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Abstract: The sampling distribution of the total correlation (TC) for a d-dimensional standardized
multivariate Gaussian random variable with an identity covariance matrix is derived. It is shown
to be the distribution of a sum of generalized beta random variables. It is also shown that, for large
dimension and sample size, a central limit theorem holds, providing a Gaussian approximation to
the sampling distribution for high dimensional data.
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1. Introduction

Mutual information quantifies the information shared between two random variables [1–3].
This concept can be been generalized to d variables in a variety of ways [4–7], with the most direct
generalization being Watanabe’s total correlation (TC),

T(X) ≡
d

∑
i=1

h(Xi)− h(X) (1)

where X is a vector whose components are the d random variables X1, . . . , Xd, and for continuous
random variables, h(Xi) is the differential entropy of Xi and h(X) is the joint differential entropy of X.

Total correlation is also sometimes called multivariate mutual information, and it is the
Kullback–Leibler divergence between the joint density of X and the density obtained by taking the
product of the marginal densities of the Xi. Thus, the total correlation T(X) quantifies, in a quite general
sense, the information shared among all the d random variables. The total correlation is non-negative
and in the case where all d random variables are mutually independent we have T(X) = 0 [7,8]. For the
special case where X is multivariate Gaussian with arbitrary mean and covariance matrix Σ, the total
correlation can be written explicitly as

T(X) =
1
2

d

∑
i=1

log σ2
ii −

1
2

log |Σ| (2)

where σ2
ij is the ijth entry of Σ. When the Xi are independent we have σ2

ij = 0 for all i 6= j and so

log |Σ| = log σ2
11σ2

22 · · · σ2
dd, giving T(X) = 0 in Equation (2) as expected.

The total correlation provides a natural way to quantify dependencies among a set of
random variables. For example, often we seek to determine if a set of random variables are
mutually independent because dependency among variables can indicate interesting and meaningful
relationships in nature. To do so one can take a sample from the unknown distribution and compute
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the total correlation from this sample. Even if the random variables are mutually independent, however,
the total correlation measured using such a finite sample will typically be positive (rather than zero)
simply because of sampling variation. Therefore, it is of interest to know the sampling distribution of
the total correlation under independence. Once we have the sampling distribution we can then perform
statistical tests of independence. Here we derive the sampling distribution of (2) in the case where the
Xi are standardized (i.e., zero mean, unit variance), independent, Gaussian random variables.

Previous authors have proposed exact expressions for the mean and variance of the sample
total correlation [9,10]. In fact, Guerrero (Section 2.1 of [9]) derived a moment generating function
for the sample total correlation using the distribution of the log-determinant of a Wishart matrix
(see Wilks [11,12]). Unfortunately the asymptotic approximation of Guerrero’s result does not match
the results of Marralec [10] suggesting that one of the two is incorrect. We will resolve this discrepancy
by deriving the moment generating function directly from our expression for the probability density
function of the sample total correlation. In the limit of large sample size our results match those presented
in Section 4.1 of Marralec [10], suggesting that the moment generating function of [9] is incorrect.

2. Definitions and Preliminaries

Let X represent a d-variate zero mean Gaussian random variable with covariance matrix Σ = Id
where Id is the d-dimensional identity matrix. Let {x1, . . . , xn} denote a sample of n draws from
the distribution of X. We focus on the case where n ≥ d. The sample covariance matrix is Σ̂ =

(1/n)∑n
i=1 xix′i = {σ̂ij} and nΣ̂ is Wishart distributed with n degrees of freedom, which we denote as

nΣ̂ ∼W(Σ, d, n). From Equation (2) the sample total correlation is then also a random variable and is
computed as

T̂d,n(X) =
1
2

d

∑
i=1

log σ̂ii
2 − 1

2
log |Σ̂| (3)

where the subscripts d and n indicate that T̂ is a family of random variables indexed by dimension and
sample size.

Odell and Feiveson’s 1966 result [13] provides a convenient way to characterize a
Wishart-distributed matrix. Suppose that V(n)

i (1 ≤ i ≤ d) are independent chi-square random
variables with n − i + 1 degrees of freedom. Suppose that Nij are independent standardized

normal random variables for 1 ≤ i < j ≤ d, also independent of every V(n)
i . Now construct the

random variables

b11 = V(n)
1

bjj = V(n)
j +

j−1

∑
i=1

N2
ij, 2 ≤ j ≤ d

b1j = N1j

√
V(n)

1 2 ≤ j ≤ d

bij = Nij

√
V(n)

i +
i−1

∑
k=1

Nki Nkj, 2 < i < j ≤ d.

(4)

Then the matrix B = {bij} (with bij = bji) is Wishart-distributed W(Id, d, n) and thus we have

nσ̂2
ii ∼ bii ∼ V(n)

i + Ai 1 < 1 ≤ d (5)
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where Ai are independent chi-square random variables with i− 1 degrees of freedom and we define
A1 = 0. Now following [14] we can also define the lower-triangular matrix T = {tij} as

tii =

√
V(n)

i

tij = Nji 1 ≤ j < i ≤ d

tij = 0 i < j ≤ d

(6)

and thus B = TT′. Furthermore, |B| = |TT′| = |T|2 = ∏d
i=1 t2

ii = ∏d
i=1 V(n)

i , revealing that

nd|Σ̂| ∼
d

∏
i=1

V(n)
i . (7)

Result (7) is a special case of results found in Wilks [11]. For analogous results involving complex
matrices see Goodman [15].

3. The Sampling Distribution of the Total Correlation

With the above preliminaries the we can now state the following theorem.

Theorem 1 (The Sampling Distribution of TC). Consider a sample of size n from a set of d independent,
standardized, Gaussian random variables, with n ≥ d. The total correlation (TC) is distributed as

T̂d,n(X) ∼
1
2

d−1

∑
i=1

log
(

1 +
i

n− i
Fi,n−i

)
(8)

where Fi,n−i are independent F-distributed random variables with i and n− i degrees of freedom. Equivalently, (8)
can be written as

T̂d,n(X) ∼
d−1

∑
i=1

Yi,n (9)

where Yi,n is a beta-exponential random variable with probability density

fYi,n(y) = λ
(1− e−λy)

i
2−1(e−λy)

n−i
2

B( i
2 , n−i

2 )
y > 0

having parameter λ = 2.

Proof. Writing Equation (3) as

T̂d,n(X) =
1
2

log
∏d

i=1 σ̂ii
2

|Σ̂|
(10)

and using result (5) and (7) one obtains

T̂d,n(X) ∼ 1
2

log
∏d

i=1

(
V(n)

i + Ai

)
∏d

i=1 V(n)
i

∼ 1
2

log
d

∏
i=1

(
1 +

Ai

V(n)
i

)

∼ 1
2

d

∑
i=1

log

(
1 +

Ai

V(n)
i

)
.
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Scaling each chi-square by their corresponding degrees of freedom and re-indexing, yields (8).
Equivalently, if we define Yi,n = 1

2 log
(

1 + i
n−i Fi,n−i

)
then T̂d,n(X) ∼ ∑d−1

i=1 Yi,n, and using standard
techniques it be can shown that the random variable Yi,n has probability density

fYi,n(y) = 2
(1− e−2y)

i
2−1(e−2y)

n−i
2

B( i
2 , n−i

2 )
y > 0

where B(x, y) is the beta function.

Corollary 1. The moment generating function for T̂d,n(X) is

Md,n(t) =

[
Γ( n

2 )

Γ( n−t
2 )

]d−1 d−1

∏
i=1

Γ( n−i−t
2 )

Γ( n−i
2 )

(11)

where Γ(x) is the gamma function. The mean and variance of T̂d,n(X) are therefore

µd,n =
d− 1

2
ψ(n/2)− 1

2

d−1

∑
i=1

ψ(
n− i

2
)

σ2
d,n = −d− 1

4
ψ(1)(n/2) +

1
4

d−1

∑
i=1

ψ(1)(
n− i

2
)

(12)

where ψ(x) = Γ′(x)/Γ(x) is the digamma function and ψ(k)(x) denotes its kth derivative.

Proof. Taking Yi,n = 1
2 log

(
1 + i

n−i Fi,n−i

)
, the moment generating function for Yi,n is

φi,n(t) = E[etYi,n ] =
Γ[ n

2 ]Γ[
n−i−t

2 ]

Γ[ n−i
2 ]Γ[ n−t

2 ]
.

The random variables in the sum ∑d−1
i=1 Yi,n are independent, and therefore the moment generating

function Md,n(t) for T̂d,n(X) is the appropriate product of the functions φi,n(t). Equation (12) then
follow directly from the properties of moment generating functions.

Guerrero [9] obtained a formula for the mean and variance of T̂d,n(X) (except for a typo in
the variance) using Wilks’ [12] moment generating function for the generalized variance. These are
remarkably close to (12), but the proposed moment generating function for the sample total correlation
information provided in Guerrero [9] appears to be incorrect.

4. A Central Limit Theorem for the Total Correlation

Girkos central limit theorem [16] implies asymptotic normality of the sample log-determinant, as
seen in the work of Bao et al., and Cai et al. [17,18]. This suggests the existence of a central limit theorem
result for T̂d,n(X) when the dimension d and sample size n are large. Here we provide such a result.

Define the mean and variance of Yi,n as mi,n = E[Yi,n] and s2
i,n = E[(Yi,n − µi,n)

2], and the
mean-centered random variables Y∗i,n = Yi,n −mi,n. Note that σ2

d,n = ∑d−1
i=1 s2

i,n.

Theorem 2 (Asymptotic normality of TC). Suppose n→ ∞ and d→ ∞ in such a way that n/d→ k where
1 ≤ k < ∞. Then

1
σ2

d,n

d−1

∑
i=1

Y∗i,n −→ N(0, 1) (13)
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where convergence is in distribution. Thus, for large n and d (with n ≥ d) the total correlation T̂d,n(X) is
approximately normally distributed with mean and variance given by µd,n and σ2

d,n in Equations (12).

Proof. The Y∗i,n are a triangular array of random variables such that, for any fixed n the Y∗i,n (1 ≤ i ≤
d− 1) are independent. Thus, (13) will hold provided that the Lyapunov condition is satisfied [19];
namely, that there exists a δ > 0 such that

lim
d,n→∞

1
σ2+δ

d,n

d−1

∑
i=1

E[|Y∗i,n|2+δ] = 0.

For δ = 2 the entries in Lyapunov’s summation represent each Yi,n’s fourth central moment, for
which the generating function is Ci,n(t) = e−mi,ntφi,n(t). The summation therefore becomes

d−1

∑
i=1

E[(Y∗i,n)
4] =

d−1

∑
i=1

1
16

(
3
(

ψ(1)(
n− i

2
)− ψ(1)(n/2)

)2
+ ψ(3)(

n− i
2

)− ψ(3)(n/2)

)

=
3
16

d−1

∑
i=1

(
ψ(1)(

n− i
2

)− ψ(1)(n/2)
)2

+
1

16

d−1

∑
i=1

ψ(3)(
n− i

2
)− d− 1

16
ψ(3)(n/2)

while the denominator in Lyapunov’s condition is

σ4
d,n =

(
1
4

d−1

∑
i=1

ψ(1)(
n− i

2
)− d− 1

4
ψ(1)(n/2)

)2

.

In Appendix A we show that

0 ≤ 3
16

d−1

∑
i=1

(
ψ(1)(

n− i
2

)− ψ(1)(n/2)
)2

+
1
16

d−1

∑
i=1

ψ(3)(
n− i

2
)− d− 1

16
ψ(3)(n/2) ≤ 48

n− d + 1

and, for any fixed 1 ≤ k < ∞, and for sufficiently large d and n with n/d sufficiently close to k,

1
4

(
ln
(

n
n− d + 1

)
+

d− 1
n(n− d + 1)

− d− 1
2

(
2
n
+

4
n2

))2
≤
(

1
4

d−1

∑
i=1

ψ(1)(
n− i

2
)− d− 1

4
ψ(1)(n/2)

)2

.

Therefore, for any fixed 1 ≤ k < ∞, and for sufficiently large d and n with n/d sufficiently close
to k, we have

0 ≤ 1
σ4

d,n

d−1

∑
i=1

E[|Y∗i,n|4] ≤
48

n−d+1

1
4

(
ln
(

n
n−d+1

)
+ d−1

n(n−d+1) −
d−1

2

(
2
n + 4

n2

))2 . (14)

Now first consider the case where n = d (and therefore k = 1). Then (14) simplifies to

0 ≤ 1
σ4

d,n

d−1

∑
i=1

E[|Y∗i,n|4] ≤
48

1
4

(
ln n + n−1

n −
n−1

2

(
2
n + 4

n2

))2 .

Taking the limit n → ∞ yields zero on the right-hand side, verifying Lyapunov’s condition for
k = 1. Next, consider the case where n > d. Taking the limit in (14) as n → ∞ and d → ∞ in such
a way that n/d → k where 1 < k < ∞, again we see that the right-hand side is zero. This verifies
Lyapunov’s condition in the case where k > 1, thereby completing the proof.
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5. Conclusions

The total correlation of a multivariate random variable (sometimes called multivariate mutual
information) is the Kullback–Leibler divergence between the joint density of the random variable
and the product of its marginal densities. It therefore provides a natural measure of the degree of
independence of a set of random variables. In this paper we derived the sampling distribution of
the total correlation for a d-dimensional standardized multivariate Gaussian random variable with
identity covariance matrix, and showed that it is the distribution of a sum of generalized beta random
variables. We also proved that, for large dimension and sample size, a central limit theorem holds,
providing a Gaussian approximation to the sampling distribution for high dimensional data.

Author Contributions: conceptualization, T.R. and T.D.; methodology, T.R. and T.D.; formal analysis, T.R. and
T.D.; investigation, T.R. and T.D.; writing–original draft preparation, T.R.; writing–review and editing, T.D.
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Appendix A

The proof of the central limit theorem result makes use of the following two lemmas. Both are
based on an inequality for the digamma function found in [20] (where m ≥ 1 is an integer)

(m− 1)!
xm +

m!
2xm+1 ≤ (−1)m+1ψ(m)(x) ≤ (m− 1)!

xm +
m!

xm+1 . (A1)

Lemma A1. Suppose d ≤ n. Then the following inequality holds

0 ≤ 3
16

d−1

∑
i=1

(
ψ(1)(

n− i
2

)− ψ(1)(n/2)
)2

+
1

16

d−1

∑
i=1

ψ(3)(
n− i

2
)− d− 1

16
ψ(3)(n/2) ≤ 48

n− d + 1
.

Proof. The left-hand inequality follows from the fact that ψ(1)(x) and ψ(3)(x) are both monotonically
decreasing functions and so ψ(1)( n−i

2 ) ≥ ψ(1)( n
2 ) and ψ(3)( n−i

2 ) ≥ ψ(3)( n
2 ) for all 1 ≤ i ≤ d− 1. For the

right-hand inequality we have

3
16

d−1

∑
i=1

(
ψ(1)(

n− i
2

)− ψ(1)(n/2)
)2

+
1

16

d−1

∑
i=1

ψ(3)(
n− i

2
)− d− 1

16
ψ(3)(n/2)

≤ 3
16

d−1

∑
i=1

(
ψ(1)(

n− i
2

)

)2
+

1
16

d−1

∑
i=1

ψ(3)(
n− i

2
)

≤ 3
16

d−1

∑
i=1

(
2

n− i
+

4
(n− i)2

)2
+

1
16

d−1

∑
i=1

(
16

(n− i)3 +
96

(n− i)4

)

≤ 3
16

d−1

∑
i=1

(
8

n− i

)2
+

1
16

d−1

∑
i=1

192
(n− i)3

≤ 12
n−1

∑
j=n−d+1

(
1
j2

+
1
j3

)

= 12

(
1

(n− d + 1)2 +
1

(n− d + 1)3 +
n−1

∑
j=n−d+2

(
1
j2

+
1
j3

))

≤ 12
(

1
(n− d + 1)2 +

1
(n− d + 1)3 +

∫ n−1

j=n−d+1

(
1
x2 +

1
x3

)
dx
)
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= 12
(

1
(n− d + 1)2 +

1
(n− d + 1)3 +

1
n− d + 1

− 1
n− 1

+
1

2(n− d + 1)
− 1

2(n− 1)

)
≤ 12

(
1

(n− d + 1)2 +
1

(n− d + 1)3 +
1

n− d + 1
+

1
2(n− d + 1)

)
≤ 48

n− d + 1
.

Lemma A2. Suppose d ≤ n. Then, for any fixed 1 ≤ k ≤ ∞, and for sufficiently large d and n with n/d
sufficiently close to k, the following inequality holds

1
4

(
ln
(

n
n− d + 1

)
+

d− 1
n(n− d + 1)

− d− 1
2

(
2
n
+

4
n2

))2
≤
(

1
4

d−1

∑
i=1

ψ(1)(
n− i

2
)− d− 1

4
ψ(1)(n/2)

)2

. (A2)

Proof. First note that the quantity in the parentheses on the right-hand side is positive because ψ(1)(x)
is a monotonically decreasing function and so ψ(1)( n−i

2 ) ≥ ψ(1)( n
2 ) for all 1 ≤ i ≤ d− 1. Thus, if for

some quantity A we have 0 ≤ A ≤ 1
4 ∑d−1

i=1 ψ(1)( n−i
2 )− d−1

4 ψ(1)(n/2) then A2 ≤ ( 1
4 ∑d−1

i=1 ψ(1)( n−i
2 )−

d−1
4 ψ(1)(n/2))2. We construct such a quantity A as follows. First consider the summation term on the

right-hand side of (A2). Using (A1) we have

1
4

d−1

∑
i=1

ψ(1)(
n− i

2
) ≥ 1

4

d−1

∑
i=1

(
2

n− i
+

2
(n− i)2

)

=
1
2

n−1

∑
j=n−d+1

(
1
j
+

1
j2

)

≥ 1
2

∫ n

n−d+1

(
1
x
+

1
x2

)
dx

=
1
2

d− 1
n(n− d + 1)

+
1
2

ln
(

n
n− d + 1

)
.

Using (A1) for the second term in parentheses on the right-hand side of (A2) gives

d− 1
4

ψ(1)(n/2) ≤ d− 1
4

(
2
n
+

4
n2

)
.

Thus we have

1
2

ln
(

n
n− d + 1

)
+

1
2

d− 1
n(n− d + 1)

− d− 1
4

(
2
n
+

4
n2

)
≤ 1

4

d−1

∑
i=1

ψ(1)(
n− i

2
)− d− 1

4
ψ(1)(n/2). (A3)

It remains to be shown that the left-hand side of (A3) is non-negative. Taking the limit of the
left-hand side of (A3) as d and n get large, and assuming n/d→ k where 1 ≤ k < ∞, we obtain

1
2

ln
(

k
k− 1

)
− 1

2k

which is strictly positive for any fixed k. Thus, for any fixed 1 ≤ k < ∞ there exists values d∗ and n∗

such that for all d > d∗ and n > n∗ with n/d sufficiently close to k we have

0 ≤ 1
2

ln
(

n
n− d + 1

)
+

1
2

d− 1
n(n− d + 1)

− d− 1
4

(
2
n
+

4
n2

)
. (A4)
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As a result, for any fixed 1 ≤ k < ∞, and for all d > d∗ and n > n∗ with n/d sufficiently close to
k, we have

1
4

(
ln
(

n
n− d + 1

)
+

d− 1
n(n− d + 1)

− d− 1
2

(
2
n
+

4
n2

))2
≤
(

1
4

d−1

∑
i=1

ψ(1)(
n− i

2
)− d− 1

4
ψ(1)(n/2)

)2

. (A5)
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