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Abstract: This paper is focused on the derivation of data-processing and majorization inequalities
for f-divergences, and their applications in information theory and statistics. For the accessibility
of the material, the main results are first introduced without proofs, followed by exemplifications
of the theorems with further related analytical results, interpretations, and information-theoretic
applications. One application refers to the performance analysis of list decoding with either fixed
or variable list sizes; some earlier bounds on the list decoding error probability are reproduced in
a unified way, and new bounds are obtained and exemplified numerically. Another application is
related to a study of the quality of approximating a probability mass function, induced by the leaves
of a Tunstall tree, by an equiprobable distribution. The compression rates of finite-length Tunstall
codes are further analyzed for asserting their closeness to the Shannon entropy of a memoryless and
stationary discrete source. Almost all the analysis is relegated to the appendices, which form the
major part of this manuscript.

Keywords: contraction coefficient; data-processing inequalities; f-divergences; hypothesis testing;
list decoding; majorization theory; Rényi information measures; Tsallis entropy; Tunstall trees

1. Introduction

Divergences are non-negative measures of dissimilarity between pairs of probability measures
which are defined on the same measurable space. They play a key role in the development of
information theory, probability theory, statistics, learning, signal processing, and other related fields.
One important class of divergence measures is defined by means of convex functions f, and it is
called the class of f-divergences. It unifies fundamental and independently-introduced concepts in
several branches of mathematics such as the chi-squared test for the goodness of fit in statistics, the
total variation distance in functional analysis, the relative entropy in information theory and statistics,
and it is closely related to the Rényi divergence which generalizes the relative entropy. The class of
f-divergences was introduced in the sixties by Ali and Silvey [1], Csiszar [2-6], and Morimoto [7]. This
class satisfies pleasing features such as the data-processing inequality, convexity, continuity and duality
properties, finding interesting applications in information theory and statistics (see, e.g., [4,6,8-15]).

This manuscript is a research paper which is focused on the derivation of data-processing and
majorization inequalities for f-divergences, and a study of some of their potential applications in
information theory and statistics. Preliminaries are next provided.

1.1. Preliminaries and Related Works

We provide here definitions and known results from the literature which serve as a background
to the presentation in this paper. We first provide a definition for the family of f-divergences.
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Definition 1 ([16], p. 4398). Let Pand Q be probability measures, let y be a dominating measure of P and Q

(ie., P,Q < ) and let p := and q:= dy The f-divergence from P to Q is given, independently of u, by
D¢(P[|Q) : /qf du, 1)

where
£(0) = lim f(), @
7 (§) =0, ®
o(3) - () et 20 o

Definition 2. Let Qx be a probability distribution which is defined on a set X, and that is not a point mass,
and let Wy x: X — Y be a stochastic transformation. The contraction coefficient for f-divergences is defined as

D¢ (Py[|Qy)
, W = —_ 5
:uf(QX Y\X) PX;DI(PEFSX)Q(O,OO) Df(PXHQX) ®)
where, forally € ),
Py(y) = (PxWyx) (y) := /X dPx (x) Wy|x (ylx), (6)
Qr(y) = (QxWyx) () = [ dQx(x) Wyjx(yl) )

The notation in (6) and (7), and also in (20), (21), (42), (43), (44) in the continuation of this paper, is consistent
with the standard notation used in information theory (see, e.g., the first displayed equation after (3.2) in [17]).

Contraction coefficients for f-divergences play a key role in strong data-processing inequalities
(see [18-20], ([21], Chapter II), [22-26]). The following are essential definitions and results which are
related to maximal correlation and strong data-processing inequalities.

Definition 3. The maximal correlation between two random variables X and Y is defined as

Pm(X;Y) := sup E[f(X)g(V)], ®)
8

where the supremum is taken over all real-valued functions f and g such that
E[f(X)] =E[g(Y)] =0, E[f*(X)] <1, Eg*(YV)]<1. ©)

Definition 4. Pearson’s x>-divergence [27] from P to Q is defined to be the f-divergence from P to Q (see
Definition 1) with f(t) = (t —1)?or f(t) = t> — 1 forall t > 0,

x*(P||Q) := Ds(P|Q) (10)
q

= de -1 12

J B (12)

independently of the dominating measure y (i.e., P,Q < p, eg., u = P+ Q).
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Neyman's x*-divergence [28] from P to Q is the Pearson’s x*-divergence from Q to P, i.e., it is equal to

x*(QIIP) = Dy(P[|Q) (13)

with g(t) = ﬂ org(t)="1—tforallt>o0.

Proposition 1 (([24], Theorem 3.2), [29]). The contraction coefficient for the x>-divergence satisfies
e (Qx Wyjx) = pia(X;Y) (14)
with X ~ Qx and Y ~ Qy (see (7)).

Proposition 2 ([25], Theorem 2). Let f: (0,00) — R be convex and twice continuously differentiable with
f(1) = 0and f"(1) > 0. Then, for any Qx that is not a point mass,

MXZ(QX/ WY\X) < Vf(QX/ WY|X)/ (15)

i.e., the contraction coefficient for the x?-divergence is the minimal contraction coefficient among all f-divergences
with f satisfying the above conditions.

Remark 1. A weaker version of (15) was presented in ([21], Proposition 11.6.15) in the general alphabet setting,
and the result in (15) was obtained in ([24], Theorem 3.3) for finite alphabets.

The following result provides an upper bound on the contraction coefficient for a subclass of
f-divergences in the finite alphabet setting.

Proposition 3 ([26], Theorem 8). Let f: [0,00) — R be a continuous convex function which is three times
differentiable at unity with f(1) = 0and f"(1) > 0, and let it further satisfy the following conditions:

(a)

B -1)

(F-F)E-1) (1—f 3] >Z%f”(1)(t—1)2, vi>0.  (16)

(b)  The function g: (0,00) — R, given by g(t) := Mﬂ)r all t > 0, is concave.

Then, for a probability mass function Qx supported over a finite set X,

f1(1) +£(0)
H (Q /W )S 17 : ‘u Z(Q ’W ) (17)
T (f (1) gg;;QX(x)) e

For the presentation of our majorization inequalities for f-divergences and related entropy
bounds (see Section 2.3), essential definitions and basic results are next provided (see, e.g., [30],
([31], Chapter 13) and ([32], Chapter 2)). Let P be a probability mass function defined on a finite
set X, let pmax be the maximal mass of P, and let Gp(k) be the sum of the k largest masses of P for
ke {1,...,]X|} (hence, it follows that Gp(1) = pmax and Gp(|X|) = 1).

Definition 5. Consider discrete probability mass functions P and Q defined on a finite set X. It is said that P
is majorized by Q (or Q majorizes P), and it is denoted by P < Q, if Gp(k) < Gg(k) forallk € {1,...,|X|}
(recall that Gp(|X|) = Gg(|X|) = 1).

A unit mass majorizes any other distribution; on the other hand, the equiprobable distribution on
a finite set is majorized by any other distribution defined on the same set.
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Definition 6. Let P, denote the set of all the probability mass functions that are defined on A, := {1,...,n}.
A function f: P, — R is said to be Schur-convex if for every P,Q € P, such that P < Q, we have
f(P) < f(Q). Likewise, f is said to be Schur-concave if — f is Schur-convex, i.e., P,Q € Py and P < Q

imply that f(P) > f(Q).

Characterization of Schur-convex functions is provided, e.g., in ([30], Chapter 3). For example,
there exist some connections between convexity and Schur-convexity (see, e.g., ([30], Section 3.C)
and ([32], Chapter 2.3)). However, a Schur-convex function is not necessarily convex ([32],
Example 2.3.15).

Finally, what is the connection between data processing and majorization, and why these types
of inequalities are both considered in the same manuscript? This connection is provided in the
following fundamental well-known result (see, e.g., ([32], Theorem 2.1.10), ([30], Theorem B.2) and ([31],
Chapter 13)):

Proposition 4. Let P and Q be probability mass functions defined on a finite set A. Then, P < Q if and only
if there exists a doubly-stochastic transformation Wy|x: A — A (ie., ¥ Wyx(y|x) = 1forally € A, and
xeA

Y Wyx(ylx) =1 forall x € Awith Wyx(+|-) > 0) such that Q — Wy|x — P. In other words, P < Q if
€A

and only if in their representation as column vectors, there exists a doubly-stochastic matrix W (i.e., a square
matrix with non-negative entries such that the sum of each column or each row in W is equal to 1) such that
P=WQ.

1.2. Contributions

This paper is focused on the derivation of data-processing and majorization inequalities for
f-divergences, and it applies these inequalities to information theory and statistics.

The starting point for obtaining strong data-processing inequalities in this paper relies on the
derivation of lower and upper bounds on the difference Df(Px||Qx) — D¢(Py||Qy) where (Px, Qx)
and (Py, Qy) denote, respectively, pairs of input and output probability distributions with a given
stochastic transformation Wyx (i.e., where Px — Wy x — Py and Qx — Wy x — Qy). These bounds
are expressed in terms of the respective difference in the Pearson’s or Neyman's x?-divergence, and
they hold for all f-divergences (see Theorems 1 and 2). By a different approach, we derive an upper
bound on the contraction coefficient for f-divergences of a certain type, which gives an alternative
strong data-processing inequality for the considered type of f-divergences (see Theorems 3 and 4).
In this framework, a parametric subclass of f-divergences is introduced, its interesting properties
are studied (see Theorem 5), all the data-processing inequalities which are derived in this paper are
applied to this subclass, and these inequalities are exemplified numerically to examine their tightness
(see Section 3.1).

This paper also derives majorization inequalities for f-divergences where part of these inequalities
rely on the earlier data-processing inequalities (see Theorem 6). A different approach, which relies on
the concept of majorization, serves to derive tight bounds on the maximal value of an f-divergence
from a probability mass function P to an equiprobable distribution; the maximization is carried over all
P with a fixed finite support where the ratio of their maximal to minimal probability masses does not
exceed a given value (see Theorem 7). These bounds lead to accurate asymptotic results which apply
to general f-divergences, and they strengthen and generalize recent results of this type with respect
to the relative entropy [33], and the Rényi divergence [34]. Furthermore, we explore in Theorem 7
the convergence rates to the asymptotic results. Data-processing and majorization inequalities also
serve to strengthen the Schur-concavity property of the Tsallis entropy (see Theorem 8), showing
by a comparison to earlier bounds in [35,36] that none of these bounds is superseded by the other.
Further analytical results which are related to the specialization of our central result on majorization
inequalities in Theorem 7, applied to several important sub-classes of f-divergences, are provided in
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Section 3.2 (including Theorem 9). A quantity which is involved in our majorization inequalities in
Theorem 7 is interpreted by relying on a variational representation of f-divergences (see Theorem 10).
As an application of the data-processing inequalities for f-divergences, the setup of list decoding
is further studied, reproducing in a unified way some known bounds on the list decoding error
probability, and deriving new bounds for fixed and variable list sizes (see Theorems 11-13).

As an application of the majorization inequalities in this paper, we study properties of a measure
which is used to quantify the quality of approximating probability mass functions, induced by
the leaves of a Tunstall tree, by an equiprobable distribution (see Theorem 14). An application
of majorization inequalities for the relative entropy is used to derive a sufficient condition, expressed
in terms of the principal and secondary real branches of the Lambert W function [37], for asserting the
proximity of compression rates of finite-length (lossless and variable-to-fixed) Tunstall codes to the
Shannon entropy of a memoryless and stationary discrete source (see Theorem 15).

1.3. Paper Organization

The paper is structured as follows: Section 2 provides our main new results on data-processing and
majorization inequalities for f-divergences and related entropy measures. Illustration of the theorems
in Section 2, and further mathematical results which follow from these theorems are introduced in
Section 3. Applications in information theory and statistics are considered in Section 4. Proofs of all
theorems are relegated to the appendices, which form a major part of this paper.

2. Main Results on f-Divergences

This section provides strong data-processing inequalities for f-divergences (see Section 2.1),
followed by a study of a new subclass of f-divergences (see Section 2.2) which later serves to exemplify
our data-processing inequalities. The third part of this section (see Section 2.3) provides majorization
inequalities for f-divergences, and for the Tsallis entropy, whose derivation relies in part on the new
data-processing inequalities.

2.1. Data-Processing Inequalities for f-Divergences

Strong data-processing inequalities are provided in the following, bounding the difference

D¢(Px[|Qx) — D¢(Py||Qy) and ratio % where (Px, Qx) and (Py, Qy) denote, respectively,

pairs of input and output probability distributions with a given stochastic transformation.

Theorem 1. Let X and Y be finite or countably infinite sets, let Px and Qx be probability mass functions that
are supported on X, and let

. Px(x)

& = inf o) € [0,1], (18)
o Px(x) o

$o = SUP G (%) € [1,00]. (19)

Let Wy|x: X — Y be a stochastic transformation such that for every y € Y, there exists x € X with
Wy x (y|x) > 0, and let (see (6) and (7))

Py = PXWY‘X, (20)
Qy = QxWyx- (21)

Furthermore, let f: (0,00) — R be a convex function with f(1) = 0, and let the non-negative constant

cr = cs(81,G2) satisfy

fir(o) = fi(u) > 2¢s(v—u), YuoeZ u<o (22)
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where f! denotes the right-side derivative of f, and

(a)

(b)

(c)

(d)

Z:=1Z(¢1,¢2) = [61,82] N (0,00). (23)

Then,
Dy (Px[1Qx) = Dy(Py[[Qy) > ¢4(&1,82) [x*(PxI|Qx) — (P[] Qv)] (4)
>0, (25)

where equality holds in (24) if D¢(-||-) is Pearson’s X>-divergence with c F=1
If f is twice differentiable on I, then the largest possible coefficient in the right side of (22) is given by

cf(61,82) = 3 te:ri(rgllf,gz)f”(t)' (26)

Under the assumption in Item (b), the following dual inequality also holds:

Dy (Px||Qx) = Dp(PrQy) = ef(&,2) [x3(QxIIPx) = x*(Qv1Py)] (27)
>0, (28)

where f*: (0,00) — R is the dual convex function which is given by

f70:=tf<1), Vt>0, (29)

and the coefficient in the right side of (27) satisfies
(A L) =1 inf {BPF(t 30
Cf (52 51) 2 teIl(rgll,fgz){ f ()} ( )

with the convention that gi] = o0 if §1 = 0. Equality holds in (27) if D¢(+||-) is Neyman'’s x?-divergence
(ie, Df(P||IQ) := X%(Q||P) for all P and Q) with cpr =1
Under the assumption in Item (b), if

ef(81,82) = % sup f(t) < oo, (31)
teZ(G1,62)
then,
Ds(Px||Qx) — Df(Py||Qy) < ef(81,62) [XZ(PXHQX) _Xz(PYHQY)} . (32)
Furthermore,
Dy(Px||Qx) — Dp(Pr|Qy) < er(&,2) [x2(QxIIPx) = x(Qv1Py)] (33)

where the coefficient in the right side of (33) satisfies

ep(A,+) =1 sup {Pf(t) (34)
f ’ 2 p ’
(éz Cl) t€Z(81,62)

which is assumed to be finite. Equalities hold in (32) and (33) if Df(-||-) is Pearson’s or Neyman's
x>-divergence with ef = lorep =1, respectively.
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(e)  The lower and upper bounds in (24), (27), (32) and (33) are locally tight. More precisely, let {P)((n)} bea
sequence of probability mass functions defined on X and pointwise converging to Qx which is supported

on X, and let Py) and Qy be the probability mass functions defined on Y via (20) and (21) with inputs

P)((") and Qy, respectively. Suppose that

(n)
Px (%)
Jim inf Ay =L (35)
(1)
Py (%) _
li
oo sk Qx(x) 36
If f has a continuous second derivative at unity, then
D Dy (P
g 21020 (é) 190) _ )y o
X (P HQx) X*(Py11Qy)
(n)
T X (Q 1Py — (Q IPgY)

and these limits indicate the local tightness of the lower and upper bounds in Items (a)—(d).

Proof. See Appendix A. [

An application of Theorem 1 gives the following result.

Theorem 2. Let X and ) be finite or countably infinite sets, let n € N, and let X" := (Xy,...,X,) and
Y" := (Y1,...,Yn) be random vectors taking values on X™ and Y", respectively. Let Pxn and Qxn be the
probability mass functions of discrete memoryless sources where, for all x € X",

Pxn (x HPX ), Qxn(x HQX X;i), (39)

with Px, and Qx, supported on X foralli € {1,...,n}. Let each symbol X; be independently selected from one
of the source outputs at time instant i with probabilities A and 1 — A, respectively, and let it be transmitted over
a discrete memoryless channel with transition probabilities

Wy xn (y | x) HWY|X (yilxi), Vxe X" yeYn (40)

Let Rgﬁ,) be the probability mass function of the symbols at the channel input, i.e.,

R (x) = [T(APx, (xi) + (1 = )Qx,(x), ¥Yxe&™ A€ [o1], (41)
i=1
let
Rg/);) . R()\> Wyn‘Xn, (42)
Pyn = Pxn Wyn‘xn, (43)
Qyn = an WYn'Xn, (44)

and let f: (0,00) — R be a convex and twice differentiable function with f(1) = 0. Then,
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(a) Forall A €[0,1],

Dy (R | Qxr) = Dp(RY) [ Qy)
n

> ¢f(81(n,A), &a(n,A)) [lﬂ[(l + A2 (Px,1Qx,)) — [ T(1 + A2 x*(Py, 1 Qv,)) (45)

i=1 i=1

> ¢ (E1(n,A), G2, A)) A7 Y (X (Px,1Qx,) — X2 (Py1IQy,)] =0, (46)

i=1

where c¢ (-, -) in the right sides of (45) and (46) is given in (26), and

CPT(1 a0

&1(n,A) = 11 (1 A+A xe/{f 0 l(x)> €[0,1], 47)
= - - su P ’(x) 00

Ea(n, M) = i|:1| (1 A4 A xeg 0 i(x)> € [1,00]. (48)

(b) Forall A €[0,1],
DR || Qxn) — D (RY) (| Qyn)

< e;(&1(n, 1), Gl 1) [ﬁ(l A2 llox)) ~[TA+ 2R )| @)

i=1 i=1

where ef(-,), §1(+,-) and §a (-, -) in the right side of (49) are given in (31), (47) and (48), respectively.

Py,
(c) If f has a continuous second derivative at unity, and sup% <ocoforallie {1,...,n}, then
xeXx ~0

Ds(RY) || Qxn) — DR [ Qyn)
A—0t A2

=5/ Z (Px,]|Qx;) — x*(Py,[|1Qv,)]- (50)

The lower bounds in the right sides of (45) and (46), and the upper bound in the right side of (49) are tight
as we let A — 07, yielding the limit in the right side of (50).

Proof. See Appendix B. [J

Remark 2. Similar upper and lower bounds on Dy(Pxn || Rg?,z)) — Dy (Pyn || Rg,);)) can be obtained for all
A € [0,1]. To that end, in (45)-(49), one needs to replace f with f*, switch between Px, and Qx, for all i, and
replace A with1 — A

In continuation to ([26], Theorem 8) (see Proposition 3 in Section 1.1), we next provide an upper
bound on the contraction coefficient for a subclass of f-divergences (this subclass is different from the
one which is addressed in ([26], Theorem 8)). Although the first part of the next result is stated for
finite or countably infinite alphabets, it is clear from its proof that it also holds in the general alphabet
setting. Connections to the literature are provided in Remarks A1-A3.

Theorem 3. Let f: (0,00) — R be a function which satisfies the following conditions:

e s convex, differentiable at 1, f(1) = 0, and f(0) := 11%1 f(t) <
=0+

e The function g: (0,00) — R, defined for all t > 0 by g(t) := fO-fO) f( ) , Is convex.
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Let Px and Qx be non-identical probability mass functions which are defined on a finite or a countably
infinite set X, and let

k(&, &)= sup v —F({_(ll))gl L (51)
te(G1,)U(LE2)

where &1 € [0,1) and &, € (1, 0] are given in (18) and (19). Then, in the setting of (20) and (21),

D¢ (Py[|Qy)
D¢ (Px||Qx)

k(G1,82)  x*(Py[Qy) (52)
f0)+ /(1) x*(Px[Qx)

<

Consequently, if Qx is finitely supported on X,

1 1
#e(Qx, Wyx) < HOFSZO] 'K<OI¥$QM) 12 (Qx, Wy x)- (53)

Proof. See Appendix C.1. [

Similarly to the extension of Theorem 1 to Theorem 2, a similar extension of Theorem 3 leads to
the following result.

Theorem 4. In the setting of (39)—(44) in Theorem 2, and under the assumptions on f in Theorem 3, the
following holds for all A € (0,1] and n € N:

n

2,2 _
DARY 1) _ x(aa(n ), catn, ) 110 APr @) 1

DRI IQe) SO O R (g Qx) -1

i=1

(54)

with {1(n, A) and &y (n, A) and x (-, -) defined in (47), (48) and (51), respectively.
Proof. See Appendix C.2. [

2.2. A Subclass of f-Divergences

A subclass of f-divergences with interesting properties is introduced in Theorem 5. The
data-processing inequalities in Theorems 2 and 4 are applied to these f-divergences in Section 3.

Theorem 5. Let f,: [0,00) — R be given by
fu(t) := (@ +t)%log(a+t) — (a +1)?log(a+1), t>0 (55)

forall o > e*%. Then,

(@) Dy, (-||) is an f-divergence which is monotonically increasing and concave in w, and its first three
derivatives are related to the relative entropy and x>-divergence as follows:

d

52 (DL (PIQ)} =2( + ) D(*ZL [ Q), (56)
92

521D (PIIQ)} = —ZD(QII "‘Ejlp), (57)
2 21 .

53 DA (PIQ)} = 9855 2 (Q ). (58)
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(b)

(c)

(d)

(e)

"

(g)

For everyn € N,

(-1 TDL(PIQ)} > 0, 9)

and, in addition to (56)—(58), for alln > 3

D (pIQ)) = X [ (n-2) b, 1 (@)12282) ) -1] )

where Dy, 1 (+||-) in the right side of (60) denotes the Rényi divergence of order n — 1.

Dy, (P||Q) > k(x) x*(P||Q) 61)
> k(a) [exp(D(P[|Q)) —1] (62)

where the function k: [e*%, c0) — R is defined as

1
k(a) :=log(a+1) + 3 loge — %, (63)
which is monotonically increasing in , satisfying k(«) > 0.20751oge for all &« > e~ 3, and it tends to
infinity as we let & — oo. Consequently, unless P = Q,

lim Dy (P[[Q) = +oo. (64)

loge loge
3 _ 108 2 & _
Dy, (PIQ) < [log(a+1)+ Floge — PBT] XA (PIQ) + 37255 exp(2D5(PIQ) ~ 1. (69)
For every € > 0 and a pair of probability mass functions (P, Q) where D3(P||Q) < oo, there exists
o :=w(P,Q,¢) such that for all « > a*

D7, (PIIQ) — [log(a+1) + §loge] *(Pl|Q)| < e (66)

If a sequence of probability measures { P, } converges to a probability measure Q such that

. Py B

nlgrgo ess sup 0 Y)=1, Y~Q, (67)

where P, < Q for all sufficiently large n, then

Dy, (P4]IQ)
- fa — 3
Jlim 2FQ) log(a+ 1) + 5 loge. (68)
Ifa > B> e~ 3, then

0< (a—p)a+p+2)D(*LT1Q) (69)
< D, (P|Q) - Dy, (PIQ) (70)

< («—p) min{ (e +p+2) D(5EL Q). 20(P|Q) - 1)
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(h)  The function fy: [0,00) — R, as given in (55), satisfies the conditions in Theorems 3 and 4 for all
a > e~ 3. Furthermore, the corresponding function in (51) is equal to

Wi e sp  BOTAMOD )
(@) V(L) (t=1)
~ fal@) + £ (1) (1 - &)
- @172 73)

forall & € [0,1) and & € (1, 00).
Proof. See Appendix D. [

2.3. f-Divergence Inequalities via Majorization

Let U, denote an equiprobable probability mass function on {1,...,n} for an arbitrary n € N, i.e.,

U, (i) := L foralli € {1,...,n}. By majorization theory and Theorem 1, the next result strengthens

the Schur-convexity property of the f-divergence D¢(-||Uy) (see ([38], Lemma 1)).

Theorem 6. Let P and Q be probability mass functions which are supported on {1,...,n}, and suppose that
P < Q. Let f: (0,00) — R be twice differentiable and convex with f(1) = 0, and let Gmax and Gmin be,
respectively, the maximal and minimal positive masses of Q. Then,

(a)
e (nfmin, nmax) (|QI3 — [IP[2)
ZDf(Q”un)*Df(PHun) (74)
> nes (Mfmin, ngmax) (IQI1Z = IPIZ) > 0, (75)
where c(-,-) and eg(-, -) are given in (26) and (31), respectively, and || - ||2 denotes the Euclidean norm.

Furthermore, (74) and (75) hold with equality if D¢(-[|-) = 2.
(b) IfP <Qand % < p for an arbitrary p > 1, then
1)2

0< Q- |p3< 1"

= (76)

Proof. See Appendix E. [J
Remark 3. If P is not supported on {1,...,n}, then (74) and (75) hold if f is also right continuous at zero.

The next result provides upper and lower bounds on f-divergences from any probability mass
function to an equiprobable distribution. It relies on majorization theory, and it follows in part from
Theorem 6.

Theorem 7. Let P, denote the set of all the probability mass functions that are defined on A, := {1,...,n}.
For p > 1, let Py(p) be the set of all Q € Py, which are supported on A, with Zymﬁ < p,andlet f: (0,00) — R
be a convex function with f(1) = 0. Then,

(a) Theset Py(p), for any p > 1, is a non-empty, convex and compact set.
(b)  Fora given Q € Py, which is supported on Ay, the f-divergences D¢(-||Q) and D¢(Q)|-) attain their
maximal values over the set Py (p).
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(c) Forp > 1and an integer n > 2, let

us(n,0) := max D u,),
flnp) = max D(Ql1Uy)

ve(n,p) = max D¢(U, ,
f(n,p) omax £ (Un[Q)

let

Tulp) = {1 ¥ (n1 1o’ ;11]

and let the probability mass function Qg € Pu(p) be defined on the set Ay as follows:

p‘B, lf] S {1,...,iﬁ},
Qp(j) =1 —(n+iglo—1) 1), ifj=ig+1,
B, l:ij{i/g;-O-z,...,n}
where
ol
NCENV
Then,
ug(n,p) = pmax D¢ (QpllUn),
vp(n,p) = pmax. Dy (Un|IQp)-

(d) Forp > 1and an integer n > 2, let the non-negative function g}p) : [0,1] — Ry be given by

() 0=/ () x=0

oq
-
—
=
N—
Il
=
~

Then,

()
< <
) < up(np) < max gf7(x),

(1) < vp(n,p) < o)
max g (%) <vp(n,p) < max 8/ (%)

with the convex function f*: (0,00) — R in (29).
(e)  The right-side inequalities in (85) and (86) are asymptotically tight (n — oo). More explicitly,

try o) = s (< /(=) + 0= (5500 )

A, vr(mp) = <€ o]

1+ (p—1)x 0 1+ (p—1)x

{ px f<1+(p1)x>+(1—x)f(1+(p—1)X)}'

12 of 80
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n If g]((p) (+) in (84) is differentiable on (0,1) and its derivative is upper bounded by K¢(p) > 0, then for
every integer n > 2

Ky (p)
fle
<1 — < . 9
0< lim {us(n',0)} —up(np) < = (89)
() Let f(0):= }nr&f( ) € (—00,+00], and let n > 2 be an integer. Then,
—
1 f(n)
ph_r)rolouf(n ,p) = (1 — n) £(0)+ o (90)
Furthermore, if f(0) < oo, f is differentiable on (0,n), and K, := sup |f'(t)| < oo, then, for every
te(0,n)
p=>1
, 2K, (n—1)
0< p}lggo{“f(nzpl)} —ug(n,p) < EETE 1)

(h) For p > 1, let the function f be also twice differentiable, and let M and m be constants such that the
following condition holds:

0<m<f'(t) <M, Vte [g,p]. (92)
Then, for all Q € Py(p),
< 3m(n|QI3 - 1) (93)
< D¢(QllUn) (94)
< sM(n[|Ql5 - 1) (95)
M(p—1)?
< S 96)

with equalities in (94) and (95) for the x> divergence (with M = m = 2).
(i) Letd>0.If f"(t) < My € (0,00) forall t > 0, then D¢(Q||Uy) < d forall Q € Py(p), if

p<1+4d+ ﬁ+16d2
- Mf Mf M}

(97)

Proof. See Appendix F. O

Tsallis entropy was introduced in [39] as a generalization of the Shannon entropy (similarly to the
Rényi entropy [40]), and it was applied to statistical physics in [39].

Definition 7 ([39]). Let Px be a probability mass function defined on a discrete set X. The Tsallis entropy of
order w € (0,1) U (1,00) of X, denoted by Su(X) or Sy (Px), is defined as

Su(X) = 1_“ ( ), Px(x ) (98)

xeX
plis -1

1—a 7 ®9)
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1

where ||Px||o := < Y P%(x)) " The Tsallis entropy is continuously extended at orders 0, 1, and oo; at order 1,
xeX
it coincides with the Shannon entropy on base e (expressed in nats).

Theorem 6 enables to strengthen the Schur-concavity property of the Tsallis entropy (see ([30],
Theorem 13.F.3.a.)) as follows.

Theorem 8. Let P and Q be probability mass functions which are supported on a finite set, and let P < Q.
Then, for all « > 0,

(a)
0 < L(1,P,Q) < Sa(P) — Sa(Q) < U(, P, Q), (100)
where
3oy (IQIZ —IPI3),  ifa e (0,2],
L(a,P,Q) := {f a2< ; i) ‘ (101)
2000 (IQIZ = IPI3),  ifw € (2,00),
1,02 2_Ip|R), o (0,2],
U P,Q) = {i“qmlr; (IIQIE | lli) ljfvé (0,2] 102
2 0max (1QI2 = IPI3), i € (2,00),
and the bounds in (101) and (102) are attained at « = 2.
(b)

inf —F———"=
P<Q,P#Q L(a,P,Q) p=o,pLq U, P,Q)

where the infimum and supremum in (103) can be restricted to probability mass functions P and Q which
are supported on a binary alphabet.

Proof. See Appendix G. O

Remark 4. The lower bound in ([36], Theorem 1) also strengthens the Schur-concavity property of the Tsallis
entropy. It can be verified that none of the lower bounds in ([36], Theorem 1) and Theorem 8 supersedes the
other. For example, let & > 0, and let P, and Q. be probability mass functions supported on A := {0, 1} with
P.(0) =  +eand Qe(0) = L + Bewhere p > 1and 0 < e < ﬁ This yields Pe < Q.. From (A233) (see
Appendix G),

Sa(Pe) = Sa(Qe)

=1. 104
s—lgEr L(“r P, Qs) ( )

Ifa =1, then S1(P;) — S1(Qy) = @ (H(P:) — H(Qe)), and the continuous extension of the lower
bound in ([36], Theorem 1) at & = 1 is specialized to the earlier result by the same authors in ([35], Theorem 3);
it states that if P < Q, then H(P) — H(Q) > D(Q||P). In contrast to (104), it can be verified that

Sl(PS) _Sl(Qs) _ ,B+1

0" s D(QellPe)  p—1

>1, VB>1, (105)

which can be made arbitrarily large by selecting B to be sufficiently close to 1 (from above). This provides a case
where the lower bound in Theorem 8 outperforms the one in ([35], Theorem 3).

Remark 5. Due to the one-to-one correspondence between Tsallis and Rényi entropies of the same positive order,
similar to the transition from ([36], Theorem 1) to ([36], Theorem 2), also Theorem 8 enables to strengthen the
Schur-concavity property of the Rényi entropy. For information-theoretic implications of the Schur-concavity of
the Rényi entropy, the reader is referred to, e.g., [34], ([41], Theorem 3) and ([42], Theorem 11).
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3. Illustration of the Main Results and Implications

3.1. lllustration of Theorems 2 and 4

We apply here the data-processing inequalities in Theorems 2 and 4 to the new class of
f-divergences introduced in Theorem 5.

In the setup of Theorems 2 and 4, consider communication over a time-varying binary-symmetric
channel (BSC). Consequently, let X = Y = {0,1}, and let

PXZ'(l) = Pi, QXl(l) =i, (106)

with p; € (0,1) and g; € (0,1) for every i € {1,...,n}. Let the transition probabilities Py, x (-|-)
correspond to BSC(4;) (i.e., a BSC with a crossover probability ¢;), i.e.,

Pyx,(v1x) = {151' P (107)
o Si ifx #y.
Forall A € [0,1] and x € &A™, the probability mass function at the channel input is given by
R (x) = ﬁ Rg?,.) (xi), (108)
i=1
with
R (x) = APy, (x) + (1 - 1)Qx,(x), x € {01}, (109)

where the probability mass function in (109) refers to a Bernoulli distribution with parameter Ap; +
(1 —A)g;. At the output of the time-varying BSC (see (42)(44) and (107)), for ally € ",

RU () =TTRY (i), Pee(y) =T TPr(vi), Qvi(y) =T Qv.(w), (110)
i=1 i=1 i=1

where
ROVA) = (Api+ (1= A)ai) *, (111)
Pyl.(l) = p;* 51', (112)
Qy, (1) =qi *9;, (113)

with

axb:=a(l—b)+(1—a)b, 0<ab<1. (114)

The x2-divergence from Bernoulli(p) to Bernoulli(q) is given by

x*(Bernoulli(p) || Bernoulli(g)) = (p=4) (115)
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and since the probability mass functions Px,, Qx,, Py, and Qy, correspond to Bernoulli distributions
with parameters p;, q;, p; * 6; and q; * ;, respectively, Theorem 2 gives that

- Mpi— i)\ A2 (pi * 6; — qi % 6:)°
H(1+ qi(1—4:) ) I—[<1+ (‘11’*51')(1—‘11'*51‘))1

i=1 i=1

Cfy (gl (”r A)r (;(2 (nr /\))

< Dy, (RQ) | Qxn) = Dy (R [ Qyn) (116)

L A (pi — qi)* - A2 (pi % 6; — qi  6;)*
< e, (E1(n,4), &a(n, 1)) LUl <1 * M) -1 <1 * (q,-(z(m(l e 53) >] )

forall A € [0,1] and n € N. From (26), (31) and (55), we get that forall {; <1 < ¢,

,B) =1 inf fI(¢ 118

ACHSEEI AL 119)

= log(a +¢&1) + 3 loge, (119)

ef,(61,82) = 5 sup fi(t) (120)
te[éllgz]

=log(a + &) + % loge, (121)

and, from (47), (48) and (106), for all A € (0,1],

E1(n,A) :—ﬁ(l—)\—k)»min{pi,l_pi}) € [0,1), (122)
i1 g 1—gq;

& (n,A) ::ﬁ(l—A+A max{pi,lpi}) € (1,), (123)
i=1 qi 1—qi

provided that p; # g; for some i € {1,...,n} (otherwise, both f-divergences in the right side of (116)
are equal to zero since Px, = Qy, and therefore Rgg) = Qx, foralliand A € [0, 1]). Furthermore, from

Item (c) of Theorem 2, for every n € Nand & > e_%,

A A
1 Da(RR! | Qxe) — Dy (R || Qn)
m
A0+ A2

_ 3 L[ (pi—qi)?  (pixdi —qix )
= (logla 1)+ loge) 1; { qi(1=qi)  (qi=6;)(1 = qi*5;) } ' (429
and the lower and upper bounds in the left side of (116) and the right side of (117), respectively, are
tight as we let A — 0, and they both coincide with the limit in the right side of (124).

Figure 1 illustrates the upper and lower bounds in (116) and (117) witha = 1, p; = %, gi = %
and §; = 0.110 for all i, and n € {1,10,50}. In the special case where {J;} are fixed for all i, the
communication channel is a time-invariant BSC whose capacity is equal to 1 bit per channel use.

By referring to the upper and middle plots of Figure 1, if n = 1 or n = 10, then the exact values
of the differences of the f,-divergences in the right side of (116) are calculated numerically, being
compared to the lower and upper bounds in the left side of (116) and the right side of (117) respectively.
Since the f,-divergence does not tensorize, the computation of the exact value of each of the two
fa-divergences in the right side of (116) involves a pre-computation of 2" probabilities for each of the
probability mass functions Px», Qxn, Pyn and Qyx; this computation is prohibitively complex unless n
is small enough.
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Figure 1. The bounds in Theorem 2 applied to Dy, (Rg?,l) | Qxn) — Dy, (Rg/),\q) || Qyn) (vertical axis) versus
A € [0,1] (horizontal axis). The f,-divergence refers to Theorem 5. The probability mass functions Pxx
and Qxn correspond, respectively, to discrete memoryless sources emitting # i.i.d. Bernoulli(p) and
Bernoulli() symbols; the symbols are transmitted over BSC(d) with (a, p,q,0) = (1, 1, },0.110). The
bounds in the upper and middle plots are compared to the exact values, being computationally feasible
for n = 1 and n = 10, respectively. The upper, middle and lower plots correspond, respectively, to
n=1,n=10,and n = 50.



Entropy 2019, 21, 1022 18 of 80

We now apply the bound in Theorem 4. In view of (51), (54), (55) and (73), for all A € (0,1] and
o> e_%,
A
Dy (Y || Q)
A
Dy, (R 1| Quxr)

L 2,2 _
_ Ko (§1(n,A), Ea(n,A)) 1131(1+/\ (Pl QYi)) ' (125)
C o ROEED (e ax)) -1
i=1
n A2(pi*6i —qix6i)*\
_ fa(Q( M) + £2(1) (1= Ga(nA) = (1 o —q *‘51')) ' (126)

(Z2(n,A) = 1)% (fu(0) + f£(1)) ’ Mpi—a)®\ _,
’ il;Il <1+ 7:(1—q;) ) !

where ¢1(n,A) € [0,1) and &(n,A) € (1,00) are given in (122) and (123), respectively, and for t > 0,

fa(t) + fr(H(A~1) (127)
= (a+t)*log(a +1t) — (a +1)*log(a + 1) + [2(a + 1) log(a + 1) + (a + 1) loge] (1 — ¢t).

Dy, (RU) | Qyn)
Ds, (RU) | Qxn)
It refers to the case where p; = 1, ¢; = 3, and 6; = 0.110 for all i (similarly to Figure 1). The upper and
middle plots correspond to n = 10 with « = 10 and a = 100, respectively; the middle and lower plots
correspond to & = 100 with n = 10 and n = 100, respectively. The bounds in the upper and middle
plots are compared to their exact values since their numerical computations are feasible for n = 10. It is
observed from the numerical comparisons for n = 10 (see the upper and middle plots in Figure 2) that
the upper bounds are informative, especially for large values of « where the f,-divergence becomes
closer to a scaled version of the x2-divergence (see Item (e) in Theorem 5).

Figure 2 illustrates the upper bound on (see (125)—(127)) as a function of A € (0,1].

3.2. lllustration of Theorems 3 and 5

Following the application of the data-processing inequalities in Theorems 2 and 4 to a class of
f-divergences (see Section 3.1), some interesting properties of this class are introduced in Theorem 5.
For a > e_%, letd ot (0, 1)2 — [0, 00) be the binary f,-divergence (see (55)), defined as

ds, (pllq) := Dy, (Bernoulli(p) || Bernoulli(g) ) (128)
2 2
=q (w+g> log <a+Z) +(1—9q) <a+1:g) log <a+1:g>
— (a+1)*log(a+1), Y(p,q) € (0,1)% (129)

Theorem 5 is illustrated in Figure 3, showing that d, (p[|q) is monotonically increasing as a

function of x > e~ 3 (note that the concavity in a is not reflected from these plots because the horizontal
axis of a is in logarithmic scaling). The binary divergence dy, (p||q) is also compared in Figure 3 with
its lower and upper bounds in (61) and (65), respectively, illustrating that these bounds are both
asymptotically tight for large values of «. The asymptotic approximation of dy, (p||q) for large «,
expressed as a function of « and x?(p||q) (see (66)), is also depicted in Figure 3. The upper and lower
plots in Figure 3 refer, respectively, to (p,q) = (0.1,0.9) and (0.2, 0.8); a comparison of these plots show
a better match between the exact value of the binary divergence, its upper and lower bounds, and its
asymptotic approximation when the values of p and g are getting closer.
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Figure 2. The upper bound in Theorem 4 applied to
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; (see (125)—(127)) in the vertical axis

versus A € [0,1] in the horizontal axis. The f,-divergence refers to Theorem 5. The probability mass

functions Px, and Qx, are Bernoulli(p) and Bernoulli(g), respectively, foralli € {1,...,n} with n uses

of BSC(4), and parameters (p,q,6) = (%, %,0.110). The upper and middle plots correspond to n = 10

with @ = 10 and & = 100, respectively; the middle and lower plots correspond to « = 100 with n = 10

and n = 100, respectively. The bounds in the upper and middle plots are compared to the exact values,

being computationally feasible for n = 10.
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Figure 3. Plots of dy, (p||q), its upper and lower bounds in (61) and (65), respectively, and its asymptotic

approximation in (66) for large values of a. The plots are shown as a function of & € [e’%, 1000]. The
upper and lower plots refer, respectively, to (p,q) = (0.1,0.9) and (p,q) = (0.2,0.8).

In view of the results in (66) and (68), it is interesting to note that the asymptotic value of Dy, (P||Q)

for large values of « is also the exact scaling of this f-divergence for any finite value of x > e 3 when
the probability mass functions P and Q are close enough to each other.

We next consider the ratio of the contraction coefficients 1ga Q0 W) where Qy is finitely
#,2(Qx,Wy|x)
supported on X and it is not a point mass (i.e., || > 2), and Wy, is arbitrary. For all a > e 3,
, W / —
1 S Vfﬂt(QX Y‘X) S fﬂl(g):_foc<l)(1 g) , (130)
12 (Qx, Wy x) = (& —1)2(fa(0) + f2(1))
where f,: (0,00) — Ris given in (55), and
fim e [ ¥] ) (131)
" min Qx(x) T

xeX

The left-side inequality in (130) is due to ([25], Theorem 2) (see Proposition 2), and the right-side
inequality in (130) holds due to (53) and (73).
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Figure 4 shows the upper bound on the ratio of contraction coefficients 1 (Que W) , as it is
1.2 (Qx Wy |x)

given in the right-side inequality of (130), as a function of the parameter « > e~2. The curves in
Figure 4 correspond to different values of { € [|X|, 00), as it is given in (131); these upper bounds are
monotonically decreasing in «, and they asymptotically tend to 1 as we let « — co. Hence, in view
of the left-side inequality in (130), the upper bound on the ratio of the contraction coefficients (in the
right-side inequality) is asymptotically tight in a. The fact that the ratio of the contraction coefficients
in the middle of (130) tends asymptotically to 1, as a gets large, is not directly implied by Item (e) of
Theorem 5. The latter implies that, for fixed probability mass functions P and Q and for sufficiently
large «,

Dy, (P||Q) ~ [log(a +1) + 3 loge] x*(P||Q); (132)

however, there is no guarantee that for fixed Q and sufficiently large «, the approximation in (132)
holds for all P. By the upper bound in the right side of (130), it follows however that yf, (Qx, Wy x)
tends asymptotically (as we let « — c0) to the contraction coefficient of the x? divergence.

5
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Figure 4. Curves of the upper bound on the ratio of contraction coefficients %W:B (see the
2(Qx,

right-side inequality of (130)) as a function of the parameter « > e”3. The curves correspond to
different values of ¢ in (131).

3.3. lllustration of Theorem 7 and Further Results

Theorem 7 provides upper and lower bounds on an f-divergence, D¢(Q||Uy ), from any probability
mass function Q supported on a finite set of cardinality # to an equiprobable distribution over this set.
We apply in the following, the exact formula for

dg(p) = lim Qg;%?p)Df(QHUn), p>1 (133)

to several important f-divergences. From (87),

i50) = mex {3 (=) + 0~ (=) | #2100

Since f is a convex function on (0, c0) with f(1) = 0, Jensen’s inequality implies that the function
which is subject to maximization in the right-side of (134) is non-negative over the interval [0, 1]. It
is equal to zero at the endpoints of the interval [0, 1], so the maximum over this interval is attained
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at an interior point. Note also that, in view of Items (d) and (e) of Theorem 7, the exact asymptotic
expression in (134) satisfies

max D u, <d , Vnei2,3,...}, p>1. 135
Jmax Dy(QIU) <dyle), Yne {23, p 139)

3.3.1. Total Variation Distance

This distance is an f-divergence with f(t) := |t — 1| for t > 0. Substituting f into (134) gives

_ f2-1a-)
Irle) = xré‘[%?ﬁ{ T+ (o Tx } (139

By setting to zero the derivative of the function which is subject to maximization in the right side
of (136), it can be verified that the maximizer over this interval is equal to x = ﬁ, which implies that

2(yp—1)

, Vp>1 137
T 7Pz (137)

de(p) =

3.3.2. Alpha Divergences

The class of Alpha divergences forms a parametric subclass of the f-divergences, which includes
in particular the relative entropy, x2-divergence, and the squared-Hellinger distance. For a € R, let

“(P|Q) := Dy, (P Q), (138)

where 1,: (0,00) — R is a non-negative and convex function with u,(1) = 0, which is defined for
t > 0 as follows (see ([8], Chapter 2), followed by studies in, e.g., [10,16,43-45]):

o a(t—1) 1

a € (—00,0)U(0,1)U(1,00),

_ aw—1) 139
Un(t) = tlog t+1—t, a=1, (139)
—log, t, a=0.

The functions 1y and 17 are defined in the right side of (139) by a continuous extension of u, at
« = 0 and a = 1, respectively. The following relations hold (see, e.g., ([44], (10)-(13))):

£ (PIQ) = ks D(PIQ), (140)
D<° (PIIQ)—loge (QIIP), (141)
(PIIQ) 12(PIQ), (142)
V(PlQ) = LxAQlP), (143)
Di (PlIQ) = 47°(P(|Q). (144)

Substituting f := u, (see (139)) into the right side of (134) gives that

A, p) := du, (p) (145)
= lim max D u, 146
tim max D(QU) (146)

— max {H(pl)x 1}. (147)
(1+
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Setting to zero the derivative of the function which is subject to maximization in the right side
of (147) gives
* 1+ ”‘(P — 1) — pa
X=x":= , (148)
(1—a)(p—1)(p* = 1)
where it can be verified that x* € (0,1) foralla € (—o0,0) U (0,1) U (1, 00) and p > 1. Substituting (148)
into the right side of (147) gives that, for all such « and p,

_“ucfl a1\« e\ 1—a
A(zx,p) _ “(“1_ 1) (1 ) (({;)_11))0(“((7 Y ) _1} _ (149)

By a continuous extension of A(a, p) in (149) at« = 1 and « = 0, it follows that for all p > 1

_ _ plogp eplog, p
A(1,p) = 8(0,p) = £1%BE — 1og (L %eL). (150)

Consequently, for all p > 1,

. _ : (1)

,}ggogg;g?p)D(Qllun) = loge ,}g{}OQg;%) D)’ (QUx) (151)
=A(1,p) loge (152)
_ plogp eplog, p
=1 log< -1 ), (153)

where (151) holds due to (140); (152) is due to (146), and (153) holds due to (150). This sharpens the
result in ([33], Theorem 2) for the relative entropy from the equiprobable distribution, D(Q||U,) =
logn — H(Q), by showing that the bound in ([33], (7)) is asymptotically tight as we let n — oo. The
result in ([33], Theorem 2) can be further tightened for finite n by applying the result in Theorem 7 (d)
with f(t) := u;(t) loge = tlogt+ (1 —t)loge for all t+ > 0 (although, unlike the asymptotic result
in (149), the refined bound for a finite n does not lend itself to a closed-form expression as a function
of n; see also ([34], Remark 3), which provides such a refinement of the bound on D(Q||U,,) for finite n
in a different approach).
From (141), (146) and (150), it follows similarly to (153) that for all p > 1

lim max D(U,||Q) = A(0,p) loge 154
dim, max (Un]|Q) = A(0,p) log (154)
_ plogp eplog. p
= o1 log( o1 ) (155)

It should be noted that in view of the one-to-one correspondence between the Rényi divergence
and the Alpha divergence of the same order a« where, for & # 1,

Du(PIQ) =

“il log(1+a(x ~ 1)DY (P Q)), (156)
the asymptotic result in (149) can be obtained from ([34], Lemma 4) and vice versa; however, in [34],
the focus is on the Rényi divergence from the equiprobable distribution, whereas the result in (149)
is obtained by specializing the asymptotic expression in (134) for a general f-divergence. Note also
that the result in ([34], Lemma 4) is restricted to & > 0, whereas the result in (149) and (150) covers all
values of « € R.
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In view of (146), (149), (153), (155), and the special cases of the Alpha divergences in (140)-(144),
it follows that for all p > 1 and for every integer n > 2

_ plogp eplog. p
Qg;%)D(QHUn) <A(1,p) loge = o1 IOg( p ) (157)
_ plogp eplog, p
Qg;g)((p)D(UnHQ) < A(0,p) loge = o1 log( o1 ), (158)
max 3(QlIU) < 28(2,0) = L1, (159)
QePu(p) - 4p
_ 1)2
2(1,10) < 2A(~1,p) = P ) 160
omax X (Un[Q) <2A(—1,p) ip (160)
4o —1)?
A% (Q|U,) < AR, :L, 161
oTax A QlUn) < 38(2.0) = =51 (161)

and the upper bounds on the right sides of (157)—(161) are asymptotically tight in the limit where n
tends to infinity.
The next result characterizes the function A: (0,00) x (1,00) — R as it is given in (149) and (150).

Theorem 9. The function A satisfies the following properties:

(a) Forevery p > 1, A(a, p) is a convex function of a over the real line, and it is symmetric around a = %
with a global minimum at o = %
(b)  The following inequalities hold:

aA(w,p) < BAB,p), 0<a<B<oo, (162)
(1-B)ABPp) = (1—a)A(a,p), —-o<a<p<l (163)

(c) For every a € R, A(a,p) is monotonically increasing and continuous in p € (1,00), and
lim A(a,p) = 0.
p—1t

Proof. See Appendix H.1. [

Remark 6. The symmetry of A(w, p) around a = } (see Theorem 9 (a)) is not implied by the following
symmetry property of the Alpha divergence around o = % (see, e.g., ([8], p. 36)):

D (p|Q) = D (Q|IP). (164)

Relying on Theorem 9, the following corollary gives a similar result to (146) where the order of Q
and Uy, in DX‘) (+]]-) is switched.

Corollary 1. Foralla € Randp > 1,

lim, max D (Unl|Q) = Ala, p). (165)

Proof. See Appendix H.2. O
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We next further exemplify Theorem 7 for the relative entropy. Let f(t) := tlogt+ (1 —t)loge

fort > 0. Then, f"(t) = lofe, so the bounds on the second derivative of f over the interval [%, p] are

loge
o

givenby M = ploge and m = Theorem 7 (h) gives the following bounds:

(nQI3 ~ 1) loge p (1|QI3 ~ 1) loge

< <
3 < Q) < 2 (166)
From ([33], Theorem 2) (and (157)),
plogp eplog, p
< 751 %l
D(QIU) < £%EL —1og (LBl ). (167)
Furthermore, (96) gives that
D(Q||Ux) < §(p—1)*loge, (168)

which, for p > 1, is a looser bound in comparison to (167). It can be verified, however, that the
dominant term in the Taylor series expansion (around p = 1) of the right side of (167) coincides with
the right side of (168), so the bounds scale similarly for small values of p > 1.

Suppose that we wish to assert that, for every integer n > 2 and for all probability mass functions
Q € Pxu(p), the condition

D(QJ||U,) < dloge (169)

holds with a fixed d > 0. Due to the left side inequality in (89), this condition is equivalent to the
requirement that

I D(Q[|Uy) < dloge. 170
dim, max  D(QUx) < dloge (170)

Due to the asymptotic tightness of the upper bound in the right side of (157) (as we let n — o),
requiring that this upper bound is not larger than d log e is necessary and sufficient for the satisfiability

of (169) for all n and Q € Py (p). This leads to the analytical solution p < pggx (d) with (see Appendix I)

_ W

e (171)

where Wy and W_; denote, respectively, the principal and secondary real branches of the Lambert W
function [37]. Requiring the stronger condition where the right side of (168) is not larger than d loge
(2)

leads to the sufficient solution p < pmax with the simple expression
02 (d) =1+ V/3d. (172)

In comparison to pl(rlu)ix in (171), pr(,%gx in (172) is more insightful; these values nearly coincide for
small values of d > 0, providing in that case the same range of possible values of p for asserting the

satisfiability of condition (169). As it is shown in Figure 5, for 4 < 0.01, the difference between the

maximal values of p in (171) and (172) is marginal, though in general pﬁﬁgx(d ) > pggx(d ) foralld > 0.
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101 !

10'2 1 1 1 1 1 bl
10° 10 107 102 10 10° 10
d

Figure 5. A comparison of the maximal values of p (minus 1) according to (171) and (172), asserting
the satisfiability of the condition D(Q||U,) < dloge, with an arbitrary d > 0, for all integers n > 2
and probability mass functions Q supported on {1, ...,n} with Z‘:‘n—: < p. The solid line refers to the
necessary and sufficient condition which gives (171), and the dashed line refers to a stronger condition
which gives (172).

3.3.3. The Subclass of f-Divergences in Theorem 5

This example refers to the subclass of f-divergences in Theorem 5. For these f,-divergences, with
a>e 3, substituting f := f, from (55) into the right side of (134) gives that forall p > 1

®(a,p) :=dj, (p) (173)
= lim oex, D, (QlIUx) (174)
o 2 o 2
— xrg[%é] {x (zx—l— 1T (o—1x = 1)x> log <¢x—|— 1T (o—1)x = 1)x> —(a+1)" log(a+1)
1 71 2l 71 175
=9 (x ) o8 (e ) | az)

The exact asymptotic expression in the right side of (175) is subject to numerical maximization.
We next provide two alternative closed-form upper bounds, based on Theorems 5 and 7, and
study their tightness. The two upper bounds, for all & > e ? and p > 1, are given by (see Appendix J)

1 —1)2
P(a,p) < [IOg(Hl) +3loge — aoge] (=1

+1 4p
loge (P—l)(29+1)(p+2)>2
s (ot ‘ (176)
and
CI)(D( 3 (P — 1)2
) < [log(zx +p)+ 2loge} 74(7 . (177)
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Suppose that we wish to assert that, for every integer n > 2 and for all probability mass functions
Q € Pu(p), the condition

Dy, (QllUy) < dloge (178)

holds with a fixed d > 0 and & > e~3. Due to (173)—(174) and the left side inequality in (89), the
satisfiability of the latter condition is equivalent to the requirement that

P(a,p) <dloge. (179)

In order to obtain a sufficient condition for p to satisfy (179), expressed as an explicit function of «
and d, the upper bound in the right side of (176) is slightly loosened to

®(a,p) <alp—1)2+bmin{p—1,(p —1)?}, (180)
where
_ 4loge
b:= jlog(a+1)+ 3 loge, (182)

forallp >1and a > e~3. The upper bounds in the right sides of (176), (177) and (180) are derived in
Appendix J.

In comparison to (179), the stronger requirement that the right side of (180) is less than or equal to
dlog e gives the sufficient condition

P < pmax (&, d) := max{p1(a,d), p2(a,d) }, (183)
with

2 —
Vb +4adloge — b (184)

p1(a,d) =1+ o ,

dloge
po(a,d) =1+ 1/ Hgb . (185)

Figure 6 compares the exact expression in (175) with its upper bounds in (176), (177) and (180).
These bounds show good match with the exact value, and none of the bounds in (176) and (177) is
superseded by the other; the bound in (180) is looser than (176), and it is derived for obtaining the
closed-form solution in (183)—(185). The bound in (176) is tighter than the bound in (177) for small
values of p > 1, whereas the latter bound outperforms the first one for sufficiently large values of p. It
has been observed numerically that the tightness of the bounds is improved by increasing the value
of «, and the range of parameters of p over which the bound in (176) outperforms the second bound
in (177) is enlarged when « is increased. It is also shown in Figure 6 that the bound in (176) and its
loosened version in (180) almost coincide for sufficiently small values of p (i.e., for p is close to 1), and
also for sufficiently large values of p.
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j2}
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=
= 100k Exact
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------- Upper bound 1
= = = = Upper bound 2
-1 i
10 === == Upper bound 3
1072 :
10° 10! 10?
P

Figure 6. A comparison of the exact expression of ®(«, p) in (175), with « = 1, and its three upper
bounds in the right sides of (176), (177) and (180) (called "Upper bound 1’ (dotted line), "Upper bound 2’
(thin dashed line), and ‘Upper bound 3’ (thick dashed line), respectively).

3.4. An Interpretation of ug(-, -) in Theorem 7

We provide here an interpretation of u¢(n,p) in (77), for p > 1 and an integer n > 2; note that

us(n,1) = 0 since Py(1) = {Uy}. Before doing so, recall that (82) introduces an identity which
significantly simplifies the numerical calculation of us(n,p), and (85) gives (asymptotically tight)
upper and lower bounds.

The following result relies on the variational representation of f-divergences.

Theorem 10. Let f: (0,00) — R be convex with f(1) = 0, and let f: R — R U {oo} be the convex conjugate
function of f (a.k.a. the Fenchel-Legendre transform of f), i.e.,

(a)

(b)

f(x):= stu%){tx -f®}, xeR. (186)

Let p > 1, and define A, := {1,...,n} for an integer n > 2. Then, the following holds:

For every P € Py(p), a random variable X ~ P, and a function ¢: A, — R,

fj(g(i)). (187)

Blge(X)] > uy(np) + Y Flseli) e (158)

with X ~ P.

Proof. See Appendix K. [J

Remark 7. The proof suggests a constructive way to obtain, for an arbitrary ¢ > 0, a function g which
satisfies (188).
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4. Applications in Information Theory and Statistics

4.1. Bounds on the List Decoding Error Probability with f-Divergences

The minimum probability of error of a random variable X given Y, denoted by ey|y, can be
achieved by a deterministic function (maximum-a-posteriori decision rule) £L*: Y — X (see [42]):

exiy = min PIX £ £(Y) (189)
— P[X £ £*(Y) (190)
=1-FE {rxrgi%( PXY(x|Y)} . (191)

Fano’s inequality [46] gives an upper bound on the conditional entropy H(X|Y) as a function of
ex|y (or, otherwise, providing a lower bound on ey)y as a function of H(X|Y)) when X takes a finite
number of possible values.

The list decoding setting, in which the hypothesis tester is allowed to output a subset of given
cardinality, and an error occurs if the true hypothesis is not in the list, has great interest in information
theory. A generalization of Fano’s inequality to list decoding, in conjunction with the blowing-up
lemma ([17], Lemma 1.5.4), leads to strong converse results in multi-user information theory. This
approach was initiated in ([47], Section 5) (see also ([48], Section 3.6)). The main idea of the successful
combination of these two tools is that, given a code, it is possible to blow-up the decoding sets in a
way that the probability of decoding error can be as small as desired for sufficiently large blocklengths;
since the blown-up decoding sets are no longer disjoint, the resulting setup is a list decoder with
sub-exponential list size (as a function of the block length).

In statistics, Fano’s-type lower bounds on Bayes and minimax risks, expressed in terms of
f-divergences, are derived in [49,50].

In this section, we further study the setup of list decoding, and derive bounds on the average
list decoding error probability. We first consider the special case where the list size is fixed (see
Section 4.1.1), and then move to the more general case of a list size which depends on the channel
observation (see Section 4.1.2).

4.1.1. Fixed-Size List Decoding

A generalization of Fano’s inequality for fixed-size list decoding is given in ([42], (139)), expressed
as a function of the conditional Shannon entropy (strengthening ([51], Lemma 1)). A further
generalization in this setup, which is expressed as a function of the Arimoto-Rényi conditional entropy
with an arbitrary positive order (see Definition 9), is provided in ([42], Theorem 8).

The next result provides a generalized Fano’s inequality for fixed-size list decoding, expressed in
terms of an arbitrary f-divergence. Some earlier results in the literature are reproduced from the next
result, followed by its strengthening as an application of Theorem 1.

Theorem 11. Let Pxy be a probability measure defined on X x Y with |X| = M. Consider a decision rule
LY — ()L(), where ()L() stands for the set of subsets of X with cardinality L, and L < M is fixed. Denote
the list decoding error probability by P :=P[X ¢ L(Y)]. Let Uy denote an equiprobable probability mass
function on X. Then, for every convex function f: (0,00) — Rwith f(1) =0,

B[y (xy () 1)) = 1 £ (MUY 4 (12 ) 7 (s )- (192)

Proof. See Appendix L. O

Remark 8. The case where L = 1 (i.e., a decoder with a single output) gives ([50], (5)).
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As consequences of Theorem 11, we first reproduce some earlier results as special cases.

Corollary 2 ([42] (139)). Under the assumptions in Theorem 11,

H(X|Y) < logM—d<PE 11— AL4> (193)

where d(-||-): [0,1] x [0,1] — [0, +oco| denotes the binary relative entropy, defined as the continuous extension
of D([p, 1= pllllg,1—q]) := plog & + (1 — p) log 1= for p,q € (0,1).

Proof. The choice f(t) := tlogt+ (1 —t)loge, for t > 0, (note that f(t) = uy(t)loge with uq(-)
defined in (139)) gives

E[Df(PX|Y('|Y) | UM)} = /ydPY(y) D (P (*1y) |Unm) (194)
- /y dPy(y) [logM — H(X[Y = y)] (195)
=logM — H(X|Y), (196)
and
&f(A/I(lL_I)‘:))Jr(l—ALA) f(AZ/\I/IfﬁL>=d<P£||1—AL/I>. (197)

Substituting (194)—(197) into (192) gives (193). O

Theorem 11 enables to reproduce a result in [42] which generalizes Corollary 2. It relies on Rényi
information measures, and we first provide definitions for a self-contained presentation.

Definition 8 ([40]). Let Px be a probability mass function defined on a discrete set X. The Rényi entropy of
order w € (0,1) U (1,00) of X, denoted by Hy(X) or Hy(Px), is defined as

1 [\
Hy(X) := T2 log ) Px(x) (198)
XeEX
«
=~ log Px]l. (199)

The Rényi entropy is continuously extended at orders 0, 1, and oo; at order 1, it coincides with the Shannon
entropy H(X).

Definition 9 ([52]). Let Pxy be defined on X x Y, where X is a discrete random variable. The Arimoto-Rényi
conditional entropy of order a € [0, 00 of X given Y is defined as follows:

e Ifae(0,1)U(1,00),then

Ha(X|Y) = 1f[x log E [( prgy(xm) ] (200)
xXe
= —— 108 E [||Pxy (-[Y) ls] (201)
1—
=1 - . log /ydPy(y) exp (“a Hy (XY = y)> : (202)

o The Arimoto-Rényi conditional entropy is continuously extended at orders 0, 1, and co; at order 1, it
coincides with the conditional Shannon entropy H(X|Y).
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Definition 10 ([42]). Forall x € (0,1) U (1,00), the binary Rényi divergence of order a, denoted by d(p||q)
for (p,q) € [0,1)2, is defined as Dy([p, 1 — p] || [3,1 — q)). It is the continuous extension to [0,1]? of

1
—— log(p*g' "+ (1—p)*(1—)' ). (203)

da(pllq) =

Fora =1,
di(pllq) :== lim dy(pllg) = d(pllq)- (204)

The following result, generalizing Corollary 2, is shown to be a consequence of Theorem 11. It
has been originally derived in ([42], Theorem 8) in a different way. The alternative derivation of this
inequality relies on Theorem 11, applied to the family of Alpha-divergences (see (138)) as a subclass of
the f-divergences.

Corollary 3 ([42] Theorem 8). Under the assumptions in Theorem 11, for & € (0,1) U (1,00),

H(X[Y) < log M — dg (PL 11— Aﬁ) (205)
_ 1! log (L1 (1— Pp)" + (M— L)' PY) (206)
1—«a L)

with equality in (205) if and only if

L g Lly)
Pxpy(xly) = 1P, (207)
T x € L(y).
Proof. See Appendix M. [
Another application of Theorem 11 with the selection f(t) := |t — 1|°, for t € [0,00) and a

parameter s > 1, gives the following result.

Corollary 4. Under the assumptions in Theorem 11, for all s > 1,

)

xeX

L S] ) s ) (208)

L 1— 1— _%
> . S _ S
Pr>1- (L +(M-1L) ) <IE i

Pxpy (x[Y) — —

where (208) holds with equality if X and Y are independent with X being equiprobable. For s = 1 and
s = 2, (208) respectively gives that

L 1 1
Pr Zl—M—E x;( PX\Y(X|Y)_M / (209)
L L L

The following refinement of the generalized Fano’s inequality in Theorem 11 relies on the version
of the strong data-processing inequality in Theorem 1.
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Theorem 12. Under the assumptions in Theorem 11, let the convex function f: (0,00) — R be twice
differentiable, and assume that there exists a constant my > 0 such that

f(t) >my, VteI(E,8), (211)
where
=M inf  Pyy(x|y), 212
G=Mint Py (aly) (12)
Gr=M sup Pyyy(x[y) (213)
(xy)eXx)y

and the interval Z(-,-) is defined in (23). Let u™ := max{u, 0} for u € R. Then,

(a)

B[ (P () )] = 3 (M) o (12 1) £ (%)

1-P, P \*
L M—-L) ~

+ gmp M (E [Pxy (X[Y)] (214)

(b)  If the list decoder selects the L most probable elements from X, given the value of Y € ), then (214) is
strengthened to

E Dy (Pyy (1Y) || Un) | = % f<M(1L_P£)> * (1 B AL4> f(A]/\I/IfEJ

+3mg M (E [Py (X]Y)] - - Pﬁ) , (215)

L

where the last term in the right side of (215) is necessarily non-negative.

Proof. See Appendix N. [

An application of Theorem 12 gives the following tightened version of Corollary 2.

Corollary 5. Under the assumptions in Theorem 11, the following holds:

(a) Inequality (193) is strengthened to

1-p, P, \T
L loge (E[PX|Y(X|Y)]_ L _M—L>

H(X|Y) <logM —d| P, ||1—— ) —

) stogm—a(Pe 1 57 ) -5 sup Py (+19)

v (216)
(xy)eX xy

(b)  If the list decoder selects the L most probable elements from X, given the value of Y € Y, then (216) is
strengthened to

loge (E[PX\Y(X|Y)] - %)+

2 sup  Pxjy(xy)
(xy)eXx)y

H(X|Y) < log M — d(Pg 11— Aﬁ) -

(217)
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Proof. The choice f(t) := tlogt+ (1 —t)loge, for t > 0, gives (see (23) and (211)—(213))
miM=M inf f"t
/ eziey’ )

_ Mloge
¢

loge

sup  Pyjy(xly)
(xy)eX xy

(218)

Substituting (194)—(197) and (218) into (214) and (215) give, respectively, (216) and (217). O

Remark 9. Similarly to the bounds on P, in (193) and (205), which tensorize when Py is replaced by a
n
product probability measure Pynyn (x|y) = T1Px,y,(xily:), this is also the case with the new bounds in (216)
= =1
and (217).

Remark 10. The ceil operation in the right side of (217) is redundant with P, denoting the list decoding error
probability (see (A335)—(A341)). Howeuver, for obtaining a lower bound on P, with (217), the ceil operation
assures that the bound is at least as good as the lower bound which relies on the generalized Fano’s inequality
in (193).

Example 1. Let X and Y be discrete random variables taking values in X = {0,1,...,8} and Y = {0,1},
respectively, and let Pxy be the joint probability mass function, given by

(219)

T
Py ()] 1 (128 64 32 16 8 4 2 1 1
XYW Y] xypexxy = 512 2 2 2 2 8 16 32 64 128

Let the list decoder select the L most probable elements from X, given the value of Y € ). Table 1
compares the list decoding error probability P, with the lower bound which relies on the generalized Fano’s
inequality in (193), its tightened version in (217), and the closed-form lower bound in (210) for fixed list sizes
ofL=1,...,4. For L = 3and L = 4, (217) improves the lower bound in (193) (see Table 1). If L = 4, then
the generalized Fano’s lower bound in (193) and also (210) are useless, whereas (217) gives a non-trivial lower
bound. 1t is shown here that none of the new lower bounds in (210) and (217) is superseded by the other.

Table 1. The lower bounds on P in (193), (210) and (217), and its exact value for fixed list size L (see
Example 1).

L ExactP, (193) (217) (210)

1 0.500 0.353 0.353 0.444

2 0.250 0.178 0.178 0.190

3 0.125 0.065 0.072 534x107°
4 0.063 0 0.016 0

4.1.2. Variable-Size List Decoding

In the more general setting of list decoding where the size of the list may depend on the channel
observation, Fano’s inequality has been generalized as follows.
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Proposition 5 (([48], Appendix 3.E) and [53]). Let Pxy be a probability measure defined on X x Y with
|X| = M. Consider a decision rule L: Y — 2%, and let the (average) list decoding error probability be given
by Pp :=P[X ¢ L(Y)] with |L(y)| > 1forally € Y. Then,

H(X|Y) < h(Pz) +E[log |L(Y)|] + Pz log M, (220)
where h: [0,1] — [0, log 2] denotes the binary entropy function. If |L(Y)| < N almost surely, then also
H(X|Y) < h(Pz) + (1—Pg)log N + P, log M. (221)

By relying on the data-processing inequality for f-divergences, we derive in the following an
alternative explicit lower bound on the average list decoding error probability P.. The derivation
relies on the E.,, divergence (see, e.g., [54]), which forms a subclass of the f-divergences.

Theorem 13. Under the assumptions in (220), for every v > 1,

Ley  E[EMI] 1

Pr 2 M 2

v

)3

xeX

Py (xlY) — 1 ] - (222)

Let v > 1, and let |[L(y)| < %for ally € Y. Then, (222) holds with equality if, for every y € Y, the list
decoder selects the |L(y)| most probable elements in X given Y = y; if x;(y) denotes the (-th most probable
element in X given Y =y, where ties in probabilities are resolved arbitrarily, then (222) holds with equality if

a(y), vee{1,..., L),

Px\y(xé(]/) ly) = 1—a(y)|L(y)] (223)
W, V€€{|E(y)|+1,,M},

with a: Y — [0, 1] being an arbitrary function which satisfies

1
M =20 < gy

Vye. (224)

Proof. See Appendix O. O
Remark 11. By setting v = 1and |L(Y)| = L (i.e., a decoding list of fixed size L), (222) is specialized to (209).

Example 2. Let X and Y be discrete random variables taking their values in X = {0,1,2,3,4}and Y = {0,1},
respectively, and let Pxy be their joint probability mass function, which is given by

Ju—y

{PXY(OIO) = Pxy(1,0) = Pxy(2,0) = 3, Pxy(3,0) = Pxy(4,0) = £, 025,
3

Pxy(0,1) = Pxy(1,1) = Pxy(2,1) = 4,  Pxy(3,1) = Pxy(4,1) = 2

Let £(0) :={0,1,2} and L(1) := {3,4} be the lists in X, given the value of Y € Y. We get Py(0) =
Py(1) = 1, so the conditional probability mass function of X given Y satisfies Pxjy(xly) = 2Pxy(x,y)
for all (x,y) € X x Y. It can be verified that, if v = 3, then max{|L(0)|,|L(1)[} = 3 < %, and
also (223) and (224) are satisfied (here, M := |X| = 5, (0) = 1 = L and (1) = % € [1,1]). By
Theorem 13, it follows that (222) holds in this case with equality, and the list decoding error probability is equal
toPr =1—E[a(Y)|L(Y)|] = 1 (ie., it coincides with the lower bound in the right side of (222) with y = 3).
On the other hand, the generalized Fano’s inequality in (220) gives that P > 0.1206 (the left side of (220)
is H(X|Y) = 3 log2 — 1 log3 = 2.1038 bits); moreover, by letting N := ryneaf |L(y)| = 3, (221) gives the
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looser lower bound Py > 0.0939. This exemplifies a case where the lower bound in Theorem 13 is tight, whereas
the generalized Fano’s inequalities in (220) and (221) are looser.

4.2. A Measure for the Approximation of Equiprobable Distributions by Tunstall Trees

The best possible approximation of equiprobable distributions, which one can get by using tree
codes has been considered in [38]. The optimal solution is obtained by using Tunstall codes, which
are variable-to-fixed lossless compression codes (see ([55], Section 11.2.3), [56]). The main idea behind
Tunstall codes is parsing the source sequence into variable-length segments of roughly the same
probability, and then coding all these segments with codewords of fixed length. This task is done by
assigning the leaves of a Tunstall tree, which correspond to segments of source symbols with a variable
length (according to the depth of the leaves in the tree), to codewords of fixed length. The following
result links Tunstall trees with majorization theory.

Proposition 6 ([38] Theorem 1). Let Py be the probability measure generated on the leaves by a Tunstall tree
T, and let Q, be the probability measure generated by an arbitrary tree S with the same number of leaves as of
T. Then, Py < Qq.

From Proposition 6, and the Schur-convexity of an f-divergence D (-||Uy) (see ([38], Lemma 1)),
it follows that (see ([38], Corollary 1))

D¢ (Pe||Un) < Dp(QellUn), (226)

where 1 designates the joint number of leaves of the trees 7 and S.
Before we proceed, it is worth noting that the strong data-processing inequality in Theorem 6
implies that if f is also twice differentiable, then (226) can be strengthened to

Dy (Pyl|Un) + ncs (nmin, nmax) (1Qel3 — 1 PelI3) < Dy(QellUn), (227)

where gmax and gmin denote, respectively, the maximal and minimal positive masses of Q, on the n
leaves of a tree S, and ¢ (-, -) is given in (26).

We next consider a measure which quantifies the quality of the approximation of the probability
mass function Py, induced by the leaves of a Tunstall tree, by an equiprobable distribution U, over
a set whose cardinality (n) is equal to the number of leaves in the tree. To this end, consider
the setup of Bayesian binary hypothesis testing where a random variable X has one of the two
probability distributions

{HO X~ Pg, (228)

H12 leln,

with a-priori probabilities P[Hy| = w, and P[H;| = 1 — w for an arbitrary w € (0,1). The measure being
considered here is equal to the difference between the minimum a-priori and minimum a-posteriori
error probabilities of the Bayesian binary hypothesis testing model in (228), which is close to zero if
the two distributions are sufficiently close.

The difference between the minimum a-priori and minimum a-posteriori error probabilities of
a general Bayesian binary hypothesis testing model with the two arbitrary alternative hypotheses
Hp: X ~ Pand H; : X ~ Q with a-priori probabilities w and 1 — w, respectively, is defined to be the
order-w DeGroot statistical information Z,, (P, Q) [57] (see also ([16], Definition 3)). It can be expressed
as an f-divergence:
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where ¢, : [0,00) — R is the convex function with ¢, (1) = 0, given by (see ([16], (73)))
$o(t) :=min{w,1 —w} —min{w,1 —wt}, t>0. (230)

The measure considered here for quantifying the closeness of P, to the equiprobable distribution
U, is therefore given by

dwn(Py) := Dy, (Pr||Un), VYwe (0,1), (231)

which is bounded in the interval [0, min{w, 1 — w}].
The next result partially relies on Theorem 7.

Theorem 14. The measure in (231) satisfies the following properties:

(a) It is the minimum of Dy, (P||Uy) with respect to all probability measures P € Py that are induced by an
arbitrary tree with n leaves.

(b)
dwn(Py) < D, Uy), 232
wn(Pe) < max Dy, (Qplltn) (232)
with the function ¢, (-) in (230), the interval T'y(p) in (79), the probability mass function Qg in (80), and
0= pi—m is the reciprocal of the minimal probability of the source symbols.
(c)  The following bound holds for every n € N, which is the asymptotic limit of the right side of (232) as we
let n — oco:
donlP) < max {xgu( otz )+ 090 (17— ) |- @
onlf) = BN\ T - e P\ T4 o1 ) S
(d) If f: (0,00) — R is convex and twice differentiable, continuous at zero and f(1) = 0, then
Ydyn(P, 1-w
D¢ (Py||Uy) :/0 ‘“Z]g ) f”( x ) dw. (234)

Proof. See Appendix P1. [

Remark 12. The integral representation in (234) provides another justification for quantifying the closeness of
Py to an equiprobable distribution by the measure in (231).

Figure 7 refers to the upper bound on the closeness-to-equiprobable measure d, , (Py) in (233) for
Tunstall trees with n leaves. The bound holds for all n € N, and it is shown as a function of w € [0, 1]
for several values of p € [1, c0]. In the limit where p — oo, the upper bound is equal to min{w, 1 — w}
since the minimum a-posteriori error probability of the Bayesian binary hypothesis testing model
in (228) tends to zero. On the other hand, if p = 1, then the right side of (233) is identically equal to
zero (since ¢, (1) = 0).

Theorem 14 gives an upper bound on the measure in (231), for the closeness of the probability
mass function generated on the leaves by a Tunstall tree to the equiprobable distribution, where this
bound is expressed as a function of the minimal probability mass of the source. The following result,
which relies on ([33], Theorem 4) and our earlier analysis related to Theorem 7, provides a sufficient
condition on the minimal probability mass for asserting the closeness of the compression rate to the
Shannon entropy of a stationary and memoryless discrete source.
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Figure 7. Curves of the upper bound on the measure d,, (P;) in (233), valid for all n € N, as a function
1

Pmin *

of w € [0,1] for different values of p :=

Theorem 15. Let P be a probability mass function of a stationary and memoryless discrete source, and let the
emitted source symbols be from an alphabet of size D > 2. Let C be a Tunstall code which is used for source
compression; let m and X denote, respectively, the fixed length and the alphabet of the codewords of C (where
|X| > 2), referring to a Tunstall tree of n leaves with n < |X|™ < n+ (D — 1). Let pmin be the minimal
probability mass of the source symbols, and let

d=d(m,e) = (235)
with an arbitrary € > 0 such that d > 0. If
Wo (fe_d_l)

A " 236

where Wy and W_4 denote, respectively, the principal and secondary real branches of the Lambert W function [37],
then the compression rate of the Tunstall code is larger than the Shannon entropy of the source by a factor which
is at most 1 4 ¢.

Proof. See Appendix P2. [

Remark 13. The condition in (236) can be replaced by the stronger requirement that

1
> 237

Unless d is a small fraction of unity, there is a significant difference between the condition in (236) and the
more restrictive condition in (237) (see Figure 8).
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0.50

Figure 8. Curves for the smallest values of pyp, in the setup of Theorem 15, according to the condition
in (236) (solid line) and the more restrictive condition in (237) (dashed line) for binary Tunstall codes
which are used to compress memoryless and stationary binary sources.

Example 3. Consider a memoryless and stationary binary source, and a binary Tunstall code with codewords
of length m = 10 referring to a Tunstall tree with n = 2™ = 1024 leaves. Letting e = 0.1 in Theorem 15, it
follows that if the minimal probability mass of the source satisfies pmin > 0.0978 (see (235), and Figure 8 with
d= msllj)r%e = 0.6301), then the compression rate of the Tunstall code is at most 10% larger than the Shannon

entropy of the source.
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Appendix A. Proof of Theorem 1

We start by proving Item (a). By our assumptions on Qx and Wy,

Px(x), Qx(x) >0, Vxe X, (A1)
Y Wyx(ylx) >0, Vyel, (A2)
xeX
Y Wyx(ylx) =1, Vxed, (A3)
yey
Wy x (y]x) >0, V(x,y) € X x ). (A4)

From (20), (21), (A1), (A2) and (A4), it follows that

=Y Px(x)Wyx(ylx) >0, Vyel, (A5)
xeX
= Y Qx(¥)Wyx(ylx) >0, Vye), (A6)
xeX
which imply that, forally € ),
o DX Pr(y) sup Px(x) (A7)
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Since by assumption Py and Qyx are supported on X, and Py and Qy are supported on ) (see (A5)
and (A6)), it follows that the left side inequality in (A7) is strict if the infimum in the left side is equal
to 0, and the right side inequality in (A7) is strict if the supremum in the right side is equal to co. Hence,
due to (18), (19) and (23),

Px(x) Py(y)
Qx(x)" Qv(y)

Since by assumption f: (0,00) — R is convex, it follows that its right derivative f’ (-) exists,
and it is monotonically non-decreasing and finite on (0, %) (see, e.g., ([58], Theorem 1.2) or ([59],
Theorem 24.1)). A straightforward generalization of ([60], Theorem 1.1) (see ([60], Remark 1)) gives

€7I(&1,8), Y(xvy e X x). (A8)

Df(Px[|Qx) — Df(Py[lQy) = ). {Qx(x) Wy x (yx) A( Pxx) Pyly) >} (A9)

(xy)eXxy

where
Au,v) = f(u) — f(v) — fi(v)(u—0), wu,o0>0. (A10)

In comparison to ([60], Theorem 1.1), the requirement that f is differentiable on (0, o) is relaxed

here, and the derivative of f is replaced by its right-side derivative. Note that if f is differentiable, then
A (%, %) with A(+, ) as defined in (A10) is Bregman’s divergence [61]. The following equality,
expressed in terms of Lebesgue-Stieltjes integrals, holds by ([16], Theorem 1):

NGy

Qx(x)" Qv(y)
(PGl (e wpegy
[ (G ol (-am) o GE e
From (18), (19), (22), (A8) and (A11), if £X <(x)) > SYY(@))' then
Py(s)

M(Gutey o) 2 2@ | QQQ(%) (Gaay o)

o025 o)
and similarly, if 200 < 5 then

(G a) 2o [ (-G8

~owe (G- o)

By combining (A9), (A12) and (A13), it follows that

_ ] . o (Px®) P
D¢ (Px||Qx) — Df(Py[|Qy) > c¢(G1,82) (x,y);(xy{QX( ) Wy x (v )<QX(X) Qy(y)) } (A14)
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and an evaluation of the sum in the right side of (A14) gives (see (20), (21) and (A3))

x x Px(x) _ Pr(y) 2
e Xy{Qx( ) Wx(yle) (G0 - 2] }

P2 2
- {8 Tt} 2 {20 T mmnton)

xeX yeY yeY xeX
=1 =Py(y)
2
+ T T ouomatin} (a5
yey QR W) Jex
=Qy()
2 2

_y Pi(x) Y Py(y) (A16)

= Qx(x) ey Qy(y)

e (P -0x(0)*  « (Pr(y) - Qr(v)
"L oaw & o

= x*(Px||Qx) — X*(Py || Qy)- (A18)

(A17)

Combining (A14)—(A18) gives (24); (25) is due to the data-processing inequality for f-divergences
(applied to the x?-divergence), and the non-negativity of ¢ £(C1,82) in (22).

The x2-divergence is an f-divergence with f(t) = (t — 1) for t > 0. The condition in (22) allows
to set here c¢(¢1,62) = 1, implying that (24) holds in this case with equality.

We next prove Item (b). Let f be twice differentiable on Z := Z (&1, ) (see (23)), and let (u,v) €
T x T with v > u. Dividing both sides of (22) by v — u, and letting v — uT, yields cp(&1,82) < 5 f(u).
Since this holds for all u € Z, it follows that c(&1, §2) < 1n Zf "(t). We next show that c¢(¢1,&2) in (26)

fulfills the condition in (22), and therefore it is the largest possible value of ¢ to satisfy (22). By the
mean value theorem of Lagrange, for all (1,v) € Z x Z with v > u, there exists an intermediate value
¢ € (u,v) such that f'(v) — f'(u) = f"(&) (v —u); hence, f'(v) — f'(u) > 2¢f(&1,¢2) (v —u), so the
condition in (22) is indeed fulfilled with c; := c¢(¢1,$2) as given in (26).

We next prove Item (c). Let f*: (0,00) — R be the dual convex function which is given by
f5(t) == tf(}) forall t > 0 with f*(1) = f(1) = 0. Since Px, Py, Qx and Qy are supported on X
(see (A5) and (A6)), we have

D¢ (Px[|Qx) = D+ (Qx|| Px), (A19)
D¢ (Py[|Qy) = Dg+(Qyl|Py), (A20)
oo Qx(x) Px(x)\ ' _ 1

G = xlg?ff Px(x) <;Sclel§ QX(X)> Y (A21)
o Q) (L Px(®)\ T 1

2= )sclelg Px(x) <xlg?f€ QX(X)> & (A22)

Consequently, it follows that

D¢(Px||Qx) — Df(Py[|Qy) = Ds+(Qx||Px) — D« (Qyl|Py) (A23)
> o (8,63) [X*(QxIPx) — x*(QylIPy)] (A24)
= cr (£, 2) P(QxIPx) — X*(QvlIPY)] (A25)

where (A23) holds due to (A19) and (A20); (A24) follows from (24) with f, Px and Qx replaced by f*,
Qx and Py, respectively, which then implies that ¢; and ¢» in (18) and (19) are, respectively, replaced
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by ¢} and &5 in (A21) and (A22); finally, (A25) holds due to (A21) and (A22). Since by assumption f is
twice differentiable on (0, 00), so is f*, and

0 =5(3) >0 -
Hence,
() =1 inf (7)) (A27)
€2’ ¢ 2 uez(é,%)
. 1 3 1

L {(u) ! <u>} (a28)

=1 3
o2 tezl(rgllf,gz){t f(O} (A29)

where (A27) follows from (24) with f, ¢; and ¢, replaced by f*, é and é,l—l, respectively; (A28) holds
due to (A26), and (A29) holds by substituting ¢t =: % This proves (27) and (30), where (28) is due to
the data-processing inequality for f-divergences, and the non-negativity of cs« (-, -).

Similarly to the condition for equality in (24), equality in (27) is satisfied if f*(t) = (¢t —1)?
for all t > 0, or equivalently f(t) = tf*(1) = (t_tl)z for all t > 0. This f-divergence is Neyman’s
x?-divergence where D¢(P|Q) := xX*(Q||P) for all P and Q with cp+ = 1 (due to (30), and since
£ (t) = 2 forall t > 0).

The proof of Item (d) follows that same lines as the proof of Items (a)—(c) by replacing the condition
in (22) with a complementary condition of the form

fi(o) = fi(u) <2e¢(81,82) (v—u), Yu,veI(E,E2) u<o. (A30)

We finally prove Item (e) by showing that the lower and upper bounds in (24), (27), (32) and (33)
are locally tight. More precisely, let {P)((n)} be a sequence of probability mass functions defined on X
and pointwise converging to Qx which is supported on &, let Pl(f") and Qy be the probability mass
functions defined on Y via (20) and (21) with inputs P)((") and Qy, respectively, and let {; ,} and

{&2,n } be defined, respectively, by (18) and (19) with Px being replaced by P}(("). By the assumptions
in (35) and (36),

(1)
. L Py(x)
lim &, = lim xl?/fv Oxlx) 1, (A31)
p(")(x)
lim = lim sup =X =1. A32
n%oogz’n n%ooxeg. QX(x) ( )

Consequently, if f has a continuous second derivative at unity, then (24), (26), (31), (32), (A31)
and (A32) imply that
L DA 1Qx) - Dy (P Q)
= 2P 1Qx) = 2P Qy)
= nlglgo cf (gl,nr (:2,11) = nlgl;lo ef(‘:l,n/ (:Z,n) = %fﬂ(l), (A33)
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and similarly, from (27), (30), (33), (34), (A31) and (A32),

L Dr(P11Qx) = Dy(R[1Qy)
= x2(QxlIPYY) — x2(QvlIP{)

1 1 1 1
= lim ¢ | 7—, | = lim e ( =—, = | = 3"(1), A34
n—veo/ (52,71 Cl,n) no S (Cz,n Cl,n) 2 (439
which, respectively, prove (37) and (38).

Appendix B. Proof of Theorem 2

We start by proving Item (a). By the assumption that Py, and Qx, are supported on X’ for all
i€ {1,...,n},itfollows from (39) that the probability mass functions Px» and Qx» are supported on

X". Consequently, from (41), also Rg?;) is supported on X" for all A € [0, 1]. Due to the product forms

of Qx» and Rg();) in (39) and (41), respectively, we get from (47) that

1(n, A) :ﬁ (1 A+ A inf PXi(x))

i=1 XX QX,-(x)

T (inf APx, (x) + (1 - /\)Qxi(x)>

xeX Qx; (x)

IT (AP, (x;) + (1 — A)Qx, (x;))

f[lei (xi)

€ (0,1], (A35)

and likewise, from (48),

(1)
Ryt (x)

A) = X
&(n, M) ;;1; Oy (@)

€ [1,00) (A36)

for all A € [0,1]. In view of (24), (26), (A35) and (A36), replacing (Px, Py, Qx, Qy, €1, &) in (24)
and (26) with (R(Y, R, Qxn, Qyn, &1(n,A), Ea(n,4)), we obtain that, for all A € [0, 1],

Dy (R [| Qxe) = Dy(R{Y || Qvo)
> cp(&(m,A),&2(n, 1) [XA(RG! | Quo) = P(RY || Q)] - (A37)
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Due to the setting in (39)(44), forally € Y" and A € [0,1],

RO () = ¥ RG) (x) Wy xn (ylx)

xexn

= Z/:w {ﬁ(APX,-(xi) +(1- A)Qxi('xi)) ﬁWYi|Xi(]/i|xi>}

:ﬁ{ ZX{(APXi(x) ( )QX( ))WYX(yzx)}}

—H{)‘ X;(PX )Wy, x, (yilx) + Z}){Qx YWy, x, (vilx )}
= TIOR3+ (= )0 ()

-T (YA) (i) (A38)
i=1

with
Rgf?) () == APy, (y) + (1= A)Qy,(y), Vie{l,...,n},yed, A€[0,1], (A39)

and R( ) is the probability mass function at the channel output at time instant i. In particular, setting
A =0in (A38) gives

n

Qvi(y) =]1Qv,(vi), Yye " (A40)

i=1

(N

Due to the tensorization property of the x divergence, and since Ry, Rg(/}l), Qxn» and Qyn are
product probability measures (see (39), (41), (A38) and (A40)), it follows that

RY) 1 Qxn) = H(l +x2RY | Qx,.)) -1, (A41)
i=1
and
RRETQr) = TT(1+ 2 RY 1Qv) ) — 1. (A2)

i=1
Substituting (A41) and (A42) into the right side of (A37) gives that, forall A € [0,1],
Dy(RY! | Qur) = Dr(RY || Qv)
n n

i=1 i=1

Due to (41) and (A39), since

R = APy, + (1 A)Qx,, (A44)
RYY = APy, + (1 - 2)Qy, (A45)
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and (see ([45], Lemma 5))
AP+ (1-2)Q[Q) =A*x*(PIQ), VAe[01] (A46)

for every pair of probability measures (P, Q), it follows that

RY | Qx,) = A2 2% (Py, | Qx,), (A47)
PRYQy) = A2 23 (Py, || Qu,)- (A48)

Substituting (A47) and (A48) into the right side of (A43) gives (45). For proving the looser
bound (46) from (45), and also for later proving the result in Item (c), we rely on the following lemma.

Lemma A1. Let {a;}!" | and {b;}}_, be non-negative with a; > b; foralli € {1,...,n}. Then,

(a) Forallu >0,

n n n
[T +am) =T+ biu) > Y (a; — bi)u. (A49)
i=1 i=1 i=1
(b) Ifa; > b for at least one index i, then
n n n
[T +au) =T+ biu) = Y _(a; — b))u+O(u?). (A50)
i=1 i=1 i=1
Proof. Let g: [0,00) — R be defined as
n n
gu) =T +au) -1 +bu), Yu=>o0. (A51)
i=1 i=1

We have ¢(0) = 0, and the first two derivatives of ¢ are given by

¢ (1) = Z{ail‘[u +au) — b [](1+ bju)}, (A52)
i=1" j# J#
and
g”(u) = Z Z{a,‘a]‘ H (1 + aku) — blb] H (1 + bku)}. (A53)
i=1j£i k#i,j k#i,j

Since by assumption a; > b; > 0 for all i, it follows from (A53) that ¢ (1) > 0 for all u > 0, which
asserts the convexity of g on [0, c0). Hence, for all u > 0,

g(u) > g(0) + ¢/ (0)u = i(bi ) (A54)

where the right-side equality in (A54) is due to (A51) and (A52). This gives (A49).
We next prove Item (b) of Lemma A1. By the Taylor series expansion of the polynomial function
g, we get

g(u) = g(0) + ¢ (0)u+1g"(0)u?+...

= Z(b ai)u—i— % fZ(aiaj—bib]'>M2+... (A5b)

= i=1j#i
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forall u > 0. Since by assumption a; > b; > 0 for all i, and there exists an index i € {1,...,n} such that
a; > b;, it follows that the coefficient of u? in the right side of (A55) is positive. This yields (A50). [

We obtain here (46) from (45) and Item (a) of Lemma A1. To thatend, fori € {1,...,n}, let
a;i := X*(Px,IQx,),  bi:=x*(Py|Qy,), u:=A? (A56)
with u € [0,1] for every A € [0,1]. Since by (39), (40), (43) and (44),
Px, = Wy, x, = Py, (A57)
Qx; = Wy,x;, = Qvy (A58)
it follows from the data-processing inequality for f-divergences, and their non-negativity, that
a; >b; >0, Vie{l,...,n}, (A59)

which yields (46) from (45), (A49), (A56) and (A59).
We next prove Item (b) of Theorem 2. Similarly to the proof of (A37), we get from (32) (rather
than (24)) that

Ds(RY) 1 Qur) = Dy (R | Q)
< eg(61(n,1),82(n,0)) [PRG)| Q) = (R | Q)| (A60)

Combining (A41), (A42), (A47), (A48) and (A60) gives (49).
We finally prove Item (c) of Theorem 2. In view of (47) and (48), and by the assumption that

sgggi(( )) <ooforallie{l,...,n}, weget
lim ¢&1(n,A) =1, A6l
A10+ 1(n, A) ( )
li TI,A =1. A62
AHIOL 8a(n, A) ( )

Since, by assumption f has a continuous second derivative at unity, (26), (31), (A61) and (A62)
imply that

Jimer (@10, A),82(n,4)) = 3£"(1), (A63)
lim ef(&1(n,4),62(n,4)) = 3£(1). (A64)

From (A56), (A59), and Item (b) of Lemma A1, it follows that

lim L 1‘[(1+A2 R(PxllOx)) — TT(1+ A2 2 (Pr]|Qy,)

2
A—0t A -1 i=1

n
=3 [F(Pxl1Qx,) — x*(Py 1 Qx)]- (A65)
i=1
The result in (50) finally follows from (45), (49) and (A63)—(A65). This indeed shows that the
lower bounds in the right sides of (45) and (46), and the upper bound in the right side of (49) yield a
tight result as we let A — 07, leading to the limit in the right side of (50).
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Appendix C. Proof of Theorems 3 and 4

Appendix C.1. Proof of Theorem 3

We first obtain a lower bound on D (Px||Qx), and then obtain an upper bound on D¢ (Py || Qy)-

x (%)
D¢ (Px||Qx) = ng (Qx(X)> (A66)
_ Px(x) Px(x)
B x;\{ Qx(x) {Qx(x) g( Qx(x)) +f(0)} 860
Px(x)

0) +x;(PX(x) g(QX(x)> (A68)
>fO)+g| X P () (A69)
B xekX QX(X)
= f(0) +g(1+ x*(Px[Qx)) (A70)
> £(0) +g(1) + &'(1) x*(Px [ Qx) (A71)
=¢'(1) X*(Px[|Qx) (A72)
= (f'(1) + £(0)) x*(Px[|Qx), (A73)

where (A67) holds by the definition of g in Theorem 3 with the assumption that f(0) < oo; (A69) is
due to Jensen’s inequality and the convexity of g; (A70) holds by the definition of the Xz—divergence;
(A71) holds due to the convexity of g, and its differentiability at 1 (due to the differentiability of
f at 1); (A72) holds since f(0) + g(1) = f(1) = 0; finally, (A73) holds since f(1) = 0 implies that
(1) = £(1) + £(0).

By ([62], Theorem 5), it follows that

D¢(Py||Qy) < x(61,82) x 2(Py||Qy), (A74)

where x(&1,&2) is given in (51). Combining (A66)—(A74) yields (52). Taking suprema on both sides
of (52), with respect to all probability mass functions Px with Px < Qx and Px # Qx, gives (53) since
by the definition of ({7, ¢) in (51), it is monotonically decreasing in ¢; € [0,1) and monotonically
increasing in &, € (1, 00|, while (18) and (19) yield

<
min Qx (x)’

xeX

6120, &< (A75)

Remark A1. The derivation in (A66)—~(A73) is conceptually similar to the proof of ([24], Lemma A.2). However,
the function g here is convex, and our derivation involves the x>-divergence.

Remark A2. The proof of ([26], Theorem 8) (see Proposition 3 in Section 1.1 here) relies on ([24], Lemma A.2),
where the function g is required to be concave in [24,26]. This leads, in the proof of ([26], Theorem 8), to an upper
bound on D¢ (Py||Qy ). One difference in the derivation of Theorem 3 is that our requirement on the convexity
of g leads to a lower bound on D¢(Px||Qx), instead of an upper bound on D¢(Py||Qy). Another difference
between the proofs of Theorem 3 and ([26], Theorem 8) is that we apply here the result in ([62], Theorem 5) to
obtain an upper bound on D¢ (Py||Qy ), whereas the proof of ([26], Theorem 8) relies on a Pinsker-type inequality
(see ([63], Theorem 3)) to obtain a lower bound on D¢ (Px||Qx); the latter lower bound relies on the condition
on f in (16), which is not necessary for the derivation of the bound in Theorem 3.
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Remark A3. From ([62], Theorem 1 (b)), it follows that

( Q) _

with k(&1, Cy) in the right side of (A76) as given in (51), and the supremum in the left side of (A76) is taken
over all probability measures P and Q such that P # Q. In view of ([62], Theorem 1 (b)), the equality in (A76)
holds since the functions f,g: (0,00) — R, defined as f(t) := f(t) + f'(1)(1 — t) and (t) := (t — 1)2 for
all t > 0, satisfy DJ;(PHQ) = Dy(P||Q) and Dg(P||Q) = X>(P||Q) for all probability measures P and Q, and
since f'(1) = §'(1) = 0 while the function § is also strictly positive on (0,1) U (1,00). Furthermore, from
the proof of ([62], Theorem 1 (b)), restricting P and Q to be probability mass functions which are defined over
Dy(P[Q)

x>(PlQ)
such probability measures can be obtained as the output distributions Py and Qy of an arbitrary non-degenerate

stochastic transformation Wy|x: X — Y, with | Y| = 2, by a suitable selection of probability input distributions
Px and Qx, respectively (see (A5) and (A6)). In the latter case where |)| = 2, this shows the optimality of the
non-negative constant x(&q, &) in the right side of (A74).

a binary alphabet, the ratio can be made arbitrarily close to the supremum in the left side of (A76);

Appendix C.2. Proof of Theorem 4
Combining (A66)—(A73) gives that, forall A € [0,1],

D (RO 1QY)) = (F/(1) + £(0)) (R | Qo). (A77)
and from (A74)
D ( Yo || Qyn) <x(&1(n,A),&2(n,A)) x ( v HQY”) (A78)
From (A41) and (A47),
P (RG I Qxe) = TT(1+2%3(Px, l1Qx) ) — 1, (A79)

—_

i=

and similarly, from (A42) and (A48),

=

P (RU 1 Q) = TT(1+A203(Py, 1 Qv) ) = 1. (A80)

i=

—_

Combining (A77)—(A80) yields (54).

Appendix D. Proof of Theorem 5

The function f,: [0,00) — R in (55) satisfies f,(1) = 0, and for all & > e 3

Z(t) =2log(a+t) +3loge >0, Vt>0, (A81)

which yields the convexity of f,(-) on [0, 00). This justifies the definition of the f-divergence

o0~ K ()

xeX
for probability mass functions P and Q, which are defined on a finite or countably infinite set X,
with Q supported on X'. In the general alphabet setting, sums and probability mass functions are,

respectively, replaced by Lebesgue integrals and Radon-Nikodym derivatives. Differentiation of both
sides of (A82) with respect to a gives
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P(x))
D¢ (P = A83
{ A(PIQ)} = ¥, QW) r (Q(x) (A83)
where
ra(t) == %f) (A84)
=2(a+t)log(a+t) —2(a+1)log(a+1)+ (t—1)loge, t>0. (A85)

The function r,: (0,00) — R is convex since

2loge
o+t

r(t) = >0, Vt>0, (A86)

and 7, (1) = 0. Hence, Dy, (-||-) is an f-divergence, and it follows from (A83)—(A85) that

2 {D4,(PIQ)} = D, (PIQ) (A8)
= 14 X X 44 P(X) — n 4
=2 T {(0Qee) + P tog (w4 Gy ) -2 Dioga v 1) 489
B aQ(x) 4+ P(x) o aQ(x) 4+ P(x)
_2(“+1)xg a+1 ! g( (e +1)Q(x) > (A89)
:2(04+1)D(DLQ+P|| Q) (A90)

which gives (56), so Dy, (-|-) is monotonically increasing in «. Double differentiation of both sides
of (A82) with respect to « gives

P(x)
Dy (P = A9l
ou 2{ fa HQ } x;YQ <Q(x)> ( )
where
9% fo (¢
v, (F) := gag ) (A92)
=2log(a+t) —2log(a+1), t>0. (A93)

The function v, : (0,00) — R is concave, and v, (1) = 0. By referring to the f-divergence D_,, (-||-),
it follows from (A91)-(A93) that

2
a%{Dfa(PllQ)} = -D o, (P[Q) (A94)
_ ool oo (4 P
= Zx;(Q [1 gla+1)—1 g< +Q(x)>} (A95)
_ (a +1)Q(x)
= —Zx;( Q(x)log <()+px)> (A96)
= 2D<Q | W) <0, (A97)

which gives (57), so Dy, (+||-) is concave in a for « > e~ 2. Differentiation of both sides of (A93) with
respect to « gives that
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Pfa(t) 1 1
FY _z(zx+t_oc—|—1>loge’ (A98)
which implies that

o 3{Dfa P|Q)} =2loge ¥ Q(x %—alﬁ (A99)

xeX a+Q(x)

_ 2loge Q%(x) _
= ar1 | & i ! (A100)

a+1
2loge aQ+P
= — > .

This gives (58), and it completes the proof of Item (a).
We next prove Item (b). From Item (a), the result in (59) holds for n = 1,2,3. We provide in the
following a proof of (59) for all n > 3. In view of (A98), it can be verified that for n > 3,

anfzx(t) - n— | 1
Jan = 21" (n=3)! [(zx+t)“2 - (a+1)”2}

loge, (A102)

which, from (A82), implies that

" P
()" {Dr(PIQ)} = ZXQ 8an (Q((fc))) (A103)
xXe
with
— (_qyn-1 9falt)
Gan(t) :==(-1) S (A104)
=2(n-23)! @ —|—1t)”2 — (a_'_ll)nz} loge, t>0. (A105)

The function gy : (0,00) — R is convex for n > 3, with g, (1) = 0. By referring to the f-divergence
Dq, ., (+||-), its non-negativity and (A103) imply that for all n > 3

(=1) aan{ £ (PIQ)} = Dgu (PIIQ) 2 (A106)
Furthermore, we get the following explicit formula for n-th partial derivative of D, (P[|Q) with respect
toa forn > 3:

n 1 P(x)
a,xn{Dfa (PlQ)} xesz Sam ( Q(x)) (A107)
[ n—2
_2(=1)"'(n—3)! loge .
_ 12 x;( Q(x) (HE(};))) —1 (A108)
_2(=1)""}(n —3)! loge Ql(x)
- (v +1)n—2 = (W)n—z (A109)
_2(-1)"'(n-3)!loge [ .
= TS _eXP((Tl—Z) anl(Q | Ejlp)> —1} (A110)
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where (A107) holds due to (A103); (A108) follows from (A104), and (A110) is satisfied by the definition
of the Rényi divergence [40] which is given by

Ds(PQ) 1= 5 log ( L PP Ql‘ﬁ(X)> , VBE(0,1)U(1e) (A111)

with D1(P[|Q) := D(P[|Q) by continuous extension of Dg(-[|-) at = 1. For n = 3, the right side
of (A110) is simplified to the right side of (58); this holds due to the identity

D>(P||Q) = log(1+ x*(P[|Q)). (A112)

To prove Item (c), from (55), forall t > 0

fi(t) = 2(a+t)log(a +t) + (a +t)loge, (A113)
7(t) = 2log(a +t) +3loge, (A114)
IOEE =3 (A115)

which implies by a Taylor series expansion of f,(-) that

fol)) = ) + AL (E =) + 37 ) (- 12+ 1P @) (k- 1)%, Vi=0 (A116)

where ¢ in the right side of (A116) is an intermediate value between 1 and t. Hence, for t > 0,

fult) = A=) + 27— 12+ 1P 0) (k- 12 1{t € 0,1} (A117)
> fr)(E—1) + () = L2 (0)) (£ - 1)? (A118)
o) (t—1) +k(a) (t— 1) (A119)

where (A117) follows from (A116) since f,(1) = 0 and f,,§3) (+) is monotonically decreasing and positive
(see (A115)); 1{t € [0,1]} in the right side of (A117) denotes the indicator function which is equal to 1 if
the relation t € [0, 1] holds, and it is otherwise equal to zero; (A118) holds since (t —1)31{t € [0,1]} >

—(t—1)?forallt >0, and f,,53> (0) > 0; finally, (A119) follows by substituting (A114) and (A115) into
the right side of (A118), which gives the equality

1er(1) — 1.8 (0) = k(a) (A120)

with k(+) as defined in (63). Since the first term in the right side of (A119) does not affect an f-divergence
(asitis equal to ¢ (t — 1) for t > 0 and some constant c), and for an arbitrary positive constant k > 0
and g(t) := (t —1)% for t > 0, we get Dy (P|Q) = k x*(P||Q), inequality (61) follows from (A117)
and (A119). To that end, note that k = k(a) defined in (63) is monotonically increasing in &, and
therefore k(a) > k(efg) > 0.2075 for all &« > efg. Due to the inequality (see, e.g., ([64], Theorem 5),
followed by refined versions in ([62], Theorem 20) and ([65], Theorem 9))

D(P||Q) < log(1+ x*(P[Q)), (A121)

the looser lower bound on Dy, (P||Q) in the right side of (62), expressed as a function of the relative
entropy D(P||Q), follows from (61). Hence, if P and Q are not identical, then (64) follows from (61)
since x%(P||Q) > 0 and lim k(a) = co.

We next prove Item (d). The Taylor series expansion of f,x(-) implies that, for all t > 0,

ful®) = )+ AOE-D) + 1O =12+ PO -1+ L@ -1t (a122)
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where ¢ in the right side of (A122) is an intermediate value between 1 and t. Consequently, since
f,,g4)(6) — _2loge - (and fa(1) = 0, it follows from (A122) that, for all t > 0,

(a4¢)?
fa)) < (= 1) + (- 12+ 28 (1) (- 1)° (A123)
:f,1<1><t—1> FIA -1+ P ) [P -3t —1)2 - 3(t—1) — 1] (A124)
=[O - PO -1+ A - P20 -2+ P (B -1). (A125)

Based on (A123)-(A125), it follows that

3
Dy, (PIQ) < 3 [/ = £ WA (PIQ) + 47 (1) 2{@( | (a) 1]}

=1 - P W3PIQ) + P < 1+ Y ’3) (A126)
xeX
=3[R - A1 PIQ) + 147 (1) [exp (2D3(PIQ)) ~ 1, (A127)

where (A127) holds due to (A111) (with B = 3). Substituting (A114) and (A115) into the right side
of (A127) gives (65).

We next prove Item (e). Let P and Q be probability mass functions such that D3(P||Q) < oo, and
let ¢ > 0 be arbitrarily small. Since the Rényi divergence D, (P||Q) is monotonically non-decreasing in
a > 0 (see ([66], Theorem 3)), it follows that D, (P||Q) < oo, and therefore also

X*(P||Q) = exp(D2(P||Q)) — 1 < co. (A128)
In view of (61), there exists a; := a1 (P, Q, ¢) such that for all & > &,

Dy, (P[|Q) > (log(a+1) + 3 loge) x*(P[|Q) — ¢, (A129)

and, from (65), there exists a5 := ap(P, Q, €) such that for all & > a5

Dy (P|Q) < (log(x +1) + 3 loge) x*(P||Q) +¢. (A130)

Letting a* := max{ay, a, } gives the result in (66) for all « > a*.

Item (f) of Theorem 5 is a direct consequence of ([45], Lemma 4), which relies on ([67], Theorem 3).
Let g(t) := (t —1)* for t > 0 (hence, Dy(-||-) is the x* divergence). If a sequence {P,} converges to a
probability measure Q in the sense that the condition in (67) is satisfied, and P, < Q for all sufficiently
large 7, then ([45], Lemma 4) yields

. Dfa(PnHQ) 1 ¢
1 m —— = 5
n1—>oo X2(Pn||Q) 2ftX (1>/ (A131)

which gives (68) from (A114) and (A131).
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We next prove Item (g). Inequality (69) is trivial. Inequality (70) is obtained as follows:

* 9
D5, (PIQ) = Dy (PIQ) = [ (D, (PIQ)} du (A132)
- / (u+1)D(*ZL | Q) du (A133)
> /ﬁ 2(u+1)du-D(*ZL | Q) (A134)
= [@+12 = (6+1? D(“2F 1 Q) (A135)
= («=P)(a+p+2) D(*EL Q) (A136)

where (A133) follows from (56), and (A134) holds since the function I: [0,00) — [0, 0) given by

I(u) := D(”ﬁip [ Q), u>0 (A137)
is monotonically decreasing in u (note that by increasing the value of the non-negative variable u, the
probability mass function ”l%:rlp gets closer to Q). This gives (70).

For proving inequality (71), we obtain two upper bounds on Dy, (P[|Q) — D fs (P||Q) with a >

B> e~2. For the derivation of the first bound, we rely on (A83). From (A84) and (A85),

ro(t) = 2tlogt —su(t), t>0 (A138)

where s,: (0,00) — R is given by
sa(t) :=2tlogt —2(a+t)log(a+1t) + (1 —t)loge+2(a+1)log(a +1), t>0, (A139)
with the convention that 01log0 = 0 (by a continuous extension of tlog t at t = 0). Since s,(1) = 0, and

I 20

which implies that s,(+) is convex on (0, %), we get

%{Dfa(PIIQ)} = Dy, (P|Q) (A141)
=2D(P||Q) — Ds,(P|Q) (A142)
< 2D(P||Q) (A143)

where (A141) holds due to (A83) (recall the convexity of r,: (0,00) — R with 7,(1) = 0); (A142) holds
due to (A138) and since r(t) := tlogt for t > 0 implies that D,(P||Q) = D(P||Q); finally, (A143)
follows from the non-negativity of the f-divergence D;, (-||-). Consequently, integration over the
interval [B, a] (x > B) on the left side of (A141) and the right side of (A143) gives

Dy, (P[|Q) — Dy, (P|Q) < 2(ax — ) D(P[|Q). (Al144)

Note that the same reasoning of (A132)—(A136) also implies that

Dy, (PIIQ) — Dy, (PIIQ) < (a — B)(a+ p+2) D( BT | Q), (A145)

which gives a second upper bound on the left side of (A145). Taking the minimal value among the two
upper bounds in the right sides of (A144) and (A145) gives (71) (see Remark A4).
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We finally prove Item (h). From (55) and (A81), the function f,: [0,00) — R is convex for a > e =2
with fo(1) =0, f4(0) = a®loga — (« +1)?log(a + 1) € R, and it is also differentiable at 1. It is left to
prove that the function g, : (0,00) — R, defined as g, (t) := M fort > 0, is convex. From (55),
the function g, is given explicitly by

2 2
2alt) = (w+t) log(zxjt) s logrx’ £ 0, (A146)

and its second derivative is given by

g (t) = w”;3(t), t>0, (A147)
with
W, (t) := 24 log (1 + ;) +t(t —2a)loge, t>0. (A148)
Since w, (0) = 0, and
W' (f) = 2Ploge o yisy, (A149)
o+t

it follows that w, (t) > 0 for all t > 0; hence, from (A147), ¢4 (t) > 0 for t € (0, c0), which yields the
convexity of the function g,(+) on (0, 00) for all « > 0. This shows that, for every o > e’%, the function
fa: [0,00) — R satisfies all the required conditions in Theorems 3 and 4. We proceed to calculate the
function x,: [0,1) x (1,00) — Rin (51), which corresponds to f := f,, i.e., (see (72)),

ke(G1,62) = sup  za(t), (A150)
te(G1.1)U(L,62)

with

fult) + f2(1) (1_t), te€[0,1)U(1,00),

za(t) = (t—1) (A151)
3 loge +log(a+1), t=1,

where the definition of z,(1) is obtained by continuous extension of the function z,(-) at t = 1 (recall
that the function f,(-) is given in (55)). Differentiation shows that

0z,(t)  va(t)

TR T 0,1) U (1,00), (A152)

where, fort > 0,

2 o+t
va(t) := a4+ t+1)(t—1)"loge —2(a+1)(a +t)(t — 1) log PR (A153)
and
vl (t) = (t—1)*loge +2(a +t)(t — 1) loge — 2(a + 1) (2t + & — 1) log %, (A154)
Wi efe 2(0c+1)2loge_ a+t

v, (t) =6(t—1)loge + —atf 4(a+1)log 1 (A155)
v,@(t): 2(t—1)(3t+4a—0—1)' (A156)

(a+1)2
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From (A156), it follows that v (t) < 0if t € [0,1), (1) = 0, and o) (t) > 0if t € (1, 0). Since
v}/ (+) is therefore monotonically decreasing on [0, 1] and it is monotonically increasing on [1, o0), (A155)
implies that

oy (t) > vy (1) =2(a+1)loge >0, Vt>0. (A157)

Since v}, (1) = 0 (see (A154)), and v/, (+) is monotonically increasing on [0, c0), it follows that v/, () < 0
forallt € [0,1) and v} (t) > Oforall t > 1. This implies that v, (t) > v,(1) = 0forall t > 0 (see (A153));
hence, from (A152), the function z,(+) is monotonically increasing on [0, ), and it is continuous over
this interval (see (A151)). It therefore follows from (A150) that

Ka(81,82) = za(G2), (A158)

forevery &; € [0,1) and &, € (1,00) (independently of 1), which proves (73).

Remark A4. None of the upper bounds in the right sides of (A144) and (A145) supersedes the other. For
example, if P and Q correspond to Bernoulli(p) and Bernoulli(q), respectively, and (a, B, p,q) = (2,1,%,2),
then the right sides of (A144) and (A145) are, respectively, equal to 0.264log e and 0.156 loge. If on the other
hand (a, B, p,q) = (10,1, £, ), then the right sides of (A144) and (A145) are, respectively, equal to 2.377 log e
and 3.646loge.

Appendix E. Proof of Theorem 6

By assumption, P < Q where the probability mass functions P and Q are defined on the set
A:={1,...,n}. The majorization relation P < Q is equivalent to the existence of a doubly-stochastic
transformation Wy|x: A — A such that (see Proposition 4)

Q— Wyx = P. (A159)
(See, e.g., ([32], Theorem 2.1.10) or ([30], Theorem 2.B.2) or ([31], pp. 195-204)). Define
X=Y:=A Px:=0Q, Qx:=1U,. (A160)
The probability mass functions given by
Py:=P, Qy:=U, (Al61)

satisfy, respectively, (20) and (21). The first one is obvious from (A159)-(A161); equality (21) holds due
to the fact that Wy |x: A — A is a doubly stochastic transformation, which implies that forally € A

Y Qx(x)Pyx(ylx) = Ejﬂmmw (A162)
xeA xEA
=;=wa (A163)

Since (by assumption) Px and Qx are supported on A, relations (20) and (21) hold in the setting
of (A159)—(A161), and f: (0,00) — R is (by assumption) convex and twice differentiable, it is possible
to apply the bounds in Theorem 1 (b) and (d). To that end, from (18), (19), (A160) and (A161),

g1 = mm Q(lX) = Nmin, (Al64)
n
2o = max BV g (A165)
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which, from (24), (25), (32), (A160), (A161) and (A164), give that

e (Nfmin, Mmax) [1*(Ql|Un) = X3P )]

> Df(QHun) - Df(PHun) (A166)
> ¢f(fmin, Nmax) [XZ(QHUH) - X2<P||un)} (A167)
> 0. (A168)

The difference of the x?2 divergences in the left side of (A166) and the right side of (A167) satisfies

2 2
R QU — (Pl = Y TE 5 P
xeA n xeA n
— n(|QI - IPI), (A169)

and the substitution of (A169) into the bounds in (A166) and (A167) give the result in (74) and (75).
Let f(t) = (t —1)? for t > 0, which yields from (26) and (31) that cr(+,) = es(,-) = 1. Since
D¢(-|I-) = X2(||), it follows from (A169) that the upper and lower bounds in the left side of (74) and
the right side of (75), respectively, coincide for the x?-divergence; this therefore yields the tightness of
these bounds in this special case.
We next prove (76). The following lower bound on the second-order Rényi entropy (a.k.a. the
collision entropy) holds (see ([34], (25)—(27))):

4n
Hy(Q) = —log(||Q]3) > log ﬁ, (A170)
where % < p. This gives
1+p)?
QI3 = exp(—H2(Q)) < ( 4n£) . (A171)

By Cauchy-Schwartz inequality || P||3 > 1 which, together with (A171), give

2 ipp2 o (@—1)?
1QI12 — 1Pl < Ty (A172)

In view of the Schur-concavity of the Rényi entropy (see ([30], Theorem 13.F.3.a.)), the assumption
P < Q implies that

H,(P) > Hy(Q), (A173)
and an exponentiation of both sides of (A173) (see the left-side equality in (A170)) gives
Q113 > |IPII3. (A174)
Combining (A172) and (A173) gives (76).

Appendix F. Proof of Theorem 7

We prove Item (a), showing that the set P, (p) (with p > 1) is non-empty, convex and compact.
Note that P, (1) = {U,} is a singleton, so the claim is trivial for p = 1.
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Let p > 1. The non-emptiness of Py (p) is trivial since U, € Py(p). To prove the convexity of
Pu(p), let P, P, € Py(p), and let pr(fl;x, pﬁﬁgx, pfm)n and p( ) be the (positive) maximal and minimal

min

1) (2)
probability masses of P; and P,, respectively. Then, £ 47 < pand pma" < pyield
Apggx + (1 — A)pggx
Apt) (1= 1)p%)

min p min

<p, VA€E[01]. (A175)

For every A € [0,1],

o : (1) . (2)
1@1121{/\& + (A =M)P(i)} > Apin + (1= A) P (A176)
max {APL(i) + (1= M)Py(i)} < Aplide+ (1= A) ps. (A177)

Combining (A175)—(A177) implies that

max {AP; (i) + (1 —A)Py(i) }

1<i<n

min {AP; (i) + (1 — A)Py(i) } =p

1<i<n

(A178)

s0 APy + (1 — A)P, € Py(p) for all A € [0, 1]. This proves the convexity of Py (p).

The set of probability mass functions P, (p) is clearly bounded; for showing its compactness,
it is left to show that P, (p) is closed. Let p > 1, and let {P(")}*__ be a sequence of probability
mass functions in P, (p) which pointwise converges to P over the finite set .A,. It is required to show
that P € P,(p) C P,. As a limit of probability mass functions, P € Py, and since by assumption
P € P, (p) for all m € N, it follows that

(n—1)ppl) + p) > (n— 1)ph + pl) > 1,

for all m. Since pr(na)x < pr(m)1

(m) <

min = 1)P
limiting probability mass function P we have pmin > m
that P € Py (p), and therefore P, (p) is a closed set.

An alternative proof for Item (a) relies on the observation that, for p > 1,

which yields p for every m, it follows that also for the

> 0, and pmax < PPmin- This proves

Pulp) =Pu[) {ﬂ {P: P(i) —pP(j) < 0}} : (A179)
7]
which yields the convexity and compactness of the set P, (p) for all p > 1.

The result in Ttem (b) holds in view of Item (a), and due to the convexity and continuity of D¢ (P||Q)
in (P,Q) € Pu(p) x Pu(p) (Where pmin, Jmin > m > 0). This implication is justified by the
statement that a convex and continuous function over a non-empty convex and compact set attains its
supremum over this set (see, e.g., ([68], Theorem 7.42) or ([59], Theorem 10.1 and Corollary 32.3.2)).

We next prove Item (c). If Q € Py (p), then m < Gmin < % where the lower bound on g
is attained when Q is the probability mass function with n — 1 masses equal to pgmin and a single
smaller mass equal to gmin, and the upper bound is attained when Q is the equiprobable distribution.
For an arbitrary Q € Py (p), let gmin := B where B can get any value in the interval I';(p) defined
in (79). By ([34], Lemma 1), Q < Qg and Qg € Pu(p) where Qg is given in (80). The Schur-convexity
of D¢ (+||Uy) (see ([38], Lemma 1)) and the identity D¢(Uy||-) = Dy« (-||Ux) give that

D¢ (QllUn) < Dg(QpllUn),  Ds(UnllQ) < Ds(Unl|Qp) (A180)
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for all Q € Pu(p) with gmin = B € Tu(p); equalities hold in (A180) if Q = Qg € Pu(p). The
maximization of D(Q|U,) and Ds(Uy[|Q) over all probability mass functions Q € Py(p) can
be therefore simplified to the maximization of D(Qg||Uy) and D¢ (U, | Qp), respectively, over the
parameter B which lies in the interval ', (p) in (79). This proves (82) and (83).

We next prove Item (e), and then prove Item (d). In view of Ttem (c), the maximum of D¢(Q||U;)
over all the probability mass functions Q € Py (p) is attained by Q = Qg with 8 € T'y(p) (see (79)—~(81)).
From (80), Qp can be expressed as the n-length probability vector

Qp = (pB,...,pB, 1— (n—i—iﬁp—iﬁ -1B, B,...,B)- (A181)
1,5 n—lﬁ—

The influence of the (ig + 1)-th entry of the probability vector in (A181) on Df(Qg||Uy) tends to
zero as we let n — oo. This holds since the entries of the vector in (A181) are written in decreasing
order, which implies that for all B € T';,(p) (with p > 1)

n[1— (n+igo—ig—1)] € [np,npp] C [m,p] [1,0]; (A182)

from (A182) and the convexity of f on (0,00) (so, f attains its finite maximum on every closed
sub-interval of (0, o)), it follows that

‘[1—(n+i5p—i/;—1)ﬁ]f(n[l—(n—i—i/gp—iﬁ—l)])‘

< ‘[1*(71“;%!?*1';3*1)[)’]‘ max_|f(u)]

ue [%,p]

<B max |f(u)] — 0. (A183)

In view of (A181) and (A183), by letting n — oo, the maximization of D¢(Qg| /Uy, ) over B € Ty (p)
can be replaced by a maximization of D (Qum||U,) where

G = (pB, 0B B, B) € Pulp) (A184)
m n—m
with the free parameter m € {0,...,n}, and with § := % (the value of 8 is determined so that

the total mass of Q,, is 1). Hence, we get

Iim max D¢(Qg||lUy) = hm max D Qm u, (A185)
Am, max, (Qplltn) = T }f( | Un)-

The f-divergence in the right side of (A185) satisfies

D¢ (QmllUy) —ilif 1 Qi (i) (A186)
=2 G- ) (-5) (o=mm) (A187)

—

=5 (%) (A188)
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where (A188) holds by the definition of the function g}‘o) () in (84). It therefore follows that

lim us(n,p)

n—oo

— I (p) (M

= Jim, mox s (%) (a159

= 2 A190
max g (x) (A190)

where (A189) holds by combining (82) and (A185)—(A188); (A190) holds by the continuity of the

function gj(f ) (+) on [0, 1], which follows from (84) and the continuity of the convex function f on [%, 0]
for p > 1 (recall that a convex function is continuous on every closed sub-interval of its domain of

region, and by assumption f is convex on (0, o0)). This proves (87), by the definition of gj(,p) (-)in (84).
Equality (88) follows from (87) by replacing gj([p ) () with gj(fi) (+), with f*: (0,00) — R as given
in (29); this replacement is justified by the equality D¢ (Ux||Q) = Dg«(Q|Ux).
Once Item (e) is proved, we return to prove Item (d). To that end, it is first shown that

ug(n,p) < ug(2n,p), (A191)
vg(n,p) < vs(2n,p), (A192)

IN

forall p > 1 and integers n > 2, with the functions u and vy, respectively, defined in (77) and (78).
Since D¢(P||Q) = Df+(Q||P) for all P,Q € Py, (77) and (78) give that

ve(n,p) = up(n,0), (A193)

so the monotonicity property in (A192) follows from (A191) by replacing f with f*. To prove (A191),
let Q* € Py (p) be a probability mass function which attains the maximum at the right side of (77), and
let P* be the probability mass function supported on Ay, = {1,...,2n}, and defined as follows:

{;Q*(i), ifi € {1,...,n},

P*(i) = L N
7Q"(i —n), ifie{n+1,...,2n}.

(A194)

Since by assumption Q* € P, (p), (A194) implies that P* € P, (p). It therefore follows that

ug(2n,p) = Qx| D¢(Q[ Uzn) (A195)
> Dy(P*[|Uzn) (A196)
n 2n
= % lZf (2nP*(D) + ) f(2nP"(i)) (A197)
i=1 i=n+1
— L FnQ" () (A199)
i=1
= Df(Q"(|Un) (A199)
= e Df(Q||Uzn) (A200)

= uf(n,p) (A201)
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where (A195) and (A201) hold due to (77); (A196) holds since P* € Py, (p); finally, (A198) holds due
to (A194), which implies that the two sums in the right side of (A197) are identical, and they equal to
the sum in the right side of (A198). This gives (A191), and likewise also (A192) (see (A193)).

< li k
up(n,p) < lim ug(2n, p) (A202)
= lim ug(n',p) (A203)
n’—o0
= (e) A204
max & (x) (A204)

where (A202) holds since, due to (A191), the sequence {u f(an,p)}?’:O is monotonically increasing,
which implies that the first term of this sequence is less than or equal to its limit. Equality (A203) holds
since the limit in its right side exists (in view of the above proof of (87)), so its limit coincides with the
limit of every subsequence; (A204) holds due to (A189) and (A190). A replacement of f with f* gives,
from (A193), that

()
p) < Y (x). A205
vf(n,p) max gy (%) (A205)

Combining (A202)—-(A205) gives the right-side inequalities in (85) and (86). The left-side inequality
in (85) follows by combining (77), (A184) and (A186)—(A188), which gives

ug(n,p) = max D U, A206
sn0) = max Dy(Q|h) (A206)
> m D (Qum| Uy A207
> dnax (Qml|Un) (A207)
_ (p) (M
_me%??.(,n}gf (n) (A208)

Likewise, in view of (A193), the left-side inequality in (86) follows from the left-side inequality in (85)
by replacing f with f*.

We next prove Item (f), providing an upper bound on the convergence rate of the limit in (87); an
analogous result can be obtained for the convergence rate to the limit in (88) by replacing f with f*
in (29). To prove (89), in view of Items (d) and (e), we get that for every integer n > 2

< I ! -
O_nlgrgo{uf(n,p)} ug(n,p) (A209)
©) N (o) (M
< max g (0= max g (T) (A210)
_ )y (p) (M
= max g max g (T) (A211)
_ () ) | _ (p) (1 A212
me{O,...,)r(zl}{xe[nn}ri(ﬂ] f (x)} me{l(‘)na)éfl}gf (n) ( )
© N o) m
<im0 () o

where (A209) holds due to monotonicity property in (A191), and also due to the existence of the limit
of {ug(n',0) }en; (A210) holds due to (85); (A211) holds since the function gj((p) :[0,1] = R (asitis

defined in (84)) satisfies gj(fp ) (1) = gj([p) (0) = 0 (recall that by assumption f(1) = 0); (A212) holds since

ne
[0,1] = U [2,2E] 5o the maximization of gj(f) ) () over the interval [0, 1] is the maximum over the

maximal values over the sub-intervals [%, ’”TH} form € {0,...,n —1}; finally, (A213) holds since the
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maximum of a sum of functions is less than or equal to the sum of the maxima of these functions. If the
function g}p ) [0,1] — R is differentiable on (0, 1), and its derivative is upper bounded by K¢(p) > 0,
then by the mean value theorem of Lagrange, for every m € {0,...,n —1},

g}m(x)_ (P)(ﬂ)<Kf(P), Ve [m/m%—l] (A21)

f\n n n’ n

Combining (A209)—(A214) gives (89).

We next prove Item (g). By definition, it readily follows that P, (p1) C Pu(p2) if 1 < p1 < p2.
By the definition in (77), for a fixed integer n > 2, it follows that the function u f(n, -) is monotonically
increasing on [1,c0). The limit in the left side of (90) therefore exists. Since Df(Q||Uy) is convex in Q,
its maximum over the convex set of probability mass functions Q € Py is obtained at one of the vertices
of the simplex P,,. Hence, a maximum of D¢(Q||Uy) over this set is attained at Q* = (g7, ..., 4;) with
g7 =1forsomei € {1,...,n},and q;? = 0 for j # i. In the latter case,

n

DAQ"Un) = 5 Y- fna) =

k=1

S|

[(n=1)£(0) + f(n)]. (A215)

Note that Q* ¢ U Pu(p) (since the union of {P,(p)}, for all p > 1, includes all the probability
p>1

mass functions in P, which are supported on A, = {1,...,n}, so Q* € P, is not an element of this
union); hence, it follows that

. 1 f(n)
tim g np) < (1 3 )70+ 22, (A216)
On the other hand, for every p > 1,
> W (1 A217
”f(”rp)—gf " ( )
_ L 1 "
=/ (=)~ (3) (=) wate

where (A217) holds due to the left-side inequality of (85), and (A218) is due to (84). Combining (A217)
and (A218), and the continuity of f at zero (by the continuous extension of the convex function f at
zero), yields (by letting p — o0)

, 1 f(n)
>(1-= .
tim g n,0) > (1 3 )70+ 22 (A219)

Combining (A216) and (A219) gives (90) for every integer n > 2. In order to get an upper
bound on the convergence rate in (90), suppose that f(0) < oo, f is differentiable on (0,7), and
Ky := sup |f'(t)| < co. For every p > 1, we get

te(0,n)
0< i o) —ugp(n, A220

< lim {up(np) } = sl p) (A220)
1 pon 1 n

<l -5 )] (-3 o (=) (A220)
K, pn 1 K,n

Sn<n_n+p1>+<1_n)n+p1 (a222)

_ 2Ky (n—1)

PR (A223)
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where (A220) holds since the sets {7 (p) },>1 are monotonically increasing in p; (A221) follows from

(A216)—(A218); (A222) holds by the assumption that | f'(t)| < K, for all t € (0,1), by the mean value

theorem of Lagrange, and since 0 < . +’;71 < #ﬁ—l <nforallp > 1and n € N. This proves (91).
We next prove Item (h). Setting P := U, yields P < Q for every probability mass function Q

which is supported on {1,...,n}. Since gmin + (1 — 1)gmax > 1 and (# — 1)gmin + gmax < 1, and since

by assumption % < p, it follows that

[1min, max] S | 37 (:_ 0o’ 7 _p1n+ p} C Ll) p]. (A224)
Combining the assumption in (92) with (A224) implies that
m < f'(t) <M, Vt€E [ngmin, Mqmax]- (A225)
Hence, (26), (31) and (A225) yield
3 m < ¢ (NGmin, Mmax) < €f(NGmin, Mmax) < 5 M. (A226)

The lower bound on Df(Q|Uy) in the left side of (94) follows from a combination of (75),
the left-side inequality in (A226), and ||P||3 = 1. Similarly, the upper bound on D £(QllUy) in the right
side of (95) follows from a combination of (74), the right-side inequality in (A226), and the equality
|P||3 = 1. The looser upper bound on D £(QJ|Uy) in the right side of (96), expressed as a function of
M and p, follows by combining (74), (76), and the right-side inequality in (A226).

The tightness of the lower bound in the left side of (94) and the upper bound in the right side
of (95) for the x? divergence is clear from the fact that M = m = 2 if f(t) = (t — 1)? forall t > 0; in
this case, x*(Q||Ux) = n]|Q|3 — 1.

To prove Item (i), suppose that the second derivative of f is upper bounded on (0, o) with
f"(t) < My € (0,00) for all t > 0, and there is a need to assert that Df(Q||U,) < d for an arbitrary

_1)2
d > 0. Condition (97) follows from (96) by solving the inequality W < d, with the variable

p > 1, for givend > 0 and M > 0 (note that M ¥ does not depend on p).
Appendix G. Proof of Theorem 8
The proof of Theorem 8 relies on Theorem 6. For « € (0,1) U (1,00), let uy: (0,00) — R be the

non-negative and convex function given by (see, e.g., ([8], (2.1)) or ([16], (17)))

o —a(t—1)—1
g (£) := e A (A227)

and let u1: (0,00) — R be the convex function given by
up(t) :== lin} uy(t) =tlog, t+1—t, t>0. (A228)
a—

Let P and Q be probability mass functions which are supported on a finite set; without loss of
generality, let their support be given by A, := {1,...,n}. Then, fora € (0,1) U (1,0),
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Dy,

—~

Ql|Un) — Dy, (P||Un)

éua (nQ(i)) — % éua(nP(i))

S|

n

nDé*l n ’ )
= m ll; Q*(i) — Zpa(l)]

i=1

_ 11 [Su(P) — Su(Q)] (A229)

where

Su(P) := i=1 (A230)

designates the order-« Tsallis entropy of a probability mass P defined on the set A;,. Equality (A229)
also holds for « = 1 by continuous extension.
In view of (26) and (31), since u// (t) = t*~2 for all t > 0, it follows that

1 a—2 a2 .
Z n qmaxt lf e E (O/ 2]/

Cuy (”Qminr ”qmax) = {1 a—2 a—2 . (A231)
R ifa € (2,00),

and

1 a—2 a2 .
>t oL, ifa € (0,2],

euy (Mqmin, Nmax) = { 1 a2 ;n_u; . (A232)
n Jmaxs ifoa € (2, OO)

The combination of (74) and (75) under the assumption that P and Q are supported on A, and
P < Q, together with (A229), (A231) and (A232) gives (100)—(102). Furthermore, the left and right-side
inequalities in (100) hold with equality if ¢, (-,-) in (A231) and ey, (-, -) in (A232) coincide, which
implies that the upper and lower bounds in (74) and (75) are tight in that case. Comparing cy, (-, -)
in (A231) and ¢, (-, -) in (A232) shows that they coincide if « = 2.

To prove Item (b) of Theorem 8, let P; and Q, be probability mass functions supported on
A ={0,1} where P.(0) = $ +¢ Q:(0) = 3 + Be,and B > 1 and 0 < & < 5. This yields P; < Q. The

2B
result in (103) is proved by showing that, for all « > 0,
Sa(Pe) — Sa(Qe)
=1, A233
5—1{(1)1 L(IX, PS/ QS) ( )
lim Sa(Pe) —5a(Qe) _ o (A234)

e—0t U(tx, P, Qe)

which shows that the infimum and supremum in (103) can be even restricted to the binary alphabet
setting. For every a € (0,1) U (1,00),
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Sa(P£> - SD&(QS) = ! <ZP€D‘(1) - ZQ?(Q)

1—n

1

(14 = (-9~ (409~ (-5

=a2>7 (B> —1)* + O(e), (A235)

1
11—«

where (A235) follows from a Taylor series expansion around & = 0, and the passage in the limit where
a — 1 shows that (A235) also holds at « = 1 (due to the continuous extension of the order-a Tsallis
entropy at « = 1). This implies that (A235) holds for all « > 0. We now calculate the lower and upper
bounds on Sy (Ps) — Sx(Qg) in (101) and (102), respectively.

e Forae(0,2],

L(a, P, Qe) = 3 aq%.2 (1|Qc 13 — || P:113)

= a227%(B% — 1)(1 +2Be)* 2. (A236)

e Forae (2,,),

L(a, Pe, Qe) = 3 i (1| Qell3 — [ Pell3)
w227 %(B* —1)(1 — 2Be)* 2. (A237)

e  Similarly, for « € (0,2],

U(a, Pe, Qe) = 3 sy (1Qell3 — [IPe13)
w227 (B —1)(1 —2Be)* 2, (A238)

and, for a € (2,00),

U(, Pe, Qe) = 3 tfnea (11 QellZ — [|Pell2)

= a227 (B2 —1)(1 4 2Be)* 2. (A239)

The combination of (A235)-(A237) yields (A233); similarly, the combination of (A235), (A238)
and (A239) yields (A234).

Appendix H. Proof of Theorem 9 and Corollary 1

Appendix H.1. Proof of Theorem 9

The proof of the convexity property of A(-,p) in (149), with p > 1, over the real line R relies
on ([69], Theorem 2.1) which states that if W is a non-negative random variable, then
(E[W"] — E*[W]) loge
ala—1) ’
Ag 1=
" log(E[W]) — E[log W], x=0
E[WlogW| —E[W] log(E[W]), a=1

a#0,1
(A240)

is log-convex in & € R. This property has been used to derive f-divergence inequalities (see, e.g., ([62],
Theorem 20), [65,69]).
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Let Q < P,and let W := dP 9 be the Radon-Nikodym derivative (W is a non-negative random
variable). Let the expectations in the right side of (A240) be taken with respect to P. In view of the
above statement from ([69], Theorem 2.1), this glves the log-convexity of D QHP in ¢ € R. Since
log-convexity yields convexity, it follows that D (Q||P) is convex in « over the real line. Let P := U,
and let Q € Py (p); since Q < P, it follows that D, (@) (Q||Uy) is convex in & € R. The p01ntw1se

maximum of a set of convex functions is a convex function, which implies that ma>(< )D (Q|| u,) is
QeP,

n

convex in & € R for every integer n > 2. Since the pomtw15e limit of a convergent sequence of convex

functions is convex, it follows that lgn ma>(< )D Q|| Uy) is convex in . This, by definition, is equal
n—% QeP,

to A(w, p) (see (146)), which proves the convexity of this function in « € R. From (149), forallp > 1,

Al +a,p) = L [(_“)N(PH'X - 1)1+a (0 — p1+zx)—tx B 11

(a+1)a (p—1)(1+4 a)ltte

S (Lt a) (ot — =) " (oM 1) 1]
oty o2
1 (1+ a)—tx—l(p _ p_,x)lm (p‘”‘ B 1),“ »
= CoraD - D(a)
e (A241)

which proves the symmetry property of A(a, p) around & = % for all p > 1. The convexity in & over
the real line, and the symmetry around « = % implies that A(w, p) gets its global minimum at & = %,

which is equal to (\/; Ok forallp > 1.
Inequalities (162) and (163) follow from ([8], Proposition 2.7); this proposition implies that, for
every integer n > 2 and for all probability mass functions Q defined on A, := {1,...,n},

Qi) < DY (QU), 0<a<p<oo, (A242)
(1-8) DY P (QIU) < 1 —0) D™ (Q|Un), —o<a<p<l. (A243)

Inequalities (162) and (163) follow, respectively, by maximizing both sides of (A242) or (A243)
over Q € Py(p), and letting n tend to infinity.

For every o € R, the function A(«, p) is monotonically increasing in p € (1, o) since (by definition)
the set of probability mass functions {P,(p)},>1 is monotonically increasing (i.e., Pu(p1) € Pul(p2)
if 1 < p; < p2 < ), and therefore the maximum of D QHUn) over Q € Py(p) is a monotonically
increasing function of p € [1,c0); the limit of this maximum, as we let n — oo, is equal to A(a, p)
in (149) for all p > 1, which is therefore monotonically increasing in p over the interval (1, c0). The
continuity of A(a, p) in both « and p is due to its expression in (149) with its continuous extension at
a = 0and & = 1in (150). Since P, (1) = {U,}, it follows from the continuity of A(«, p) that

lim A(x,p) = D\ (U, ||U,) = 0.

p—1+
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Appendix H.2. Proof of Corollary 1
Foralla € Rand p > 1,

lim max DX‘)(UW |Q)

n—o0o Q€Pn(P)

T (1-a)

= lim omax Dy " (QllUn) (A244)
=A(1—a,p) (A245)
= Aa,p), (A246)

where (A244) holds due to the symmetry property in ([8], p. 36), which states that
Dy (PlQ) = DR~ (QlP), (A247)

for every « € R and probability mass functions P and Q; (A245) is due to (146); finally, (A246) holds
due to the symmetry property of A(-,p) around % in Theorem 9 (a).

Appendix I. Proof of (171)

In view of (154) and (155), it follows that the condition in (170) is satisfied if and only if p < p*
where p* € (1,00) is the solution of the equation

p*log p* _ ep*log,p*\
-1 log (P* ] > = dloge. (A248)

with a fixed d > 0. The substitution

X = ‘i)lf%f* (A249)
leads to the equation
x —log,x =d+1. (A250)
Negation and exponentiation of both sides of (A250) gives
(—x)e ¥ = —e 971, (A251)
Since p* > 1 implies by (A249) that x > 1, the proper solution for x is given by
x=-W_(—e 1), d>0, (A252)

where W_; denotes the secondary real branch of the Lambert W function [37]; otherwise, the
replacement of W_1 in the right side of (A252) with the principal real branch Wy yields x € (0,1).
We next proceed to solve p* as a function of x. From (A249), letting u := F% gives the equation

u = e(#=1% which is equivalent to
(—ux)e™ = —xe™* (A253)
= —e 9 (A254)

where (A254) follows from (A252) and by the definition of the Lambert W function (i.e., t = W (u) if
and only if te! = u). The solutions of (A253) are given by
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—ux = W_q1(—e %), (A255)
and

—ux = Wo(—e 1), (A256)
which (from (A252)) correspond, respectively, to # = 1 and

B WO(_e—d—l)

Since p* € (1, 00) is equal to , the reciprocal of the right side of (A257) gives the proper solution
for p* (denoted by pr(m)ix( d) in (171)).

Appendix J. Proof of (176), (177) and (180)

We first derive the upper bound on ®(«, p) in (176) for & > e"? and p > 1. For every Q € Py(p),
with an integer n > 2,

DA (Qly) < [logla+1) 5] 2l
+ 3 [ep 2Da(QIU) - } (A258)
[1og(a+1)+ loge — IOge}
5 (1;’3 el) [exp (2D5(QI1 ) - ] (A259)

where (A258) follows from (65), and (A258) holds due to (159). By upper bounding the second term in
the right side of (A259), for all Q € Py (p),

D3(Q||Uy) = }log(1+ 6D (Q[U)) (A260)
< Llog(1+6A(3,p)) (A261)
_1 4(0° —1)°
-1 (375, 10 7 i
_1 4 +p+1)°
= 5 log ( M (p 1172 ) (A263)

where (A260) holds by setting &« = 3 in (156); (A261) follows from (135), (138) and (145); (A262) holds
by setting &« = 3 in (149); finally, (A263) follows from the factorizations

=17 =(p-1°@+p+1)° (-1(p—0)*= (-1 (p+1)~

Substituting the bound in the right side of (A263) into the second term of the bound on the right
side of (A259) implies that, for all Q € P, (p),
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_1)2
Dy, (QllUx) < [1og(a+1)+gloge_ 10ge} (p 1)

+1
loge (P> +p+1)°
+3(oc+1) {275) (p+1)2 } (A264)
= [log( a+1)+ 3loge — loge} (o~ 1)°
loge (p—l)(29+1)(p+2)
s (ot ) ’ (A269

which therefore gives (176) by maximizing the left side of (A264) over Q € P, (p), and letting n tend
to infinity (see (174)).

We next derive the upper bound in (177). The second derivative of the convex function
fa: (0,00) — R in (55) is upper bounded over the interval [%,p] by the positive constant M =
2log(a + p) + 3loge. From (96), it follows that for all Q € P, (p) (with p > 1 and an integer n > 2)
anda > e 2,

_1)2
D1, (QIU) < [log(a+9) + 3oge] L1 (A266)

which, from (174), yields (177).
We finally derive the upper bound in (180) by loosening the bound in (176). The upper bound in
the right side of (176) can be rewritten as

—1)?
D(a,p) < [}1 log(a+1)+ 3 loge} (b=1)
loge | 1 2 1 \* 1 )
e 81<2+p+1+p> —4p] (o — 1) (A267)
Forallp > 1,
12, LY 1_4 (A268)
81 p "1+p) 4 8T

which can be verified by showing that the left side of (A268) is monotonically increasing in p over the
interval [1, ), and it tends to % as we let p — oo. Furthermore, forallp > 1,

(p—1)?

o

In view of inequalities (A268) and (A269), one gets (180) from (A267) (where the latter is an
equivalent form of (176)).

<min{p—1,(p—1)*}. (A269)

Appendix K. Proof of Theorem 10

We start by proving Item (a). In view of the variational representation of f-divergences (see ([70],
Theorem 2.1), and ([71], Lemma 1)), if f: (0,00) — R is convex with f(1) = 0, and P and Q are
probability measures defined on a set A, then

Dy(PIQ) = sup_(E[g(X)] —E[f(s(Y))]). (A270)

g: A=R

where X ~ Pand Y ~ Q, and the supremum is taken over all measurable functions ¢ under which the
expectations are finite.



Entropy 2019, 21, 1022 68 of 80

Let P € Py(p), with p > 1, and let Q := Uy,; these probability mass functions are defined on the
set A, :={1,...,n}, and it follows that
ug(n,p) = Ds(P||Uy) (A271)

> E[g(X)] - % 7 (300), (A272)

) M:

where (A271) holds by the definition in (77); (A272) holds due to (A270) with X ~ P, and Y being an
equiprobable random variable over A,,. This gives (187).

We next prove Item (b). As above, let f: (0,00) — R be a convex function with f(1) = 0.
Let B* € I'y(p) be a maximizer of the right side of (82). Then,

ug(n,p) = Dp(Qp+[|Un) (A273)
= Y S (nQp (1), (A274)

i=1

Let € > 0 be selected arbitrarily. We have ﬁ = f (i.e., repeating twice the convex conjugate
operation (see (186)) on a convex function f, returns f itself). From the convexity of f, it therefore
follows that, for all t > 0, there exists x € R such that

f(t) <tx—f(x) +e (A275)
Let
t = ang* (1), Vie An, (A276)

let x := x;(e) € R be selected to satisfy (A275) with t := t;, and let the function g.: A, — R be defined
as

(i) =x;(e), Vie A, (A277)
Consequently, it follows from (A275)-(A277) that for all such i
f(nQp+(i)) < nQp-(i) ge(i) — f(ge(i)) +e. (A278)

Let P := Qg+ € Pu(p) (see (80)), and X ~ P. Then,

ur(np) = if(ngﬁ*m) (A279)
< f Qp (i) ge % f (A280)

i=1 i=1
= E[g(X)] - % Y. F(se(i)) + (A281)

—_

1=

where (A279) holds due to (A273) and (A274); (A280) follows from (A278); (A281) holds since by
assumption Px = Qg-. This gives (188).
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Appendix L. Proof of Theorem 11

For y € ), let the L-size list of the decoder be given by L(y) = {x1(y),..., xr(y)} with L < M.
Then, the (average) list decoding error probability is given by

Py = E[P(Y)] (A282)

where the conditional list decoding error probability, given that Y = y € V), is equal to

L
Pe(y) =1~ ; Pxpy (xe(y) |y). (A283)
Foreveryy € ),
Ds(Pxpy (-ly) [ Um)
- L L L
o (| S 0, 1= Erotw o] 171 5]) ez
= Dy ([1 = Pe(y), Pc(y)] | [AL/I 1- ]@D , (A285)

where (A284) holds by the data-processing inequality for f-divergences, and since for every y € Y

Y Uil ) = X o = o (A256)
=1 ’ =R
(A285) is due to (A283). Hence, it follows that
E[Dy (Pejy (1Y) | Un)|
>E {Df([l — Pe(Y), Pe(Y)] || [AL/I 1— AL/ID (A287)
i S | K G U=
() (1 ) ()
) (- ) ()

where (A287) holds by taking expectations in (A284) and (A285) with respect to Y; (A288) holds by the
definition of f-divergence, and the linearity of expectation operator; (A289) follows from the convexity
of f and Jensen’s inequality; finally, (A290) holds by (A282).

Appendix M. Proof of Corollary 3

Leta € (0,1) U(1,00), and let y € Y. The proof starts by applying Theorem 11 in the setting
where Y = y is deterministic, and the convex function f: (0,00) — Ris given by f := u, in (139), i.e.,

ot —a(t-1) -1
f(t) = 2@=1) , t>0. (A291)
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In this setting, (192) is specialized to

Dby (1) Uy = o F(MEZPED) ¢ (1= B (D) sy

where P (y) is the conditional list decoding error probability given that Y = y. Substituting (A291)
into the right side of (A292) gives

o). -5 (4
- 5T [Pfé(w (1-5) ra-mwr (5) - 1] (4299

= oc(ucl—l) [exp ((a — 1) da (PL(]/) 11— Aﬁ)) - 1] ’ (A294)

where (A294) follows from (203). Substituting (A291) into the left side of (A292) gives

D (Pxpy (-ly) Il Unm)

- ]\/hx(i—l) ; [ (MPyy (xly))* — a(MPx)y (x]y) = 1) —1] (A295)

- ]\/le(i—l) lM’X x;( Py (xly) = “XGZX(MPXW(XIy) ~1) —M] (A296)
=0 (|X|=M)

- a(rxl 1) le Y, P (xly) - 1] (A297)

= a(lxl_l){exp«al) [longH,X(X\Y:y)D 1]‘ (A298)

Substituting (A294) and (A298) into the right and left sides of (A292), and rearranging terms
while relying on the monotonicity property of an exponential function gives

H(XIY =) < log M (Pe0) 11~ 4 ) (A299)

We next obtain an upper bound on the Arimoto-Rényi conditional entropy.

Ha (X]Y)
1_
— 5 oy [ dry) exp (S H(XIY = ) (A300)
< = IO/dP()x 128 hogM—dy(Po(y) | 1- £ (A301)
< 7o log | dPv(y) exp| — = |log M —da( Pe(y v
1—a 1—a %
~log M-+ 1 log | dPy(y) [Pﬂy)(l—@) +1-re) (5) ] (A302)

where (A300) holds due to (202); (A301) follows from (A299), and (A302) follows from (203). By ([42],
Lemma 1), it follows that the integrand in the right side of (A302) is convex in Py (y) if &« > 1;
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furthermore, it is concave in P;(y) if « € (0,1). Invoking Jensen’s inequality therefore yields
(see (A282))

1
L 1—a «f L 1—a] «
Hy(X[Y) < log M + 5 - — log ([Pg (1 - M> +(1-Pp) (M) ] ) (A303)
11—« 1—a
:logM—ﬁ log (Pg (1— ]\L/I> + (1—P£)“<AL4> ) (A304)
=logM —d, (Pﬁ 11— Aﬁ) (A305)

where (A303) follows from Jensen’s inequality, and (A305) follows from (203). This proves (205) and
(206) for all « € (0,1) U (1, 00). The necessary and sufficient condition for (205) to hold with equality,
as given in (207), follows from the proof of (A292) (see (A284)—(A286)), and from the use of Jensen’s
inequality in (A303).

Appendix N. Proof of Theorem 12

The proof of Theorem 12 relies on Theorem 1, and the proof of Theorem 11.

Let Z = {0,1} and, without any loss of generality, let X = {1,..., M}. For every y € Y, define a
deterministic transformation from X to Z such that every x € L(y) is mapped to z = 0, and every
x ¢ L(y) is mapped to z = 1. This corresponds to a conditional probability mass function, for every

y € Y, where Wéy&(zpc) =1lifx e L(y)andz = 0,0rif x ¢ L(y) and z = 1; otherwise, Wéy&(zbc) =0.
Let L(y) := {x1(y),...,x.(y)} with L < M. Then, for every y € ), a conditional probability mass

function Py|y (-|y) implies that

PV (z) = ZXPX|Y(x|y) Wi (zlx), vze{o}, (A306)
xe
satisfies (see (A283))
L
Py (0) = L Py(alo)ly) = 1= Pe(y), (A307)
=1
PY (1) = Pe(y). (A308)

Under the deterministic transformation Wéy‘ g( as above, the equiprobable distribution Qg(y) = Uy

(independently of y € )) is mapped to a Bernoulli distribution over the two-elements set Z where

Q(Zy):{AL/I’l_J\L/I]’ Yy, (A309)

Given Y = y € ), applying Theorem 1 with the transformation W)

7x a8 above gives that

Dy (Pxjy (1) || Unt)
> Dy(PP11QY") + e (21(1),22(v) [P (Pxyy (1) 1 tnr) = (P2 11QF) | (A310)
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where, from (18) and (19),

Pxy(x]y)

Gi(y) = gél)rflm = Mfcrél)f(lpxw(ﬂy),
Pxy(x]y)
8a(y) = A U (x) Mrgleza/%(PX|y(x|y).

Since, from (212), (213), (A311) and (A312),

inf &1(y) =M inf Py (x[y) =7,

yey (x,y)EX XY
supGa(y) =M sup  Pxy(xly) = &3,
yey (xy)eXx)y

it follows from the definition of cf(, -) in (26) that for every y € Y

(1Y), 82(y)) =

(9}

£(81,63)
inf  f'(t)

teZ(87.63)

mg

NI—=

IV
NI

72 of 80

(A311)

(A312)

(A313)

(A314)

(A315)
(A316)

(A317)

where the last inequality holds by the assumption in (211). Combining (A310) and (A315)~(A317) yields

Dy (Pxjy (ly) | Unt) = Dy (PY1IQY) + S [ (Prpy Cly) || Una) = 2 (P 11QY)],

for every y € ). Hence,
E[Ds(Pxjy (1) | Un)] = E[D(PYI1QY)] + S E[x2 (P (1Y) Il me) — 22(PL1Q07)

where (A319) holds by taking expectations with respect to Y on both sides of (A318).
Referring to the first term in the right side of (A319) gives

E[Df(PéY)HQ(ZY))] _ E{Df ([1 —Pe(Y), Pe(V)] || []f/y 1- ]{J/ID}

L (M(1-Pg) L MP,
> _ =
w/ () ) (e
where (A320) follows from (A307)-(A309), and (A321) holds due to (A288)—(A290).
Referring to the second term in the right side of (A319) gives

B[ (P (1) Il Une) = 22 (PE11Q07)]

= B[ (P (1Y) | Uy) =22 ([1 = Pe0), PO |31 37 )]
M(1—P(Y))®>  MPE(Y)
-E ngp§|y(x|y)— - e va ]
M 2M M M
= ME xgpg(w(xm -7+ T EP()] - (L + 3 L) E[PZ(Y)]
M(1-2P MZE[P2(Y
_ ME ;ngqy(xm _M( . c) L(A/[I—L(L)H,

(A318)

(A319)

(A320)

(A321)

(A322)

(A323)

(A324)

(A325)
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where (A322) follows from (A306)—(A309); (A323) follows from (A16)—(A18); (A325) is due to (A282).
Furthermore, we get (since Pz (Y) € [0,1])

E[PZ(Y)] <E[P.(Y)] =Py, (A326)
E[PZ(Y)] > E?[P.(Y)] = P}, (A327)
and
E| Y P2, x|Y] /dpy y) ¥ Py (xly) (A328)
xeX xeX
- /X , 4Pxr(x,y) Plxly) (A329)
= E [Py (X]Y)]. (A330)

Combining (A322)—(A330) gives

1-P, P )*

M (B[P (x1)] - e

L
< E [ (P (1) Il tnr) = 22 (P 11Q2)] (A331)
(1-

2 2
gM( [Pxjy(XIY)] = — fo) Mpf L>, (A332)

which provides tight upper and lower bounds on E {Xz (Pxy (-1Y) [ Unm) — X2 (Péy) ||Q(ZY))} if P, is
small. Note that the lower bound on the left side of (A331) is non-negative since, by the data-processing
inequality for the x? divergence, the right side of (A331) should be non-negative (see (A306)-(A309)).
Finally, combining (A319)-(A332) yields (214), which proves Item (a).

For proving Item (b), the upper bound on the left side of (A326) is tightened. If the list decoder
selects the L most probable elements from X given the value of Y € Y, then P, (y) <1 — % for every
y € Y. Hence, the bound in (A326) is replaced by the tighter bound

E[P3(Y)] < (1 - AL/I) Pe. (A333)

Combining (A322)-(A325), (A328)—(A330) and (A333) gives the following improved lower bound
in the left side of (A331):

1—P\7 Y) (Y
M (E [Pxy (XIY)] = — ) < E [ (Pyy (1) l1tm) = 3PS 1057) | (A334)
It is next shown that the operation ()" in the left side of (A334) is redundant. From (A282)
and (A283),

L
Pp=1- ;E[PX‘Y(W(Y) 1Y)] (A335)
L
—1- Y [ dP(y) Py (v |9) (A336)
=17V

L
=1 [ dP(v) - Pay (xe(w) v), (4337)
\ =1
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which then implies that

Pe=1-L [ dny) Z Py (xe(v) 9) (A338)
>1 —L/ dPy(y) Y P2y (xly) (A339)

Y xeX
>1-L p dPxr(y) Py (x1y) (A340)
—1- LE[Pyy (X|Y)], (A341)

where (A338) is due the Cauchy-Schwarz inequality applied to the right side of (A337), and (A339)
holds since £(y) € X forally € Y. From (A335)~(A341), E[Pyy (X|Y)] > 1552, which implies that
the operation (-)" in the left side of (A334) is indeed redundant. Similarly to the proof of (214) (see
(A319)-(A321)), (A334) yields (215) while ignoring the operation (-) T in the left side of (A334).

Appendix O. Proof of Theorem 13

Foreveryy € Y, let the M elements of X’ be sorted in decreasing order according to the conditional
probabilities Pxy(-|y). Let x;(y) be the ¢-th most probable element in X' given Y =y, i.e.,

Pxy(x1(y) ly) = Pxpy(x2(y) ly) = ... > Pxpy (xm(y) [y)- (A342)

The conditional list decoding error probability, given Y = y, satisfies

L)

Pr(y) >1- ; Py (x¢(y) |y) (A343)
=1

), (xss0

and the (average) list decoding error probability satisfies P, > Pg)pt). Let Uy denote the equiprobable
distribution on X, and let g : [0,00) — R be given by g, (¢) := (t — )" with v > 1, where u™ :=
max{u,0} for u € R. The function g, (+) is convex, and g, (1) = 0 for y > 1; the f-divergence Dy, (-||-)

is named as the E,, divergence (see, e.g., [54]), i.e.,
Ey(P||Q) == Dy, (P|Q), Vv 2>1, (A345)

for all probability measures P and Q. For every y € ),

L(y L
E, (v (1) [ ) > B (11- Pf* ), PE ) [P0, 1= 5L (A346)
(opt) (opt)
£ (M(l — P () > ( Iﬁ(]/)|> (MP (y)>
= . +(1- A347
MO\ ) S\ = ew )
where (A346) holds due to the data-processing inequality for f-divergences, and because of (A344);
(opt)

(A347) holds due to (A345). Furthermore, in view of (A342) and (A344), it follows that %Z(()‘) <1

for all y € Y; by the definition of g, it follows that

(opt)

MP, (y)>

—L Vo) -0 Vy>1. (A348)
(32w !
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Substituting (A348) into the right side of (A347) gives that, forally € ),

L M(1— PPy
By Py (1) | ) 2 L5001, (MO0 (A349)
+
— (1 — PPV (y) — Lﬁy )|> : (A350)

Taking expectations with respect to Y in (A349) and (A350), and applying Jensen’s inequality to
the convex function f(u) := (u)*, for u € R, gives

B[, (P () )] 2 [ (1 PP - A0 (A351)
> (1 ~E[Pg™ ()] - WM) + (A352)
- <1 —ploRY W) ) (A353)
> 1 ppr) - TELEON, (A354)

On the other hand, the left side of (A351) is equal to

E[E, (Pyy (1) [ Un) |

= ]El]\l/I (MPyy (x[Y) — )*] (A355)
xeX
v +
—E _ L
) (PXY x|Y) M) (A356)
xeX
—1E Pyy (x]Y) — -L| 4 Pyy (x]Y) — L (A357)
2 XY M XY M
xeX
=3E[ Y [Pxy(x]Y) - X/I’ +3(1—9), (A358)
xeX

where (A355) is due to (A345), and since Uy (x) = < for all x € X; (A356) and (A357) hold,
respectively, by the simple identities (cu)* = ¢ u*, and ut = I(|u| +u) forc > 0Oand u € R;
finally, (A358) holds since

14
% (Pay(aly) = 21) = =7+ ¥ Pay(xly) =11,
xek xeX
for ally € ). Substituting (A355)—(A358) and rearranging terms gives that

e 5 Lty YE[LOII]

> _1
Pz > P, . 7 1E

)3

xeX

Y
Pxjy (x[Y) — M

] , (A359)

which is the lower bound on the list decoding error probability in (222).

We next proceed to prove the sufficient conditions for equality in (222). First, if forally € Y,
the list decoder selects the |£(y)| most probable elements in X given that Y = y, then equality
holds in (A359). In this case, forally € Y, L(y) := {x1(y), - .., x|(,) } where x;(y) denotes the (-th
most probable element in X, given Y = y, with ties in probabilities which are resolved arbitrarily



Entropy 2019, 21, 1022 76 of 80

(see (A342)). Lety > 1. If, for every y € Y, Py (x¢(y) |y) is fixed for all £ € {1,...,[L(y)|} and
Pyjy (x¢(y) ly) is fixed for all ¢ € {|L(y)| +1,..., M}, then equality holds in (A346) (and therefore
equalities also hold in (A349) and (A351)). For all y € ), let the common values of the conditional
probabilities Px|y(-|y) over each of these two sets, respectively, be equal to a(y) and B(y). Then,

a(y) L)+ Bly) (M= [Ly)]) = Z}(Px\y(xl}/) =1 (A360)

which gives the condition in (223). Furthermore, if forally € Y, 1 — PL(ZOPt) (y) — % > 0, then the
operation (-)7 in the right side of (A351) is redundant, which causes (A352) to hold with equality as
an expectation of a linear function; furthermore, also (A354) holds with equality in this case (since an
expectation of a non-negative and bounded function is non-negative and finite). By (223) and (A344),
it follows that Pg’pt) (y) =1—a(y) |L(y)| forall y € ), and therefore the satisfiability of (224) implies
that equalities hold in (A352) and (A354). Overall, under the above condition, it therefore follows
that (222) holds with equality. To verify it explicitly, under conditions (223) and (224) which have been
derived as above, the right side of (222) satisfies

Lry 9EILO g X [P - ;4”
14 9ElL)]
2 M
. _1 7 _1-aMIEMIY
1| (an) - 1) e+ (3 - e (- e (a361)
—1-E[a(Y)[£(Y)]] (A362)
L)
=E|1- : PX‘Y(Xg(Y) |Y) (A363)
=1
— Py, (A364)

where (A361) holds since, under (224), it follows that 0 < % < ﬁ < % for all v > 1; (A362)
holds by straightforward algebra, where 7 is canceled out; (A363) holds by the condition in (223);
finally, (A364) holds by (A282), (A283) and (A342). This indeed explicitly verifies that the conditions

in Theorem 13 yield an equality in (222).
Appendix P. Proofs of Theorems Related to Tunstall Trees

Appendix P.1. Proof of Theorem 14

Theorem 14 (a) follows from (226) (see ([38], Corollary 1)).

By ([72], Lemma 6), the ratio of the maximal to minimal positive masses of P, is upper bounded
by the reciprocal of the minimal probability mass of the source symbols. Theorem 14 (b) is therefore
obtained from Theorem 7 (c). Theorem 14 (c) consequently holds due to Theorem 7 (d); the bound in
the right side of (233), which holds for every number of leaves n in the Tunstall tree, is equal to the
limit of the upper bound in the right side of (232) when we let n — oco.

Theorem 14 (d) relies on ([16], Theorem 11) and the definition in (231), providing an integral
representation of an f-divergence in (234) under the conditions in Item (d).
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Appendix P.2. Proof of Theorem 15

In view of ([33], Theorem 4), if the fixed length of the codewords of the Tunstall code is equal to
m, then the compression rate R of the code satisfies

[log n] H(P)

R< , (A365)
- plogp eplog. p 1
log y n — {ﬁ —108< o1 )] Tog [X]
where H(P) denotes the Shannon entropy of the memoryless and stationary discrete source, p := pnllin ,

n is the number of leaves in Tunstall tree, and the logarithms with an unspecified base can be taken
on an arbitrary base in the right side of (A365). By the setting in Theorem 15, the construction of
the Tunstall tree satisfies n < |X|" < n+ (D —1). Hence, if D = 2, then logm n=mif D> 2,

then [log|X| n] = m (since the length of the codewords is m), and log|X| n>m-+ logw (1 — %)
Combining this with (A365) yields

mH(P) , N
R < " {log(l - ‘D/ﬂ%) N [Pp}ofglp - 10g<eppltig1ep)} }logl|X| (A366)
mH (P) o
= (15 o (%242 | et

In order to assert that R < (1 + ¢) H(P), it is requested that the right side of (A366) does not
exceed (1 + ¢) H(P). This gives

plogp eplogep) _
o—1 log( o1 < dloge, (A367)
where d is given in (235). In view of the part in Section 3.3.2 with respect to the exemplification of
Theorem 7 for the relative entropy, and the related analysis in Appendix I, the condition in (A367) is
equivalent to p < pggx(d ) where pr(rllgx(d ) is defined in (171). Since pmin = %, it leads to the sufficient
condition in (236) for the requested compression rate R of the Tunstall code.
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