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Abstract: A new concept named volatility monotonous persistence duration (VMPD) dynamics
is introduced into the research of energy markets, in an attempt to describe nonlinear fluctuation
behaviors from a new perspective. The VMPD sequence unites the maximum fluctuation difference
and the continuous variation length, which is regarded as a novel indicator to evaluate risks and
optimize portfolios. Further, two main aspects of statistical and nonlinear empirical research on
the energy VMPD sequence are observed: probability distribution and autocorrelation behavior.
Moreover, a new nonlinear method named the cross complexity-invariant distance (CID) FuzzyEn
(CCF) which is composed of cross-fuzzy entropy and complexity-invariant distance is firstly
proposed to study the complexity synchronization properties of returns and VMPD series for seven
representative energy items. We also apply the ensemble empirical mode decomposition (EEMD)
to resolve returns and VMPD sequence into the intrinsic mode functions, and the degree that they
follow the synchronization features of the initial sequence is investigated.

Keywords: volatility monotonous persistence duration; statistical and nonlinear analysis; complexity
synchronization; cross-fuzzy entropy; complexity-invariant distance; ensemble empirical mode
decomposition

1. Introduction

Financial markets have a large number of participants. With the continuous financial innovation,
more and new financial instruments have made investors have more investment choices. However,
financial markets can bring higher returns to investors, they also face corresponding risks [1]. Especially
with the globalization of the economy, notional governments are opening up security markets, and
financial markets of various countries began to interact and influence each other. In addition to the
emergence of various new derivatives, more and more risks appeared in security markets. Therefore,
the importance of studying the price fluctuation of security markets became more and more obvious
and became one of the important issues in financial market researches. The Security market is often
considered as a complex system exhibiting many nonlinear and complex characteristics [2,3]. As an
important part of the security market, the relevant characteristics of energy market have recently
attracted widespread attention. Oil has a major impact on economic and political developments,
especially on international energy markets [4]. For the past few years, a lot of valuable researches
have been conducted on oil prices, including relationship between oil prices and stock markets from
different regions [5], multiscale entropy analysis of crude oil price dynamics [6], and forecasting
of crude oil price with neural networks [7], etc. Among them, the exploration of return volatility
dynamic is a significant subject for investors and decision makers, because it is a matter of great
account in evaluating risks, modeling market dynamics and enabling portfolios to be optimized
[8–19]. Specifically, investors in energy markets are always faced with the problem of choosing
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the optimal portfolios, while unpredictable volatility behaviors are often the main investment risks.
Recently, various novel means for exploring the volatility behaviors have been developed from different
perspectives [20–28]. For instance, realized volatility [20,21], an often-used measure with a simple
definition but important, is the sample variance of high frequency historical return data in a fixed
interval. Wang et al. [21] studied statistical properties of realized volatility of crude oil futures and
Henry-Hub natural gas futures from the New York Mercantile Exchange (NYMEX) based on daily
return data. Furthermore, the return interval is applied in the daily fluctuations of the price changes
that are above a certain threshold. Xie et al. [23] applied the recurrence interval to daily return volatility
of four energy futures and studied the scaling behaviors and memory effect behaviors. Moreover,
Yang et al. [24] put forward another nonparametric volatility measure called return volatility duration,
which is used to describe the minimum duration when the prospective volatility intensity is bigger or
smaller than the current volatility intensity at each time. The idea of volatility duration of return series
has been introduced into the complex analysis study of energy futures and spot data by Niu and Wang
[25]. Inspired by the above measure approaches, in this paper, a new idea of volatility monotonous
persistence duration (VMPD) time sequence is introduced into energy markets to describe the energy
security volatility behaviors from a new perspective. Compared to the previous measure approaches,
the VMPD on the one hand considers the continuous variation length (growth/descent), on the other
hand takes into account the maximum fluctuation difference. Among them, the continuous variation
length represents the duration of the monotonous uptrend or downward trend of return volatility. In
financial markets, the monotonous upward trend (or monotonous upward trend) means rising (or
decreasing) return volatility, which may influence investors’ investment risk. The maximum fluctuation
difference is used to describe the change in the intensity of return volatility over the monotonous
trend, which is also important for investors to make investment decisions. At the times of the same
continuous variation length, the magnitudes of the maximum fluctuation difference may be different,
which represents different investment risks. By combining the continuous variation length and the
maximum fluctuation difference, the VMPD can reveal more information about price volatility, and be
regarded as a novel indicator to reveal the risk status of financial markets. The larger the maximum
fluctuation difference is and the larger the continuous variation length is, the larger the VMPD is.
Investors can better judge risk levels, choose the appropriate portfolio and make decisions depending
on the VMPD. Moreover, the VMPD provides financial researchers with a new perspective on energy
market volatility behaviors, thus providing some recommendations for the establishment of national
macroeconomic policies. This new proposed concept is brought in the research of seven kinds of
energy data including futures and spots from different energy markets.

We investigate fluctuation properties and complexity synchronization of energy VMPD sequences.
Recent empirical studies on security time series indicate that there exist some common statistical
and nonlinear features in different security markets, for instance including excess kurtosis, fat tails,
absence of autocorrelation, multifractal nature, complexity behaviors [23,29–32]. Firstly, we observe
some important statistical characteristics for the energy VMPD sequences: probability distribution,
power-law behaviors, and autocorrelation behavior. Further, we study the complexity synchronization
of VMPD series for different energy items. Financial market is a complex dynamic system, and
its fluctuations are often accompanied by nonlinear and dynamic characteristics, which cannot be
reproduced well by many traditional measurement methods. Synchronization provides insight into
the fundamentals of interaction mechanism between systems, and it is an important concept that is
widely used in many fields. Recently, synchronization has been studied by various methods, such as
projection synchronization [33] and generalized synchronization [34]. The price formation of economic
market is the result of the complicated action of many factors, and entropy is an index of pattern
diversity in time series. It is a worthy way to study the synchronization from the perspective of
entropy. The concept of entropy has been widely used as a measurement of complexity [35–45]. Fuzzy
entropy (FuzzyEn) [39,40] is a reflection of similarity of time series evolved from approximate entropy
(ApEn) [38] and sample entropy (SampEn) [37]. Compared to ApEn and SampEn, FuzzyEn has many
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advantages. Furthermore, Chen et al. [43] extended FuzzyEn method to cross-fuzzy entropy in order
to compare two different time series, and it is relatively consistent and less dependent on record
length in measuring regularity and asynchrony of time series. The idea of using entropy concepts to
analyze time series of financial and economical markets is widely accepted. Darbellay and Wuertz
[44] analyzed several sets of financial time series and proved the validity of the entropy method.
Risso [45] used entropy to quantify market efficiency of the stock markets. Another complexity
analysis method is complexity-invariant distance (CID) [46,47], which has been applied in measuring
comparability between two time sequences. On account of the above considerations, we put forward
a new method called the cross CID FuzzyEn (CCF), which is composed of cross-fuzzy entropy and
complexity-invariant distance to calculate the synchronization for two time series of the same length.
Introducing the CCF analysis to seven representative energy items, the synchronization properties of
returns and VMPD series are compared an analyzed. Then we apply the ensemble empirical mode
decomposition (EEMD) [48–50] to resolve returns and VMPD series into the intrinsic mode functions,
and the degree that they follow the synchronization features of initial sequence is investigated.

The main contributions of this paper include the following aspects. One is that a new idea of
volatility monotonous persistence duration (VMPD) time sequence is put forward to investigate the
energy market fluctuation behaviors from a new perspective. The other is that a new nonlinear estimate
method – the cross CID FuzzyEn (CCF) composed of cross-fuzzy entropy and complexity-invariant
distance is put forward, and the CCF analysis is applied for seven actual representative energy items
to investigate the synchronization features of returns and VMPD series. Lastly, the EEMD algorithm is
used to resolve the returns and VMPD sequence into the intrinsic mode functions to further investigate
the corresponding synchronization behaviors. This present work can provide new insights into the
price volatility dynamics.

The layout of this paper is detailed below. Section 2 shows the definition of the VMPD series.
Section 3 illustrates the data sets that are adapted in this work. In Section 4, we observe the
power-law distribution and the autocorrelation characteristics for the energy VMPD sequence. Section 5
investigates the complexity synchronization of VMPD series and intrinsic mode functions (decomposed
by VMPD series) for different energy items. Finally, Section 6 gives the conclusions.

2. Mathematical Concept Description of VMPD Series

We here introduce a new kind of statistic called volatility monotonous persistence
duration(VMPD) series {V(t)} for return series {R(t)} (t ∈ {1, 2, · · · , N}) into the energy markets to
study the security fluctuation with a novel perspective, and the composition of the new sequence is
shown below. Use P(t) to represent the daily price of an energy item for every business day t, and let
R(t) represent the return of the prices which is calculated by R(t) = ln P(t)− ln P(t− 1), and |R(t)|
be the corresponding absolute return. At each trading day t, we will consider the absolute return of
the following day |R(t + 1)|:

(i) If |R(t + 1)| < |R(t)|, the volatility sequence is thought to be locally falling at day t. Then we
define the length of continuous growth I(t) at day t, namely

I(t) = max{τ : |R(i + 1)| < |R(i)|, for all t ≤ i ≤ τ}. (1)

(ii) If |R(t + 1)| > |R(t)|, the volatility sequence is thought to be locally rising at day t. Then we have
define the length of sustained descent I(t) at day t, namely

I(t) = max{τ : |R(i + 1)| > |R(i)|, for all t ≤ i ≤ τ}. (2)

(iii) Specifically, when|R(t + 1)| = |R(t)|, we assume that I(t) = 0.
(iv) Let ∆|R(t)|max = |R(t + I(t))| − |R(t)| denote the maximum fluctuation difference, in other

words, it is also the largest growth or decline during the continuous variation length I(t).
Schematic diagrams of I(t) and ∆|R(t)|max are shown in Figure 1.



Entropy 2019, 21, 1018 4 of 19

(v) Then, the VMPD sequence {V(t)} is defined by:

V(t) =

{
+∆|R(t)|max × I(t), if |R(t + 1)| > |R(t)|
−∆|R(t)|max × I(t), if |R(t + 1)| < |R(t)| . (3)

It’s worth noting that when I(t) = 0 or |R(t + 1)| = |R(t)|, we define V(t) = 0. Thus, V(t) unites
the maximum increase/decrease ∆|R(t)|max and the continuous growth/descent length I(t), which
describes the volatility monotonous persistence duration at each trading day t. The proposed idea
provides a novel study approach and research perspective on fluctuation behaviors of energy markets.
Figure 1 well illustrates the VMPD sequence of the crude oil WTI futures in 40 trading days.
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Figure 1. Illustrations of I(t) and ∆|R(t)|max for crude oil WTI futures.

3. Basic Statistical Description of Data Sets

In this paper, seven daily closing data of prices for energy items from three energy markets are
considered: crude oil WTI futures, crude oil WTI spot, heating oil futures (they are from New York
Mercantile Exchange); together with crude oil Brent futures, crude oil Brent spot, London gas oil
futures (they are from Intercontinental Exchange); and Shanghai fuel oil futures (it is from Shanghai
Futures Exchange). These abbreviations for energy data are listed in the previous section of the article.
The unit of price for crude oil is barrel, the unit of price for fuel oil is gallon, and the unit of price for
gasoline is metric ton. The lengths of the seven data sets are the same, from January 2010 to July 2018
with about 2001 data points respectively. This choice was made for the following reasons. Firstly, as
an important part of the energy market, energy futures market has the advantages of low transaction
cost and no restriction on short selling. It is often able to reflect the price information of the energy
market in a timely and accurate manner. However, the high leverage of energy futures market makes
the energy futures market face greater risks than the spot market. Therefore, the study of oil futures
and spot price fluctuations is of great theoretical value and practical significance for preventing the risk
of energy price fluctuations and promoting the stable development of the energy market. Secondly,
the energy futures market is based on oil futures products, and oil futures has the functions of price
discovery, hedging and risk avoidance. The Brent crude oil futures in the north sea and the west Texas
light crude oil futures in the United States are the benchmark for international oil pricing, while the
Shanghai fuel oil futures is currently an important product in China. Other energy products selected
in this paper are also based on the consideration that they are important indicators of their respective
energy markets. Figure 2 shows returns R(t) and VMPD series V(t) for these different energy data. For
the crude oil WTI futures and the crude oil Brent futures, the shapes of R(t) and V(t) are exactly alike
with the shapes of the series for their spots. The extreme values of VMPD sequence are concentrated in
the interval [−0.2, 0.2].
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From Table 1, it can be seen that the average value of each energy item is close to 0, the kurtosis
coefficient is greater than 3, and the skewness coefficient is significantly not 0. This indicates that these
different energy futures and spots are not subject to normal distribution, and have characteristics of
excess kurtosis and fat tail [51]. The results of K-S statistics also prove this conclusion. In the K-S test
of this paper, the significance level is 5%. In Table 1, we can see that the null hypothesis is rejected,
because all the test logic values H = 1 are returned and the value of JB statistics of each data group is
higher than the critical value 5.96 under the significance level of 5%, indicating that the test data does
not conform to the normal distribution. In addition, it can be seen from the standard deviation of these
seven time sequence that the New York Mercantile Exchange has the strongest degree of fluctuation,
while the Intercontinental Exchange is the weakest.
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Figure 2. (a) The return series R(t) of energy futures and spot data. (b) The VMPD series V(t) of
energy futures and spot data.

Table 1. Descriptive statistics and K-S test for return and VMPD series of energy data.

Descriptive statistics K-S test
Returns Mean Std Min Max Kurtosis Skewness stat H

WF −0.0001 0.0204 −0.0907 0.1162 5.8938 0.1460 0.4715 1.0000
WS −0.0001 0.0198 −0.1065 0.1172 6.0158 0.0262 0.4710 1.0000
BF −0.0001 0.0190 −0.0896 0.1042 6.1393 0.1108 0.4711 1.0000
BS −0.0001 0.0195 −0.0825 0.0990 5.4787 0.2114 0.4737 1.0000
HF 0.0000 0.0178 −0.1973 0.1038 13.3248 −0.6039 0.4729 1.0000
LF −0.0000 0.0161 −0.0899 0.1209 7.8970 0.3297 0.4753 1.0000
SF 0.0004 0.0184 −0.2480 0.1215 22.9517 −1.1360 0.4742 1.0000

VMPD Mean Std Min Max Kurtosis Skewness stat H

WF 0.0002 0.0404 −0.3188 0.2920 11.2956 −0.3545 0.4462 1.0000
WS 0.0004 0.0374 −0.3128 0.2250 12.1775 −0.8374 0.4510 1.0000
BF 0.0017 0.0394 −0.3240 0.2644 11.4187 −0.2208 0.4446 1.0000
BS 0.0017 0.0400 −0.2844 0.3496 15.6557 0.7868 0.4491 1.0000
HF 0.0007 0.0397 −0.7714 0.3642 81.2650 −3.3956 0.4513 1.0000
LF 0.0005 0.0327 −0.2136 0.2296 10.3138 −0.0179 0.4535 1.0000
SF −0.0003 0.0387 −0.4821 0.3376 24.3661 −0.8844 0.4473 1.0000

4. Statistical and Nonlinear Behaviors of Return Series and VMPD Series

Recent empirical studies on security time series indicate that there exist some common features in
different security markets [23,29], including excess kurtosis, fat tails [30], and absence of autocorrelation
[32]. In this section, we use several statistical and nonlinear approaches to investigate if the proposed
VMPD series V(t) of the energy data sets mentioned above have these properties.
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4.1. Probability Density Distribution

In Section 3, we verified that the return series R(t) and the proposed VMPD series V(t) for the
energy items have characteristics of excess kurtosis and fat tail by using some descriptive statistics and
K-S test. In this part, we will further investigate the probability density distributions (PDF) for R(t)
and V(t) with the help of intuitive graphs. Logarithmic plots of probability density distributions for
these time series in comparison with the Gaussian distribution are presented in Figure 3. The patterns
obtained by kernel density estimation reveal that R(t) and V(t) for the energy items deviate from the
Gaussian and exhibit excess kurtosis and fat-tail distributions.
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Figure 3. (a) Logarithmic plots of probability density functions by kernel density estimation of return
series R(t). (b) Logarithmic plots of probability density functions by kernel density estimation of
VMPD series V(t).

4.2. Power-law Behaviors

According to the above research, since the R(t) and V(t) sequences do not obey the normal
distribution, while Gabaix et al. [52] show that the power-law distribution is used to describe
distribution of tail data of real financial market volatility related time series, such as the volatility of
stock price and volume, and the formula f (x) =βxγ can fit the tail distribution well, where γ represents
the power-law exponent and β is a constant [53]. We will test if tails of absolute return series |R(t)|
and absolute VMPD series |V(t)| obey the power-law theory.

Figures 4a,b display the plots and log-log plots of cumulative distributions of absolute return
series |R(t)| and absolute VMPD series |V(t)|. Figure 4 exhibits that |R(t)| and |V(t)| series for the
energy data from diverse markets have parallel tracks of cumulative distributions. It is clear that
for both |R(t)| and |V(t)| series of these analyzed energy data are all below the normal distribution,
which illustrate that they have fat tails. Moreover, the tail of each curve is close to a straight line, which
indicates that the tails of all data obey the power-law distribution. All time series are fitted with the
last 10% data, and Table 2 shows the estimation values of γ and β. From Table 2, we can see that the
values of exponent parameter γ are basically around −3, and the absolute γ value for |R(t)| series is
bigger than that for |V(t)| series in general. It is noted that the R-square values are all over 0.95, which
shows that the tails of energy |R(t)| and |V(t)| series can be fitted by the power-law formula.
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Figure 4. (a) Plots and log-log plots of cumulative distributions of absolute return series |R(t)|. (b)
Plots and log-log plots of cumulative distributions of absolute VMPD series |V(t)|.

Table 2. Estimation values of γ and β of the last 10% part of |R(t)| and |V(t)| series.

Absolute returns γ β R2

WF −3.5225 [ −3.6036, −3.4415] −14.1690 [−14.4209, −13.9170] 0.9742
WS −3.4647 [ −3.5343, −3.3950] −14.1205 [−14.3397, −13.9014] 0.9802
BF −3.3820 [ −3.4449, −3.3191] −13.9679 [−14.1679, −13.7679] 0.9830
BS −3.7610 [ −3.8267, −3.6953] −15.0741 [−15.2810, −14.8673] 0.9852
HF −3.1425 [ −3.2046, −3.0804] −13.5066 [−13.7100, −13.3032] 0.9807
LF −3.2734 [ −3.3305, −3.2164] −14.2189 [−14.4090, −14.0288] 0.9861
SF −4.1244 [ −4.2191, −4.0296] −16.2797 [−16.5734, −15.9860] 0.9809

Absolute VMPD γ β R2

WF −2.8520 [−2.9075, −2.7966] −10.0813 [−10.2152, −9.9474] 0.9814
WS −3.0446 [−3.0999, −2.9894] −10.7910 [−10.9287, −10.6533] 0.9838
BF −2.8119 [−2.9011, −2.7227] −9.9982 [−10.2141, −9.7823] 0.9517
BS −2.6108 [−2.6395, −2.5820] −9.6324 [−9.7034, −9.5615] 0.9940
HF −2.6961 [−2.7462, −2.6460] −10.0468 [−10.1742, −9.9195] 0.9829
LF −2.6410 [−2.6972, −2.5847] −10.1502 [−10.2981, −10.0023] 0.9780
SF −2.8223 [−2.8821, −2.7624] −10.1431 [−10.2863, −9.9998] 0.9819

4.3. Autocorrelation Analysis

In this part, we adopt the autocorrelation approach [54] to explore the possible long-term
correlation of return series R(t) and proposed VMPD series V(t) for the energy items. The
autocorrelation function is defined as follows [55]

A(Xt, k) =
N

∑
i=k+1

((Xi − X̄)(Xi−k − X̄))
/ N

∑
i=1

(Xi − X̄)2, k = 0, 1, · · · , N − 1 (4)

where Xt is the returns or the VMPD series of energy items, X̄ is the mean of Xt, N represents the
length of Xt and k is called the time lag.

Figure 5 displays the autocorrelation functions of R(t) and V(t) of energy data sets related to
distinct time lags. The red dashed locates in each graph stand for the 95% confidence interval. For
R(t) and V(t), the ACF values stay in the 95% confidence interval as the time lag grows, that is, the
autocorrelation of each time series gradually disappears with the increase of time lag, which indicates
that future data is independent of historical data for R(t) and V(t). The absence of autocorrelation for
returns series R(t) at large time lag suggests that the weak-form Efficient Market Hypothesis (EMH)
may support these energy markets in the long run, and investors may not be able to use the technical
means to gain profit-making opportunities [56,57]. For |R(t)| and |V(t)|, the two inset graphs exhibit
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that the shapes of autocorrelation function are parallel. They firstly decay slowly, and then go up as
the lag value increases. In the end, nearly all the ACF values are in the 95% confidence interval. This is
consistent with the empirical fact that security markets do not exhibit any significant autocorrelation.
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Figure 5. (a) Autocorrelation functions of return series R(t). (b) Autocorrelation functions of VMPD
series V(t).

5. Complexity Synchronization of Return Series and VMPD Series

For purpose of measuring the synchrony of energy markets in a new way, a novel nonlinear
method called the cross CID FuzzyEn (CCF) composed of cross-fuzzy entropy and complexity-invariant
distance is firstly proposed in this paper. Implementing CCF analysis for seven representative energy
items, synchronization properties of returns and VMPD series are compared and analyzed. Also,
we introduce the ensemble empirical mode decomposition (EEMD) algorithm to resolve returns and
VMPD series into the intrinsic mode functions, and the degree that they follow the properties of initial
sequence is investigated.

5.1. Mathematical Description of CCF Analysis

Entropy has been widely applied as a measurement of complexity. Fuzzy entropy (FuzzyEn)
[39,40] evolved from approximate entropy (ApEn) [38] and sample entropy (SampEn) [37]. It uses the
exponential function and its shape to define the similarity of vectors by introducing the fuzzy set. A lot
of work has shown that FuzzyEn is better than ApEn and SampEn on reflecting regularity and similarity
of time sequence. Furthermore, Chen et al. [43] extended the FuzzyEn method to the cross-fuzzy
entropy so as to compare two different time series and evaluate their pattern synchronization degree.
The cross-fuzzy entropy is relatively consistent and less dependent on record length in measuring
regularity and asynchrony of time series.

For two N-sample time series {x(t), t ∈ {1, 2, · · · , N}} and {y(t), t ∈ {1, 2, · · · , N}}, the
cross-fuzzy entropy (C-FuzzyEn) is constructed as follows:

(a) Given the embedding dimension m, we can define m-dimensional sequence vectors Xm(i) and
Ym(i) as follows

Xm(i) = {x(i), x(i + 1), · · · , x(i + m− 1)} − x0(i), 1 ≤ i ≤ N −m + 1 (5)

Ym(i) = {y(i), y(i + 1), · · · , y(i + m− 1)} − y0(i), 1 ≤ i ≤ N −m + 1 (6)

where x0(i) and y0(i) denote the average of series segment, that is

x0(i) =
1
m

m−1

∑
j=0

x(i + j), y0(i) =
1
m

m−1

∑
j=0

y(i + j), 1 ≤ i ≤ N −m + 1. (7)
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(b) dm(i, j) represents the distance between vector Xm(i) and vector Ym(j)

dm(i, j) = d[Xm(i), Ym(j)] = max{|x(i + k)− x0(i)− (y(j + k)− y0(j))|, 0 ≤ k ≤ m− 1}. (8)

(c) The degree of synchrony Dm(i, j) can be defined by fuzzy function µ(dm(i, j), n, r)

Dm(i, j) = µ(dm(i, j), n, r) = e−(dm(i,j))n/r. (9)

(d) For all 1 ≤ i, j ≤ N −m + 1, we work out the mean values of Dm(i, j), given by φm(n, r)

φm(n, r) =
1

N −m

N−m

∑
i=1

( 1
N −m− 1

N−m

∑
j=1,j 6=i

Dm(i, j)
)

. (10)

(e) Finally, we can calculate the C-FuzzyEn of two time series {x(t)} and {y(t)} as

C-FuzzyEn(m, n, r) = lim
N→∞

(ln φm(n, r)− ln φm+1(n, r)). (11)

(f) N is finite, then the C-FuzzyEn(m, n, r) can be obtained as

C-FuzzyEn(m, n, r) = ln φm(n, r)− ln φm+1(n, r). (12)

The parameter m represents the embedding dimension, n is the gradient of boundary, and r is
called as the width. In the following empirical analysis, m and n are set to be 2.

Complexity-invariant distance (CID) [46,47] has been widely applied in measuring complexity
differences between two time sequences. The calculation steps are as follows: For two time series
X = {x(t), t = 1, 2, · · · , N} and Y = {y(t), t = 1, 2, · · · , N} with the same length of N, their
complexity-invariant distance is given by

CID(X, Y) = ED(X, Y)×CF(X, Y) (13)

where ED(X, Y) is the Euclidean distance of X and Y, which is calculated by

ED(X, Y) =

√√√√ N

∑
i=1

[
x(i)− y(t)

]2
(14)

and CF(X, Y) is a complexity correlation factor calculated by

CF(X, Y) =
max(CE(X), CE(Y))
min(CE(X), CE(Y))

. (15)

CE(X) and CE(Y) are the complexity estimates for X = {x(t)} and Y = {y(t)} respectively, which are
shown as follows

CE(X) =

√√√√N−1

∑
i=1

[
x(i)− x(i + 1)

]2
, CE(Y) =

√√√√N−1

∑
i=1

[
y(i)− y(i + 1)

]2
. (16)

The cross CID FuzzyEn between {x(t)} and {y(t)} is defined by

CCF(x, y) = C-FuzzyEn(x, y, m, n, r)×CID(x, y). (17)

The corresponding correlation coefficient between {x(t)} and {y(t)} is given as

Correlation Coefficient(x, y) = exp{−CCF(x, y)}. (18)
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It is worth noting that the CCF value measures the synchronism between two time series of the
same length. To sum up, the lesser the CCF value is, or the bigger the CCF correlation coefficient is,
the more synchronized the two time sequences are.

5.2. Mathematical Description of Ensemble Empirical Mode Decomposition

Empirical mode decomposition (EMD) [48], is a fully adaptive method so as to study nonlinear
and non-stationary properties of time series. A signal is decomposed step by step into fluctuations or
trends of different scales (frequency), and then produce a series of intrinsic mode functions (IMFs) and
a residual sequence. The residual sequence is monotonic or average, which can represent the long-term
trend or average state of the initial time sequence, and IMFs represent the distinct scales and produce
adaptive data. An IMF sequence has two characteristics: (i) The difference between the extreme points
of the time series and the zero crossings is less than or equal to 1; (ii) At every moment, the mean of
the maximum envelope (upper envelope) and the minimum envelope (lower envelope) must be zero.

EMD decomposition is prone to modal aliasing. The ensemble empirical mode decomposition
(EEMD) is a noise-assisted data analysis method proposed for the shortcomings of the EMD method.
Wu and Huang [49] introduces white noise into the signal to be analyzed. The spectrum of white noise
is uniformly distributed, so that the signal is automatically distributed to the appropriate reference
scale, which complements some missing scales and has good performance in signal decomposition.
The algorithm steps of EEMD are as follows:

(a) Add a white noise sequence nm to the time series x in the m-th test

xm(t) = x(t) + nm(t). (19)

(b) Use the same algorithm as traditional EMD [48] to resolve xm into IMFs cj,m and residue r

xm(t)→
n

∑
j=1

cj,m(t) + r(t). (20)

(c) Repeat Procedure (a) and Procedure (b) for a pre-set value M of tests, and apply distinct white
noise sequences which have the same amplitude every time.

(d) Work out the mean value as the final IMFs, which is given by

IMFj(t) =
1
M

M

∑
m=1

cj,m, j = 1, 2, · · · , p, m = 1, 2, · · · , M. (21)

In order to better illustrate the above algorithm, Figure 6 shows the flow chart of the EEMD
method. Figures 7a,b show the decomposition results of R(t) and V(t) of WF by the EEMD algorithm.
The plots show five IMFs (IMF1 to IMF5) and one residual. Figures 7c,d show the box plots of five
IMFs to represent the basic statistical information, which clearly indicate that the fluctuation scale of
IMF1 to IMF5 decreases successively.
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Figure 6. Flow chart of ensemble empirical mode decomposition algorithm.
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Figure 7. (a) Decomposition results of R(t) for WF with five separate IMFs by EEMD. (b) Decomposition
results of V(t) for WTI futures with five separate IMFs by EEMD. (c) Box plots of five separate IMFs of
R(t) for WF. (d) Box plots of five separate IMFs of V(t) for WF.

5.3. Empirical Study for Complexity Synchronization

We apply the CCF approach to study the complexity synchronization feature of returns and the
VMPD series for different energy items. WTI crude oil and Brent crude oil are chosen as references
for comparison with other energy data. Figure 8a and Figure 8c show the graphs of CCF values and
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correlation coefficient of returns and VMPD series for WF and WS with other energy items related to
different values of r, where m = 2, n = 2 and r is set from 0 to 0.5. From Figure 8a, we observe that the
figure of WF returns with HF returns remains in the lowest part, while the curves for WF returns with
futures of other exchanges stay in the higher part. This shows that the synchronization of WF returns
with the futures return series of its own market is higher than that of WF returns with the futures
return series of other market. It is worth noting that the CCF curve between WF and BF is located
below that between WS and BS, which indicates that for the WTI crude oil and the Brent crude oil,
the synchronization between futures returns is greater than that between spot returns. The results in
Figure 8c are similar to those in Figure 8a. For all the VMPD series, we can see that CCF values reduce
as the parameter r rises, and tend to be stable in the end, that are semblable to the results of return
sequence. In Figure 8c, the curve of WF with HF for VMPD series also remains in the lowest part. We
can also conclude from Figure 8c that for VMPD sequence, the WF is the most synchronized with the
HF that belongs to the New York Mercantile Exchange, and the WF has the weakest synchronization
with the LF that belongs to the Intercontinental Exchange.

Figure 8b and Figure 8d demonstrate the plots of CCF values and correlation coefficients of
returns and VMPD series for BF and BS with other energy items for different values of r. In Figure 8b,
the curve of BF returns with LF returns remains in the lowest part, and the curve of BF returns with SF
returns stays in the middle. And different energy return series appear obvious clustering behaviors in
the CCF method graphs in terms of their markets. We may draw a conclusion that BF returns has the
strongest synchronization with LF returns which belong to the same exchange as BF. The general trend
and spatial distribution of each curve in Figure 8d is roughly the same as the curve in Figure 8b. As for
the VMPD series of BF, the distance between each curve in Figure 8d is closer, and as the value of r
increases, the gap between them decreases, and finally they are almost intertwined. Table 3 and Table
4 exhibit the CCF correlation coefficients of each returns and VMPD series pairs, respectively. It can
be seen that nearly each correlation coefficient of VMPD sequences in Table 4 is smaller than those of
returns in Table 3, which indicates a weaker correlation between the VMPD sequences.
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Figure 8. (a) CCF values of WF returns and WS returns with other energy items. (b) CCF values of BF
returns and BS returns with other energy items. (c) CCF values of WF and WS for VMPD series with
other energy items. (d) CCF values WF and WS for VMPD series with other energy items.

Table 3. CCF correlation coefficients of two return series for different values of r.

Rerurns r = 0.1 r = 0.2 r = 0.3 r = 0.4 r = 0.5

BF vs.LF 0.4143 0.5508 0.6289 0.6832 0.7234
BF vs.SF 0.2449 0.3919 0.4906 0.5620 0.6168
BF vs.HF 0.2445 0.3918 0.4897 0.5618 0.6175
BF vs.WF 0.1922 0.3280 0.4258 0.5022 0.5627
BS vs.WS 0.1261 0.2391 0.3289 0.4021 0.4628
WF vs.HF 0.2699 0.4209 0.5206 0.5923 0.6468
WF vs.SF 0.2036 0.3441 0.4457 0.5219 0.5812
WF vs.LF 0.1411 0.2706 0.3694 0.4465 0.5077
WF vs.BF 0.1922 0.3280 0.4258 0.5022 0.5627
WS vs.BS 0.1261 0.2391 0.3289 0.4021 0.4628
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Table 4. CCF correlation coefficients of two VMPD series for different values of r.

VMPD r = 0.1 r = 0.2 r = 0.3 r = 0.4 r = 0.5

BF vs.LF 0.1685 0.2873 0.3719 0.4381 0.4924
BF vs.SF 0.1146 0.2371 0.3314 0.4072 0.4699
BF vs.HF 0.1606 0.3067 0.4128 0.4940 0.5583
BF vs.WF 0.1024 0.2242 0.3159 0.3901 0.4523
BS vs.WS 0.1024 0.2242 0.3159 0.3901 0.4523
WF vs.HF 0.2157 0.3750 0.4866 0.5710 0.6349
WF vs.SF 0.0879 0.1932 0.2793 0.3508 0.4114
WF vs.LF 0.0624 0.1515 0.2274 0.2924 0.3497
WF vs.BF 0.1024 0.2242 0.3159 0.3901 0.4523
WS vs.BS 0.0754 0.1690 0.2564 0.3329 0.3982

Next, we decompose returns and VMPD sequences of different energy data into corresponding
IMFs by applying the EEMD algorithm to explore whether IMFs have analogical complexity
synchronization behaviors as initial security time sequence. Figure 9a and Figure 9b exhibit the
CCF values of IMFs of WF returns and WS returns with other energy items. Figure 9c and Figure
9d show the CCF values of IMFs of WF and WS for VMPD series with other energy items. IMFi
(i = 1, 2, · · · , 5) represents the ith IMF. In Figure 9, all the curves are smoother and have almost the
same order as the curves in Figure 8a and Figure 8c. This indicates that IMF1 and IMF2 retain most
of statistical characteristics of the initial time sequence. In general, the IMFs obtained by the EEMD
method partly have the complexity synchronization properties of the initial sequence, while the IMF1
and IMF2 sequences retain most information about the original sequence.



Entropy 2019, 21, 1018 15 of 19

r

0 0.1 0.2 0.3 0.4 0.5

C
C
F

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

WF vs HF

WF vs SF

WF vs LF

WF vs BF

WS vs BS

0 0.1 0.2 0.3 0.4 0.5

0.5

1

1.5

2

2.5

3

3.5

4

WF vs HF

WF vs SF

WF vs LF

WF vs BF

WS vs BS

IMF2IMF1

$r$
0 0.1 0.2 0.3 0.4

C
C

F

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8 WF vs HF

WF vs SF

WF vs LF

WF vs BF

WS vs BS

0 0.1 0.2 0.3 0.4
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

WF vs HF

WF vs SF

WF vs LF

WF vs BF

WS vs BS

0 0.1 0.2 0.3 0.4

0.1

0.2

0.3

0.4

0.5

0.6
WF vs HF

WF vs SF

WF vs LF

WF vs BF

WS vs BS

IMF5IMF3 IMF4

(a) (b)

r

0 0.1 0.2 0.3 0.4 0.5

C
C
F

1

2

3

4

5

6

7

WF vs HF

WF vs SF

WF vs LF

WF vs BF

WS vs BS

0 0.1 0.2 0.3 0.4 0.5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

WF vs HF

WF vs SF

WF vs LF

WF vs BF

WS vs BS

IMF1 IMF2

r

0 0.1 0.2 0.3 0.4 0.5

C
C
F

0.5

1

1.5

2

2.5

3

3.5 WF vs HF

WF vs SF

WF vs LF

WF vs BF

WS vs BS

0 0.1 0.2 0.3 0.4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2 WF vs HF

WF vs SF

WF vs LF

WF vs BF

WS vs BS

0 0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1

1.2

WF vs HF

WF vs SF

WF vs LF

WF vs BF

WS vs BS

IMF3 IMF4 IMF5

(c) (d)

Figure 9. (a) CCF values of IMF1-IMF2 for WF returns and WS returns with other energy items. (b)
CCF values of IMF3-IMF5 for WF returns and WS returns with other energy items. (c) CCF values of
IMF1-IMF2 of WF and WS for VMPD series with other energy items. (d) CCF values of IMF3-IMF5 of
WF and WS for VMPD series with other energy items.

6. Conclusions

The study of return volatility for energy markets is extremely important in quantifying ventures
and optimizing portfolios. The volatility monotonous persistence duration (VMPD) time sequence is
firstly introduced into the research of energy markets to describe the security fluctuation behaviors
from a new perspective. We adopt seven kinds of energy data including futures and spot from various
markets, and the statistical properties and complex synchronization behaviors are studied. The price
formation of economic market is the result of the complicated action of many factors, and entropy is
an index of pattern diversity in time series. Based on fuzzy entropy and complex invariant distance,
we construct a new method to measure complexity synchronization of VMPD series and return series
for energy futures and spot. The main conclusions of this paper are as follows.

The VMPD sequence unites the maximum fluctuation difference and the continuous variation
length, which is regarded as a novel indicator to evaluate investment risks. The range of changes in
energy futures and spot prices may affect the investment attitudes of market participants, as drastic
price changes may bring investment risks, thus making some market traders tend to adopt a more
conservative attitude. Since VMPD quantifies the intensity of continuous volatility series, it can provide
investors with short-term volatility trend, which is of great significance for investors to judge the risk
level in the future.

Further, we observe two important statistic and nonlinear characteristics for the energy VMPD
sequences: probability distribution and autocorrelation behavior. Empirical results show that return
series and the VMPD series for the energy items exhibit excess kurtosis, fat-tail distributions, and
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absence of autocorrelation, specifically, the probability distribution is very well drawn by the power-law
function.

Moreover, a new method called the cross CID FuzzyEn composed of cross-fuzzy entropy and
complexity-invariant distance is firstly proposed in this paper. Implementing CCF analysis for
seven representative energy items, the synchronization properties of returns and VMPD series are
comparatively studied. It is shown that both return series and VMPD sequence gradually appear more
synchronous with the width r increasing, and various energy return series present obvious clustering
behavior in accordance with markets.The synchronization between futures series is greater than that
between spot series, for WTI crude oil and Brent crude oil.

Then we apply the ensemble empirical mode decomposition (EEMD) to resolve returns and
VMPD sequence into the intrinsic mode functions, and the degree that they follow the synchronization
features of initial sequence is investigated. The empirical analysis reveals that the resolved data
maintain some statistical and linear properties of initial energy time sequences.

All in all, based on the new volatility statistics and the proposed method of measuring complex
synchronicity, we have done a large number of statistical and complex analyses of oil futures and spot
data in several energy markets. As an emerging energy market, China energy futures market, just like
mature energy futures markets in Europe and America, is a complex nonlinear system, and traditional
theories and methods cannot effectively reflect the complex nonlinear dynamics characteristics. This
paper provides a new perspective to describe volatility behaviors of energy markets, which is expected
to be a new indicator to avoid risks. Compared with the return series, VMPD sequence has both
commonness and difference, and it can describe the volatility behavior of energy futures and spot
from a new angle, which is conducive to quantifying risks. For China, an important oil importer,
it is necessary to establish a sound oil futures and spot market. This paper aims to provide a new
reference for the managers and participants in the securities market. In terms of energy portfolio
risks, in the short term, we should focus on the extent of continuous price rise (or fall) and continuous
fluctuation duration in the energy futures and spot markets, so as to prevent and deal with the risk
price fluctuation more effectively. Specifically, the significance lies in two aspects. Firstly, VMPD can
reasonably describe the market fluctuations, guide investors to conduct optimal investment behavior,
help investors avoid market risks, and obtain direct economic benefits. Secondly, it can provide a
new perspective for financial researchers to explore energy market fluctuations, so as to provide some
desirable guidance for the establishment of national macroeconomic policies. It can be seen that the
research in this paper can not only bring practical economic significance and value, but also meet the
development needs of social and economic construction.

In the process of measuring the reliability of the newly proposed statistics, we proposed a new
method to measure the complexity synchronization. The new CCF method is valuable and can
be applied to many aspects of fields, such as the comparison of different market products and the
relationship of oil price and stock price. The new concept of VMPD series and the novel approach of
measuring complexity synchronization can make the research on the fluctuation behaviors of energy
markets be more abundant to a certain extent.
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VMPD Volatility monotonous persistence duration WF Crude oil WTI futures
C-FuzzyEn Cross-fuzzy entropy WS Crude oil WTI spot
CID Complexity invariant distance HF Heating oil futures
CCF Cross complexity invariant distance FuzzyEn BF Crude oil Brent futures
IMF Intrinsic mode function BS Crude oil Brent spot
EMD Eempirical mode decomposition LF London gas oil futures
EEMD Ensemble empirical mode decomposition SF Shanghai fuel oil futures
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