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Abstract: The statistical properties of chaotic binary sequences generated by the Bernoulli map
and Walsh functions are discussed. The Walsh functions are based on a 2k × 2k Hadamard matrix.
For general k (=1, 2, · · · ), we will prove that 2k−1 Walsh functions can generate essentially different
balanced and i.i.d. binary sequences that are orthogonal to each other.
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1. Introduction

The simplest way to generate chaos is to use a one-dimensional(1D) nonlinear difference equation
with a chaotic map. Chaotic sequences can be used as random numbers for several engineering
applications, and there have been many works on chaos-based random number generation [1–11].
In general, truly random numbers should be a sequence of i.i.d. (independent and identically distributed)
random variables with a uniform probability density, that is they give maximum entropy. Their typical
model, for example, is a sequence obtained by trials of fair coin-tossing or dice-throwing. The design
of many chaotic sequences of i.i.d. binary (or p-ary) random variables from a single chaotic real-valued
sequence generated by a class of 1D nonlinear maps was established in [1–3], where it was shown that
some symmetric binary (or p-ary) functions can produce i.i.d. binary (or p-ary) sequences if the map
satisfies some symmetric properties.

In some engineering applications (e.g., communication,cryptography, the Monte Carlo method)
of chaos-based random numbers, their statistical properties such as distributions and correlations
are very important. Whereas there are some indices for defining chaos such as Lyapunov exponents,
we concentrate on statistical properties in this paper. Thus, we discuss the statistical properties of
orthogonal chaotic binary sequences generated by the Bernoulli map and Walsh functions based on
Hadamard matrices, which was already discussed in [12]. As is well known, Walsh functions are the
most famous orthogonal binary functions, and they can be applied to many applications (e.g., signal
processing) [13–17]. In [12], we proved that the Bernoulli map and Walsh functions based on the
2k × 2k (1 ≤ k ≤ 4) Hadamard matrix can generate 2k−1 different balanced i.i.d. binary sequences that
are orthogonal to each other. Here, “balanced” means that the probability of “1” (or “0”) in the binary
sequence is equal to 1/2. We conjectured that this holds for general positive integers k. In this paper,
we will give a rigorous proof of this for general k (= 1, 2, · · · ).

2. Preliminaries

For a nonlinear map τ(·), a chaotic sequence {xn}∞
n=0 can be generated by a 1D difference equation:

xn+1 = τ(xn) (xn ∈ I = [a, b], n = 0, 1, 2, · · · ), (1)
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where xn = τn(x) and x = x0 is called an initial value or a seed. For an integrable function G, the average
(expectation) of a sequence {G(τn(x))}∞

n=0 is defined by:

〈G〉 =
∫

I
G(x) f ∗(x)dx, (2)

which is very important in evaluating the statistics of chaotic sequences under the assumption that
τ(·) is mixing on I with respect to an absolutely continuous invariant measure, denoted by f ∗(x)dx.

Definition 1. For two chaotic sequences {G(τn(x))}∞
n=0 and {H(τn(x))}∞

n=0 generated from a common seed
x, their cross-correlation function is defined by:

C(`; G, H) =
∫

I
(G(x)− 〈G〉)(H(τ`(x))− 〈H〉) f ∗(x)dx (` = 0, 1, 2, · · · ), (3)

where ` is a time shift. If C(`; G, H) = 0, the two sequences {G(τn(x))}∞
n=0 and {H(τn+`(x))}∞

n=0 are
called uncorrelated or orthogonal to each other. Note that C(`; G, G) is the auto-correlation function of
{G(τn(x))}∞

n=0.

Definition 2. The Perron-Frobenius (PF) operator Pτ of the map τ with an interval I = [a, b] is defined by:

PτG(x) =
d

dx

∫
τ−1([a,x])

G(y)dy (4)

which can be rewritten as:
PτG(x) = ∑

i
|g′i(x)|G(gi(x)), (5)

where gi(x) is the i-th preimage of the map τ(·) [18].

Remark 1. The PF operator given in Definition 2 is very useful for evaluating correlation functions because it
has the following important property [18]:∫

I
G(x)Pτ{H(x)}dx =

∫
I

G(τ(x))H(x)dx. (6)

Remark 2. If:
Pτ{(G(x)− 〈G〉) f ∗(x)} = 0, (7)

then we have:
C(`; G, G) = C(`; G, H) = 0 for ` ≥ 1, (8)

which is obvious from Equations (3) and (6).

Remark 3. For a binary function B(x) (∈ {0, 1}), a sufficient condition for a binary sequence {B(τn(x))}∞
n=0

to be i.i.d. is given by [1]:
Pτ{(B(x)− 〈B〉) f ∗(x)} = 0, (9)

which can also be expressed as:
Pτ{B(x) f ∗(x)} = 〈B〉 f ∗(x). (10)
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3. Hadamard Matrix and Walsh Functions

We introduce a 2k × 2k Hadamard matrix Hk defined by [13–15]:

Hk =

[
Hk−1 Hk−1
Hk−1 −Hk−1

]
(k = 1, 2, 3, · · · ), (11)

H0 = [1] (12)

which is one of the orthogonal matrices whose rows (or columns) are orthogonal 2k-tuples. For example,
H3 is given by:

H3 =



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


. (13)

Furthermore, Hk can be expressed as:

Hk =

[
1 1
1 −1

]
⊗ Hk−1 = Hk−1 ⊗

[
1 1
1 −1

]
, (14)

where ⊗ denotes the Kronecker product.
Denote the (i, j)-th element of Hk by {h(k)i,j } (i, j = 0, 1, · · · , 2k − 1). Then, we consider binary

functions B(k)
i (x) (∈ {0, 1}) defined by:

B(k)
i (x) =

2k−1

∑
j=0

1− h(k)i,j

2

(
Θ j

2k
(x)−Θ j+1

2k
(x)
)

, (15)

Θt(x) =

{
0 (x < t)
1 (x ≥ t).

(16)

As an example, B(3)
i (x) (i = 1, 2, · · · , 7) are shown in Figure 1. Note that 1− 2B(k)

i (x) (i = 0, 1, · · · )
correspond to Walsh functions in natural (Hadamard) order, which include Rademacher functions [13,14].

Proposition 1. The following relation:

B(k)
2i (x) = B(k−1)

i (x) (i = 0, 1, · · · , 2k−1 − 1) (17)

is satisfied. Namely, B(k)
i (x) (i = 0, 1, · · · , 2k − 1) include all of B(k−1)

i (x) (i = 0, 1, · · · , 2k−1 − 1).

Proof. From Equation (14), we have:

h(k)2i,2j = h(k)2i,2j+1 = h(k−1)
i,j (i = 0, 1, · · · , 2k−1 − 1), (18)
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which leads us to obtaining:

B(k)
2i (x) =

2k−1

∑
j=0

1− h(k)2i,j

2

(
Θ j

2k
(x)−Θ j+1

2k
(x)
)

=
2k−1−1

∑
j=0

1− h(k)2i,2j

2

(
Θ 2j

2k
(x)−Θ 2j+1

2k
(x)
)
+

1− h(k)2i,2j+1

2

(
Θ 2j+1

2k
(x)−Θ 2j+2

2k
(x)
)

=
2k−1−1

∑
j=0

1− h(k−1)
i,j

2

(
Θ 2j

2k
(x)−Θ 2j+2

2k
(x)
)

=
2k−1−1

∑
j=0

1− h(k−1)
i,j

2

(
Θ j

2k−1
(x)−Θ j+1

2k−1
(x)
)

= B(k−1)
i (x).

This completes the proof.
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Figure 1. Binary (Walsh) functions based on an Hadamard matrix (k = 3).
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4. Orthogonal Chaotic Binary Sequences

For chaotic binary sequences {B(k)
i (τn(x))}∞

n=0 (i = 1, 2, · · · , 2k − 1) generated by a nonlinear
map with I = [0, 1] and f ∗(x) = 1, it is obvious that:

〈B(k)
i 〉 =

1
2

, (19)

that is, the binary sequences are balanced. Note that{B(k)
0 (τn(x))}∞

n=0 is excluded here since B(k)
i (x) ≡ 0.

Furthermore, we have: ∫
I

B(k)
i (x)B(k)

j (x)dx =
1
4

for i 6= j, (20)

which gives:
C(0; Bi, Bj) = 0 for i 6= j. (21)

This implies that the binary sequences {B(k)
i (τn(x))}∞

n=0 are orthogonal to each other.
In this paper, we employ Bernoulli map τB(x) defined by:

τB(x) =

{
2x (0 ≤ x < 1

2 )

2x− 1 ( 1
2 ≤ x ≤ 1),

(22)

which has the uniform invariant density f ∗(x) = 1 for the unit interval I = [0, 1]. Figure 2 shows
the map.

0 1

1

x

τ
  
(x

)

1/2

B

t

t/2 t/2+1/2

Figure 2. Bernoulli map.

Proposition 2. For Walsh functions B(k)
i (x) and Bernoulli map τB(x), the following relation:

B(k−1)
i (τB(x)) = B(k)

i (x) (i = 0, 1, · · · , 2k−1 − 1) (23)

is satisfied.

Proof. From Equation (14), we have:

h(k−1)
i,j = h(k)i,j = h(k)i,j+2k−1 (i, j = 0, 1, · · · , 2k−1 − 1). (24)
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Furthermore, for a threshold function Θt(x) and Bernoulli map τB(x), the following equation:

Θt(τB(x)) = Θ t
2
(x)−Θ 1

2
(x) + Θ t

2+
1
2
(x) (25)

is satisfied as shown in Figure 2. Using Equations (15), (24), and (25), we have:

B(k−1)
i (τB(x)) =

2k−1−1

∑
j=0

1− h(k−1)
i,j

2

(
Θ j

2k−1
(τB(x))−Θ j+1

2k−1
(τB(x))

)

=
2k−1−1

∑
j=0

1− h(k−1)
i,j

2

(
Θ j

2k
(x)−Θ j+1

2k
(x) + Θ j+2k−1

2k

(x)−Θ j+1+2k−1

2k

(x)

)

=
2k−1−1

∑
j=0

1− h(k−1)
i,j

2

(
Θ j

2k
(x)−Θ j+1

2k
(x)
)
+

2k−1

∑
j=2k−1

1− h(k−1)
i,j−2k−1

2

(
Θ j

2k
(x)−Θ j+1

2k
(x)
)

=
2k−1

∑
j=0

1− h(k)i,j

2

(
Θ j

2k
(x)−Θ j+1

2k
(x)
)

= B(k)
i (x),

which completes the proof.

Remark 4. From Propositions 1 and 2, we have:

B(k)
2i (τB(x)) = B(k−1)

i (τB(x)) = B(k)
i (x) (i = 1, 2, · · · , 2k−1 − 1), (26)

which implies that some of the binary sequences {B(k)
i (τn

B (x))}∞
n=0 (i = 1, 2, · · · , 2k − 1) are time-shifted

versions of others.

Theorem 1. For Bernoulli map τB(x), we have:

PτB{B
(k)
i (x)− 〈B(k)

i 〉} = 0 (i = 2k−1, 2k−1 + 1, · · · , 2k − 1). (27)

Proof. Define Θ̂t(x) = Θt(x)− 〈Θt〉. From [1], we have:

PτB{Θ̂t(x)} = 1
2

Θ̂τB(t)(x). (28)

Furthermore, from Equation (14),

h(k)i,j+2k−1 = −h(k)i,j = −h(k−1)
i,j (j = 0, 1, · · · , 2k−1 − 1) (29)

is satisfied for i = 2k−1, 2k−1 + 1, · · · , 2k − 1. Thus, we can write:

B(k)
i (x)− 〈B(k)

i 〉 =
2k−1−1

∑
j=0

1− h(k−1)
i,j

2

(
Θ̂ j

2k
(x)− Θ̂ j+1

2k
(x)
)

+
2k−1−1

∑
j=0

1 + h(k−1)
i,j

2

(
Θ̂ j+2k−1

2k

(x)− Θ̂ j+1+2k−1

2k

(x)

)
. (30)
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Further, for Bernoulli map, it is obvious that:

τB

(
x +

1
2

)
= τB(x) for 0 ≤ x <

1
2

. (31)

Operating PτB in Equation (30) and using Equations (28) and (31), we have:

PτB{B
(k)
i (x)− 〈B(k)

i 〉} =
2k−1−1

∑
j=0

1− h(k−1)
i,j

2
· 1

2

(
Θ̂

τB(
j

2k )
(x)− Θ̂

τB(
j+1
2k )

(x)
)

+
2k−1−1

∑
j=0

1 + h(k−1)
i,j

2
· 1

2

(
Θ̂

τB(
j

2k +
1
2 )
(x)− Θ̂

τB(
j+1
2k + 1

2 )
(x)
)

=
1
2

2k−1−1

∑
j=0

(
Θ̂

τB(
j

2k )
(x)− Θ̂

τB(
j+1
2k )

(x)
)

(32)

=
1
2

(
Θ̂τB(0)(x)− Θ̂τB(

1
2 )
(x)
)

= 0,

which completes the proof.

Remark 5. From Remarks 2 and 3 and the above Theorem, each of 2k−1 binary sequences {B(k)
i (τn

B (x))}∞
n=0

(i = 2k−1, 2k−1 + 1, · · · , 2k − 1) is a balanced i.i.d. binary sequence, and they are uncorrelated (orthogonal)
with each other for any time shift ` including ` = 0, that is we have:

C(`; Bi, Bi) = 0 for ` ≥ 1, (33)

C(`; Bi, Bj) = 0 for i 6= j, ` ≥ 0. (34)

It should be noted that Equation (34) implies that 2k−1 binary sequences {B(k)
i (τn

B (x))}∞
n=0 (i = 2k−1, 2k−1 +

1, · · · , 2k − 1) are essentially different, that is they are not time-shifted versions of the others. Table 1 shows the
evaluation results for the case k = 4.

Table 1. Evaluation results for the case k = 4.

Binary Function Evaluation Result

B(4)
1 (x) = B(4)

2 (τB(x)) = B(4)
4 (τ2

B(x)) = B(4)
8 (τ3

B(x))
B(4)

2 (x) = B(3)
1 (x) = B(4)

4 (τB(x)) = B(4)
8 (τ2

B(x))
B(4)

3 (x) = B(4)
6 (τB(x)) = B(4)

12 (τ2
B(x))

B(4)
4 (x) = B(3)

2 (x) = B(4)
8 (τB(x))

B(4)
5 (x) = B(4)

10 (τB(x))
B(4)

6 (x) = B(3)
3 (x) = B(4)

12 (τB(x))
B(4)

7 (x) = B(4)
14 (τB(x))

B(4)
8 (x) = B(3)

4 (x) balanced and i.i.d.
B(4)

9 (x) balanced and i.i.d.
B(4)

10 (x) = B(3)
5 (x) balanced and i.i.d.

B(4)
11 (x) balanced and i.i.d.

B(4)
12 (x) = B(3)

6 (x) balanced and i.i.d.
B(4)

13 (x) balanced and i.i.d.
B(4)

14 (x) = B(3)
7 (x) balanced and i.i.d.

B(4)
15 (x) balanced and i.i.d.
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5. Conclusions

We theoretically evaluated the statistical properties of chaotic binary sequences generated by
the Bernoulli map and Walsh functions. For given k, it was shown that 2k−1 binary sequences
{B(k)

i (τn
B (x))}∞

n=0 (i = 2k−1, 2k−1 + 1, · · · , 2k − 1) are essentially different in the sense that none of
them are time-shifted versions of the others. Furthermore, we showed that each of the 2k−1 binary
sequences is a balanced i.i.d. sequence, and they are uncorrelated (orthogonal) with each other for any
time shift.

As in [12,19], the Bernoulli map can be approximated by nonlinear feedback shift registers
(NFSRs) [20] with finite bits, and the binary functions corresponding to B(k)

i (x) can be easily realized
by combinational logic circuits. We will discuss the applications of the orthogonal binary sequences
using such NFSRs in our future study.
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