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Abstract: Stochastic optimisation in Riemannian manifolds, especially the Riemannian stochastic
gradient method, has attracted much recent attention. The present work applies stochastic
optimisation to the task of recursive estimation of a statistical parameter which belongs to a
Riemannian manifold. Roughly, this task amounts to stochastic minimisation of a statistical
divergence function. The following problem is considered: how to obtain fast, asymptotically
efficient, recursive estimates, using a Riemannian stochastic optimisation algorithm with decreasing
step sizes. In solving this problem, several original results are introduced. First, without any
convexity assumptions on the divergence function, we proved that, with an adequate choice of
step sizes, the algorithm computes recursive estimates which achieve a fast non-asymptotic rate of
convergence. Second, the asymptotic normality of these recursive estimates is proved by employing
a novel linearisation technique. Third, it is proved that, when the Fisher information metric is used to
guide the algorithm, these recursive estimates achieve an optimal asymptotic rate of convergence,
in the sense that they become asymptotically efficient. These results, while relatively familiar in
the Euclidean context, are here formulated and proved for the first time in the Riemannian context.
In addition, they are illustrated with a numerical application to the recursive estimation of elliptically
contoured distributions.

Keywords: Riemannian stochastic gradient; Fisher information metric; recursive estimation;
asymptotic efficiency; elliptically contoured distributions

1. Introduction

Over the last five years, the data science community has devoted significant attention to stochastic
optimisation in Riemannian manifolds. This was impulsed by Bonnabel, who proved the convergence
of the Riemannian stochastic gradient method [1]. Later on [2], the rate of convergence of this
method was studied in detail and under various convexity assumptions on the cost function. More
recently, asymptotic efficiency of the averaged Riemannian stochastic gradient method was proved
in [3]. Previously, for the specific problem of computing Riemannian means, several results on the
convergence and asymptotic normality of Riemannian stochastic optimisation methods had been
obtained [4,5]. The framework of stochastic optimisation in Riemannian manifolds is far-reaching,
and encompasses applications to principal component analysis, dictionary learning, and tensor
decomposition, to give only a few examples [6–8].

The present work moves in a different direction, focusing on recursive estimation in Riemannian
manifolds. While recursive estimation is a special case of stochastic optimisation, it has its own
geometric structure, given by the Fisher information metric. Here, several original results will be
introduced, which show how this geometric structure can be exploited, to design Riemannian stochastic
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optimisation algorithms which compute fast, asymptotically efficient, recursive estimates, of a statistical
parameter which belongs to a Riemannian manifold. For the first time in the literature, these results
extend, from the Euclidean context to the Riemannian context, the classical results of [9,10].

The mathematical problem, considered in the present work, is formulated in Section 2. This
involves a parameterised statistical model P of probability distributions Pθ , where the statistical
parameter θ belongs to a Riemannian manifold Θ. Given independent observations, with distribution
Pθ∗ for some θ∗ ∈ Θ, the aim is to estimate the unknown parameter θ∗. In principle, this is done by
minimising a statistical divergence function D(θ), which measures the dissimilarity between Pθ and
Pθ∗ . Taking advantage of the observations, there are two approaches to minimising D(θ) : stochastic
minimisation, which leads to recursive estimation, and empirical minimisation, which leads to classical
techniques, such as maximum-likelihood estimation [11,12].

The original results, obtained in the present work, are stated in Section 3. In particular, these are
Propositions 2, 4, and 5. Overall, these propositions show that recursive estimation, which requires
less computational resources than maximum-likelihood estimation, can still achieve the same optimal
performance, characterised by asymptotic efficiency [13,14].

To summarise these propositions, consider a sequence of recursive estimates θn , computed
using a Riemannian stochastic optimisation algorithm with decreasing step sizes (n is the number of
observations already processed by the algorithm). Informally, under assumptions which guarantee
that θ∗ is an attractive local minimum of D(θ), and that the algorithm is neither too noisy, nor too
unstable, in the neighborhood of θ∗,

• Proposition 2 states that, with an adequate choice of step sizes, the θn achieve a fast non-asymptotic
rate of convergence to θ∗. Precisely, the expectation of the squared Riemannian distance between
θn and θ∗ is O (n−1). This is called a fast rate, because it is the best achievable, for any step sizes
which are proportional to n−q with q ∈ (1/2, 1] [9,15]. Here, this rate is obtained without any
convexity assumptions, for twice differentiable D(θ). It would still hold for non-differentiable,
but strongly convex, D(θ) [2].

• Proposition 4 states that the distribution of the θn becomes asymptotically normal, centred at θ∗,
when n grows increasingly large, and also characterises the corresponding asymptotic covariance
matrix. This proposition is proved using a novel linearisation technique, which also plays a central
role in [3].

• Proposition 5 states that, if the Riemannian manifold Θ is equipped with the Fisher information
metric of the statistical model P, then Riemannian gradient descent with respect to this information
metric, when used to minimise D(θ), computes recursive estimates θn which are asymptotically
efficient, achieving the optimal asymptotic rate of convergence, given by the Cramér-Rao lower
bound. This is illustrated, with a numerical application to the recursive estimation of elliptically
contoured distributions, in Section 4.

The end result of Proposition 5 is asymptotic efficiency, achieved using the Fisher information
metric. In [3], an alternative route to asymptotic efficiency is proposed, using the averaged Riemannian
stochastic gradient method. This method does not require any prior knowledge of the Fisher
information metric, but has an additional computational cost, which comes from computing on-line
Riemannian averages.

The proofs of Propositions 2, 4, and 5, are detailed in Section 6, and Appendices A and B. Necessary
background, about the Fisher information metric (in short, this will be called the information metric),
is recalled in Appendix C. Before going on, the reader should note that the summation convention of
differential geometry is used throughout the following, when working in local coordinates.

2. Problem Statement

Let P = (P, Θ, X) be a statistical model, with parameter space Θ and sample space X. To each
θ ∈ Θ, the model P associates a probability distribution Pθ on X. Here, Θ is a Cr Riemannian manifold
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with r > 3, and X is any measurable space. The Riemannian metric of Θ will be denoted 〈·, ·〉, with its
Riemannian distance d(·, ·). In general, the metric 〈·, ·〉 is not the information metric of the model P.

Let (Ω,F ,P) be a complete probability space, and (xn ; n = 1, 2, . . .) be i.i.d. random variables on
Ω, with values in X. While the distribution of xn is unknown, it is assumed to belong to the model P.
That is, P ◦ x−1

n = Pθ∗ for some θ∗ ∈ Θ, to be called the true parameter.
Consider the following problem : how to obtain fast, asymptotically efficient, recursive estimates

θn of the true parameter θ∗, based on observations of the random variables xn? The present work
proposes to solve this problem through a detailed study of the decreasing-step-size algorithm, which
computes, similar to [1]

θn+1 = Exp
θn
(γn+1u(θn, xn+1)) n = 0, 1, . . . (1a)

starting from an initial guess θ0 .
This algorithm has three ingredients. First, Exp denotes the Riemannian exponential map of the

metric 〈·, ·〉 of Θ [16]. Second, the step sizes γn are strictly positive, decreasing, and verify the usual
conditions for stochastic approximation [10,17]

∑ γn = ∞ ∑ γ2
n < ∞ (1b)

Third, u(θ, x) is a continuous vector field on Θ for each x ∈ X, which generalises the classical concept
of score statistic [13,18]. It will become clear, from the results given in Section 3, that the solution of the
above-stated problem depends on the choice of each one of these three ingredients.

A priori knowledge about the model P is injected into Algorithm (1a) using a divergence function
D(θ) = D(Pθ∗ , Pθ) (note that θ∗ is unknown, though). As defined in [19], this is a positive function,
equal to zero if and only if Pθ = Pθ∗ , and with positive definite Hessian at θ = θ∗. Since one expects
that minimising D(θ) will lead to estimating θ∗, it is natural to require that

Eθ∗ u(θ, x) = −∇D(θ) (1c)

In other words, that u(θ, x) is an unbiased estimator of minus the Riemannian gradient of D(θ).
With u(θ, x) given by (1c), Algorithm (1a) is a Riemannian stochastic gradient descent, of the form
considered in [1–3]. However, as explained in Remark 2, (1c) may be replaced by the weaker condition
(9), which states that D(θ) is a Lyapunov function of Algorithm (1a), without affecting the results in
Section 3. In this sense, Algorithm (1a) is more general than Riemannian stochastic gradient descent.

In practice, a suitable choice of D(θ) is often the Kullback-Leibler divergence [20],

D(θ) = − Eθ∗ log L(θ) L(θ) =
dPθ

dPθ∗
(2a)

where Pθ is absolutely continuous with respect to Pθ∗ with Radon-Nikodym derivative L(θ) (the
likelihood function). Indeed, if D(θ) is chosen to be the Kullback-Leibler divergence, then (1c) is
satisfied by

u(θ, x) = ∇ log L(θ) (2b)

which, in many practical situations, can be evaluated directly, without any knowledge of θ∗ .
Before stating the main results, in the following Section 3, it may be helpful to recall some general

background on recursive estimation [10]. For simplicity, let D(θ) be the Kullback-Leibler divergence
(2a). The problem of estimating the true parameter θ∗ is equivalent to the problem of finding a global
minimum of D(θ). Of course, this problem cannot be tackled directly, since D(θ) cannot be computed
without knowledge of θ∗. There exist two routes around this difficulty.
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The first route is empirical minimisation, which replaces the expectation in (2a) with an empirical
mean over observed data. Given the first n observations, instead of minimising D(θ), one minimises
the empirical divergence Dn(θ),

Dn(θ) = − 1
n

n

∑
m=1

log L(θ, xm) (3)

where L is the likelihood function of (2a). Now, given the minus sign ahead of the sum in (3), it is clear
that minimising Dn(θ) amounts to maximising the sum of log-likelihoods. Thus, one is lead to the
method of maximum-likelihood estimation.

It is well-known that maximum-likelihood estimation under general regularity conditions is
asymptotically efficient [13]. Roughly, this means the maximum-likelihood estimator has the least
possible asymptotic variance, equal to the inverse of the Fisher information. On the other hand, as the
number n of observations grows, it can be especially difficult to deal with the empirical divergence
Dn(θ) of Equation (3). In the process of searching for the minimum of Dn(θ), each evaluation of this
function, or of its derivatives, will involve a massive number of operations, ultimately becoming
unpractical.

Aiming to avoid this difficulty, the second route recursive estimation is based on
observation-driven updates, following the general scheme of algorithm (1a). In this scheme, each new
recursive estimate θn+1 is computed using only the new observation xn+1. Therefore, as the number
of observations grows very large, the overall computational effort required by recursive estimation
remains the same.

The main results in the following section show that recursive estimation can achieve the same
asymptotic performance as maximum-likelihood estimation as the number n of observations grows
large. As a word of caution, it should be mentioned that recursive estimation does not, in general,
fare better than maximum-likelihood estimation for moderate values of the number n of observations,
and models with a small number of parameters. However, it is a very desirable substitute to
maximum-likelihood estimation for models with a large number of parameters, which typically
require a very large number of observations in order to be estimated correctly.

3. Main Results

The motivation of the following Propositions 1 to 5 is to provide general conditions, which
guarantee that Algorithm (1a) computes fast, asymptotically efficient, recursive estimates θn of the true
parameter θ∗. In the statement of these propositions, it is implicitly assumed that conditions (1b) and
(1c) are verified. Moreover, the following assumptions are considered.

(d1) the divergence function D(θ) has an isolated stationary point at θ = θ∗, and Lipschitz gradient
in a neighborhood of this point.

(d2) this stationary point is moreover attractive : D(θ) is twice differentiable at θ = θ∗, with positive
definite Hessian at this point.

(u1) in a neighborhood of θ = θ∗, the function V(θ) = Eθ∗‖u(θ, x)‖2 is uniformly bounded.
(u2) in a neighborhood of θ = θ∗, the function R(θ) = Eθ∗‖u(θ, x)‖4 is uniformly bounded.

For Assumption (d1), the definition of a Lipschitz vector field on a Riemannian manifold may be
found in [21]. For Assumptions (u1) and (u2), ‖ · ‖ denotes the Riemannian norm.

Assumptions (u1) and (u2) are so-called moment control assumptions. They imply that the
noise in Algorithm (1a) does not cause the iterates θn to diverge, and are also crucial to proving the
asymptotic normality of these iterates.

Let Θ∗ be a neighborhood of θ∗ which verifies (d1), (u1), and (u2). Without loss of generality, it is
assumed that Θ∗ is compact and convex (see the definition of convexity in [16,22]). Then, Θ∗ admits a
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system of normal coordinates (θ α ; α = 1 , . . . , d ) with origin at θ∗. With respect to these coordinates,
denote the components of u(θ∗, x) by uα(θ∗) and let Σ∗ = (Σ∗αβ),

Σ∗αβ = Eθ∗
[
uα(θ∗) uβ(θ∗)

]
(4a)

When (d2) is verified, denote the components of the Hessian of D(θ) at θ = θ∗ by H = (Hαβ),

Hαβ =
∂ 2D

∂θα∂θβ

∣∣∣∣
θα=0

(4b)

Then, the matrix H = (Hαβ) is positive definite [23]. Denote by λ > 0 its smallest eigenvalue.
Propositions 1 to 5 require the condition that the recursive estimates θn are stable, which means

that all the θn lie in Θ∗, almost surely. The need for this condition is discussed in Remark 3. Note that,
if θn lies in Θ∗, then θn is determined by its normal coordinates θ α

n .

Proposition 1 (consistency). assume (d1) and (u1) are verified, and the recursive estimates θn are stable. Then,
lim θn = θ∗ almost surely.

Proposition 2 (mean-square rate). assume (d1), (d2) and (u1) are verified, the recursive estimates θn are
stable, and γn =

a
n where 2λa > 1. Then

E d 2(θn , θ∗) = O
(
n−1
)

(5)

Proposition 3 (almost-sure rate). assume the conditions of Proposition 2 are verified. Then,

d 2(θn , θ∗) = o(n−p) for p ∈ (0, 1) almost surely (6)

Proposition 4 (asymptotic normality). assume the conditions of Proposition 2, as well as (u2), are verified.
Then, the distribution of the re-scaled coordinates (n1/2θ α

n ) converges to a centred d-variate normal distribution,
with covariance matrix Σ given by Lyapunov’s equation

A Σ + Σ A = −a2 Σ∗ (7)

where A = (Aαβ) with Aαβ =
1
2 δαβ − aHαβ (here, δ denotes Kronecker’s delta).

Proposition 5 (asymptotic efficiency). assume the Riemannian metric 〈·, ·〉 of Θ coincides with the
information metric of the model P, and let D(θ) be the Kullback-Leibler divergence (2a). Further, assume
(d1), (d2), (u1) and (u2) are verified, the recursive estimates θn are stable, and γn =

a
n where 2a > 1. Then,

(i) the rates of convergence (5) and (6) hold true.

(ii) if a = 1, the distribution of the re-scaled coordinates (n1/2θ α
n ) converges to a centred d-variate normal

distribution, with covariance matrix Σ∗.

(iii) if a = 1, and u(θ, x) is given by (2b), then Σ∗ is the identity matrix, and the recursive estimates θn are
asymptotically efficient.

(iv) the following rates of convergence also hold

E D(θn) = O
(
n−1
)

(8a)

D(θn ) = o(n−p) for p ∈ (0, 1) almost surely (8b)

The following remarks are concerned with the scope of Assumptions (d1), (d2), (u1), and (u2),
and with the applicability of Propositions 1 to 5.
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Remark 1. (d2), (u1) and (u2) do not depend on the Riemannian metric 〈·, ·〉 of Θ. Precisely, if they are verified
for one Riemannian metric on Θ, then they are verified for any Riemannian metric on Θ. Moreover, if the
function D(θ) is C2, then the same is true for (d1). In this case, Propositions 1 to 5 apply for any Riemannian
metric on Θ, so that the choice of the metric 〈·, ·〉 is a purely practical matter, to be decided according to
applications.

Remark 2. the conclusion of Proposition 1 continues to hold, if (1c) is replaced by

Eθ∗〈u(θ, x),∇D(θ)〉 < 0 for θ 6= θ∗ (9)

Then, it is even possible to preserve Propositions 2, 3, and 4, provided (d2) is replaced by the assumption that
the mean vector field, X(θ) = Eθ∗ u(θ, x), has an attractive stationary point at θ = θ∗. This generalisation of
Propositions 1 to 4 can be achieved following essentially the same approach as laid out in Section 6. However, in
the present work, it will not be carried out in detail.

Remark 3. the condition that the recursive estimates θn are stable is standard in all prior work on stochastic
optimisation in manifolds [1–3]. In practice, this condition can be enforced through replacing Algorithm (1a) by
a so-called projected or truncated algorithm. This is identical to (1a), except that θn is projected back onto the
neighborhood Θ∗ of θ∗, whenever it falls outside of this neighborhood [10,17]. On the other hand, if the θn are
not required to be stable, but (d1) and (u1) are replaced by global assumptions,

(d1’) D(θ) has compact level sets and globally Lipschitz gradient.

(u1’) V(θ) ≤ C (1 + D(θ)) for some constant C and for all θ ∈ Θ.

then, applying the same arguments as in the proof of Proposition 1, it follows that the θn converge to the set of
stationary points of D(θ), almost surely.

Remark 4. from (ii) and (iii) of Proposition 5, it follows that the distribution of n d 2(θn , θ∗) converges to a
χ2-distribution with d degrees of freedom. This provides a practical means of confirming the asymptotic efficiency
of the recursive estimates θn .

4. Application: Estimation of ECD

Here, the conclusion of Proposition 5 is illustrated, by applying Algorithm (1a) to the estimation
of elliptically contoured distributions (ECD) [24,25]. Precisely, in the notation of Section 2, let Θ = Pm

the space of m×m positive definite matrices, and X = Rm . Moreover, let each Pθ have probability
density function

p(x|θ) ∝ exp
[

h
(

x†θ−1x
)
− 1

2
log det(θ)

]
θ ∈ Pm , x ∈ Rm (10)

where h : R→ R is fixed, has negative values, and is decreasing, and † denotes the transpose. Then,
Pθ is called an ECD with scatter matrix θ. To begin, let (xn ; n = 1, 2, . . .) be i.i.d. random vectors in
Rm , with distribution Pθ∗ given by (10), and consider the problem of estimating the true scatter matrix
θ∗. The standard approach to this problem is based on maximum-likelihood estimation [25,26]. An
original approach, based on recursive estimation, is now introduced using Algorithm (1a).

As in Proposition 5, the parameter space Pm will be equipped with the information metric of the
statistical model P just described. In [27], it is proved that this information metric is an affine-invariant
metric on Pm . In other words, it is of the general form [28]

〈u, u〉θ = I1 tr
(
θ−1u

)2
+ I2 tr2

(
θ−1u

)
u ∈ TθPm (11a)
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parameterised by constants I1 > 0 and I2 ≥ 0, where tr denotes the trace and tr2 the squared trace,
and where TθPm denotes the tangent space at θ to the manifold Pm . Precisely [27], for the information
metric of the model P,

I1 =
ϕ

2m2(m + 2)
I2 =

ϕ

m2
− 1

4
(11b)

where ϕ is a further constant, given by the expectation

ϕ = Ee

[
h′(x†x)

(
x†x
)]2 (11c)

with e ∈ Pm the identity matrix, and h′ the derivative of h. This expression of the information metric
can now be used to specify Algorithm (1a).

First, since the information metric is affine-invariant, it is enough to recall that all affine-invariant
metrics on Pm have the same Riemannian exponential map [25,29],

Exp
θ
(u) = θ exp

(
θ−1u

)
(12a)

where exp denotes the matrix exponential. Second, as in (ii) of Proposition 5, choose the sequence of
step sizes

γn =
1
n

(12b)

Third, as in (iii) of Proposition 5, let u(θ, x) be the vector field on Pm given by (2b),

u(θ, x) = ∇(in f ) log L(θ) = ∇(in f ) log p(x|θ) (12c)

where ∇(in f ) denotes the gradient with respect to the information metric, and L(θ) is the likelihood
ratio, equal to p(x|θ) divided by p(x|θ∗). Now, replacing (12) into (1a) defines an original algorithm
for recursive estimation of the true scatter matrix θ∗.

To apply this algorithm in practice, one may evaluate u(θ, x) via the following steps. Denote
g(θ, x) the gradient of log p(x|θ) with respect to the affine-invariant metric of [29], which corresponds
to I1 = 1 and I2 = 0. By direct calculation from (10), this is given by

g(θ, x) = −1
2

θ − h′
(

x†θ−1x
)

xx† (13a)

Moreover, introduce the constants J1 = I1 and J2 = I1 + mI2 . Then, u(θ, x) can be evaluated,

u(θ, x) = J−1
1 (g(θ, x))⊥ + J−1

2 (g(θ, x))‖ (13b)

from the orthogonal decomposition of g = g(θ, x),

g‖ = tr
(
θ−1g

) θ

m
g⊥ = g− g‖ (13c)

Figures 1 and 2 below display numerical results from an application to Kotz-type distributions,
which correspond to h(t) = − ts

2 in (10) and ϕ = s2 m
2s
( m

2s + 1
)

in (11c) [24,27]. These figures were

generated from 103 Monte Carlo runs of the algorithm defined by (1a) and (12), with random
initialisation, for the specific values s = 4 and m = 7. Essentially the same numerical results could be
observed for any s ≤ 9 and m ≤ 50.
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Figure 1. Fast non-asymptotic rate of convergence

Figure 2. Asymptotic efficiency (optimal rate of convergence)

Figure 1 confirms the fast non-asymptotic rate of convergence (5), stated in (i) of Proposition 5.
On a log-log scale, it shows the empirical mean EMC d 2(θn, θ∗) over Monte Carlo runs, as a function of
n. This decreases with a constant negative slope equal to −1, starting roughly at log n = 4. Here, the
Riemannian distance d(θn, θ∗) induced by the information metric (11) is given by [28]

d 2(θ, θ∗) = I1 tr
[
log
(
θ−1θ∗

)]2
+ I2 tr2

[
log
(
θ−1θ∗

)]
θ , θ∗ ∈ Θ (14)

where log denotes the symmetric matrix logarithm [30]. Figure 2 confirms the asymptotic efficiency of
the recursive estimates θn , stated in (iii) of Proposition 5, using Remark 4. It shows a kernel density
estimate of n d 2(θn , θ∗) where n = 105 (solid blue curve). This agrees with a χ2-distribution with 28
degrees of freedom (dotted red curve), where d = 28 is indeed the dimension of the parameter space
Pm for m = 7.

5. Conclusions

Recursive estimation is a subject that is over fifty years old [10], with its foundation in the general
theory of stochastic optimisation [9,15]. Its applications are very wide-ranging, as they cover areas
from control theory to machine learning [17].

With the increasing role of Riemannian manifolds in statistical inference and machine learning, it
was natural to generalise the techniques of stochastic optimisation, from Euclidean space to Riemannian
manifolds. Indeed, this started with the work of Bonnabel [1], which impulsed a series of successive
works, such as [2,3].

These works have mostly sought to directly adapt classical results, known in Euclidean space,
which concern optimal rates of convergence to a unique attractive minimum of a cost function. The
present work also belongs to this line of thinking. It shows that when dealing with a recursive
estimation problem, where the unknown statistical parameter belongs to a differentiable manifold,
equipping this manifold with the information metric of the underlying statistical model, leads to
optimal algorithm performance, which is moreover automatic (does not involve parameter tuning).

The results obtained in the present work (as well as in [2,3]) suffer from inherent limitations.
Indeed, being only focused on convergence to a unique attractive minimum, it does not tackle the
following important open problems :
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• stability of stochastic optimisation algorithms finding verifiable conditions which ensure a
stochastic optimisation algorithm remains within a compact set. A more general form of this
problem is computing the probability of a stochastic optimisation algorithm exiting a certain
neighborhood of a stationary point (whether attractive or not) within a finite number of iterations.

• non-asymptotic performance of stochastic optimisation algorithms : this involves computing
explicitly the outcome which the algorithm is able to achieve, after a given finite number of
iterations. This provides a much stronger theoretical guarantee, to the user, than standard results
which compute a rate of convergence.

These problems have attracted much attention and generated well-known results when considered
in the Euclidean case [31,32], but remain open in the context of Riemannian manifolds. They involve
much richer interaction between Riemannian geometry and stochastic optimisation, due to their global
nature.

6. Proofs of Main Results

Proof of Proposition 1. The proof is a generalisation of the original proof in [1], itself modeled on
the proof for the Euclidean case in [33]. Throughout the following, let Xn be the σ-field generated by
x1 , . . . , xn [20]. Recall that (xn ; n = 1, 2, . . .) are i.i.d. with distribution Pθ∗ . Therefore, by (1a), θn is
Xn-measurable and xn+1 is independent from Xn . Thus, using elementary properties of conditional
expectation [20],

E [u(θn, xn+1)|Xn] = −D(θn) (15a)

E
[
‖u(θn, xn+1)‖2

∣∣∣Xn

]
= V(θn) (15b)

where (15a) follows from (1c), and (15b) from (u1). Let L be a Lipschitz constant for ∇D(θ), and C
be an upper bound on V(θ), for θ ∈ Θ∗. The following inequality is now proved, for any positive
integer n,

E [D(θn+1)− D(θn)|Xn] ≤ γ2
n+1 LC− γn+1‖∇D(θn)‖2 (16)

once this is done, Proposition 1 is obtained by applying the Robbins-Siegmund theorem [9].

Proof of (16) : let c(t) be the geodesic connecting θn to θn+1 with equation

c(t) = Exp
θn
(tγn+1u(θn, xn+1)) (17a)

From the fundamental theorem of calculus,

D(θn+1)− D(θn) = γn+1 〈u(θn, xn+1),∇D(θn)〉 + γn+1

∫ 1

0
[〈ċ,∇D〉c(t) − 〈ċ,∇D〉c(0)] dt (17b)

Since the recursive estimates θn are stable, θn and θn+1 both lie in Θ∗. Since Θ∗ is convex, the whole
geodesic c(t) lies in Θ∗. Then, since ∇D(θ) is Lipschitz on Θ∗, it follows from (17b),

D(θn+1)− D(θn) ≤ γn+1 〈u(θn, xn+1),∇D(θn)〉 + γ2
n+1 L‖u(θn, xn+1)‖2 (17c)

Taking conditional expectations in this inequality, and using (15a) and (15b),

E [D(θn+1)− D(θn)|Xn] ≤ −γn+1‖∇D(θn)‖2 + γ2
n+1 LV(θn) (17d)

so (16) follows since (u1) guarantees V(θn) ≤ C. 2 Conclusion : by the Robbins-Siegmund theorem,
inequality (16) implies that, almost surely,

lim D(θn) = D∞ < ∞ and
∞

∑
n=1

γn+1 ‖∇D(θn)‖2 < ∞ (18a)
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In particular, from the first condition in (1b), convergence of the sum in (18a) implies

lim ‖∇D(θn)‖ = 0 almost surely (18b)

Now, since the sequence of recursive estimates θn lies in the compact set Θ∗, it has at least one point of
accumulation in this set, say θ∗ . If θn(k) is a subsequence of θn , converging to θ∗ ,

‖∇D(θ∗)‖ = lim ‖∇D(θn(k))‖ = lim ‖∇D(θn)‖ = 0 almost surely

where the third equality follows from (18b). This means that θ∗ is a stationary point of D(θ) in Θ∗.
Thus, (d1) implies θ∗ = θ∗ is the unique point of accumulation of θn . In other words, lim θn = θ∗

almost surely.

Proof of Proposition 2. The proof is modeled on the proofs for the Euclidean case, given in [10,15]. It
relies on the following geometric Lemmas 1 and 2. Lemma 1 will be proved in Appendix A. On the
other hand, Lemma 2 is the same as the trigonometric distance bound of [2]. For Lemma 1, recall that
λ > 0 denotes the smallest eigenvalue of the matrix H defined in (4b).

Lemma 1. for any µ < λ, there exists a neighborhood Θ̄∗ of θ∗, contained in Θ∗, with

〈Exp−1
θ
(θ∗),∇D(θ)〉 ≤ −µ d 2(θ, θ∗) for θ ∈ Θ̄∗ (19a)

Lemma 2. let −κ2 be a lower bound on the sectional curvature of Θ in Θ∗, and Cκ = Rκ coth(Rκ) where R is
the diameter of Θ∗. For τ, θ ∈ Θ∗, where τ = Exp

θ
(u),

d 2(τ, θ∗) ≤ d 2(θ, θ∗)− 2 〈Exp−1
θ
(θ∗), u〉+ Cκ‖u‖2 (19b)

Proof of (5) : let γn = a
n with 2λa > 2µa > 1 for some µ < λ, and let Θ̄∗ be the neighborhood

corresponding to µ in Lemma 1. By Proposition 1, the θn converge to θ∗ almost surely. Without loss of
generality, it can be assumed that all the θn lie in Θ̄∗, almost surely. Then, (1a) and Lemma 2 imply, for
any positive integer n,

d 2(θn+1, θ∗) ≤ d 2(θn, θ∗)− 2γn+1 〈Exp−1
θn
(θ∗), u(θn, xn+1)〉+ γ2

n+1 Cκ‖u(θn, xn+1)‖2 (20a)

Indeed, this follows by replacing τ = θn+1 and θ = θn in (19b). Taking conditional expectations in (20a),
and using (15a) and (15b),

E [d 2(θn+1, θ∗)|Xn] ≤ d 2(θn, θ∗) + 2γn+1 〈Exp−1
θn
(θ∗),∇D(θn)〉+ γ2

n+1 CκV(θn)

Then, by (u1) and (19a) of Lemma 1,

E [d 2(θn+1, θ∗)|Xn] ≤ d 2(θn, θ∗)(1− 2γn+1µ) + γ2
n+1 CκC (20b)

where C is an upper bound on V(θ), for θ ∈ Θ∗. By further taking expectations

E d 2(θn+1, θ∗) ≤ E d 2(θn, θ∗)(1− 2γn+1µ) + γ2
n+1 CκC (20c)

Using (20c), the proof reduces to an elementary reasoning by recurrence. Indeed, replacing γn = a
n

into (20c), it follows that

E d 2(θn+1, θ∗) ≤ E d 2(θn, θ∗)

(
1− 2µa

n + 1

)
+

a2CκC
(n + 1)2

(21a)
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On the other hand, if b(n) = b
n where b > a2CκC (2µa− 1)−1, then

b(n + 1) ≥ b(n)
(

1− 2µa
n + 1

)
+

a2CκC
(n + 1)2

(21b)

Let b be sufficiently large, so (21b) is verified and E d 2(θno , θ∗) ≤ b(no) for some no . Then, by recurrence,
using (21a) and (21b), one also has that E d 2(θn , θ∗) ≤ b(n) for all n ≥ no . In other words, (5) holds
true.

Proof of Proposition 3. the proof is modeled on the proof for the Euclidean case in [10]. To begin, let
Wn be the stochastic process given by

Wn = np d 2(θn, θ∗) + n−q where q ∈ (0, 1− p) (22a)

The idea is to show that this process is a positive supermartingale, for sufficiently large n. By the
supermartingale convergence theorem [20], it then follows that Wn converges to a finite limit, almost
surely. In particular, this implies

lim np d 2(θn, θ∗) = `p < ∞ almost surely (22b)

Then, `p must be equal to zero, since p is arbitrary in the interval (0, 1). Precisely, for any ε ∈ (0, 1− p),

`p = lim np d 2(θn, θ∗) = lim n−εnp+ε d 2(θn, θ∗) = (lim n−ε) `p+ε = 0

It remains to show that Wn is a supermartingale, for sufficiently large n. To do so, note that by (20b)
from the proof of Proposition 2,

E [Wn+1 −Wn|Xn] ≤ d 2(θn, θ∗)
p− 2µa

(n + 1)1−p
+

a2CκC
(n + 1)2−p

− q
(n + 1)q+1

Here, the first term on the right-hand side is negative, since 2µa > 1 > p. Moreover, the third term
dominates the second one for sufficiently large n, since q < 1− p. Thus, for sufficiently large n, the
right-hand side is negative, and Wn is a supermartingale.

Proof of Proposition 4. the proof relies on the following geometric Lemmas 3 and 4, which are used
to linearise Algorithm (1a), in terms of the normal coordinates θ α. This idea of linearisation in terms of
local coordinates also plays a central role in [3].

Lemma 3. let θn , θn+1 be given by (1a) with γn =
a
n . Then, in a system of normal coordinates with origin at θ∗,

θ α
n+1 = θ α

n + γn+1 uα
n+1 + γ2

n+1 πα
n+1 E |πα

n+1| = O(n−1/2) (23a)

where uα
n+1 are the components of u(θn, xn+1).

Lemma 4. let vn = ∇D(θn) . Then, in a system of normal coordinates with origin at θ∗,

v α
n = Hαβ θ β

n + ρα
n ρα

n = o (d(θn, θ∗)) (23b)

where v α
n are the components of vn and the Hαβ were defined in (4b).

Linearisation of (1a) : let u(θn, xn+1) = −vn + wn+1 . Then, it follows from (23a) and (23b),

θ α
n+1 = θ α

n − γn+1 Hαβ θ β
n − γn+1 ρα

n + γn+1 w α
n+1 + γ2

n+1 πα
n+1 (24a)
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Denote the re-scaled coordinates n1/2θ α
n by ηα

n , and recall γn =
a
n . Then, using the estimate (n + 1)1/2 =

n1/2(1 + (2n)−1 + O(n−2)), it follows from (24a) that

ηα
n+1 = ηα

n +
Aαβ

n + 1
ηβ

n +
a

(n + 1)1/2

[
Bαβ θ β

n − ρα
n + w α

n+1 +
aπα

n+1

n + 1

]
(24b)

where Aαβ = 1
2 δαβ − aHαβ and Bαβ = O(n−1). Equation (24b) is a first-order, inhomogeneous, linear

difference equation, for the “vector” ηn of components ηα
n . 2

Study of equation (24b) : switching to vector-matrix notation, equation (24b) is of the general form

ηn+1 =

(
I +

A
n + 1

)
ηn +

a ξn+1

(n + 1)1/2
(25a)

where I denotes the identity matrix, A has matrix elements Aαβ , and (ξn) is a sequence of inputs. The
general solution of this equation is [10,34]

ηn = An,m ηm +
n

∑
k=m+1

An,k
a ξk

k1/2
for n ≥ m (25b)

where the transition matrix An,k is given by

An,k =
n

∏
j=k+1

(
I +

A
j

)
An,n = I (25c)

Since 2λa > 1, the matrix A is stable. This can be used to show that [10,34]

q >
1
2

and E |ξn | = O(n−q) =⇒ lim ηn = 0 in probability (25d)

where |ξn| denotes the Euclidean vector norm. Then, it follows from (25d) that ηn converges to zero in
probability, in each one of the three cases

ξα
n+1 = Bαβ θ β

n ; ξα
n+1 = ρα

n ; ξα
n+1 =

πα
n+1

n + 1

Indeed, in the first two cases, the condition required in (25d) can be verified using (5), whereas in the
third case, it follows immediately from the estimate of E|πα

n+1| in (23a). 2
Conclusion : by linearity of (24b), it is enough to consider the case ξα

n+1 = w α
n+1 in (25a). Then, according

to (25b), ηn has the same limit distribution as the sums

η̃n =
n

∑
k=1

An,k
awk

k1/2
(26)

By (15), (wk) is a sequence of square-integrable martingale differences. Therefore, to conclude that the
limit distribution of η̃n is a centred d-variate normal distribution, with covariance matrix Σ given by
(7), it is enough to verify the conditions of the martingale central limit theorem [35],

lim max
k≤n

∣∣∣An,k
awk

k1/2

∣∣∣ = 0 in probability (27a)

sup E |η̃n |
2
< ∞ (27b)

lim
n

∑
k=1

a2

k
An,k Σk An,k = Σ in probability (27c)
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where Σk is the conditional covariance matrix

Σk = E
[
wk w†

k

∣∣Xk−1

]
(28)

Conditions (27) are verified in Appendix B, which completes the proof.

Proof of Proposition 5. Denote ∂α = ∂
∂θ α the coordinate vector fields of the normal coordinates θ α .

Since 〈·, ·〉 coincides with the information metric of the model P, it follows from (4b) and (A10),

Hαβ = 〈∂α , ∂β〉θ∗ (29a)

However, by the definition of normal coordinates [16], the ∂α are orthonormal at θ∗. Therefore,

Hαβ = δαβ (29b)

Thus, the matrix H is equal to the identity matrix, and its smallest eigenvalue is λ = 1.

Proof of (i) : this follows directly from Propositions 2 and 3. Indeed, since λ = 1, the conditions of these
propositions are verified, as soon as 2a > 1. Therefore, (5) and (6) hold true. 2

Proof of (ii) : this follows from Proposition 4. The conditions of this proposition are verified, as soon as
2a > 1. Therefore, the distribution of the re-scaled coordinates (n1/2θ α

n ) converges to a centred d-variate
normal distribution, with covariance matrix Σ given by Lyapunov’s equation (7). If a = 1, then (29b)
implies Aαβ = − 1

2 δαβ , so that Lyapunov’s equation (7) reads Σ = Σ∗, as required. 2

For the following proof of (iii), the reader may wish to recall that summation convention is used
throughout the present work. That is [16], summation is implicitly understood over any repeated
subscript or superscript from the Greek alphabet, taking the values 1 , . . . , d .

Proof of (iii) : let `(θ) = log L(θ) and assume u(θ, x) is given by (2b). Then, by the definition of normal
coordinates [16], the following expression holds

uα(θ∗) =
∂`

∂θ α

∣∣∣∣
θα=0

(30a)

Replacing this into (4a) gives

Σ∗αβ = Eθ∗

[
∂`

∂θ α

∂`

∂θ β

]
θα=0

= − Eθ∗
∂ 2`

∂θα∂θβ

∣∣∣∣
θα=0

=
∂ 2D

∂θα∂θβ

∣∣∣∣
θα=0

(30b)

where the second equality is the so-called Fisher’s identity (see [19], Page 28), and the third equality
follows from (2a) by differentiating under the expectation. Now, by (4b) and (29b), Σ∗ is the identity
matrix.

To show that the recursive estimates θn are asymptotically efficient, let (τα ; α = 1, . . . , d ) be any
local coordinates with origin at θ∗ and let τα

n = τα(θn) . From the second-order Taylor expansion of
each coordinate function τα, it is straightforward to show that

n1/2τα
n =

(
∂τα

∂θ γ

)
θ∗

(
n1/2θ γ

n

)
+ σα(θn)

(
n1/2d 2(θn , θ∗)

)
(31a)

where the subscript θ∗ indicates the derivative is evaluated at θ∗, and where σα is a continuous function
in the neighborhood of θ∗. By (6), the second term in (31a) converges to zero almost surely. Therefore,
the limit distribution of the re-scaled coordinates (n1/2τα

n ) is the same as that of the first term in (31a).
By (ii), this is a centred d-variate normal distribution with covariance matrix Στ given by

Στ
αβ =

(
∂τα

∂θ γ

)
θ∗

Σ∗γκ

(
∂τβ

∂θ κ

)
θ∗

=

(
∂τα

∂θ γ

)
θ∗

(
∂τβ

∂θ γ

)
θ∗

(31b)
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where the second equality follows because Σ∗γκ = δγκ since Σ∗ is the identity matrix.
It remains to show that Στ is the inverse of the information matrix Iτ as in (A12). According to

(A10), this is given by

Iτ
αβ =

∂ 2D
∂τα∂τβ

∣∣∣∣
τα=0

= − Eθ∗
∂ 2`

∂τα∂τβ

∣∣∣∣
τα=0

= Eθ∗

[
∂`

∂τα

∂`

∂τβ

]
τα=0

(31c)

where the second equality follows from (2a), and the third equality from Fisher’s identity (see [19],
Page 28). Now, a direct application of the chain rule yields the following

Iτ
αβ = Eθ∗

[
∂`

∂τα

∂`

∂τβ

]
τα=0

=

(
∂θ γ

∂τα

)
θ∗

Eθ∗

[
∂`

∂θ γ

∂`

∂θ κ

]
θ γ=0

(
∂θ κ

∂τβ

)
θ∗

By the first equality in (30b), this is equal to

Iτ
αβ =

(
∂θ γ

∂τα

)
θ∗

Σ∗γκ

(
∂θ κ

∂τβ

)
θ∗

=

(
∂θ γ

∂τα

)
θ∗

(
∂θ γ

∂τβ

)
θ∗

(31d)

because Σ∗γκ = δγκ is the identity matrix. Comparing (31b) to (31d), it is clear that Στ is the inverse of
the information matrix Iτ as in (A12).

Proof of (iv) : (8a) and (8b) follow from (5) and (6), respectively, by using (A11). Precisely, it is
possible to write (A11) in the form

D(θn) =
1
2

d 2(θn, θ∗) + ω(θn) d 2(θn, θ∗) (32a)

where ω is a continuous function in the neighborhood of θ∗, equal to zero at θ = θ∗. To obtain (8a), it
is enough to take expectations in (32a) and note that ω is bounded above in the neighborhood of θ∗.
Then, (8a) follows directly from (5).

To obtain (8b), it is enough to multiply (32a) by np where p ∈ (0, 1). This gives the following
expression

npD(θn) =
1
2

npd 2(θn, θ∗) (1 + ω(θn)) (32b)

From (6), npd 2(θn, θ∗) converges to zero almost surely. Moreover, by continuity of ω, it follows that
ω(θn) converges to ω(θ∗) = 0 almost surely. Therefore, by taking limits in (32b), it is readily seen that

lim npD(θn) =
1
2
(lim npd 2(θn, θ∗)) (1 + lim ω(θn)) = 0 (32c)

almost surely. However, this is equivalent to the statement that D(θn) = o(n−p) for p ∈ (0, 1), almost
surely. Thus, (8b) is proved.
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Appendix A. Proofs of Geometric Lemmas

Appendix A.1. Lemma 1

Let c(t) be the geodesic connecting θ∗ to some θ ∈ Θ∗, parameterised by arc length. In other
words, c(0) = θ∗ and c(tθ) = θ where tθ = d(θ, θ∗). Denote Πt the parallel transport along c(t), from
Tc(0)Θ to Tc(t)Θ. Since the velocity ċ(t) is self-parallel [16],

ċ(tθ) = Πtθ (ċ(0))

Multiplying this identity by −tθ , it follows that

Exp−1
θ
(θ∗) = −Πtθ

(
Exp−1

θ∗ (θ)
)

(A1a)

Moreover, recall the first-order Taylor expansion of the gradient ∇D(θ) [16,36]

∇D(θ) = Πtθ

(
∇D(θ∗) + tθ∇2D(θ∗) · ċ(0) + tθ φ(θ)

)
(A1b)

where φ(θ) is continuous and equal to zero at θ = θ∗. Here, ∇2D(θ∗) is the Hessian of D(θ) at θ = θ∗,
considered as a linear mapping of Tθ∗Θ [16,36]

∇2D(θ∗) · w = ∇w∇D(θ∗) for w ∈ Tθ∗Θ

where∇w denotes the covariant derivative in the direction of w. By (d1), the first term on the right-hand
side of (A1b) is equal to zero, so that

∇D(θ) = Πtθ

(
∇2D(θ∗) · Exp−1

θ∗ (θ) + tθ φ(θ)
)

(A1c)

Taking the scalar product of (A1a) and (A1c),

〈Exp−1
θ
(θ∗),∇D(θ)〉 = − 〈Exp−1

θ∗ (θ),∇
2D(θ∗) · Exp−1

θ∗ (θ)〉 − tθ 〈Exp−1
θ∗ (θ), φ(θ)〉 (A1d)

since parallel transport preserves scalar products. In terms of the normal coordinates θ α, this reads [16]

〈Exp−1
θ
(θ∗),∇D(θ)〉 = −Hαβ θ αθ β − t2

θ θ̂ αφα (A1e)

where H = (Hαβ) was defined in (4b), θ̂ α denotes the quotient θ α/tθ , and the φα denote the components
of φ(θ). Note that t2

θ = d 2(θ, θ∗) = θ αθ α , so (A1e) can be written

〈Exp−1
θ
(θ∗),∇D(θ)〉 = (ψ(θ)δαβ − Hαβ) θ αθ β (A1f)

where ψ(θ) is continuous and equal to zero at θ = θ∗. To conclude, let µ = λ− ε for some ε > 0, and
Θ̄∗ a neighborhood of θ∗, contained in Θ∗, such that ψ(θ) ≤ ε for θ ∈ Θ̄∗. Then, since λ is the smallest
eigenvalue of H = (Hαβ),

〈Exp−1
θ
(θ∗),∇D(θ)〉 ≤ (ε− λ) θ αθ α = −µ d 2(θ, θ∗)

for θ ∈ Θ̄∗. This is exactly (19a), so the lemma is proved. 2

Appendix A.2. Lemma 3

To simplify notation, let un+1 = u(θn, xn+1). Then, the geodesic c(t), connecting θn to θn+1 ,
has equation

c(t) = Exp
θn
(tγn+1un+1)
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Each one of the normal coordinates θ α is a C3 function θ α : Θ∗ → R, with differential dθ α and
Hessian [16]

∇2θ α = −Γα
βγ(θ) dθ β⊗ dθ γ

where Γα
βγ are the Christoffel symbols of the coordinates θ α, and ⊗ denotes the tensor product. Then,

the second-order Taylor expansion of the functions θ α ◦ c reads

(θ α ◦ c)(1) = (θ α ◦ c)(0) + γn+1 dθ α(un+1)−
1
2

γ2
n+1 Γα

βγ(θn) dθ β(un+1) dθ γ(un+1) + γ3
n+1T α

n+1 (A2a)

where T α
n+1 satisfies

|T α
n+1| ≤ K1 ‖un+1‖3 (A2b)

for a constant K1 which does not depend on n, as can be shown by direct calculation. Of course,
(θ α ◦ c)(1) = θ α

n+1 and (θ α ◦ c)(0) = θ α
n . Moreover, dθ α(un+1) = uα

n+1 are the components of un+1 .
Replacing into (A2a), this yields

θ α
n+1 = θ α

n + γn+1 uα
n+1 + γ2

n+1 πα
n+1 (A2c)

where πα
n+1 is given by

πα
n+1 = γn+1 T α

n+1 −
1
2

Γα
βγ(θn) uβ

n+1 uγ
n+1 (A2d)

Comparing (A2c) to (23a), it is clear the proof will be complete upon showing E |πα
n+1| = O(n−1/2). To

do so, note that each Christoffel symbol Γα
βγ is a C1 function on the compact set Θ∗, with Γα

βγ(θ
∗) = 0

by the definition of normal coordinates [16]. Therefore,∣∣ Γα
βγ(θ)

∣∣ ≤ K2 d(θ, θ∗) (A2e)

for a constant K2 which does not depend on n. Replacing the inequalities (A2b) and (A2e) into (A2d),
and taking expectations, it follows that

E |πα
n+1| ≤ γn+1 K1 E ‖un+1‖3 + d 2 × K2 E

[
d(θn, θ∗) ‖un+1‖2

]
(A3a)

where d is the dimension of the parameter space Θ. However, using the fact that the xn are i.i.d. with
distribution Pθ∗ ,

E
[
‖un+1‖3

∣∣∣Xn

]
= Eθ∗ ‖u(θn, x)‖3 ≤ R 3/4(θn) (A3b)

by (u2) and Jensen’s inequality [20]. On the other hand, by the Cauchy–Schwarz inequality,

E
[

d(θn, θ∗) ‖un+1‖2
]
≤ (E d 2(θn, θ∗))1/2 (E ‖un+1‖4

)1/2 ≤ b n−1/2
(
E ‖un+1‖4

)1/2

for some b > 0 as follows from (5). Then, by the same reasoning that lead to (A3b),

E
[

d(θn, θ∗) ‖un+1‖2
]
≤ b n−1/2 (E R(θn))

1/2 (A3c)

By (u2), there exists a uniform upper bound M on R(θ) for θ ∈ Θ∗. Since θn lies in Θ∗ for all n, it
follows by replacing the inequalities (A3b) and (A3c) into (A3a) that

E |πα
n+1| ≤ γn+1 K1 M 3/4 + d 2 × K2 b n−1/2 M 1/2 (A3d)

Finally, by recalling that γn =
a
n , it is clear that the right-hand side of (A3d) is O(n−1/2), so the proof is

complete. 2
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Appendix A.3. Lemma 4

The lemma is an instance of the general statement : let θ ∈ Θ∗ and v = ∇D(θ). Then, in a system
of normal coordinates with origin at θ∗,

v α = Hαβ θ β + o (d(θ, θ∗)) (A4a)

where v α are the components of v. Indeed, (23b) follows from (A4a) after replacing θ = θn , so that
v = vn , and setting

ρα
n = v α

n − Hαβ θ β
n

To prove (A4a), recall (A1c) from the proof of Lemma 1, which can be written

v = Πtθ

(
∇2D(θ∗) · Exp−1

θ∗ (θ)
)
+ d(θ, θ∗)Πtθ (φ(θ)) (A4b)

Denote ∂α =
∂

∂θ α the coordinate vector fields of the normal coordinates θ α . Note that [16,36]

Exp−1
θ∗ (θ) = θ β ∂β(θ

∗) ∇2D(θ∗) · ∂β(θ
∗) = Hαβ ∂α(θ

∗)

Replacing in (A4b), this gives

v = Hαβ θ β Πtθ (∂α(θ
∗)) + d(θ, θ∗)Πtθ (φ(θ)) (A4c)

From the first-order Taylor expansion of the vector fields ∂α [16,36]

∂α(θ) = Πtθ

(
∂α(θ

∗) + ∇∂α(θ
∗) · Exp−1

θ∗ (θ)
)
+ d(θ, θ∗)Πtθ (χ

α(θ))

where χα(θ) is continuous and equal to zero at θ = θ∗. However, by the definition of normal
coordinates [16], each covariant derivative ∇∂α(θ∗) is zero. In other words,

∂α(θ) = Πtθ (∂α(θ
∗)) + d(θ, θ∗)Πtθ (χ

α(θ)) (A4d)

Replacing (A4d) into (A4c), it follows

v = Hαβ θ β ∂α(θ) + d(θ, θ∗)Πtθ

(
φ(θ)− Hαβ θ βχα(θ)

)
(A4e)

Now, to obtain (A4a), it is enough to note the decomposition v = v α ∂α(θ) is unique, and φ(θ) −
Hαβ θ βχα(θ) converges to zero as θ converges to θ∗. 2

Appendix B. Conditions of the Martingale CLT

For the verification of Conditions (27), the following inequality (A5) will be useful. Let ν = aλ− 1
2 ,

so−ν is the largest eigenvalue of the matrix A in (25a). There exists a constant CA such that the transition
matrices An,k in (25c) satisfy [10,34]

|An,k|Op ≤ CA

(
k
n

)ν

(A5)

where |An,k|Op denotes the Euclidean operator norm, equal to the largest singular value of the matrix
An,k .

Condition (27a) : to verify this condition, note that for arbitrary ε > 0,

P
(

max
k≤n

∣∣∣An,k
awk

k1/2

∣∣∣ > ε

)
≤

n

∑
k=1

P
(∣∣∣An,k

awk

k1/2

∣∣∣ > ε
)
≤

n

∑
k=1

P
(

CA

(
k
n

)ν ∣∣∣ awk

k1/2

∣∣∣ > ε

)
(A6a)
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where the second inequality follows from (A5). However, it follows from (u2) that there exists a uniform
upper bound Mw on the fourth-order moments of |wk| . Therefore, by Chebyshev’s inequality [20]

n

∑
k=1

P
(

CA

(
k
n

)ν ∣∣∣ awk

k1/2

∣∣∣ > ε

)
≤
(

aCA

ε

)4 Mw

n4ν

n

∑
k=1

k4ν−2 (A6b)

Since ν > 0, the right-hand side of (A6b) has limit equal to 0 as n → ∞, by the Euler–Maclaurin
formula [37]. Replacing this limit from (A6b) into (A6a) immediately yields Condition (27a). 2

Condition (27b) : to verify this condition, recall that (wk) is a sequence of square-integrable martingale
differences. Therefore, from (26)

E |η̃n |
2
=

n

∑
k=1

a2

k
E tr

(
A2

n,kΣk

)
(A7a)

where Σk is the conditional covariance matrix in (28). Applying (A5) to each term under the sum in
(A7a), it follows that

E |η̃n |
2 ≤ d

1
2

n

∑
k=1

a2

k
E |An,k|2Op |Σk |F ≤

(
d

1
2 a2 C 2

A

)
1

n2ν

n

∑
k=1

k2ν−1 E |Σk |F (A7b)

where d is the dimension of the parameter space Θ, and |Σk |F denotes the Frobenius matrix norm.
However, it follows from (u1) that there exists a uniform upper bound S on |Σk |F . Therefore, by (A7b)

E |η̃n |
2 ≤

(
d

1
2 a2 C 2

A

)
S

n2ν

n

∑
k=1

k2ν−1 (A7c)

Since ν > 0, the right-hand side of (A7c) remains bounded as n → ∞, by the Euler-Maclaurin
formula [37]. This immediately yields Condition (27b). 2

Condition (27c) : to verify this condition, it is first admitted that the following limit is known to hold

lim E (Σk) = Σ∗ (A8a)

where Σ∗ was defined in (4a). Then, let the sum in (27c) be written

n

∑
k=1

a2

k
An,k Σk An,k =

n

∑
k=1

a2

k
An,k Σ∗An,k +

n

∑
k=1

a2

k
An,k [Σk − Σ∗] An,k (A8b)

Due to the equivalence An,k ∼ exp(ln(n/k)A) (see [10], Page 125), the first term in (A8b) is a Riemann
sum for the integral [10,34]

a2
∫ 1

0
e− ln(s) A Σ∗ e− ln(s) A d ln(s) = a2

∫ ∞

0
e−t A Σ∗ e−t A dt

which is known to be the solution Σ of Lyapunov’s equation (7). The second term in (A8b) can be
shown to converge to zero in probability, using inequality (A5) and the limit (A8a), by a similar
argument to the ones in the verification of Conditions (27a) and (27b). Then, Condition (27c) follows
immediately. 2

Proof of (A8a) : recall that wk = uk + vk−1 where uk = u(θk−1, xk) and vk−1 = ∇D(θk−1). Since (wk) is a
sequence of square-integrable martingale differences, it is possible to write, in the notation of (28),

Σk = E
[

uk u†
k

∣∣Xk−1

]
− vk−1v†

k−1 (A9a)



Entropy 2019, 21, 1021 19 of 21

By (18b), the second term in (A9a) converges to zero almost surely, as k→ ∞. It also converges to zero
in expectation, since ∇D(θ) is uniformly bounded for θ in the compact set Θ∗. For the first term in
(A9a), since the xk are i.i.d. with distribution Pθ∗ , it follows that

E
[

uk u†
k

∣∣Xk−1

]
= Eθ∗

[
u(θk−1, x)u†(θk−1, x)

]
(A9b)

Since u(θ, x) is a continuous vector field on Θ for each x ∈ X, and θk−1 converge to θ∗ almost surely, it
follows that u(θk−1, x) converge to u(θ∗, x) for each x ∈ X, almost surely. On the other hand, it follows
from (u2) that the functions under the expectation Eθ∗ in (A9b) have bounded second order moments,
so they are uniformly integrable [20]. Therefore,

lim Eθ∗
[
u(θk−1, x)u†(θk−1, x)

]
= Eθ∗

[
u(θ∗, x)u†(θ∗, x)

]
= Σ∗ (A9c)

almost surely, by the definition (4a) of Σ∗. It now follows from (A9a), (A9b), and (A9c) that the
following limit holds

lim Σk = Σ∗ almost surely (A9d)

To obtain (A8a) it is enough to note, as already stated in the verification of Condition (27b), that the Σk

are uniformly bounded in the Frobenius matrix norm. Thus, (A9d) implies (A8a), by the dominated
convergence theorem. 2

Appendix C. Background on the Information Metric

Let D(θ) be the Kullback–Leibler divergence (2a) or any other so-called α-divergence [19]. Assume
the Riemannian metric 〈·, ·〉 of Θ coincides with the information metric of the model P. Then, for any
local coordinates (τα ; α = 1, . . . , d ), with origin at θ∗, the following relation holds, by definition of the
information metric (see [19], Page 54),

∂ 2D
∂τα∂τβ

∣∣∣∣
τα=0

=

〈
∂

∂τα
,

∂

∂τβ

〉
θ∗

(A10)

where ∂
∂τα denote the coordinate vector fields of the local coordinates τα. It is also possible to express

(A10) in terms of the Riemannian distance d(·, ·), induced by the information metric 〈·, ·〉. Precisely,

D(θ) =
1
2

d 2(θ, θ∗) + o (d 2(θ, θ∗)) (A11)

This follows immediately from the second-order Taylor expansion of D(θ), since θ∗ is a minimum of
D(θ), by using (A10). Formula (A11) shows that the divergence D(θ) is equivalent to half the squared
Riemannian distance d 2(θ, θ∗), at θ = θ∗.

The scalar products appearing in (A10) form the components of the information matrix Iτ of the
coordinates τα,

Iτ
αβ =

∂ 2D
∂τα∂τβ

∣∣∣∣
τα=0

In any change of coordinates, these transform like the components of a (0, 2) covariant tensor [16].
That is, if (θ α ; α = 1, . . . , d ) are any local coordinates defined at θ∗,

Iτ
αβ =

(
∂θ γ

∂τα

)
θ∗

Iθ
γκ

(
∂θ κ

∂τβ

)
θ∗

where the subscript θ∗ indicates the derivative is evaluated at θ∗, and where Iθ
γκ are the components of

the information matrix Iθ of the coordinates θ α.
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The recursive estimates θn are said to be asymptotically efficient, if they are asymptotically efficient
in any local coordinates τα, with origin at θ∗. That is, according to the classical definition of asymptotic
efficiency [13,14], if the following weak limit of probability distributions is verified [20],

L
{
(n1/2τα

n )
}

=⇒ Nd (0, Στ) Στ = (Iτ)−1 (A12)

where L{. . .} denotes the probability distribution of the quantity in braces, τα
n = τα(θn) are the

coordinates of the recursive estimates θn , and Nd (0, Στ) denotes a centred d-variate normal distribution
with covariance matrix Στ.

It is important to note that asymptotic efficiency of the recursive estimates θn is an intrinsic
geometric property, which does not depend on the particular choice of local coordinates τα, with
origin at θ∗. This can be seen from the transformation rule of the components of the information
matrix, described above. In fact, since these transform like the components of a (0, 2) covariant
tensor, the components of Στ transform like those of a (2, 0) contravariant tensor, which is the correct
transformation rule for the components of a covariance matrix.
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