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Abstract: Entropy applications in hydrometric network design problems have been extensively
studied in the most recent decade. Although many studies have successfully found the optimal
networks, there have been assumptions which could not be logically integrated into their methodology.
One of the major assumptions is the uncertainty that can arise from data processing, such as time series
simulation for the potential stations, and the necessary data quantization in entropy calculations.
This paper introduces a methodology called ensemble-based dual entropy and multiobjective
optimization (EnDEMO), which considers uncertainty from the ensemble generation of the input data.
The suggested methodology was applied to design hydrometric networks in the Nelson-Churchill
River Basin in central Canada. First, the current network was evaluated by transinformation analysis.
Then, the optimal networks were explored using the traditional deterministic network design method
and the newly proposed ensemble-based method. Result comparison showed that the most frequently
selected stations by EnDEMO were fewer and appeared more reliable for practical use. The maps
of station selection frequency from both DEMO and EnDEMO allowed us to identify preferential
locations for additional stations; however, EnNDEMO provided a more robust outcome than the
traditional approach.

Keywords: EnDEMO; hydrometric network; network design; monitoring; entropy; ensemble;
uncertainty; information theory; multiobjective optimization

1. Introduction

The successful planning and completion of a typical water resources management project relies
primarily on the collection of dependable hydrological information from an adequate hydrometric
network [1-4]. While advances in remote sensing technologies provide an alternative to traditional
ground-based monitoring networks, nonetheless reliable in-situ observations are still needed to fill in
gaps in remotely sensed datasets and verify the accuracy of remote sensing measurements [5]. However,
aging infrastructure and financial constraints have contributed to a decline in the spatial density of
existing ground based hydrometric networks in many countries [6-8]. This in turn necessitates the
need to determine an optimal hydrometric network by defining a sufficient number of monitoring
stations and their optimal spatial distribution.

Entropy 2019, 21, 947; d0i:10.3390/e21100947 www.mdpi.com/journal/entropy


http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-9982-0046
http://www.mdpi.com/1099-4300/21/10/947?type=check_update&version=1
http://dx.doi.org/10.3390/e21100947
http://www.mdpi.com/journal/entropy

Entropy 2019, 21, 947 2of 16

The application of the entropy concept in information theory for the field of hydrometric network
design problems is well reviewed by Keum et al. [4]. Many of the data-driven hydrometric design
methods, such as entropy applications, require hydrological time series for both existing and potential
(non-existing but candidate) station locations [5,9-17]. As a result, synthetic time series must be
generated for each potential station. In most of the previous studies, regionalization methods, such as
spatial interpolation like inverse distance weighting (IDW) combined with drainage area ratio (DAR)
and rainfall runoff models, were applied to generate time series.

For most of the entropy-based hydrometric network design problems (e.g., [5,13-15,18,19]),
synthetic (or simulated) time series from such methods have been deterministic; therefore, any
outcomes which are driven from those deterministic time series can be considered uncertain, as the
uncertainty of the synthetic time series was not accounted for. A previous study [20] suggested the
ensemble entropy. However, the concept was limited to changing various bins of a histogram when
calculating entropy measures; input data uncertainty was not accounted for in that approach. Hence,
this study aims to develop a methodology which combines the generation of ensemble time series and
utilizes them as an input of the sophisticated, entropy-based, multiobjective optimization tool. Specific
objectives throughout this study are as follows:

(1) Evaluate the existing hydrometric networks by applying the entropy-based
transinformation analysis;

(2) Identify potential station locations in the study area and define the simulated time series for
each station;

(3) Apply the traditional, deterministic, entropy-based hydrometric network design approach to find
the optimal networks;

(4) Apply the proposed ensemble-based design approach;

(5) Compare the optimal networks and suggest the locations where the additional monitoring
is recommended.

2. Study Area and Data Preparation

The study area covers both the Nelson River Basin and the Churchill River Basin, which are
adjacent basins to each other and are herein referred to as the NCRB (see Figure 1). The drainage
area of the NCRB is 1.4 million square kilometers, which makes it the third largest basin in North
America. The NCRB is bounded by the Rocky Mountains to the west and the Lake Superior to the
east. It drains, generally, from south to north and from west to east, ultimately discharging to the
Hudson Bay at the NCRB’s northeastern end. Elevation within the NCRB ranges from the sea level
at the Hudson Bay outlet to 3550 m above mean sea level in the Rocky Mountains. The major river
systems are the Nelson and Churchill Rivers; the former can be broadly sub-divided into six major
sub-basins: Assiniboine, Red, Winnipeg, Lake Winnipeg, Saskatchewan, and Nelson, while the later
consists of two sub-basins: Upper Churchill and Lower Churchill. The topography of the NCRB is
dominated by forest and wetland, which constitutes nearly 70% of the land cover [21]. The central
prairie region is the driest zone of the NCRB, with average annual precipitation levels of less than
320 mm. The wettest zones of the watershed are found at the eastern and western extents, near the
Rocky Mountains and Lake Superior respectively, which receive an average annual precipitation of
more than 750 mm. Annual average temperatures vary from 6 °C in the south to —6 °C north. In the
winter, average temperatures vary from —4 °C to —22 °C.
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Figure 1. Nelson and Churchill river basins and the existing streamflow gauging stations.

There are 267 gauges which monitor streamflow in the NCRB, and those monitoring stations are
relatively well distributed throughout the basin. Given that the drainage area of the NCRB is roughly
1.4 million square kilometers, the average coverage of each station becomes 5200 km?2. The minimum
network guideline by World Meteorological Organization (WMO) [22] recommends 1875 km? per
station for streamflow monitoring in interior plains. This shows that the NCRB currently requires the
installing of new monitoring stations to collect more representative information from this large basin.
The number of existing stations and the number of catchments associated with each sub-basin are
summarized in Table 1. For the streamflow monitoring, catchment topology is one of the important
aspects: hence, the outlets of the catchments were selected as potential station locations in this study
(see Figure 2). The number of catchments which is equivalent to the number of potential stations
is 2693. This study follows the delineation result which was accomplished during the Hydrological
Prediction for the Environment (HYPE) modeling process [23], which will be described in Section 4.

Table 1. List of sub-basins in NCRB and their numbers of existing and potential stations.

Sub-Basins Numbers of Existing Stations Numbers of Potential Stations
Assiniboine 54 271
Red 41 218
Winnipeg 25 377
Lake Winnipeg 14 294
Saskatchewan 98 695
Nelson 9 219
Upper Churchill 23 556

Lower Churchill 3 61
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Figure 2. Delineated catchments for locating potential stations.

3. Background

3.1. Information Theory

The entropy concept in information theory has been used to measure the amount of information
from a given system [24]. Entropy itself refers to uncertainty. If additional information is given to
a system, then some of the uncertainty associated with the additional information becomes certain.
In this way, the information theory relates uncertainty to entropy. There are several basic terms of
entropy used in this study: marginal entropy, joint entropy, and total correlation.

Marginal entropy is the amount of information in a variable. In network design problems, this is
equivalent to the amount of information that a single station can provide.

H(X) ==Y p(x;) log, p(x;) (1)
i=1

where H(X) is the marginal entropy of a station X (bits); p(x;) is the occurrence probability of x; at
station X for the i-th bin; and 7 is the total number of bins in a histogram distribution. The amount of
information from multiple variables, i.e., information from several stations or a hydrometric network,
can be measured in a similar way. The joint entropy employs a joint probability.

n N NN

H(X1, Xo,-++, XN) = — Z Z Z P(xl,i1/x2,i2z"‘ ,XN,iN)Ing P(xl,illxz,izl“' /xN,iN) )

i1=1i=1  iy=1

where H(X3, Xp,..., Xn) is the joint entropy of N stations, 11, np,--- ,ny are the number of bins of a
network with N stations [25]. When the variables (stations) are independent, the joint entropy is equal
to the sum of the marginal entropy of stations. To the exclusion of completely independent variables,
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total correlation, which is given by the difference between the sum of the marginal entropy and the
joint entropy, has a positive value.

n
C(X1, Xa, -+, Xn) = Y H(X;) = H(Xy, X, , Xn) ®
i=1

where C(X1, Xp, -+, Xn) is the total correlation of N stations. While the total correlation represents the
duplicated information of multiple stations, transinformation (TI) yields that of two stations.

T(A,B) = H(A) - H(AB) = H(B) - H(BIA) = T(B, A) @)

where T(A,B) is the TI value between variables A and B. H(A) is the marginal entropy of A, which is
a measure of the information content provided to a system by variable A. H(A|B) is the conditional
entropy of A given B, which refers to the amount of information content in A that is provided by
already knowing B.

3.2. Transinformation Analysis

TI analysis employs information theory to evaluate the target hydrometric network by ranking
monitoring stations based on their relative importance within the network [12,26,27]. The TI value of
each station is calculated such that the variable A is a time series at a single station of interest, while the
variable B represents a synthetic time series generated from multiple linear regression of the remaining
stations within the network [26]. Once TI values are determined for each station, they are normalized
using the following equation.

X; = Xi = Xmin (5)
Xmax — Xmin
where X; is the value being normalized and x,,;;, and X5y are the minimum and maximum values
within the corresponding dataset. Once the normalized TI index of each existing station is determined,
the index values are spatially interpolated to construct the TI index maps.

A station with a lower TI index represents a more unique information content and is of greater
value to the network. Conversely, stations with a higher TI index may share large amounts of
information with neighboring stations. They could potentially be considered redundant and less
important to the network.

3.3. Dual Entropy and Multiobjective Optimization (DEMO)

The efficient design of an optimal hydrometric network will minimize information redundancies
and maximize total network information content for a given number of stations, by placing those
stations in their optimal locations. Multiobjective optimization provides a robust and defensible
means of determining an optimal hydrometric network when considering two or more design
objectives. Dual entropy and multiobjective optimization (DEMO) is well established tool that utilizes
entropy theory to define optimization objectives and a multiobjective optimization tool to facilitate the
optimization process [17]. In this study, the non-dominated sorted genetic algorithm II (NSGAII) [28]
was employed. The NSGAII utilizes a fast, non-dominated sorting approach by reducing high
computational complexity and elitism, which can speed up the performance of genetic algorithm
significantly while help preventing the loss of good solutions once they are found. The NSGAII model
parameters in this study are shown in Table 2. The number of the decision variables is equal to the
number of the potential stations for each sub-basin, respectively (see Table 1).
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Table 2. Non-dominated sorted genetic algorithm II (NSGA-II) Parameters.

Model Parameters Parameter Value
Population Size 3000
Maximum Generations 6000
Number of Decision Variables Number of Potential Stations (N)
Crossover Operator Single Point Crossover
Crossover Probability 1.0
Mutation Operator Bit String Mutation
Mutation Probability 2/N
Variable Type Binary

The two core design objectives for DEMO are to maximize the total information content of the
proposed optimal networks (defined in entropy theory as joint entropy) and minimize the amount of
redundant information present (defined in entropy theory as total correlation). This is represented
mathematically as:

maX[H(SN,M) :H(ELEL---/ EN/ XlIXZI ceey XM)}
min[C(Snm) = C(E1, Ea, ..., En, X1, X2, ..., Xm)] ©
subject to : N and M are integers, M € (1,2, ..., Myqy)

where Sy u is a hydrometric network of N existing stations (E), and M additional stations (X). For this
study, the maximum number of potential stations was determined by the catchment delineation (see
Section 2). However, the number of potential stations to add to the existing network is not pre-defined,
but instead is decided during the multiobjective optimization process.

As is characteristic of the multiobjective optimization problems, the output from DEMO is a series
of non-dominated optimal solutions, which together form what is referred to as a Pareto-front of
solutions. Any optimal solution that lies along the Pareto-front is not dominated by other solutions,
meaning that an improvement cannot be made to one of the optimization objective function values
without in turn worsening the other objective function value. For the purposes of this study, each point
on the Pareto-front represents an optimal hydrometric network.

4. Methodology

The process diagram presented in Figure 3 provides a conceptual overview of the methods used
in this study. Each major step is indicated in a box of the diagram, and detailed descriptions of the
methods follow thereafter.

(1) Obtain daily observed streamflow time series from the existing stations. In this study, the HYDAT
database of Environment and Climate Change Canada (ECCC) and the National Water Information
System (NWIS) database of the United States Geological Survey (USGS) were used [23].

(2) Estimate the transinformation (TI) index for each existing station to evaluate the current network.

(3) Draw the TI index maps by spatially interpolating the values from (2).

(4) Select a regionalization method or a hydrologic model to generate estimated (or synthetic) time
series data at potential station locations. In this study, simulated time series from HYPE model by
Stadnyk and Bajracharya (2019) were used.

(5) Obtain the daily estimated runoff time series data for potential stations from (4).

(6) Run the dual entropy and multiobjective optimization (DEMO) tool.

(7) Determine the optimal networks and analyze the networks by creating maps of the station
selection frequency.

(8) Generate ensemble runoff time series to account for the model uncertainty in runoff estimation.
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(9) Run ensemble-based DEMO (EnDEMO) with the ensemble time series. Ten ensemble members
were applied in this study.

(10) Analyze the optimal networks from the EnDEMO application and draw maps of the station
selection frequency.

(11) Compare the DEMO with the ENDEMO results and make recommendations.

(1) Observed Time Series (4) HYPE Model
from Existing Stations (Stadnyk and Bajracharya, 2019)
(5) Estimated Time Series > (8) Generate

for Potential Stations Ensemble Time Series

v v

(2) TI Analysis L (6) DEMO Analysis (9) EnDEMO Analysis <
(7) Optimal Networks / (10) Optimal Networks /
(3) THindex Maps DEMO Probability Maps EnDEMO Probability Maps

v

} (11) Compare and Suggest <

Figure 3. Process diagram of the method.

4.1. Ensemble-Based DEMO (EnDEMO)

Simulated time series from a regionalization method or a rainfall-runoff model are prone to model
uncertainty arising from model calibration, parameterization, and imperfections, and idealization of
the model itself. To account for such types of uncertainty, ensemble streamflow is generated from the
simulated time series, and each ensemble is run independently in the DEMO analysis. This analyzing
process is referred to as the EnDEMO.

A ten-year window period (2001-2010), which is the recommended time window for the
hydrometric network design problems using daily hydrologic time series [14], was selected to
provide an estimated daily streamflow time series for the 2693 catchment outlets (i.e., potential stations).
For each estimated daily time series from HYPE model output, 1000 ensemble streamflows were
generated using Kirsch-Nowak method [29]. The Kirsch-Nowak synthetic streamflow generation
method employs two separate processes to generate ensemble streamflows. First, synthetic monthly
flows are produced using the Cholesky decomposition method [30]. This process is summarized
as follows:

e Daily estimated flows from each subcatchment are aggregated to monthly streamflow time series.
The monthly historical streamflows are log-transformed and then normalized by the sample mean
and the standard deviation values, so that the resulting standardized log-transformed monthly
streamflow time series follow a standard normal distribution.

e  Thensynthetic ensembles are randomly populated from the standardized log-transformed monthly
flows that satisfy its statistics.

e Additional requirements are set when randomly sampling the synthetic ensemble time series.
The method of Cholesky matrix decomposition is used to populate monthly synthetic flows
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that preserve the month-to-month and year-to-year historical autocorrelation matrix of the raw
log-transformed streamflow time series.

e The ensemble standardized log-transformed flows are transformed back to real space, ensemble,
monthly streamflows by de-standardizing and log-inversing.

Secondly, disaggregation of monthly flows to daily time series is performed by using Nowak’s
disaggregation method [31] as follows:

e  The k-nearest neighbor is estimated for each ensemble month from all estimated monthly values
collected from the surrounding subcatchments using the real space Euclidean distance.

e  The k-nearest neighbors in each month are ranked from the nearest to the furthest sites.

e  Using a Kernel estimator, the probability of selecting a neighbor is estimated for each site that has
an estimated daily time series and the closest neighbor is selected accordingly.

e  The final step is to proportionally disaggregate the ensemble monthly streamflow to daily time
series using the selected neighboring site.

Among the pool of 1000 daily ensemble streamflow time series, ensemble time series which are
not too extreme are chosen to be used in the EnNDEMO. In specific, ensemble boundaries were set as
two times the standard deviation of the deterministically estimated streamflow time series from the
HYPE model. Ten ensemble members appear within the boundaries for 98 percent of the whole time
period; therefore, ten ensemble streamflow time series are selected for the ENDEMO analysis. Then, ten
traditional DEMO runs are conducted using each member of the ensemble time series respectively. For
the EnNDEMO analysis, the same values of the NSGAII parameter in DEMO analysis were also used.

4.2. Hydrological Prediction for the Environment (HYPE) Model

The HYPE model is a semi-distributed conceptual model adapted from the original
Hydrologiska—Byrans—Vattenbalansavdelning (HBV) model by the Swedish Meteorological and
Hydrological Institute (SMHI) [32]. The basin is divided into sub-basins, which are further divided
into classes, which are smaller computational units. The HYPE model for this study was provided
by Stadnyk and Bajracharya (2019). Briefly, the model was constructed by calibrating and validating
for 38 gauging locations for the Water Survey of Canada and two additional derived gauges for the
Nelson and Churchill River outlets. Readers who are interested in the details of the model construction
may refer the original report by Stadnyk and Bajracharya (2019). The simulated discharge from HYPE
model for each catchment outlet was used as the runoff of the corresponding potential station location
after a proper conversion dividing by drainage area.

5. Results and Discussions

5.1. TI Index Map

Transinformation (TI) index was calculated for each existing station using the streamflow
observations. The TI index map was then created by spatially interpolating the individual TI
index values for each sub-basin. The inverse distance weighting IDW) method embedded in ArcGIS
software was used for the interpolation. Figure 4 shows the TI index map for the NCRB by joining the
TI index map for each sub-basin together. The TI indices were categorized into four zones based on the
level of information content from the existing hydrometric network. The categories are:

e  Highly Deficit: TI index of 0.0 to 0.3;
e  Deficit: TTindex of 0.3 to 0.6;

e Average: Tl index of 0.6 to 0.8;

e  Above Average: Tl index of 0.8 to 1.0.
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Figure 4. Transinformation (TI) index map.

Deficit and Highly Deficit zones indicate that stations within these areas have relatively lower
TI indexes and share little information with nearby stations. In other words, these stations are more
unique and independent with respect to their information content. On the other hand, Average and
Above Average zones have stations with relatively higher TI index values and suggest a low priority
area because the stations are mutually dependent by having some duplicate information content.
Most of the NCRB sub-basins were characterized as Deficit and Highly Deficit TI index categories,
which indicate high priority zones due to the greater information deficiency. The majority of the
Lower Churchill and downstream areas of Lake Winnipeg, Nelson, and Upper Churchill exhibit an
Average or Above Average Tl index category and are classified as low priority zones because these
regions host stations with relatively higher TI index values. Vast areas of the Red, Winnipeg, and
Nelson sub-basins are dominated by Highly Deficit regions, whereas Assiniboine, Lake Winnipeg,
Saskatchewan, and Upper Churchill sub-basins have mostly Deficit regions. Overall, these results
indicate that seven out of eight sub-basins of the NCRB predominantly have severe information deficits
and should be considered high priority areas for future monitoring efforts. The presence of many
closely clustered existing stations within the Highly Deficit regions of Saskatchewan and Assiniboine
sub-basins shows that while the station density in this region is relatively high, the spatial distribution
of the existing stations in this area is sub-optimal. Meaning that despite having high spatial density,
the unique information that we can obtain from these stations is very minimal compared to other
stations within each sub-basin. In general, the greatest information deficit lies relatively upstream
and in the head-water areas of each NCRB sub-basin. Given that the TI analysis is for evaluating the
existing hydrometric network, it is anticipated that the DEMO analysis will highlight the probability of
selecting an optimum number and location of new hydrometric networks mainly in the Highly Deficit
to Deficit zones.

5.2. DEMO Results

To determine the optimal hydrometric networks, the traditional DEMO approach was applied
first. Because the DEMO employs a multiobjective optimization tool as a solution searching algorithm,
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the optimal solutions from DEMO can be many, while allowing trade-offs between objectives, and each
optimal solution cannot be dominated by any other optimal solutions. Figure 5 shows the Pareto-front,
which indicates objective values of optimal solutions from the DEMO result of the Nelson sub-basin.
While the entropy values from a dataset can change due to the quantization method, having too high
(i.e., close to the maximum entropy) or too low (i.e., close to zero) entropy values in optimal networks
can be less reliable. Considering that the maximum entropy of the given time series (3652 days), which
is called as the saturated entropy, is log, 3652 = 11.83 bits, the range of the joint entropy of the optimal
solutions, which is from 9.5 bits to 10.5 bits is appropriate. The number of the selected stations in
each optimal network in the Nelson sub-basin ranges from 33 to 190 and total correlation varies from
42 .45 bits to 288.14 bits. In general, total correlation is lower in the Pareto-front when the number of
the selected stations is lower and vice versa. The shapes of the Pareto-front for other sub-basins were
similar that of the Nelson sub-basin, so they are not presented here. Instead, Table 3 shows the number
of the optimal networks, ranges of the number of the selected stations in the optimal networks, and
their objective values for each sub-basin.
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Figure 5. Pareto-front plot from the dual entropy and multiobjective optimization (DEMO) result of
the Nelson sub-basin.

Table 3. DEMO results.

Sub-Basins Numbers of Optimal Numbers of Selected Joint Entropy Total Correlation
Networks Station Range Range (bits) Range (bits)
Assiniboine 1343 29-219 10.57-11.39 37.76-227.91
Red 1191 19-179 9.22-10.78 19.03-158.54
Winnipeg 1134 34-228 10.95-11.47 57.31-333.89
Lake Winnipeg 1415 60-262 10.87-11.63 65.66-344.52
Saskatchewan 685 22-162 11.47-11.82 70.80-235.38
Nelson 1205 33-190 9.52-10.45 42.45-288.14
Upper Churchill 1036 70-319 10.99-11.54 82.35-456.01

Lower Churchill 454 6-57 5.24-7.25 5.13-76.48

Considering that there are many optimal networks (i.e., 454 to 1415) from each DEMO run,
presenting all the optimal solution is not practical. Rather, spatial distributions of the selected stations
in three example solutions of Nelson and Saskatchewan sub-basin which are the solutions having
maximum joint entropy, minimum total correlation, and median objective values are shown in Figures 6
and 7, respectively. The number of selected stations in the optimal solutions are high in the maximum
joint entropy solutions and low in the minimum total correlation solutions. Since those are all the
optimal solutions, it would be the best if the network managers choose an optimal solution and
installed new stations at once. However, because installing stations highly depends on the budget,
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even the minimum numbers of the additional stations in the optimal networks vary from six to
70 respectively, and the network manager should select a network among the Pareto-front optimal
solutions considering scientific and socioeconomic needs, it is sometimes not achievable to establish an
optimal network. Therefore, we suggest a map of the station selection frequency that shows which
potential locations more frequently appear in the optimal solutions to support the decision making
process in the network design problems. In Figure 8, the drainage catchment of each potential location
was shaded by its selection frequency in the optimal networks. For example, if a station has been
selected 85 times within the optimal networks, and the number of total optimal networks is 100, the
probability is then 85 percent, which is shown in red on the map of the station selection frequency.
Therefore, the reddish areas (red or orange) are recommended to be considered as new monitoring
locations preferentially. The map of the station selection frequency shown in Figure 8 is a combined
map from the respective optimal solutions for each sub-basin.

105 ;
10.4 T O

10.3

10.2

10.1

9.9 o

Joint Entropy (bits)
>
%

9.8

9.7

9.6

9.5 -
0 50 100 150 200 250 300

Total Correlation (bits)

(@)

10.5

104

10.3

10.2

10.1

e

Joint Entropy (bits)
>

50 100 150 200 250 300
Total Correlation (bits)

(©

10.5

10.4 o
10.3
10.2

10.1

9.9

Joint Entropy (bits)
>
i

/," I-55"N
9.8
9.7 :

2o

95 L L L L
0 50 100 150 200 250 300
Total Correlation (bits)

(e)

Figure 6. Spatial distributions of the selected optimal networks and their locations (red circles) in the

Pareto-front for the Nelson sub-basin. (a,b) Optimal network which has the maximum joint entropy
among the optimal solutions; (c¢,d) optimal network which has the median joint entropy and total
correlation values among the optimal solutions; (e, f) optimal network which has the minimum total
correlation among the optimal solutions.
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Figure 7. Spatial distributions of the selected optimal networks and their locations (red circles) in the
Pareto-front for the Saskatchewan sub-basin. (a,b) Optimal network which has the maximum joint
entropy among the optimal solutions; (¢,d) optimal network which has the median joint entropy and
total correlation values among the optimal solutions; (e,f) optimal network which has the minimum

total correlation among the optimal solutions.
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Figure 8. Map of the station selection frequency from the DEMO results.

5.3. Uncertainty Considerations using EnDEMO

The EnDEMO concept has been proposed here to account for the uncertainty in the streamflow
estimation that is one of the essential processes in many network design problems. As there are ten
ensemble streamflow sets which are within the boundary of two times the standard deviation, the
EnDEMO run for each sub-basin in this study consists of ten DEMO runs for the respective ensemble
members. The map of the station selection frequency from the EnDEMO application were drawn by
calculating the individual selection probabilities in the optimal solutions after the ten ensemble sets of
the optimal networks were aggregated. Therefore, the map of the station selection frequency from the
EnDEMO results can be regarded as a mean frequency from the ten ensemble DEMO runs.

If we compare the map of the station-selection frequency from the EnDEMO results (see Figure 9)
with that from the traditional DEMO results (see Figure 8), it is obvious that the number of red and
orange areas corresponding to frequently selected locations in the optimal networks are reduced.
For example, catchments in the west of the Upper Churchill sub-basin, and near the border between
Assiniboine and Lake Winnipeg sub-basins, were mostly red from the DEMO results, while only few of
them remained red after considering the input uncertainty. There are catchments which were already
red or orange in DEMO results and remained red or orange in the ENDEMO results. On the other hand,
there are also some catchments which were green both in the DEMO and the EnDEMO results. Since the
changes in color between the two results arose from the uncertainty considerations, the EnDEMO-based
results can be regarded as more reliable and robust. Catchments in red or orange from both DEMO
and EnDEMO results should be considered the preferential locations for new stations. Conversely,
catchments in green from both results should be viewed as the least interesting (or secondary) locations
for adding new stations.
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Figure 9. Map of the station selection frequency from ensemble-based dual entropy and multiobjective
optimization (EnDEMO) results.

It should be noted that gathering highly selected stations from Figure 8 or Figure 9, the resulting
network cannot be guaranteed to be an optimal one, as some stations may belong to different optimal
networks. Therefore, if a decision maker wants to select locations, she/he can get information from
Figure 8 or Figure 9 on which locations he/she should focus on.

6. Conclusions

This study consists of (1) evaluating the existing networks by TI analysis, (2) determining the
optimal networks using DEMO applications, and (3) improving the network reliability by implementing
newly proposed EnDEMO method which accounts for uncertainty in the synthetic time series data
at potential station locations. A TI index map created by TI analysis highlighted the critical regions
where the information content in the existing stations are more unique and independent. Even though
there are 267 existing stations in the NCRB, most of the basin was classified as Highly Deficit to Deficit,
and this result matched well to the fact that the study area requires more stations based on the WMO's
minimum station density recommendation.

While the TI analysis provided a preliminary overview of the information contents from the
existing hydrometric network, the actual optimal network design by determining the optimal locations
of the new stations was conducted by applying and comparing DEMO and EnDEMO. Due to the
number of potential station locations and the implementation of multiobjective optimization in DEMO,
having a number of optimal solutions which ranges from 454 to 1415 for each sub-basin in NCRB was
unavoidable. Since investigating all the optimal networks is not practical, maps of the station selection
frequency were created to draw a general conclusion from the optimal solutions. The probability of
each potential location was calculated by the selection frequency among the optimal solutions, so that
the frequently selected stations could be regarded as the locations where the monitoring efforts are
primarily needed.

In the DEMO applications, the estimated runoff for the potential stations was obtained from the
outputs of a hydrological model (HYPE). The simulated time series inherently have some uncertainty
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due to model calibration, parameterization, and regionalization processes. Therefore, EnDEMO
approach was proposed such that the input runoff time series were perturbed within a two standard
deviation range from the deterministically simulated. After comparing the map of the station selection
frequency of ENDEMO with that of DEMO, some potential stations showed similar probabilities, while
others did not. Therefore, in terms of reliability, it is preferable to consider potential stations where
the selection probability in the optimal networks was high in both DEMO and EnDEMO applications.
On the other hand, if a potential station was rarely selected in both applications, it would have less
priority. In summary, DEMO itself has been successfully implemented in many network design
problems; however, the EnNDEMO approach was able to provide more robust outcome by (1) including
ensemble generation to account for the uncertainty in simulated time series datasets, and (2) identifying
the more reliable locations for potential stations.
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