, 1]†, taking

~a(msg)
R ∈ image STAGES∗

(
var

(
[~Yc][K]

∣∣∣(~α†
j
~Yc)0<j<s

))
,

~a(msg)
Z ∈ ZK,

λ(msg) := cov(Xn
msg, (~a(msg)

R +~a(msg)
Z )†[~Yc][K]),

Y(msg)
⊥ := E

(
(~a(msg)
R +~a(msg)

Z )†[~Yc][K]

∣∣∣Xn
msg

)
,

δ2
(msg) :=

(
λ(msg)

γn
− 1

)2

+ var Y(msg)
⊥ ,

δ2
s := max{1,

δ2
(msg)

2−2rmsg
+ ε},

and taking the rest of the variables in the theorem as stated over range k ∈ [K + 1].

A sketch for Theorem 2 is provided in Appendix C. The theorem’s statement can be broadly
understood in terms of the proof of Theorem 1. After a number of steps s in the support analysis
for Theorem 1, the codebook component Xn

msg can be partially decoded yielding tighter estimation of that

component’s contribution to the support of UK. The variables λ(msg),~a(msg)
R ,~a(msg)

Z are parameters for this
partial decoding. Lattice modulo messages such as those described in Theorem 2 can be recombined in a
useful way:

Lemma 3. For ε > 0 and vectors aZ ∈ ZK, aR ∈ image STAGES∗(Σ) ⊂ RK, then lattice modulo encodings ~U[K]
from Theorem 2 can be processed into:

Uproc := modLc,msg

(
λXmsg + Ynoise

)
, (1)

where λ ∈ R is some constant:
λ := cov

(
Xn

msg, (aZ + aR)†~Y[K]

)
and the noise term Ynoise has the following properties:

• σ2
noise := var Ynoise = var

(
(aZ + aR)†~Y[K]

∣∣∣Xn
msg

)
,

• Ynoise ⊥ (Xmsg, M, Wmsg),
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• Ynoise is with high probability in the base cell of any lattice good for coding semi norm-ergodic noise up to power
σ2

noise + ε.

Lemma 3 is demonstrated in Appendix D. Notice that Equation (1) is precisely the form of signal
processed by the communications decoder described in [4]. The following result summarizes the
performance of this communications strategy.

Corollary 1. Fix a codebook rate rmsg > 0. As long as helper-to-decoder messaging rates R1, . . . , RK > 0 satisfy all
the following criteria:

∀S ⊂ [K], ∑
k∈S

Rk > H̃(S|[K]\S) + ε, (2)

each H̃(S|[K]\S) being any entropy-rate bound obtained from Theorem 2, then the following communications rate
from source to decoder is achievable, taking aZ, aR, λ, σ2

noise from their definitions in Lemma 3:

Rmsg < min

{
rmsg, sup

aZ, aR
max

γ2∈(0,1]

1
2

log

[
γ2

(λ− γ)2 + σ2
noise

]}
. (3)

Proof for Corollary 1 is given in Appendix E, and evaluation of the achieved communications rates
for certain lattice code designs is shown in Section 3.2.

3.2. Numerical Results

The achievable rate given in Corollary 1 depends on the design of the lattice encoding scheme at
the helpers. Identification of the best such lattice encoders for such a system is closely tied to a receivers’
covariance structure [3]. For this reason and for the purpose of evaluating the effect of joint compression
stage, we restrict our attention to a particular channel structure and lattice encoder design.

The line-of-sight configuration shown in Figure 4 is considered. It yields helper observations with the
following covariance structure, labeling interferer signals in Figure 4 from top to bottom as (WI1, WI2, WI3)

and indexing helpers from top to bottom:

Xraw,1 =

√
PS

‖1 + ( 2
3 )e

iπ·1/2‖
Xmsg + W1 + . . . (4)

+

√
PI

‖( 2
3 )(e

iπ·1/2 − eiπ·2/3)‖
WI1 +

√
PI

‖( 2
3 )(e

iπ·1/2 − eiπ·1)‖
WI2 +

√
PI

‖( 2
3 )(e

iπ·1/2 − eiπ·4/3)‖
WI3,

Xraw,2 =

√
PS

‖1 + ( 2
3 )e

iπ·5/6‖
Xmsg + W2 + . . .

+

√
PI

‖( 2
3 )(e

iπ·5/6 − eiπ·2/3)‖
WI1 +

√
PI

‖( 2
3 )(e

iπ·5/6 − eiπ·1)‖
WI2 +

√
PI

‖( 2
3 )(e

iπ·5/6 − eiπ·4/3)‖
WI3,

Xraw,3 =

√
PS

‖1 + ( 2
3 )e

iπ·7/6‖
Xmsg + W3 + . . .

+

√
PI

‖( 2
3 )(e

iπ·7/6 − eiπ·2/3)‖
WI1 +

√
PI

‖( 2
3 )(e

iπ·7/6 − eiπ·1)‖
WI2 +

√
PI

‖( 2
3 )(e

iπ·7/6 − eiπ·4/3)‖
WI3,

Xraw,4 =

√
PS

‖1 + ( 2
3 )e

iπ·3/2‖
Xmsg + W4 + . . .

+

√
PI

‖( 2
3 )(e

iπ·3/2 − eiπ·2/3)‖
WI1 +

√
PI

‖( 2
3 )(e

iπ·3/2 − eiπ·1)‖
WI2 +

√
PI

‖( 2
3 )(e

iπ·3/2 − eiπ·4/3)‖
WI3,

Wk ∼ N (0, 1) i.i.d.
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where PS, PI > 0 are signal, interferer powers, respectively. Choice of this channel is arbitrary but provides
an instance where the decoder would not be able to recover the signal of interest if it observed directly
without the provided helper messages.

Figure 4. The line-of-sight channel considered. A black transmit node at (0, 0) seeks to communicate with a
black decoder node at (1, 0). Three red ‘interferer’ nodes broadcast an independent Gaussian signal, each
interferer has its own signal. The decoder does not observe any signal directly but is forwarded messages
from four blue ‘helper’ nodes which observe signals through a line-of-sight additive-white-Gaussian noise
channel. The interferers and helpers are oriented alternatingly and equispaced about a radius-2/3 semicircle
towards the encoder with center (1, 0).

3.2.1. Communications Schemes

First, we describe a class of lattice encoders the four helpers could employ:

• Fix some c ∈ (0, 3). If helper k ∈ [4] in the channel from Figure 4 observes Xn
raw,k, then it encodes a

normalized version of the signal:

Xn
k :=

c√
var Xn

raw,k

Xn
raw,k.

• Fix equal lattice encoding rates per helper r = r1 = r2 = r3 = r4, and take lattice encoders as
described in Theorem 1. Note that these rates may be distinct from the helper-to-base rates R1, . . . , R4

if post-processing of the encodings is involved.

Communications schemes involving lattice encoders of this form are compared in Figure 5 over
an ensemble of choices for lattice encoder rates r and scales c ∈ (0, 3). Achieved transmitter-to-decoder
communication rate versus sum-rate from helpers to decoder are plotted. The following quantities
are plotted:

• Upper Bound: An upper bound on the achievable transmitter-to-decoder communications rate,
corresponding to helpers which forward with infinite rate. This bound is given by the formula
I(Xmsg; (Xraw,k)k∈[4]).

• Corollary 1 The achievable communications rate from Corollary 1, where each helper computes the
lattice encoding described above, then employs a joint–compression stage to reduce its messaging
rate. The sum-helpers-to-decoder rate for this scheme is given by Equation (2), taking S = [4]. The
achieved messaging rate is given by the right-hand-side of Equation (3).

• Uncompressed Lattice: The achievable communications rate from Corollary 1, with each
helper forwarding to the decoder its entire lattice encoding without joint–compression. The
sum-helpers-to-decoder rate for this scheme is 4r since in this scheme each helper forwards to the
base at rate Rk = r. The achieved messaging rate is given by the right-hand-side of Equation (3).
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• Quantize & Forward: An achievable communications rate where helper-to-decoder rates Rk, k ∈ [4]
are chosen so that R1 + R2 + R3 + R4 = Rsum and each helper forwards a rate-distortion-optimal
quantization of its observation to the decoder. The decoder processes these quantizations into an
estimate of Xmsg and decodes. This is discussed in more detail in [13]. The sum-helpers-to-decoder
rate for this scheme is Rsum. The achieved messaging rate is I(Xmsg; (Xraw,k + Zk)k∈[4]), where Zk ∼
N (0, var(Xraw,k) · 2−2Rk ).
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Figure 5. Communications rate versus helper-sum-rate for 1000 randomly chosen encoding schemes as
described in Section 3.2.1 in the line-of-sight channel from Figure 4, Equation (4). In each subplot, the
transmitter broadcasts with power such that the average SNR seen across helpers is the given ‘transmitter’
dB figure. Each interferer broadcasts its own signal with its power the given ‘interferer’ dB stronger than the
transmitter’s power. Notice that, although the uncompressed lattice scheme is often outperformed by plain
Quantize & Forward for the same helper message rates, adding a properly configured compression stage
can more than make up for the sum-rate difference. In certain regimes, even the compressed lattice scheme
performs worse or practically the same as Quantize & Forward, indicating the given lattice encoder design is
weak; uncompressed lattice encoders can be configured to implement the Quantize & Forward scheme.
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Performance of these strategies for different broadcaster powers is shown in Figure 5. It is seen that,
although the lattice encoder designs are poor, the joint–compression stage partially compensates for this,
and with joint compression the scheme outperforms the plain ‘Quantize & Forward’ scheme. Notice that
none of the strategies produce convex rate regions, indicating that time-sharing can be used to achieve
better rates in some regimes.

In all figures shown, the gap between achieved rates from the joint–compression bound given from
Theorem 1 and Theorem 2 (the latter being an improvement) were often nonzero but too small to noticeably
change the graphs in Figure 5. For this reason only, achievable rates for the strategy from Corollary 1
are plotted. The gain from involving codebook knowledge in lattice encoding compression is either
insignificant for the tested scenario, or choices in computing the upper bounds are too poor to reveal
its performance gains. Sub-optimality of the algorithm implementations here are all summarized and
discussed in Section 4.

4. Conclusions

A class of upper bounds on the joint entropy of lattice-modulo encodings of correlated Gaussian
signals was presented in Theorem 1. Proof of these bounds involves reducing the problem to the entropy
of one lattice message, say, UK conditioned on the rest, ~U[K−1]. The upper bound for this reduced case
involves an iterative construction where in each step a suitable integer vector is chosen. Choice of vectors
in these steps determines the order in which the observed lattice-modulo components are integrated into
an estimate of UK’s support. Different choice of vectors at each step yields a different bound, and the
strongest sequence of choices is unknown. For numerical results in Section 3.2, a certain suboptimal was
used although there is no guarantee that this choice is optimal.

The upper bounds were applied to the problem of communicating through a many-help-one network,
and these bounds were evaluated for a rendition of the problem using lattice codes of simple structure.
The bounds in Theorem 1 can be strengthened in this scenario by integrating codebook knowledge. This
strengthening is described in Theorem 2.

In spite of the suboptimal lattice encoder designs analyzed, it was seen in Section 3.2 that
jointly-compressed lattice encoders are able to significantly outperform more basic schemes in the
presence of heavy interference, even when the joint compression stage uses the weaker entropy bounds
from Theorem 1. In the numerical experiments tried, the strengthening in Theorem 2 was not seen to
significantly improve compression. Whether this is typically true or just an artifact of poor design of
the joint-compression stage is unknown. In either case, the simpler joint-compression strategy without
codebook knowledge was seen to improve performance.

The most immediate forwards steps to the presented results is in characterization of the search
problems posed by Theorems 1, 2. Although not discussed, corner-points of joint compression described
here are implementable using further lattice processing on the encodings U1, . . . , UK and their dithers ~W.
Such a process might mimic the compression procedure described in [10]. Tightness arguments from this
work may also apply to the present less structured channel.

Finally, according to the transmission method in [10], the achievable rate in Corollary 1 may be
improvable by breaking the transmitter’s message M up into a sum of multiple components, each from
a finer lattice. Joint–compression for such a transmission could integrate codebook information from
each message component separately, allowing for more degrees of freedom in the compression stage’s
design, possibly improving the achievable rate. This is an extension of the argument in Appendix D. These
improvements are out of this paper’s scope but provide meaningful paths forward.

Author Contributions: C.C. performed formal analysis. The scheme was conceptualized by C.C. and D.W.B. Work
was supervised by D.W.B.
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Appendix A. Subroutines

Here, we provide a list of subroutines involved in a statement of the results:

• STAGES∗(·) is a slight modification of an algorithm from [3], reproduced here in Algorithm 1. The
original algorithm characterizes the integral combinations A†~Y which are recoverable with high
probability from lattice messages ~U and dithers ~W, excluding those with zero power. The exclusion
is due to the algorithm’s use of SLVC(·) as just defined. Such linear combinations never arose in
the context of [3], although it provides justification for them being recoverable; in the paper, the
algorithm’s argument is always full-rank. This is not true in the present context. The version here
includes these zero-power subspaces by including a call to LATTICEKERNEL(·) before returning.

• SLVC(B), ‘Shortest Lattice Vector Coordinates’ returns the nonzero integer vector~a which minimizes
the norm of B~a while B~a 6= 0, or the zero vector if no such vector exists. SLVC(·) can be implemented
using a lattice enumeration algorithm like one in [15] together with the LLL algorithm to convert a set
of spanning lattice vectors into a basis [16].

• LATTICEKERNEL(B, A), for B ∈ RK×d, A ∈ Zd×a returns the integer matrix A⊥ ∈ Zd×b whose
columns span the collection of all~a ∈ ZK where B~a = 0 while A†~a = 0a. In other words, it returns a
basis for the integer lattice in ker B whose components are orthogonal to the lattice A. This can be
implemented using an algorithm for finding ‘simultaneous integer relations’ as described in [17].

• ICQM(M,~v, c) is an “Integer Convex Quadratic Minimizer.” It provides a solution for the NP-hard
problem: “Minimize (~x† M~x + 2~v†~x + c) over ~x with integer components.” Although finding the
optimal solution is exponentially difficult in input size, algorithms are tractable for low dimension. [18]
(Algorithm 5, Figure 2).

• CVARCOMPONENTS
(
ΣQ, A

)
returns certain variables {M,~v, c} involved in computing

var
(

YK −~α†~Y[K−1]

∣∣∣A~Y[K−1]

)
when ~Y = (Y1, . . . , YK) has covariance ΣQ. Write some matrices in block form:

ΣQ =

[
M1 ~v1

~v†
1 ς2

1

]
,

ΣQ

[
A
0

][A
0

]†

ΣQ

[
A
0

]−1 [
A
0

]†

ΣQ =

[
M2 ~v2

~v†
2 ς2

2

]
.

Then, taking M = (M1 −M2), v = −(~v1 −~v2), c = (ς2
1 − ς2

2), one can check that:

var
(

YK −~α†~Y[K−1]

∣∣∣A~Y[K−1]

)
=~α† M~α + 2~v†~α + c.

• CVAR(M1|M2; Σ) computes the conditional covariance matrix of M†
1
~Z conditioned on M†

2
~Z for

~Z ∼ N (0, Σ). This is given by the formula:

CVAR(M1|M2; Σ) := M†
1 ΣM1 −M†

1 ΣM2 pinv(M†
2 ΣM2)M†

2 ΣM2.

• ALPHA0
(
ΣQ, A

)
in Algorithm 2 implements a strategy for choosing~α0 in Theorems 1, 2.
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• ALPHA(Σ, A) in Algorithm 3 implements a strategy for choosing~αs in theorems 1, 2.

Algorithm 1 Compute recoverable linear combinations A ∈ RK×m from modulos of lattice encodings with
covariance ΣQ ∈ RK×K.

function STAGES∗(Σ)
A← [ ], ~a← SLVC

(
Σ1/2

Q

)
, R← IK,

while 0 < (R~a)†ΣQ(R~a) < 1 do
A← [A,~a]
R← IK − A pinv(A†ΣQ A)A†ΣQ
~a← SLVC

(
Σ1/2

Q R
)

end while
A← [A, LATTICEKERNEL

(
Σ1/2

Q R, A
)
]

return A
end function

Algorithm 2 Strategy for choosing~α0 for Theorems 1, 2

function ALPHA0(Σ) . Find~α0 which minimizes var
(

YK −~α†
0
~Y[K−1]

∣∣∣A~Y[K−1]

)
for

Σ = var~Y[K−1], A = STAGES∗(Σ) .
A← STAGES∗(Σ) .
{M,~v, c} ← CVARCOMPONENTS(Σ, A)
{~α, σ2} ← ICQM(M,~v, c)
n0 ← 1
return {n0,~α, σ2}

end function

Algorithm 3 Strategy for picking~αs for Theorems 1, 2.
function ALPHA(Σ, A) . Entropy-greedy implementation:

choose~α where the unknown part of~α†~Y[K−1] has the least entropy among any combination with an unknown

part. Expects Σ = var~Yc, A = STAGES∗
(

var
(
~Yc

∣∣∣[~α0, . . . ,~αs−1]
†~Yc

))
.

if rank A = K then
~α ← 0

else
Σreduced ← CVAR( IK|A; Σ ) , ~α ← SLVC(Σreduced)

end if
return~α

end function

Appendix B. Proof of Lemmas 1, 2, Theorem 1

Proof. (Lemma 1)
Take D := modBc(~α

†
0(
~U[K−1] − ~W[K−1])). Then, by modulo’s distributive property D =

modBc(~α
†
0
~Y[K−1]) so that Ỹ = −~α†

0
~Y[K−1] ∈ (D + Lc). Compute:

1
n0

modn0Bc Ỹ =
1
n0

modn0Bc(−~α†
0
~Y[K−1]).
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= modBc

(
− 1

n0
~α†

0
~Y[K−1]

)
.

Now:

UK = modBc

(
Wk + Yk +

1
n0
~α†

0
~Y[K−1] −

1
n0
~α†

0
~Y[K−1]

)
= modBc

(
Wk + Y0 −

1
n0
~α†

0
~Y[K−1]

)
= modBc

(
Wk + E

(
Y0

∣∣∣~A)+ E⊥(Y0

∣∣∣~A)− 1
n0
~α†

0
~Y[K−1]

)
= modBc

(
Wk + E

(
Y0

∣∣∣~A)+ Ỹ⊥ +
1
n0

Ỹ
)

.

By [3] (Theorem 1), ~A can be recovered by processing (~U[K−1], ~W, Ỹ), hence E
(

Y0

∣∣∣~A) can also be recovered.

Choose C := −Wk + E
(

Y0

∣∣∣~A) so that the claim holds applying modulo’s distributive property.

Proof. (Lemma 2)
Take U0 = n0UK +~α†

0U[K−1], W0 = n0WK +~α†
0W[K−1], ~Uc = (U0, ~U[K]), ~Wc = (W0, ~W). Take

C := E
(
~α†~Yc

∣∣∣~A) and D := modBc(~α
†(~Uc − ~Wc) − E

(
~α†Yc

∣∣∣~A)) = modBc(E⊥
(
~α†Yc

∣∣∣~A)). Choose

β :=
cov(Y,Ỹ|~A)

δ2 .
Include good-for-coding auxillary lattices with the prescribed scales in the lattice ensemble from

Theorem 1. With high probability since L̂ is good for coding semi norm-ergodic noise of power δ2 + ε [2]
and applying [19] (Appendix V) to Ỹ, Ỹ⊥ yields the result.

Proof. (Theorem 1)

Appendix B.1. Upper Bound for Singleton S

Take a nested lattice construction from [20] (Theorem 1), involving the following sets:

• Coarse and fine encoding lattices Lc, L1, . . . , LK (base regions Bc, B1, . . . , BK) with each k has Lc ⊂ Lk
designed with nesting ratio 1

n log |Bc ∩ Lk| → rk.
• Discrete part auxiliary lattices L̂1, . . . , L̂K (base regions B̂1, . . . , B̂K) with each L̂k ⊂ Lc having nesting

ratio 1
n log |Bc ∩ L̂k| → 1

2 log δ2
k .

• Initial residual part auxiliary lattice L̂′0 (base region B̂′0) with L̂′0 ⊂ LK, nesting ratio 1
n log |B̂′0 ∩ LK| →

1
2 log σ2

0 .
• Residual part auxiliary lattices L̂′1, . . . , L̂′K (base regions B̂′1, . . . , B̂′K) with each L̂′k ⊂ LK, having nesting

ratio 1
n log |B̂′k ∩ LK| → 1

2 log σ2
k .

The specified nesting ratios for the auxiliary lattices, σ2
0 , σ2

1 , . . . , σ2
K, δ2

1 , . . . , δ2
K will be specified later.

Initialization

Apply Lemma 1 to UK, and label the resulting variables Ỹ0 := Ỹ, Ỹ0⊥ := Ỹ⊥, (L̂′0, B̂′0) :=
(L̂′, B̂′), D0 := n0D, C0 := C, σ2

0 := σ2. In addition, define δ2
0 := n2

0, β0 = 1
n0

, B̂0 := n0Bc Now,

UK = modBc

(
C0 + β0Ỹ0 + Ỹ0⊥

)
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so the support of UK is contained within:

S0 :=[C0 + B̂′0 + (Lc/n0 +D0)] ∩ (Bc ∩ LK)

=[C0 + B̂′0 + β0[(D0 + Lc) ∩ B̂0] ∩ (Bc ∩ LK).

Support Reduction

Iterate over steps s = 1, . . . , K. For step s, condition on any event of the form Ỹ(s−1) = `s ∈
(Ds−1 + Lc)∩ B̂s−1, of which there are no more than 2n·(log(δ2

s−1)+ε) choices due to the nesting ratio for L̂s−1

in Lc. Take As := STAGES∗
(

var
(
~Yc

∣∣∣[~α0, . . . ,~αs−1]
†~Yc

))
. By [3] (Theorem 1), ~As := A†

s~Yc is recoverable by

processing (~As−1, modn0Bc Y0~U[K], ~W).
Now, apply Lemma 2 to (Y,~α, A) = (Ỹ(s−1)⊥,~αs, As), and label the resulting variables Ỹs := Ỹ, Ỹs⊥ :=

Ỹ⊥, (L̂s, B̂s) := (L̂, B̂), (L̂′s, B̂′s) := (L̂′, B̂′), Ds := D, Cs := C, βs := β, σ2
s := σ2, δ2

s := δ2. Now,

UK = modBc

([
s

∑
t=0
Ct + βtỸt

]
+ Ỹs⊥

)

so the support of UK is contained within:

Ss :=

[[
s

∑
t=0
Ct + βt

[
(Dt + Lc) ∩ B̂t

]]
+ B̂′s

]
∩ (Bc ∩ LK).

Count Points in Estimated Supports

By design, there are no more than ∏s
t=0 2n·( 1

2 log(δ2
t )+ε) possible choices for Ss. Each Ss has no more

than |B̂′s ∩ (Bc ∩ LK)| ≤ 2n·(rK+
1
2 log(σ2

s )+ε) points. Then,

H(UK|~U[K−1], ~W) ≤ min
s∈{0}∪[K]

n ·
(

rs +
1
2

log(σ2
s ) +

s

∑
t=0

1
2

log(δ2
t ) + Kε

)
.

Bound Simultaneity

An argument is given in Section B.1 for an upper bound on the singleton case. The argument uses a
Zamir-good nested lattice construction with a finite amount of nesting criteria, and conditions on a finite
amount of high-probability events. Then, the argument holds for all cases of this form simultaneously by
using a Zamir-good nested lattice construction satisfying all of each case’s nesting criteria and conditioning
on all of each case’s high-probability events.

The entropy for the general case S = {s1, . . . , s|S|}, T = {t1, . . . , t|T|} can be rewritten using the
chain rule:

H
(
~US

∣∣∣~UT , ~W
)
=
|S|

∑
p=1

H
(
~Usp

∣∣∣~U{sm :m<p}∪T , ~W
)

.
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Appendix C. Sketch of Theorem 2 for Upper Bound on Entropy-Rates of Decentralized
Processing Messages

Proof. (Sketch) Proceed identically as in the proof of Theorem 1 in Appendix B up until either Section B.1
Initialization if definition for Y0 was changed, or repetition s where~αs = [0, 0, . . . , 0, 1] in Section B.1 Support
Reduction if definition for (~αk)k changed. In this portion, perform the following analysis instead. Compute:

D(msg) :=modBc,msg((~a
(msg)
R +~a(msg)

Z )†~Y[K−1] −Wmsg)

=modBc,msg(λ
(msg)Xn

msg + Y(msg)
⊥ −Wmsg)

=modBc,msg

(
λ(msg)

γn
modBc,msg(M + Wmsg) + Y(msg)

⊥ −Wmsg

)

=modBc,msg

((
1 +

λ(msg)

γn
− 1

)
modBc,msg(M + Wmsg) + Y(msg)

⊥ −Wmsg

)

=modBc,msg

(
M +

(
λ(msg)

γn
− 1

)
modBc,msg(M + Wmsg) + Y(msg)

⊥

)
. (A1)

The additive terms in Equation (A1) are independent of one another, and the terms besides M have
observed power δ2

(msg). Choose the nesting ratio for L f ,msg in B̂s as r̂s := 1
2 log

(
δ2

s
)

.

Then, with high probability since L̂s is good for coding semi norm-ergodic noise below power δ2
s [2]

and applying [19] (Appendix V) to the derivation in Equation (A1),

M ∈ L(msg) := (L f ,msg ∩ Bc,msg) ∩modBc,msg

(
D(msg) + B̂s

)
, (A2)

where D(msg) is computable by processing (~U[K−1], ~W, (Ỹt)[s−1]) and 1
n log |L(msg)| ≤ r̂s + ε.

Rearranging Equation (A2),

Xn
msg = modBc,msg(M + Wmsg) ∈ Ls := modBc,msg

(
L(msg) + Wmsg

)
.

Now, define:

Ỹs := Xn
msg,

Ỹs⊥ := E⊥
(

Ỹ(s−1)⊥

∣∣∣Xn
msg

)
,

Cs := E
(

Ỹs−1

∣∣∣~As

)
,

βs :=
cov

(
Ỹ(s−1)⊥, Ys

∣∣∣~As

)
δ2

s
,

σ2
s := var(Ỹs⊥).

By construction, Ỹs⊥ is the components in Ỹ(s−1)⊥ uncorrelated with Xn
msg:

Ỹ(s−1)⊥ = βsỸs + Ỹs⊥ + Cs,

Ỹs ∈ Ls.

Proceed as in proof of Theorem 1.
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Appendix D. Proof of Lemma 3 for Recombination of Decentralized Processing Lattice Modulos

Proof. By [3] (Theorem 1), a processing of ~U[K] with high probability outputs

a†
R~Y[K],

aR ∈ image STAGES∗(Σ) ⊂ RK.

One can assume the nested lattices for the message transmitter, L f ,msg ⊃ Lc,msg, are part of the lattice
ensemble from Theorem 1, in particular ones finer than the main coarse lattice Lc so that Lc ⊆ Lc,msg and:

1
n

log |Lc,msg ∩ Bc| → r̂c,msg ≥ 0.

With this structure, then, for any aZ ∈ ZK, the encodings can be processed to produce (using lattice
modulo’s distributive and subgroup properties)

modLc,msg

(
modLc

(
a†
R~Y[K] + a†

Z(~U[K] − ~W[K])
))

= . . .

modLc,msg

(
modLc

(
a†
R~Y[K] + a†

Z~Y[K]

))
= . . .

modLc,msg

(
a†
R~Y[K] + a†

Z~Y[K]

)
= . . .

modLc,msg

(
λXmsg + Ynoise

)
,

where, in Equation (1), λ ∈ R and Ynoise is the conglomerate of noise terms independent of Xmsg that are
left over.

For channels with additive Gaussian noise, Ynoise is a mixture of Gaussians and independent
components uniform over good-for-quantization lattice base regions, so Ynoise will probably, for
long enough blocklength, land inside the base of any coarse enough good-for-coding lattice [19]
(Appendix V).

Appendix E. Proof of Corollary 1 for Achievability of the Decentralized Processing Rate

Proof. Fix any rmsg, aZ, aR, λ, σ2
noise from their definitions in Lemma 3 and any γ2 ∈ (0, 1]. Choose a

communications rate Rmsg satisfying the criterion in the statement. Form an ensemble of lattices such as
those described in Theorem 2, with nesting ratio for Lc in Lmsg as 1

2 log(1/γ2) for γ ∈ (0, 1) and Lmsg = Lc

if γ2 = 1. This design means γ2
n := var modBc,msg(Xmsg + Wmsg)→n γ2.

Have the transmitter encode its message M into a modulation Xn
msg as described at the beginning of

Section 3.1 using a dither Wmsg of which all helpers and the decoder are informed. Have each k-th helper,
k = 1, . . . , K, process its observation vector into a lattice modulo encoding Uk as described in Theorem 2
using a dither Wk of which the decoder is informed.

By Theorem 2, there exists a Slepian–Wolf binning scheme such that each k-th helper can process its
message Uk into a compression U∗k with 1

n H(U∗k ) < Rk, and where a decoder can with high probability
process the ensemble of compressions (U∗1 , . . . , U∗K) along with dither side information (~W, Wmsg) into
(U1, . . . , UK). Employ this binning scheme at each of the receivers, and have them each forward their
compressions U∗k to the decoder.
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Have the decoder decompress (U∗1 , . . . , U∗K) into (Û1, . . . , ÛK). By the previous statement, with high
probability, (Û1, . . . , ÛK) = ~U. Use the processing obtained from Lemma 3 on (Û1, . . . , ÛK), with high
probability producing a signal:

Uproc := modLc,msg

(
λXmsg + Ynoise

)
.

Decoding

Decoding proceeds similar to [4]. At the decoder, compute:

U′proc :=modLc,msg

(
Uproc −Wmsg

)
= . . .

modLc,msg

(
λ

γn
modLc,msg

(
M + Wmsg

)
+ Ynoise −Wmsg

)
= . . .

modLc,msg

((
1 +

λ

γn
− 1
)

modLc,msg

(
M + Wmsg

)
+ Ynoise −Wmsg

)
= . . .

modLc,msg

(
M +

(
λ

γn
− 1
)

modLc,msg

(
M + Wmsg

)
+ Ynoise

)
. (A3)

Recall that the fine codebook lattice L f ,msg has been designed to be good for coding and so that the coarse
codebook lattice Lc,msg has a nesting ratio within it as Rmsg. This means that L f ,msg is good for coding
semi norm-ergodic noise with power less than γ2

n2−2Rmsg .
Notice M ⊥ modLc,msg

(
M + Wmsg

)
⊥ Ynoise, where the first independence is by the crypto lemma [1].

This is to say that additive terms other than M in Equation (A3) are noise with power

var
{(

λ

γn
− 1
)

modLc,msg

(
M + Wmsg

)
+ Ynoise

}
= . . .

γ2
n · (1− λ/γn)

2 + σ2
noise. (A4)

Furthermore, by [19] (Appendix V) on the noise, then it is probably in the base region of any lattice good
for coding semi norm-ergodic noise with power less than Equation (A4). Then, roundL f ,msg(U

′
proc) = M

with high probability if
γ2

n · (1− λ/γn)
2 + σ2

noise < γ2
n2−2Rmsg ,

or, rearranging,

Rmsg <
1
2

log

{
γ2

n

(λ− γn)2 + σ2
noise

}
. (A5)

The limit of the right side of Equation (A5) equals Equation (3).
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