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Abstract: How to analytically deal with the entanglement and coherence dynamics of separated
Jaynes–Cummings nodes with continuous-variable fields is still an open question. We here generalize
this model to a more common situation including either a small or large qubit-field detuning, and
obtain two new analytical formulas. The X-state simplification, Fock-state shortcut and detuning-limit
approximation work together in an amazingly accurate way, which agrees with the numerical results.
The new formulas almost perfectly predict the two-qubit entanglement dynamics both in sudden
death and rebirth phenomenon for detuning interactions. We find that when both the qubit-field
detuning and amplitude of coherent states are large enough, the maximal entanglement and coherence
peaks can be fully and periodically retrieved, and their revival periods both increase linearly with the
increasing detuning.

Keywords: coherent state; Jaynes–Cummings models; entanglement; coherence; open quantum
system

1. Introduction

Qubit entanglement and coherence preservation are core issues in the fundamental theory and
experiment of quantum optics and quantum information [1–24]. Reliable operations in quantum
information processing should rely on the coherent manipulation of which information is processed or
transmitted [25,26]. However, due to decoherence, where the unavoidable coupling between the real
quantum system and its surrounding environment chaotically changes the target quantum state and
finally disappearances of entanglement and coherence occur, quantum entanglement and coherence
become so fragile and consequently go through an asymptotic decay or a sudden death [27–30].

Previous studies [5,14,20,29] have shown that the entanglement sudden death and rebirth appear
in two separate Jaynes–Cummings nodes where two initial fields are both in the vacuum states, which
are tough to generate and preserve due to decoherence in real experiments. The node represents the
quantum subsystem of interest, i.e. a qubit and a local quantum field. Furthermore, the so-called nodes
should be initially entangled in order to observe death and rebirth (revivals) of entanglement. We focus
on qubit entanglement in this paper. Therefore, it is significantly important to look for powerful
field resources that can lead to the long-time generation and preservation of qubit entanglement
and coherence.

One common continuous-variable resource is coherent state, which contains infinite eigenstate
spectrums and can be easily controlled by a classical monochromatic current in real experiments [31,32].
However, although it can be solved directly through numerical diagonalization in a truncated Hilbert
space, it is still difficult to obtain the analytical time-dependent dynamics when coupled to qubits due
to the complexity of infinite-dimensional Hilbert space. As far as we know, how to analytically deal
with the general entanglement and coherence dynamics of separated Jaynes–Cummings nodes with
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coherent-state fields is still an open question [33–38], and few analytical methods can be directly used
to explain their entanglement and coherence dynamics.

It has been theoretically reported [35] that one-ebit entanglement reciprocation between qubits
and coherent-state fields is workable by postselection, where this postselection needs an extra step to
project a mixed state into a pure state. Recent works [37,38] use an analytically novel method to prove
that, even when the amplitudes of coherent-state fields are both large enough, the qubit entanglement
dynamics of two resonant Jaynes–Cummings nodes can be simply explained by an exponentially
decaying formula. However, due to analytical diagonalization obstacle in the infinite-dimension
Hilbert space, the above analytical formula fails completely when the qubit-field interaction is not
resonant, and whether the coherence and one-ebit entanglement under the detuning interaction can be
fully revived is unknown yet .

To answer the above question, we here focus on generalizing the saddle point method in [38] to a
more common situation including either a small or large qubit-field detuning, and obtain two new
formulas analytically describing the qubit entanglement dynamics. The new formulas well explain the
two-qubit entanglement dynamics both in the sudden death and in the rebirth phenomenon when the
qubit-field interaction is not resonant. Especially, we find that when both the detuning and amplitude
of coherent states are large enough, the maximal entanglement and coherence peaks can be fully and
periodically retrieved, and their revival periods both increase linearly with the increasing detuning.
When qubit-field detuning is small enough, the two-qubit entanglement exhibits the sudden death
and rebirth phenomenon, and its revival peaks increase quadratically with the increasing detuning,
but the revival period is delayed with a quantity quadratically depending on the detuning, while its
coherence quickly oscillates and exponentially decays without sudden death and rebirth. Finally, the
effect of dissipation factors on the qubit entanglement is considered.

2. Hamiltonian System

As shown in Figure 1, the system is described by the double Jaynes–Cummings Hamiltonian
(h̄ = 1)

H =
ω0

2
σA

z + ωa†a + G(σA
+ a + σA

− a†) +
ω0

2
σB

z + ωb†b + G(σB
+b + σB

−b†), (1)

where ω0 is the transition frequency between the high level |ex〉 and low level |gx〉 of the qubit
x (x = A, B). σx

z and σx
± are Pauli matrices of the qubit x. a† (a) and b† (b) are the creation

(annihilation) operators for two single-mode fields with angular frequency ω, respectively. G is the
qubit-field coupling strength. Here the assumption ω0 6= ω, referred to as the system allowing nonzero
qubit-field detuning, represents a clear distinction from the previous work with resonant coupling [38].
For simplicity, we define the detuning ∆ = ω0 −ω and transform the original Hamiltonian H into HI
under the interaction picture as

HI =
∆
2
(σA

z + σB
z ) + G(σA

+ a + σA
− a† + σB

+b + σB
−b†), (2)

where H0 = ω
2 (σ

A
z + σB

z )+ωa†a+ωb†b and HI = eiH0t/h̄(H−H0)e−iH0t/h̄ (h̄ = 1). We adopt Wootters
concurrence C [39] as the two-qubit entanglement measure. In order to derive new approximate
formulas for the detuning situatuion, we start to analyze two-qubit entanglement dynamics under a
special situation, where the field modes are initially in their coherent states with zero amplitude, i.e.,
vacuum-state fields.
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Figure 1. (Color online) In the setup, qubits A and B couple to the fields a and b, respectively. There is
not any interaction between A and B or between a and b.

2.1. Vacuum-State Fields

When the fields are initially in their vacuum states, the corresponding concurrence is

C =

∣∣∣∣1− 2G2[1− cos(
√

∆2 + 4G2t)]
∆2 + 4G2

∣∣∣∣, (3)

and its oscillation period is

Tv =
2kπ√

∆2 + 4G2
, (k ∈ N). (4)

Compared with Equation (27) of [38], the oscillation period of the expression C here has an
approximately inverse relation with ∆ and becomes much smaller than that in Equation (27) of [38].
Figure 2a shows that the two-qubit entanglement keeps close to the maximum value C = 1 for large
detunings. Figure 2b shows that the period depends quadratically on the detuning, indicating that
the entanglement oscillates more quickly when the detuning increases. These behaviors are very
different from the system with resonant couplings [29] where the concurrence exhibits a standard
Rabi oscillation with a fixed period. This is because detuning reduces the energy-exchange probability
between the qubit and its local photon field, changing the period and amplitude of the Rabi oscillation.
As the detuning increases, the energy coupling between entangled qubits and their respective vacuum
states is very week, and the excitation energy mainly keeps in two qubits as the evolution time
increases, ensuring two qubits are always in the originally entangled state.

To provide examples in which the effect of the Stark shift can be clearly identified, the dynamics
of the concurrence for increasing the average photon number n̄ is plotted in Figure 2c, where n̄ is
starting from 0 (vacuum). When n̄ > 0, the Stark shift can be clearly identified that the concurrence
can not remain at 1 and becomes smaller as the evolution time is longer.

To explain the above results, it is necessary to make a further simplification for the analytical
concurrence in the limit of small or large detuning. In the small-detuning limit,

√
∆2 + 4G2 ' 2G,

leading to

C '
∣∣∣∣12 cos(2Gt) +

2G2

∆2 + 4G2

∣∣∣∣ (5)

and

Tv ' kπ

G
(1− ∆2

8G2 ), (6)
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which demonstrates that both the minimum value and period of concurrence are quadratically
dependent on ∆. In the large-detuning limit, ∆2 + 4G2 ' ∆2, leading to C ' 1 and Tv ' 2kπ

∆ , which
demonstrates that the concurrence keeps close to 1 and the period becomes reversely proportional to ∆,
explaining the fast-oscillation behavior in the concurrence. For the two-qubit coherence, its analytical
result is the same to concurrence, and the effect of dissipation will exponentially reduce the two-qubit
entanglement, i.e., when α = 0 as proved in Equation (47) later.

In the followings, we focus on the system including two initial coherent-state fields with
large amplitudes.

Figure 2. (Color online) For different detunings: (a) Time dependence of concurrence. (b) Period of
concurrence. (c) The dynamics of the concurrence for increasing the average photon number n̄, where
n̄ is starting from 0 (vacuum). To see periodic oscillations in Figure 2a clearly, a local-zoom subfigure is
inserted in its top right-hand corner.

2.2. Coherent-State Fields

Assume the initial state of system to be

|Ψ(0)〉 = 1√
2
(|e, g; α, α〉+ |g, e; α, α〉), (7)

where the first qubit and the first field state are in order of listing, and the coherent state is expanded
by the Fock states

|α〉 =
∞

∑
n=0

e−|α|
2/2αn
√

n!
|n〉 =

∞

∑
n=0

An|n〉. (8)

Therefore, the evolution dynamics become

|Ψ(t)〉 =
e−iHI t
√

2
(|e, g; α, α〉+ |g, e; α, α〉) = 1√

2

∞

∑
n=0

∞

∑
m=0

An AmKnm, (9)
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where

Knm =
G
√

m
γm

(−iCn+1 +
∆

2γn+1
Sn+1)Sm|e, e; n, m− 1〉

+(Cn+1Cm −
i∆

2γm
Cn+1Sm +

i∆
2γn+1

Sn+1Cm +
∆2

4γn+1γm
Sn+1Sm)|e, g; n, m〉

−G2
√

n + 1
√

m
γn+1γm

Sn+1Sm|g, e; n + 1, m− 1〉 − G
√

n + 1
γn+1

Sn+1(iCm +
∆

2γm
Sm)|g, g; n + 1, m〉

+
G
√

n
γn

Sn(−iCm+1 +
∆

2γm+1
Sm+1)|e, e; n− 1, m〉 − G2√n

√
m + 1

γnγm+1
SnSm+1|e, g; n− 1, m + 1〉

+(CnCm+1 +
i∆

2γm+1
CnSm+1 −

i∆
2γn

SnCm+1 +
∆2

4γnγm+1
SnSm+1)|g, e; n, m〉

−G
√

m + 1
γm+1

(iCn +
∆

2γn
Sn)Sm+1|g, g; n, m + 1〉, (10)

in which Cn = cos(γnt) and Sn = sin(γnt). Since there is detuning in the infinite-dimension Hilbert
space, the joint qubit-field dynamics in Equation (9) is extremely complicated and the generally
analytical solution of concurrence is hard to obtain.

Our target here is to find new analytical formulas for determining the entanglement dynamics with
highly excited (nearly classical) coherent-state fields. Under the limit of small or large detuning, the
new formulas are intuitively drastic simplifications for infinite dimensions in the coherent-state fields
and can explain new physics features which do not appear in the situation with resonant coupling.

Based on the idea of the Fock-state shortcut [38], when the average photon number n̄ of
coherent-state fields satisfies n̄ >> 1, it is feasible to replace |α〉 by |n̄〉, assuming that the photon
number in each coherent state obeys the Poisson distribution and centers tightly around n̄. Note
that the qubit excitation (deexcitation) transition accompanies with the absorption (emission) of one
photon, the initial field state |α〉 ⊗ |α〉 can be equivalent to the single-product Fock state |n̄〉 ⊗ |n̄〉
and the photon number in each field mode can be n̄ or n̄± 1 during the resonant Jaynes–Cummings
interaction. Consider the coherent oscillation between |e, n > and |g, n + 1 >, many other quantum
states with different photon numbers are truncated in the following results. Actually, these results
would only be correct when the energies of the two states are close to each other and those of others
are not. If it is not the case, additional quantum states could be involved in the oscillation and the
following simple results would break down. However, the detuning interaction causes a virtual energy
exchange between the qubit and field mode, which enhances the validity of the above assumption,
meaning that the photon number centers more tightly around n̄ in the detuning situation than that in
the resonant situation.

By tracing out two field modes from Equation (9), we obtain the approximate X-form reduced
density matrix of two qubits ρ within Γ = {|e, e >, |e, g >, |g, e >, |g, g >} as follows

ρ =


ρ11 ρx ρx ρx

ρx ρ22 ρ23 ρx

ρx ρ∗23 ρ33 ρx

ρx ρx ρx ρ44

 ≈


ρ11 0 0 0
0 ρ22 ρ23 0
0 ρ∗23 ρ33 0
0 0 0 ρ44

 , (11)

where ρ∗23 is the conjugate complex of ρ23 and the other small-quantity elements denoted by ρx are
omitted through the equal-n̄ approximation. Thus, the concurrence has a simple form

C = 2 max{0, |ρ23| −
√

ρ11ρ44}. (12)

Joint control of the coherent states and detuning will cause the time-dependent variation of matrix
elements ρ11, ρ23 and ρ44, leading to the growth or decline of two-qubit entanglement, which allows
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an extra freedom of detuning for controlling the entanglement than the resonant situation. Since the
reduced density matrix in Equation (11) for two-qubit entanglement has been obtained by the method
of Fock-state shortcut, we avoid using this method again and introduce another approximation method
to obtain new analytic formulas for ρ11, ρ23 and ρ44 in the limit of small or large detuning.

It is workable to give out the fully analytical expressions of the elements in Equation (11) through
the tracing operation ρ = Tra,b[|Ψ(t)〉〈Ψ(t)|]. The result shows that the doubly infinite summations for
ρ23, ρ11 and ρ44 are given as

z = ρ23 =
1
2

∞

∑
n=0

∞

∑
m=0

[
A2

n A2
mCnCn+1CmCm+1

+
∆2

2γnγm+1
A2

n A2
mSnCn+1CmSm+1

− ∆2

2γmγm+1
A2

n A2
mCnCn+1SmSm+1

+
∆2

4γmγn
A2

n A2
mSnCn+1SmCm+1

+
∆2

4γn+1γm+1
A2

n A2
mCnSn+1CmSm+1

+
∆4

16γn+1γnγm+1γm
A2

n A2
mSnSn+1SmSm+1

−2
√

n(m + 1)G2

γnγm+1
An An−1 Am Am+1SnCn+1CmSm+1

−
√

n(m + 1)∆2G2

2γn+1γnγm+1γm
An An−1 Am Am+1SnSn+1SmSm+1

+

√
n(n− 1)(m + 1)(m + 2)G4

γnγn−1γm+1γm+2
An An−2 Am Am+2

×Sn−1SnSm+1Sm+2

]
, (13)

a = ρ11 =
∞

∑
n=0

∞

∑
m=0

[
mG2

γ2
m

A2
n A2

mC2
n+1S2

m

+
n∆2G2

4γ2
nγ2

m+1
A2

n A2
mS2

nS2
m+1

+

√
(n + 1)mG2

γn+1γm
An An+1 Am Am−1Cn+1Sn+1CmSm

+

√
(n + 1)m∆2G2

4γ2
n+1γ2

m
An An+1 Am Am−1S2

n+1S2
m

]
, (14)

and

d = ρ44 =
∞

∑
n=0

∞

∑
m=0

[
(n + 1)G2

γ2
n+1

A2
n A2

mS2
n+1C2

m

+
(m + 1)∆2G2

4γ2
nγ2

m+1
A2

n A2
mS2

nS2
m+1

+

√
(n + 1)mG2

γn+1γm
An An+1 Am Am−1Cn+1Sn+1CmSm
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+

√
(n + 1)m∆2G2

4γ2
n+1γ2

m
An An+1 Am Am−1S2

n+1S2
m

]
, (15)

respectively. These summations indicate that the qubits couple to an unclosed space of infinite states
and the detuning mainly causes a nonlinear effect during the coupling process. It is not possible to
complete these summations under general conditions, but their analytical solutions can be found when
the coherent states are nearly classical under two limits, i.e., the limit of small or large detuning.

To approximate infinite summations into integrals, the Stirling equation is used to replace the
term n! as follows

n! =
√

2πnnne−n. (16)

When n̄ ' α2 � 1, it is feasible to introduce an error-deviation order of 1/n̄ centering near the Poisson
peak n ≈ m = n̄ and the terms An±1 An ≈ An±2 An ≈ A2

n. Thus we obtain the simplification form for
infinite summations

z =
1
2

[( ∞

∑
n=0

A2
nCnCn+1

)2

− ∆2G2

2

( ∞

∑
n=0

√
n

γ2
n

A2
nSnSn+1

)2

+
∆2

2

( ∞

∑
n=0

A2
n

γn
SnCn+1

)( ∞

∑
m=0

A2
m

γm
CmSm+1

)
−2G2

( ∞

∑
n=0

√
n

γn
A2

nSnCn+1

)( ∞

∑
m=0

√
m

γm
A2

mCmSm+1

)
−∆2

2

( ∞

∑
n=0

A2
n

γn
CnCn+1

)( ∞

∑
m=0

A2
m

γm
SmSm+1

)
+

∆2

4

( ∞

∑
n=0

A2
n

γn
SnCn+1

)2

+
∆2

4

( ∞

∑
n=0

A2
n

γn
CnSn+1

)2

+
∆4

16

( ∞

∑
n=0

A2
n

γ2
n

SnSn+1

)2

+ G4
( ∞

∑
n=0

nA2
n

γ2
n

SnSn+1

)2]
(17)

and

a ≈ d = G2
[( ∞

∑
n=0

√
n

γn
A2

nCnCn

)( ∞

∑
n=0

√
n

γn
A2

nSnSn

)
+

( ∞

∑
n=0

√
n

γn
A2

nCnSn

)2

+
∆2

2

( ∞

∑
n=0

√
n

γ2
n

A2
nSnSn

)2]
. (18)

Note that ρ11 ≈ ρ44 in Equation (18) is valid for any detuning. To further simplify the above
summations, we rewrite CnCn+1 as

CnCn+1 =
1
2
{cos[(γn + γn+1)t] + cos[(γn − γn+1)t]}, (19)

and the approximation of large n̄ is used for expanding the term γn+1 in Equation (19)

γn+1 ' γn +
G2

2γn
, (20)

which transforms CnCn+1 into

CnCn+1 '
1
2

[
cos

(
G2t
2γn

)
+ cos

(
2γnt

)]
. (21)
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Similarly, the other useful approximations are

SnSn+1 '
1
2

[
cos

(
G2t
2γn

)
− cos

(
2γnt

)]
, (22)

CnSn+1 '
1
2

[
sin
(

2γnt
)
+ sin

(
G2t
2γn

)]
, (23)

SnCn+1 '
1
2

[
sin
(

2γnt
)
− sin

(
G2t
2γn

)]
. (24)

With these approximations and the identities

C2
n =

1 + cos(2γnt)
2

(25)

and

S2
n =

1− cos(2γnt)
2

, (26)

we can simplify the concurrence further as

z −
√

ad =
1
8

{
[

∞

∑
n=0

A2
n cos(2γnt)]2 + [

∞

∑
n=0

A2
n cos(

G2t
2γn

)]2

+2[
∞

∑
n=0

A2
n cos(2γnt)][

∞

∑
n=0

A2
n cos(

G2t
2γn

)]

}
+

∆2

8
[

∞

∑
n=0

A2
n

γn
sin(2γnt)]2 − ∆2

16

{
[

∞

∑
n=0

A2
n

γn
cos(

G2t
2γn

)]2

−[
∞

∑
n=0

A2
n

γn
cos(2γnt)]2

}
− G2

4

{
2[

∞

∑
n=0

√
nA2

n
γn

sin(2γnt)]2

−[
∞

∑
n=0

√
nA2

n
γn

sin(
G2t
2γn

)]2
}
− G2

4

{
(

∞

∑
n=0

√
nA2

n
γn

)2

−[
∞

∑
n=0

√
nA2

n
γn

cos(2γnt)]2
}
+

∆4

128

{
[

∞

∑
n=0

A2
n

γ2
n

cos(
G2t
2γn

)]2

−2[
∞

∑
n=0

A2
n

γ2
n

cos(2γnt)][
∞

∑
n=0

A2
n

γ2
n

cos(
G2t
2γn

)]

+[
∞

∑
n=0

A2
n

γ2
n

cos(2γnt)]2
}
− ∆2G2

16

{
[

∞

∑
n=0

√
nA2

n
γ2

n
cos(

G2t
2γn

)]2

−2[
∞

∑
n=0

√
nA2

n
γ2

n
cos(2γnt)][

∞

∑
n=0

√
nA2

n
γ2

n
cos(

G2t
2γn

)]

+[
∞

∑
n=0

√
nA2

n
γ2

n
cos(2γnt)]2

}
− ∆2G2

8

{
(

∞

∑
n=0

√
nA2

n
γ2

n
)2

−2(
∞

∑
n=0

√
nA2

n
γ2

n
)[

∞

∑
n=0

√
nA2

n
γ2

n
cos(2γnt)]

+[
∞

∑
n=0

√
nA2

n
γ2

n
cos(2γnt)]2

}
+

G4

8

{
[
nA2

n
γ2

n
cos(

G2t
2γn

)]2

−2[
∞

∑
n=0

nA2
n

γ2
n

cos(2γnt)][
∞

∑
n=0

nA2
n

γ2
n

cos(
G2t
2γn

)]
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+[
∞

∑
n=0

nA2
n

γ2
n

cos(2γnt)]2
}

. (27)

Since the detuning appears in the square root of the Lambert W function [see Appendix (A1)–(A4)],
it is impossible to fully calculate analytical results for the summations in Equation (27) under a general
detuning by the saddle point method. However, we find that for the limit of small or large detuning,
it is feasible to calculate analytically these summations through writing them as integrals, where the
discrete integer n is treated as continuous when n̄ is large enough.

In the following section, we focus on exploring the concurrence in two limits of detuning that can
be analytically treated by the saddle point method.

2.2.1. Small-Detuning Limit

The first extreme situation we focus on is the small-detuning limit, i.e., ∆ << 2G
√

n̄. Under this
limit, the summations in Equation (27) can be simplified further as

|z| −
√

ad ≈ 1
4

{
[

∞

∑
n=0

A2
n cos(

G2t
2γn

)]2 + [
∞

∑
n=0

A2
n sin(

G2t
2γn

)]2

+2[
∞

∑
n=0

A2
n cos(2γnt)]2 − 2[

∞

∑
n=0

A2
n sin(2γnt)]2 − 1

}
, (28)

where
√

nG ' γn is used and high-order terms than O( 1
γn
) have been omitted. Therefore, it needs to

calculate four integrals

I1 =
∫ ∞

0
A2

n cos
(

G2t√
∆2 + 4nG2

)
dn, (29)

I2 =
∫ ∞

0
A2

n sin
(

G2t√
∆2 + 4nG2

)
dn, (30)

I3 =
∫ ∞

0
A2

n cos(
√

∆2 + 4nG2t)dn, (31)

and

I4 =
∫ ∞

0
A2

n sin(
√

∆2 + 4nG2t)dn. (32)

These integrals can be combined as I1 + iI2 = I12 and I3 + iI4 = I34 for dealing with the exponentials
G2t√

∆2+4nG2 and
√

∆2 + 4nG2t, respectively. Based on the Stirling equation and Euler formula, the
integrals can be approximated as

I12 '
∫ ∞

0
e−α2 α2nen
√

2πnnn
e

i G2t√
∆2+4nG2 dn (33)

and

I34 '
∫ ∞

0
e−α2 α2nen
√

2πnnn
ei
√

∆2+4nG2tdn. (34)
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It is workable to use the saddle point method [38] to analytically calculate the integrals I12

and I34, and details for dealing with small-detuning terms of the exponentials are contained in the
Appendix (A5)–(A34). Thus, analytical expressions for I12 and I34 are found to be

I12 ' eτ2
(
− 1

32α4 +
3∆2

128α6G2

)
eiτ
(

1
2α−

∆2

16α3G2

)
(35)

and

I34 ' e−τ2
(

1
2+

∆2

8α2G2

)
eiτ
(

2α+ ∆2

4αG2

)
+ ∑

k=1,2,...

√
1

πk

× e
−1

1+π2k2

(
1+ ∆2

8α2G2

)
(τ−2πkα)2+ ∆2πk

4α(1+π2k2)G2 (τ−2πkα)

× ei
{[

(−1)k ∆2

2G2−1
]

πk+(−1)k
[

2πkα2+
(

2α+ ∆2

4αG2

)
(τ−2πkα)

]}
, (36)

where τ = Gt. By putting these approximation results into Equation (28), a new formula for two-qubit
entanglement determiner with small detunings is obtained

|ρ23| −
√

ρ11ρ44 '
1
4

(
e
−τ2

16α4 +
3∆2τ2

64α6G2 − 1
)

+
1
4

e
−(4α2G2+∆2)

8α2G2 τ2
cos

[
(8α2G2 + ∆2)

2αG2 τ

]
+ ∑

k=1,2,...

1
2πk

e
−[(8α2G2+∆2)τ−4(4α2G2+∆2)πkα]

4α2(1+π2k2)G2 (τ−2πkα)

× cos
[
(8α2G2 + ∆2)

2αG2 τ − 8πkα2
]

. (37)

For this formula we have used the fact that only the term with the corresponding k around
τ = 2πkα or τ = 4(4α2G2 + ∆2)πkα/(8α2G2 + ∆2) gives a main contribution to the sums. Compared
with Equation (60) of [38], this formula here in Equation (37) contains new contributions of ∆2 in the
index of exponential function and the period of cosine function. The contribution to τ = 2πkα or
τ = 4(4α2G2 + ∆2)πkα/(8α2G2 + ∆2) from any other k′ decays exponentially with the distance from
k, i.e., proportional to

exp
{
−π2[(8α2G2 + ∆2)k− 2(4α2G2 + ∆2)k′]

(1 + π2k′2)G2 (k− k′)
}

, (38)

which decays with the square of increasing detuning. This leads to the unique revival period
Tc = 4(4α2G2 + ∆2)πkα/(8α2G2 + ∆2) and the relative revival envelope height

1
πk
− 1− exp[(−4α2G2 + 2∆2)τ2/(64α6G2)]

2
. (39)

Compared with Equation (61) of [38], this formula here in Equation (39) contains a new
contribution 2∆2τ2/(64α2G2) in the index of exponential function, and the relative revival envelope
height grows with the increasing ∆. Thus the formula in Equation (37) is the main analytical result for
each step index k with small detuning and reduces to that with resonant coupling [38] at both the decay
exponent and revival period, where resonance can be viewed as a special limit of small detuning.

To perform the numerical simulations, we use the Hamiltonian given in Equation (2) by truncating
the Fock basis and calculating the reduced density matrix in each excitation subspace, then summing
over all the subspaces to get the total reduced density matrix. This Fock-basis truncation is based on
the precision accuracy of numerical concurrence, and the total excitation number is cut off at 2n̄. For
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example, when coherent states contain n̄ = 100 bosons in each of the cavity modes, the total excitation
number is cut off at 200. This is because when n̄ >> 1, the width of the photon number distribution
obeys 1 << ∆n << n̄. Therefore, it is safe to make this Fock-basis truncation.

In Figure 3a,b, we plot the long-time entanglement dynamics with small detunings for analytical
and numerical calculations when two qubits are exposed to two coherent fields each with a large average
photon number n̄ = 100, respectively. In Figure 3c, C f value is the first concurrence revival peak. We
find that the entanglement exhibits sudden death and rebirth phenomenon, and its revival peaks are
not fully complete but increase quadratically with the increasing detuning, as shown in Figure 3c.
The revival period is delayed with a quantity quadratically depending on the detuning, as shown in
Figure 3d. The numerical results in Figure 3b are not perfectly predicted by the corresponding analytical
results in Figure 3a, and their main difference is the absence of Rabi-type oscillations during the revivals,
i.e., the disappearance of tiny revivals in numerical results, which are not contained in the new formula
of Equation (37). This is because the entanglement between the two subsystems is conserved due to no
interaction between them. The small detuning in each subsystem makes each photon field deviate from
the coherent state so that an ebit for the qubits cannot be completely transferred to the fields, i.e., two
qubits become a mixed state and their entanglement quickly vanishes by tracing out two fields as the
evolution time increases, so that the two qubits can not be fully recovered.

Figure 3. (Color online) Concurrence as a function of the evolution time under small detunings with
n̄ = 100: (a) analytical results and (b) numerical results, where analytical results are plotted based on
Equation (37). Characteristics of the first revival envelope versus small detunings: (c) peaks C f and (d)
periods Tf .

2.2.2. Large-Detuning Limit

The second extreme situation we focus on is the large-detuning limit, i.e., ∆ >> 2G
√

n̄. Under
this limit, the summations in Equation (27) can be simplified further as

|z| −
√

ad ≈ 1
8

{
3[

∞

∑
n=0

A2
n cos(2γnt)]2 − [

∞

∑
n=0

A2
n cos(

G2t
2γn

)]2

+2[
∞

∑
n=0

A2
n cos(2γnt)][

∞

∑
n=0

A2
n cos(

G2t
2γn

)]

}
+

1
2
[

∞

∑
n=0

A2
n sin(2γnt)]2, (40)

where
√

∆2 + 4nG2 ' ∆ is used and higher-order terms than O(∆2

γ2
n
) have been omitted. We need

to recalculate the integrals in Equations (33) and (34), where large-detuning terms can be directly
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removed from the square root of the Lambert W function, and these derivation details are contained in
the Appendix (A35)–(A48). We obtain the analytical expressions of I12 and I34 as follows

I12 ' e−
4α2G6τ2

∆6 ei Gτ
∆ (41)

and

I34 ' e−α2[1−cos( 2Gτ
∆ )]ei[ ∆τ

G −
Gτ
∆ +α2 sin( 2Gτ

∆ )]. (42)

With these results in Equation (40), a new formula for two-qubit entanglement determiner with large
detunings is obtained

|ρ23|−
√

ρ11ρ44 ' 1
2

e−2α2[1−cos( 2Gτ
∆ )] − 1

8

{
− e−

4α2G6τ2

∆6

× cos(
Gτ

∆
) + e−α2[1−cos( 2Gτ

∆ )]

× cos[
∆τ

G
− Gτ

∆
+ α2 sin(

2Gτ

∆
)]

}2

. (43)

Here, different from the cases of resonance and small detuning, the principal exponential exhibits a
periodical oscillation between the minimum e−α2

and the maximum e0 values, and does not decay
monotonously with the increasing time, giving a main contribution to the sums around τ = ∆kπ/G,
where τ does not depend on the average photon number. It is interesting to see that around τ = ∆kπ/G,
the relative revival envelope height is the maximum concurrence C = 1, meaning that the entanglement
recovery can be fully complete without any postselection operation. This result is surprisingly
different from the result with resonance or small detuning where the maximal entanglement is never
fully complete.

In Figure 4a,b, we plot the long-time entanglement dynamics with large detunings for analytical
and numerical calculations when two qubits are exposed to two coherent fields with a large average
photon number n̄ = 100, respectively. We find that the two-qubit entanglement also exhibits sudden
death and rebirth phenomenon, and its revival peaks are fully complete without depending on the
detuning, but the revival period increases linearly with the increasing detuning, as shown in Figure 4c,d.
Although the new formula here is very different from that in the small-detuning limit, only the absence
of Rabi-type oscillations during the revivals of numerical results in Figure 4b are not perfectly predicted
by the corresponding analytical results in Figure 4a, which is generically similar to the revivals presented
for one qubit inversion of quantum revivals with detunings [40].

The physics explanation is that under the large-detuning limit, the dispersive interaction between
the qubit and field causes a Stark movement in the field frequency, which depends on the qubit
state. This Stark movement leads to the opposite phase shifts between two field components, which
generates entanglement between the qubit and field. When this phase difference accumulates to a
certain extent, the qubit and field approximately becomes the maximally entangled state, but two
qubits become a mixed state and their entanglement vanishes by tracing out two fields. However,
when this phase difference is 2π, the qubit and field are not entangled and the two-qubit entanglement
can be fully recovered. While in the small-detuning limit, this phase difference is impossible to
achieve 2π and the two qubits can not be fully recovered. This physical process has an essential
difference with that of virtual energy exchanging realized for two qubits and one vacuum field in
cavity-quantum-electrodynamics system [41,42].
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Figure 4. (Color online) Concurrence as a function of the evolution time under large detunings with
n̄ = 100: (a) analytical results and (b) numerical results, where analytical results are plotted based on
Equation (43). Characteristics of the first revival envelope versus large detunings: (c) peaks C f and
(d) periods Tf .

2.2.3. Further Discussion

To see the transition from small to large detunings, we numerically simulate the concurrence
dynamics for general detunings in Figure 5. From Figure 5a, it is obviously to see that each concurrence
curve has a similar revival pattern and changes regularly from small to large detunings. Although
the above method cannot analytically predict the concurrence dynamics for moderate detunings, it
is still possible to mathematically fit the characteristics of the first revival envelope when it transits
from small to large detunings. By mathematically fitting the first revival envelope in Figure 5b,c, it is
interesting to find that the revival peak quadratically depends on the detuning, but the revival period
linearly relates with the detuning. This result exhibits a detuning-dependence discrepancy with that
under the small or large detuning.

1102030
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405060708090
11010090807060
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50403020100
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Figure 5. (Color online) (a) Concurrence as a function of the evolution time for general detunings with
n̄ = 100. Characteristics of the first revival envelope versus moderate detunings: (b) peaks C f and
(c) periods Tf .
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To quantitatively show the quasiperiodic modulations by other amplitudes of the coherent state,
we plot the concurrence dynamics with other average photon numbers in Figure 6. In Figure 6a,b,
detuning modulation exhibits with different revival periods. For small detunings in Figure 6c, the
revival period increases linearly with the increasing n̄, i.e., Tf ∝ 2

√
n̄π/G. For large detunings in

Figure 6d, the revival period has a fixed value without depending on n̄ and the increasing n̄ narrows
the revival envelope in the time domain. Even when n̄ decreases to 25, the analytical results well
predict the numerical results. This result demonstrates that two new formulas in Equations (37) and (43)
are workable for a wide range of the average photon number.

Figure 6. (Color online) Concurrence as a function of the evolution time for average photon number
n̄ with: (a) ∆ = G and (b) ∆ = 100G. In each pair of curves with the same n̄, the numerical result is
plotted in front and the analytical result is plotted behind, where the analytical results in subfigures
(a) and (b) are based on Equations (37) and (43) respectively. (c) Period Tf of the first revival envelope
versus average photon number n̄ for ∆ = G. (d) Concurrence dynamics of the first revival envelope
versus average photon number n̄ for ∆ = 100G.

2.3. Quantum Coherence

Another important issue is to answer the question of whether it is possible to fully recover the
coherence of two qubits from the infinite-dimension fields, i.e., coherent-state fields. To answer this
question, we examine the two-qubit coherence mainly caused by detuning modulations in this section.

We first assess the quantum coherence dynamics of two qubits by computing the l1 norm of
coherence Cl1 = ∑x 6=y |ρxy| [43], where ρxy is off-diagonal elements of density matrix ρ in the basis Γ.
In general, 0 ≤ Cl1 ≤ d− 1, where d is the dimension of ρ. According to Equation (11), we obtain the
analytical expression of Cl1 , which takes a simple form Cl1 = 2|ρ23|, and d = 4. The analytical formula
of coherence for the small-detuning limit is (∆ << 2G

√
n̄)

Cl1 '
∣∣∣∣14 e

−(4α2G2+∆2)
8α2G2 τ2

cos
[
(8α2G2 + ∆2)

2αG2 τ

]
+ ∑

k=1,2,...

1
2πk

e
−[(8α2G2+∆2)τ−4(4α2G2+∆2)πkα]

4α2(1+π2k2)G2 (τ−2πkα)

× cos
[
(8α2G2 + ∆2)

2αG2 τ − 8πkα2
]
+

1
2

e
−τ2

16α4 +
3∆2τ2

64α6G2

∣∣∣∣, (44)

while for the large-detuning limit is (∆ >> 2G
√

n̄)
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Cl1 '
∣∣∣∣e−2α2[1−cos( 2Gτ

∆ )] − 1
4

{
− e−

4α2G6τ2

∆6 cos(
Gτ

∆
)

+e−α2[1−cos( 2Gτ
∆ )] cos[

∆τ

G
− Gτ

∆
+ α2 sin(

2Gτ

∆
)]

}2∣∣∣∣. (45)

In Figure 7, we numerically simulate the long-time dynamics of two-qubit coherence with small
and large detunings. For the small-detuning limit, we find that the coherence increases from Cl1 = 1 to
its maximum Cl1 = 3 around the time τ = 2(4α2G2 + ∆2)πkα/(8α2G2 + ∆2) , i.e., two qubits evolve
from their maximally entangled state 1√

2
(|eg〉+ |ge〉) to maximally coherent state 1

2 (|ee〉+ |eg〉+ |ge〉+
|gg〉), then decay exponentially to zero with the increasing time. In contrast, for the large-detuning
limit, we find that the coherence has an initially high value and exponentially decays to a relatively low
non-zero value at the beginning. After a time period τ = ∆kπ/G, the coherence is fully recovered to
the initial high value, i.e., two qubits evolve to a state between the maximally entangled and maximally
coherent states. This result is qualitatively different from the concurrence result. When the detuning is
large, the coherence remains nonzero during the vanishing of entanglement, which does not exhibit
the sudden death phenomenon. But, when the detuning is small, the coherence may inversely increase
during the vanishing of entanglement.
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Figure 7. (Color online) Cl1 as a function of the evolution time with n̄ = 100 for: (a) ∆ = G and (b)
∆ = 100G.

It is of interest to see what the photon states are when the qubit states evolve to a maximal
coherence and minimal coherence. In Figure 8, we plot the evolution dynamics of the average photon
number and width in distribution. We find that the average photon number for each subsystem
becomes maximum when the qubit states evolve to a maximal coherence, but becomes minimum when
the qubit states evolve to a minimal coherence, and width in distribution has the similar evolution
with that in the qubit coherence.

Gt/π

0 10 20 30 40 50 60 70 80

C
l 1

0

1

2

Gt/π

0 10 20 30 40 50 60 70 80
9.9995

10

10.0005

10.001

10.0015
aaaaaaaaaaa

    

< a
†
a >

< b
†
b >

(b)

(a)

Figure 8. (Color online) Evolution dynamics with n̄ = 10 and ∆ = 50G for: (a) Cl1 ; (b) < a†a > and < b†b >.
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3. Effect of Dissipation

To see the effect of dissipation factors on the two-qubit entanglement, we numerically simulate
the system’s master equation by the approach of quantum trajectory [44]. This approach assumes that
when the system contains the rates of photon decay κ and qubit spontaneous emission η, the system
evolves approximately under a non-Hermitian Hamiltonian

Hκ,η = HI −
i
2

4

∑
y=1

Y†
y Yy, (46)

where Y1 =
√

κa, Y2 =
√

κb, Y3 =
√

ησA
− , and Y4 =

√
ησB
− are the collapse operators causing

instantaneous quantum jumps. Equation (46) is a Hamiltonian interaction in the Schrödinger picture,
where the operator is time-independent but the state vector is time-dependent.

In Figure 9, we numerically simulate the effect of dissipation factor κ or η on the two-qubit
entanglement both for small and large detunings. The result shows that the entanglement decreases
exponentially as κ or η increases, and is more robust against the qubit spontaneous emission than
photon decay. To explain this exponential decay behavior of entanglement, it is necessary to make an
assumption κ = η = λ for obtaining the analytical solution

Cκ,η ' e−2λα2tC f , (47)

where a new factor e−2λα2t appears compared with the original concurrence C f . This factor has a
decreasing exponential parameter linear with dissipation rates and square with the amplitude of
coherent states, which causes exponential decays in the original concurrence.
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Figure 9. (Color online) Numerical simulation of entanglement dynamics based on Equation (46) when
n̄ = 100: (a) ∆ = G and η = 0; (b) ∆ = 100G and η = 0; (c) ∆ = G and κ = 0; (d) ∆ = 100G and κ = 0.
Black arrows point to the direction of increasing dissipation.

4. Conclusions

This paper generalizes the method reported in [38], which was restricted to the resonant situation,
to a more general situation including qubit-field detunings. Based on numerical simulations and
analytically new formulas, we demonstrate that the X-state simplification, Fock-state shortcut and
detuning-limit approximation work together in an amazingly accurate way, which agrees with the
numerical results. Although the numerical to analytic agreements are not perfect, it is safe to say that
the new formulas can predict the numerical results under a wide range of average photon numbers
in the coherent state. Especially, we find that when both the detuning and amplitude of coherent
states are large enough, the maximal entanglement and coherence peaks can be fully and periodically
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retrieved and their revival periods both increase linearly with the increasing detuning. Finally, the
effect of dissipation factors on the qubit entanglement is analyzed.

The work is important because the new formulas reveal the analytical relation between the
entanglement evolution dynamics and detunings, which further clarifies the physics mechanism of
entanglement sudden death and rebirth and provides a basic solution for direct use in any real systems.
In the future, we want to further study the situation with more qubits and try to seek a general
detuning solution under special continuous variables.
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Appendix A

Based on the saddle point method [38], if M is a large number and f (x) is a twice-differentiable
function, an integral

∫ b
a eM f (x)dx can be approximated as

∫ b

a
eM f (x)dx ≈

√
2π

M| f ′′(x0)|
eM f (x0), (A1)

where x0 corresponds to the global maximum of f (x).
When ∆ << 2G

√
n̄, we analyze the saddle point method used in calculating the integrals of I12

and I34 as follows. For the integral

I12 '
∫ ∞

0
e−α2 α2nen
√

2πnnn
e

i G2t√
∆2+4nG2 dn, (A2)

where

f (n) = −1 +
1
α2

[
2n ln(α)− 1

2
ln(2πn)− n ln(n) + n + i

G2t√
∆2 + 4nG2

]
. (A3)

We choose M = α2 to find the maximum value f (n0). For this, we need to find the point n0 to satisfy

f ′(n0) =
1
α2

[
ln(α2)− 1

2n0
− ln(n0)−

2iG4t

(∆2 + 4n0G2)
3
2

]
= 0. (A4)

Different from the resonant situation, since the detuning appears in the square root of the Lambert W
function, it is impossible to completely calculate analytical results for Equation (A4) under general
detunings. However, when |n0| >> 1 and ∆ << 2g

√
n̄, Equation (A4) can be simplified as

ln(n0) ' ln(α2)− iGt
4

n
−3
2

0 . (A5)

To solve Equation (A5), it is helpful to separate the modulus and phase

n0 = ρeiθ , (A6)

then Equation (A5) becomes

ln(ρ) + iθ = ln(α2)− iGt
4

ρ
−3
2 [cos(

3θ

2
)− i sin(

3θ

2
)]. (A7)
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By equalling the real and imaginary parts of two sides in Equation (A7), we obtain a set of
solutions by omitting higher-order terms than O(Gtρ−3/2) as

θ ' − Gt
4α3 ,

ρ ' α2(1 +
3
2

θ2). (A8)

With this solution, Equation (A3) becomes

α2 f (n0) ' − ln(
√

2π)− 1
2

ln(α2)− 1
2

ln(1 +
3
2

θ2)− iθ
2

−ρeiθ ln(1 +
3
2

θ2)− ρeiθ iθ + ρeiθ − α2

+
iGt
2

ρ
−1
2 e

−iθ
2 − i∆2t

16G
ρ
−3
2 e

−3iθ
2

' − ln(α)− ln(
√

2π)− 3θ2

4
+ α2 θ2

2

+(
Gt
4α
− 3∆2t

32α3G
)θ + i[

Gt
2α
− ∆2t

16α3G
− 1

2
θ

−(7Gt
16α
− 27∆2t

128α3G
)θ2]. (A9)

By inserting −Gt/(4α3) for θ, we obtain

α2 f (n0) ' − ln(α)− ln(
√

2π)− G2t2

32α4 +
3∆2t2

128α6 + i(
Gt
2α
− ∆2t

16α3G
). (A10)

The final term to calculate is

| f ′′(n0)| =
1
α2

[
1

2n2
0
− 1

n0
+ 12iG6t(∆2 + 4n0G2)

−5
2

]
' 1

α4 , (A11)

where higher-order terms than O(α−2) have been omitted. Therefore, the analytical solution of
I12 approximates √

2π

M| f ′′(n0)|
eα2 f (n0) ' eτ2

(
− 1

32α4 +
3∆2

128α6G2

)
eiτ
(

1
2α−

∆2

16α3G2

)
, (A12)

leading to the summations

∞

∑
n=0

A2
n cos(

G2t√
∆2 + 4nG2

) ' eτ2
(
− 1

32α4 +
3∆2

128α6G2

)
cos(

τ

2α
− ∆2τ

16α3G2 ) (A13)

and

∞

∑
n=0

A2
n sin(

G2t√
∆2 + 4nG2

) ' eτ2
(
− 1

32α4 +
3∆2

128α6G2

)
sin(

τ

2α
− ∆2τ

16α3G2 ), (A14)

where τ = Gt.
Now, we turn to the integral

I34 '
∫ ∞

0
e−α2 α2nen
√

2πnnn
ei
√

∆2+4nG2tdn. (A15)
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We will again use the saddle point method to find the maximum of the function

f (n) = −1 +
1
α2

[
2n ln(α)− 1

2
ln(2πn)− n ln(n) + n + it

√
∆2 + 4nG2

]
, (A16)

and should find the point n0 to satisfy

f ′(n0) =
1
α2

[
ln(α2)− 1

2n0
− ln(n0) +

2iG2t

(∆2 + 4n0G2)
1
2

]
= 0. (A17)

Similarly, when ∆ is small enough, Equation (A17) is simplified as

ln(n0) ' ln(α2) +
iGt√

n0
. (A18)

Letting n0 = ρeiθ , then

ln(ρ) + iθ = ln(α2) + iGtρ
−1
2 [cos(

θ

2
)− i sin(

θ

2
)], (A19)

where the real and imaginary equations become

ln(ρ) = ln(α2) + Gtρ
−1
2 sin(

θ

2
),

θ = Gtρ
−1
2 cos(

θ

2
). (A20)

For τ = 2πkα, where k is a positive integer, the above equations become

ρ = α2,

θ = (−1)k2πk. (A21)

Let τ = τ0 + ∆τ and θ = θ0 + ∆θ, where τ0 = 2πkα and θ0 = 2πk. When ∆τ and ∆θ are small,
the equations in Equation (A20) turn into

ρ ' α2
[

1 +
kπ∆τ

α(1 + k2π2)

]
,

θ ' θ0 +
(−1)k∆τ

α(1 + k2π2)
. (A22)

By inserting n = ρeiθ into Equation (A16), we get

α2 f (n0) ' −ρeiθ ln(
ρ

α2 )−
1
2

ln(ρ)− iθ
2
+ ρeiθ(1− iθ)

+2iGt(ρeiθ)
1
2 + i

∆2t
4G

(ρeiθ)
−1
2 − α2 − ln(

√
2π). (A23)

The real part of Equation (A23) is

Re[α2 f (n0)] = −ρ cos(θ) ln(
ρ

α2 )−
1
2

ln(ρ) + ρ cos(θ)

+ρθ sin(θ)− 2Gtρ
1
2 sin(

θ

2
) +

∆2t
4G

ρ
−1
2 sin(

θ

2
)− α2 − ln(

√
2π). (A24)
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By inserting θ = θ0 + ∆θ and omitting higher-order terms than O[(∆θ)2] in Equation (A24),

Re[α2 f (n0)] ' −ρ

[
1− (∆θ)2

2

]
ln(

ρ

α2 )−
1
2

ln(ρ)− α2

+ρ

[
1− (∆θ)2

2

]
+ ρ(θ0 + ∆θ)∆θ − ln(

√
2π)

−(−1)kGtρ
1
2 ∆θ + (−1)k ∆2t

8G
ρ
−1
2 ∆θ. (A25)

By substituting ∆θ with ∆τ and retaining only the terms up the second order in ∆τ for
Equation (A25),

Re[α2 f (n0)] ' − ln(α)− ln(
√

2π) +
∆2πk

4αG2(1 + π2k2)
∆τ

− 1
(1 + π2k2)

[(
1 + 2π2k2

2 + 2π2k2

)
+

∆2

8α2G2

]
∆τ2. (A26)

Similarly, the imaginary part of α2 f (n0) is

Im[α2 f (n0)] = −ρ sin(θ) ln(
ρ

α2 )−
θ

2
− ρ cos(θ)θ + ρ sin(θ)

+2Gtρ
1
2 cos(

θ

2
) +

∆2t
4G

ρ
−1
2 cos(

θ

2
). (A27)

Again, by inserting θ = θ0 + ∆θ and τ = τ0 + ∆τ, substituting ∆θ with ∆τ, and retaining the
terms up the second order in ∆τ for Equation (A27),

Im[α2 f (n0)] = (−1)k
[

2πkα2 + (2α +
∆2

4αG2 )∆τ

]
+

[
(−1)k ∆2

2G2 − 1
]

πk. (A28)

The final term to calculate is

f ′′(n0) =
1
α2

[
1

2n2
0
− 1

n0
− 4iG4t(∆2 + 4n0G2)

−3
2

]
, (A29)

which has two forms: one for Gt = 0,√
2π

α2| f ′′(n0)|
'
√

2πα2, (A30)

and the other for Gt = 2πkα, (k = 1, 2, ...)√
2π

α2| f ′′(n0)|
'
√

2πα2

πk
. (A31)

Thus, the integral in Equation (A15) approximates√
2π

M| f ′′(n0)|
eα2 f (n0) ' e−τ2

(
1
2+

∆2

8α2G2

)
eiτ
(

2α+ ∆2

4αG2

)
+ ∑

k=1,2,...

√
1

πk
e
−(τ−2πkα)2

1+π2k2

(
1+ ∆2

8α2G2

)
+ ∆2πk(τ−2πkα)

4α(1+π2k2)G2

× ei
{[

(−1)k ∆2

2G2−1
]

πk+(−1)k
[

2πkα2+
(

2α+ ∆2

4αG2

)
(τ−2πkα)

]}
, (A32)
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leading to the summations

∑∞
n=0 A2

n cos(
√

∆2 + 4nG2t)

' e−τ2
(

1
2+

∆2

8α2G2

)
cos[

(8α2G2 + ∆2)

4αG2 τ]

+ ∑
k=1,2,...

(−1)k
√

1
πk

e
−(τ−2πkα)2

1+π2k2

(
1+ ∆2

8α2G2

)
+ ∆2πk(τ−2πkα)

4α(1+π2k2)G2

× cos[
(8α2G2 + ∆2)

4αG2 τ − 2πkα2] (A33)

and

∑∞
n=0 A2

n sin(
√

∆2 + 4nG2t)

' e−τ2
(

1
2+

∆2

8α2G2

)
sin[

(8α2G2 + ∆2)

4αG2 τ]

+ ∑
k=1,2,...

√
1

πk
e
−(τ−2πkα)2

1+π2k2

(
1+ ∆2

8α2G2

)
+ ∆2πk(τ−2πkα)

4α(1+π2k2)G2

× sin[
(8α2G2 + ∆2)

4αG2 τ − 2πkα2]. (A34)

When ∆ >> 2G
√

n̄,the integrals of I12 in Equation (A2) and I34 in Equation (A15) need to be
recalculated.

For I12, we make another approximation ∆2 + 4n0G2 ' ∆2, leading to

ln(α2) ' ln(n0) + i
2G4t
∆3 . (A35)

Different from the small-detuning limit, this equation is analytically solvable for n0, leading to

n0 = α2e−i 2G4t
∆3 ' α2(1− i

2G4t
∆3 ), (A36)

where the terms higher-order than O
[
(i 2G4t

∆3 )2] have been omitted through the Taylor expansion. With
this solution, Equation (A3) becomes

α2 f (n0) ' − ln(α)− ln(
√

2π) + i
G2t
∆
− 4α2G8t2

∆6 , (A37)

and | f ′′(n0)| becomes

| f ′′(n0)| =

∣∣∣∣ 1
α2

[
α−4

2
− α−2 + O(i

Gt
α2∆3 )

]∣∣∣∣ ' 1
α4 . (A38)

Therefore, the integral in Equation (A2) approximates to√
2π

M| f ′′(n0)|
eα2 f (n0) ' e−

4α2G6τ2

∆6 ei Gτ
∆ , (A39)

leading to the summations

∞

∑
n=0

A2
n cos(

G2t√
∆2 + 4nG2

) ' e−
4α2G6τ2

∆6 cos(
Gτ

∆
) (A40)
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and

∞

∑
n=0

A2
n sin(

G2t√
∆2 + 4nG2

) ' e−
4α2G6τ2

∆6 sin(
Gτ

∆
). (A41)

For I34, we use the large-detuning approximation
√

∆2 + 4n0G2 ' ∆ from Equations (A15)
to (A17), which leads to

ln(α2) ' ln(n0)− i
2G2t

∆
. (A42)

This equation is directly solvable for n0 and we find

n0 = α2ei 2G2t
∆ . (A43)

Since the exponential becomes larger as the evolution time increases, this n0 can not be expanded
further and should be substituted fully into Equation (A3) as

α2 f (n0) = −α2 − ln(
√

2π)− ln(α) + α2 cos(
2G2t

∆
) + i

[
∆t− G2t

∆
+ α2 sin(

2G2t
∆

)

]
, (A44)

and | f ′′(n0)| becomes

| f ′′(n0)| '
1
α4 . (A45)

Therefore, the main integral result of Equation (A15) is√
2π

M| f ′′(n0)|
eα2 f (n0) ' e−α2[1−cos( 2Gτ

∆ )]ei[ ∆τ
G −

Gτ
∆ +α2 sin( 2Gτ

∆ )], (A46)

leading to the summations

∞

∑
n=0

A2
n cos(

√
∆2 + 4nG2t) ' e−α2[1−cos( 2Gτ

∆ )] cos[
∆τ

G
− Gτ

∆
+ α2 sin(

2Gτ

∆
)] (A47)

and

∞

∑
n=0

A2
n sin(

√
∆2 + 4nG2t) ' e−α2[1−cos( 2Gτ

∆ )] sin[
∆τ

G
− Gτ

∆
+ α2 sin(

2Gτ

∆
)]. (A48)

Note that the case of distinct coupling constants for different cavities has been done in [45], but
the case of distinct detunings for different cavities is still an open question.
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