
entropy

Article

Enhanced Negative Nonlocal Conductance in an
Interacting Quantum Dot Connected to Two
Ferromagnetic Leads and One Superconducting Lead

Cong Lee, Bing Dong * and Xiao-Lin Lei

Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics
and Astronomy, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China;
kitozumika@sina.cn (C.L.); xllei@sjtu.edu.cn (X.-L.L.)
* Correspondence: bdong@sjtu.edu.cn

Received: 24 August 2019; Accepted: 11 October 2019; Published: 14 October 2019
����������
�������

Abstract: In this paper, we investigate the electronic transport properties of a quantum dot (QD)
connected to two ferromagnetic leads and one superconducting lead in the Kondo regime by means
of the finite-U slave boson mean field approach and the nonequilibrium Green function technique.
In this three-terminal hybrid nanodevice, we focus our attention on the joint effects of the Kondo
correlation, superconducting proximity pairing, and spin polarization of leads. It is found that the
superconducting proximity effect will suppress the linear local conductance (LLC) stemming from
the weakened Kondo peak, and when its coupling Γs is bigger than the tunnel-coupling Γ of two
normal leads, the linear cross conductance (LCC) becomes negative in the Kondo region. Regarding
the antiparallel configuration, increasing spin polarization further suppresses LLC but enhances LCC,
i.e., causing larger negative values of LCC, since it is beneficial for the emergence of cross Andreev
reflection. On the contrary, for the parallel configuration, with increasing spin polarization, the LLC
decreases and greatly widens with the appearance of shoulders, and eventually splits into four peaks,
while the LCC decreases relatively rapidly to the normal conductance.

Keywords: superconducting proximity effect; Kondo effect; spin polarization; Anreev reflection

1. Introduction

Recently, electron transport through a hybrid nanodevice, for instance, a quantum dot (QD),
connected to normal and superconducting electrodes, has attracted much attention in many
experimental [1–20] and theoretical studies [21–29] due to the associated physical challenges and
potential applications in spintronics and quantum information. When a QD is connected to
a superconductor, superconducting order can leak into it to give rise to pairing correlations and
an induced superconducting gap, known as the superconducting proximity effect; this privileges the
tunneling of Cooper pairs of electrons with opposite spin, and thereby favors QD states with even
numbers of electrons and a zero total spin. At the same time, the local Coulomb repulsion enforces
a one-by-one filling of the QD, and thereby induces the Coulomb blockade and even the Kondo effect at
very low temperatures, which exhibits the zero-bias anomaly in the differential conductance with odd
numbers of electrons residing in the QD. In this case, the superconducting proximity effect competes
with the on-site Coulomb correlation [1,6,10,21,24,25,28,29].

It is even more intriguing when the QD additionally connects to a ferromagnetic lead [30,31].
It is known that the effective exchange field induced by the ferromagnetic correlation can cause
a spin imbalance inside the QD, and as a result, suppress and/or even split the Kondo peak in
the differential conductance [32–37]. Furthermore, spin polarization of the QD, on the one hand, is
disadvantageous to the formation of on-dot superconducting pairing. However, the spin polarization
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in the antiparallel configuration, on the other hand, is favorable to the Andreev reflection (AR) and
Cooper pair splitting [30,38]. It is, therefore, very interesting to study how the interplay of the
Kondo, superconducting pairing, and ferromagnetic correlations affects the electron tunneling through
a QD [39]. In a recent paper, Futterer et al. present a theoretical analysis of the subgap transport of
such a three-terminal hybrid system, which consists of n interacting QD attached to two ferromagnetic
leads and one superconducting lead [40,41]. They focused on the first-order sequential tunneling by
using a master equation and found that the strong on-dot electron–electron interaction, rather than the
nonlocal AR, leads to negative values of the nonlocal current response at an appropriately large bias
voltage. Moreover, the bias-dependent supercurrent in the superconducting electrode was proposed
as a sensitive detector to probe the exchange field of the QD induced by ferromagnetic leads [42].
Thereafter, the tunneling magnetoresistance was calculated for the same system to display a nontrivial
dependence on the bias voltage and the level detuning caused by the AR [43]. Very recently, it has been
reported, in contrast to [40], that the cross AR is indeed the dominant nonlocal transport channel at
a low bias voltage and leads to a negative value of the cross conductance in the three-terminal hybrid
nanodevice with two normal electrodes instead [44,45].

In the present work, we extend the finite-U slave boson mean field (SBMF) approach of Kotliar
and Ruckenstein [46] with the help of the nonequilibrium Green function (NGF) method to investigate
the subgap transport for the same three-terminal hybrid QD as in [40]. This kind of SBMF approach is
generally believed to be reliable in describing not only spin fluctuations rigorously but also charge
fluctuations to a certain degree in the Kondo regime at zero temperature [46–49]. This nonperturbative
approach has been successfully utilized to calculate the linear and nonlinear conductance within
a relatively wide dot-level range from the mixed valence to the empty orbital regimes, in which
the major characteristics induced by the external magnetic field and the magnetization in Kondo
transport arise [49–52]. Furthermore, this approach has been applied to analyze the π-phase
transition in a double-QDs Josephson junction caused by competition between Kondo and interdot
antiferromagnetic coupling [53]. The main purpose of this paper is to analyze in detail the interplay of
the Kondo, superconducting proximity induced on-dot pairing, and ferromagnetic correlations and
their influence on electronic tunneling.

The rest of the paper is organized as follows. In Section 2, we introduce our model of the
three-terminal hybrid system, and the equivalent slave-boson field Hamiltonian. Then, we present the
self-consistent equations of the expectation values of slave-boson operators within the SBMF approach
and NGF method. Moreover, the formulas for current and linear conductance, including the local and
cross conductances, are given. In Section 3, we present and analyze our numerical calculations for the
linear conductance and nonlinear conductance in detail. Finally, a brief summary is given in Section 4.

2. Model and Theoretical Formulation

2.1. Model Hamiltonian

We consider a three-terminal hybrid nanodevice: an interaction QD connected to one
superconducting lead and two ferromagnetic leads, as shown in Figure 1. The Hamiltonian of the
system can be written as [40]

H = HL + HR + HQD + HT , (1)

where
Hη = ∑

kσ

εηkσc†
ηkσcηkσ, (2)

HQD = ∑
σ

εdc†
dσcdσ + Un1n2 + Γs(c†

d1c†
d2 + cd1cd2), (3)

HT = ∑
ηkσ

(
Vηkc†

ηkσcdσ + H.c.
)

. (4)



Entropy 2019, 21, 1003 3 of 16

Here, η = L, R denotes the left and right leads, while σ = 1, 2 represents the spin degree of freedom.
In the above equations, c†

ηkσ (cηkσ) and c†
dσ (cdσ) are creation (annihilation) operators of electrons with

spin σ in the η-th ferromagnetic lead and in the QD, respectively. In the dot Hamiltonian HQD, εd is
the energy level of the QD, nσ = c†

dσcdσ, and U is the on-site Coulomb repulsion between opposite
spin electrons. HT depicts the tunneling between the QD and the two ferromagnetic leads, and Vηk is
the corresponding tunneling matrix element. In general, the tunneling amplitude Vηk is assumed to
be independent of spin and energy, and thus the effect of spin-polarized tunneling is captured by the
spin-dependent tunneling rates, Γησ = 2π ∑k |Vηk|2δ(ω− εηkσ).

Figure 1. (Color online) Schematic diagram of a quantum dot connected to one superconducting lead
and two ferromagnetic leads.

In this paper, since we are only interested in the subgap tunneling, it is natural to consider the
limit of an extremely large superconducting gap in the superconducting lead. Therefore, the degree of
freedom of the superconducting lead can be integrated out and an effective term can be constructed
in the dot Hamiltonian, the third term in Equation (3). The parameter Γs plays the role of describing
the superconducting proximity effect on the dot. It is evident that this new proximized term mixes
the empty state |0〉 and the doubly occupied state | ↑↓〉 in the dot, and results in two new eigenstates
with energies, E± = ε ±

√
ε2 + Γ2

s (here ε = εd + U/2), which are known as the Andreev bound
states. What we are interested in this paper is the effect of Andreev reflection on the electron tunneling
through an interacting QD in the Kondo regime.

According to the finite-U slave-boson approach, one can introduce four additional auxiliary boson
operators, e, pσ, and d, which are associated with the empty, singly occupied, and doubly occupied
electron states, respectively, of the QD, to discuss the above problem without interparticle couplings in
an enlarged space with constraints: The completeness relation [46]

∑
σ

p†
σ pσ + e†e + d†d = 1, (5)

and the particle number conservation condition

c†
dσcdσ = p†

σ pσ + d†d. (6)

Within the mean-field scheme, the effective Hamiltonian becomes (please see Appendix A) [46]

H =∑
σ

εdc†
dσcdσ + Ud†d + Γs(z∗1z∗2c†

d1c†
d2 + z1z2cd1cd2) + ∑

ηkσ

(Vηkc†
ηkσcdσzσ + V∗ηkc†

dσcηkσz∗σ)

+ ∑
ηkσ

εηkσc†
ηkσcηkσ + λ1(∑

σ

p†
σ pσ + e†e + d†d− 1) + ∑

σ

λ2
σ(c

†
dσcdσ − p†

σ pσ − d†d),
(7)
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where three Lagrange multipliers λ1 and λ2
σ are drawn in order to make the constraints valid, and zσ

is the correctional parameters in the hopping term to recover the many-body effect on tunneling with

zσ = (1− d†d− p†
σ pσ)

−1/2(e† pσ + p†
σ̄d)(1− e†e− p†

σ pσ)
−1/2. (8)

2.2. Self-Consistent Equations

From the effective Hamiltonian Equation (7), one can derive four equations of the motion of
slave-boson operators, which serve as the basic equations together with the three constraints. Then,
we further apply the mean-field approximation in the statistical expectations of these equations, where
all the boson operators are replaced by their respective expectation values. After a lengthy and tedious
calculation employing the Langreth technique (please see the Appendix B for the details of derivation),
we can obtain the self-consistent equations as follows [49–52]:

Γs
∂(z1z2)

∂e
(R + R∗) + λ1e + ∑

σ

∂zσ

∂e
(Qσ + Q∗σ) = 0, (9)

Γs
∂(z1z2)

∂p1
(R + R∗) + (λ1 − λ2

1)p1 +
∂z1

∂p1
(Q1 + Q∗1) +

∂z2

∂p1
(Q2 + Q∗2) = 0, (10)

Γs
∂(z1z2)

∂p2
(R + R∗) + (λ1 − λ2

2)p2 +
∂z1

∂p2
(Q1 + Q∗1) +

∂z2

∂p2
(Q2 + Q∗2) = 0, (11)

Γs
∂(z1z2)

∂d
(R + R∗) + (U + λ1 −∑

σ

λ2
σ)d + ∑

σ

∂zσ

∂d
(Qσ + Q∗σ) = 0, (12)

∑
σ

|pσ|2 + |e|2 + |d|2 − 1 = 0, (13)

Kσ − |pσ|2 − |d|2 = 0, (14)

where
K1 =

〈
c†

d1cd1

〉
=
∫ dω

2πi

〈〈
cd1; c†

d1

〉〉<
(ω) =

1
2πi

∫
dωG<

d11(ω), (15)

K2 =
〈

c†
d2cd2

〉
=
∫ −dω

2πi

〈〈
c†

d2; cd2

〉〉>
(ω) =

−1
2πi

∫
dωG>

d22(ω), (16)

R =
〈

c†
d1c†

d2

〉
=
∫ dω

2πi

〈〈
c†

d2; c†
d1

〉〉<
(ω) =

1
2πi

∫
dωG<

d21(ω), (17)

Q1η =z1Γη1

∫ dω

2π

{
− i

2

[
Γ̃L1 fL(ω) + Γ̃R1 fR(ω)

]
|GR

d11(ω)|2

− i
2

[
Γ̃L2(1− fL(−ω)) + Γ̃R1(1− fR(−ω))

]
|GR

d21(ω)|2 + fη(ω)GA
d11(ω)

}
,

(18)

Q2η =z2Γη2

∫ dω

2π

{
i
2

[
Γ̃L1(1− fL(ω)) + Γ̃R1(1− fR(ω))

]
|GR

d21(ω)|2

+
i
2

[
Γ̃L2 fL(−ω) + Γ̃R1 fR(−ω)

]
|GR

d22(ω)|2 − fη(−ω)GA
d22(ω)

}
,

(19)

and
Qσ = ∑

η

Qση . (20)

Here, the QD Keldysh NGFs, GR(A,<,>)
dσσ′ (ω), are the matrix elements of the 2× 2 retarded (advanced

and correlation) GF matrix GR(A,<,>)
d (ω) = 〈〈φ; φ†〉〉R(A,<,>) defined in the Nambu presentation, in

which the mixture Fermion operator, φ = (cd1, c†
d2)

T , has to be introduced to describe the electronic
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dynamics due to the superconducting proximity effect. For the effective noninteracting Hamiltonian,
the retarded and advanced GFs GR(A)

d can be easily written in the frequency domain as

(
GR(A)

d (ω)
)−1

=

[
ω− εd − λ2

1 ±
i
2 (Γ̃L1 + Γ̃R1) −Γsz1z2

−Γsz∗1z∗2 ω + εd + λ2
2 ±

i
2 (Γ̃L2 + Γ̃R2)

]
, (21)

with the renormalized parameters, Γ̃ησ = |zσ|2Γησ. In addition, the correlation GFs G<(>)
d (ω) can be

obtained with the help of the following Keldysh relation typical for a noninteracting system:

G<(>)
d (ω) = GR

d (ω)
[
Σ<(>)

L (ω) + Σ<(>)
R (ω)

]
GA

d (ω), (22)

with the self-energies

Σ<
η (ω) = i

[
Γ̃η1 fη(ω) 0

0 Γ̃η2[1− fη(−ω)]

]
, (23)

and

Σ>
η (ω) = −i

[
Γ̃η1[1− fη(ω)] 0

0 Γ̃η2 fη(−ω)

]
, (24)

where fη(ω) = 1/(eβ(ω−µη) + 1) is the Fermi distribution function of the lead η with the chemical
potential µη and temperature 1/β.

2.3. The Current and Linear Conductance

The electric current flowing from the lead η into the QD can be obtained from the rate of change
of the electron number operator of the left lead:

Iη = ∑
σ

Iησ = −e ∑
σ

〈
d
dt ∑

k
c†

ηkσcηkσ

〉
. (25)

After standard calculation, the current for the left lead can be written as [44,45]

IL = IET
L + IDAR

L + ICAR
L , (26)

with

IET
L =

e
h

∫
dω
{

Γ̃L1Γ̃R1 [ fL(ω)− fR(ω)] |GR
d11(ω)|2 +Γ̃L2Γ̃R2 [ fL(−ω)− fR(−ω)] |GR

d22(ω)|2
}

, (27)

IDAR
L =

2e
h

∫
dωΓ̃L1Γ̃L2 [ fL(ω) + fL(−ω)− 1]× |GR

d12(ω)|2, (28)

ICAR
L =

e
h

∫
dω
{

Γ̃L1Γ̃R2 [ fL(ω) + fR(−ω)− 1] +Γ̃L2Γ̃R1 [ fL(−ω) + fR(ω)− 1]
}
|GR

d12(ω)|2. (29)

The corresponding currents for the right lead can be readily obtained by simply exchanging the
subscripts L and R in Equations (27)–(29). It is found that the current can be divided into three parts:
IET
L describes the single-particle tunneling current caused by the normal electron transfer (ET) processes

from the left lead directly to the right lead; IDAR
L denotes the local Andreev current caused by the

direct AR (DAR) processes in which an electron injecting from the left lead forms a Cooper pair in the
superconducting lead, and at the same time, is reflected as a hole back into the left lead; and ICAR

L is
the nonlocal Andreev current caused by the crossed AR (CAR) processes, which is similar to DAR
except that the hole is reflected into another lead, i.e., here, the right lead.

Since we are interested in the interplay between the Andreev bound state and the Kondo effect in
the nonlocal subgap tunneling, we choose the bias voltage configuration in this hybrid three-terminal
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nanodevice as follows: The left lead is biased with the chemical potential V, while the right lead and the
superconducting electrode are both in contact with the ground. Therefore, one can define two different
linear conductances: The usual local conductance GL = ∂IL/∂V|V=0 and the unusual nonlocal (cross)
conductance GC = ∂IR/∂V|V=0, which is related to the nonlocal current response of the hybrid
three-terminal nanodevice to external driving field, i.e., current flowing in the right lead caused by the
bias voltage applied to the left lead. From Equations (27)–(29), the local conductance reads

GL =
∂IL
∂V

∣∣∣∣
V=0

= GET + GDAR + GCAR, (30)

and the cross conductance is

GC =
∂IR
∂V

∣∣∣∣
V=0

= GET − GCAR, (31)

where

GET =
e2

h

(
Γ̃L1Γ̃R1|GR

d11(0)|
2 + Γ̃L2Γ̃R2|GR

d22(0)|
2
)

, (32)

GDAR =
4e2

h
Γ̃L1Γ̃L2|GR

d12(0)|
2, (33)

GCAR =
e2

h

(
Γ̃L1Γ̃R2 + Γ̃R1Γ̃L2

)
|GR

d12(0)|
2. (34)

It is obvious that all of the three different tunneling processes contribute to the local conductance.
Nevertheless, the DAR tunneling process, as expected, has no contribution to the cross conductance.
More interestingly, the CAR tunneling process provides a contrary contribution, in comparison with the
ET process, to the cross-conductance Equation (31), which is responsible for the negative value of the
cross conductance in certain appropriate conditions, as shown in the following section. This opposite
role of the CAR can be interpreted in an intuitive way: A hole entering the right lead is physically
equivalent to an electron breaking into the QD from the right lead, thus resulting in an opposite current
flowing in the right lead. It is important to point out that if the superconducting coupling is switched
off (Γs = 0), there are no DAR and CAR processes, and as a result, the cross conductance reduces to
the local conductance.

3. Result and Discussion

We suppose that the left and right leads are made from the same material and in the wide band
limit, that which is of interest in the present investigation, the ferromagnetism of the leads can be
accounted for by the polarization-dependent couplings ΓL1 = ΓR1 = (1 + p)Γ, ΓL2 = ΓR2 = (1− p)Γ
for the parallel (P) alignment, while ΓL1 = ΓR2 = (1 + p)Γ, ΓL2 = ΓR1 = (1− p)Γ for the anti-parallel
(AP) alignment. Here, Γ describes the tunneling coupling between the QD and the nonmagnetic
leads, which is taken as the energy unit in the following calculations. In addition, p (0 ≤ p < 1)
denotes the polarization strength of the leads. The Kondo temperature in the case of p = 0, given by
TK = U

√
D exp(−π/D)/2π with D = −2UΓ/εd(U + εd), will be set as another dynamical energy

scale of the nonlinear conductance.
In the following, we deal with the three-terminal QD system having a fixed finite Coulomb

interaction U = 10 at zero temperature and consider the effects of changing the bare dot level εd,
the spin polarization p, and the proximity strength Γs, respectively.

3.1. Linear Local and Cross Conductances

Firstly, we show the calculated linear conductances in Figure 2, including the local conductance
GL and the nonlocal cross conductance GC as functions of the bare energy level εd of the QD at different
superconducting coupling strengths, Γs = 0, 0.2, 0.5, 1.0, 1.5, and 2.0, in the case of no spin-polarization
p = 0. Without the superconducting coupling Γs = 0, GL = GC and the linear conductance reaches
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the unitary limit, G0 (G0 ≡ 2e2/h), as expected in the Kondo regime. With increasing the coupling Γs,
the local conductance GL raises at the beginning, as seen in Figure 2a, since the AR channel starts to
emerge and contribute to the electronic tunneling. A slightly bigger value of conductance, GL ' 1.1G0,
than the unitary limit of conductance of single-particle tunneling is reached at the coupling Γs = 0.5
in the Kondo regime. On the other hand, it is known that the resonant AR leads to the unitary limit
of conductance, 2G0, of the Cooper pair tunneling in the two-terminal hybrid system, e.g., a normal
metal-QD-superconductor system [24]. We can therefore deduce that such a larger value of the
conductance is a signature indicating that the tunneling event in the present hybrid system is a mixture
of the single-particle and Cooper pair tunnelings. Increasing the coupling Γs further will, however,
cause a decrease in the local conductance GL. The suppression of GL can be interpreted as follows:
An electron coming from the left lead has much higher probability to form the Cooper pair breaking
into the superconducting electrode due to the considerable strength of the coupling Γs > 0.5, and as
a result, the ET process is rapidly suppressed. Different from the local conductance, the nonlocal
conductance GC decreases from the beginning and even becomes negative if the proximity-coupling
is sufficiently strong. The negative cross conductance means that when the left lead is applied with
a voltage which is bigger than the right lead, electrons will, instead of entering into the right lead
from the QD, tunnel into the QD out of the right lead. Moreover, we find that when the QD leaves the
Kondo regime, the cross conductance becomes positive again.
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Figure 2. (Color online) (a) The local conductance and (b) the cross conductance vs. the bare dot level
εd at zero temperature for different proximity-coupling strengths Γs in the case of normal leads, i.e.,
p = 0.

Such effects of Γs are clearly manifested in Figure 3, in which the local and nonlocal conductances,
and their three respective parts, GET , GDAR, and GCAR, are illustrated as functions of the coupling Γs

for the specific system which has bare dot level, εd = −U/2 = −5. It is observed that a maximum value
of the local conductance, GL = 1.125G0, is arrived at, Γs = 0.58. After this point of Γs, the AR process
becomes the predominate tunneling mechanism over the ET process. When the proximity-coupling
is equal to the tunnel-coupling, i.e., Γs = 1.0, a new resonance is reached, originating from interplay
between the Kondo effect and AR. Consequently, GDAR = G0/2 and GCAR = GET = G0/4, and the
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local conductance arrive at the unitary value, GL = G0 once more. At the same time, the nonlocal
conductance completely vanishes, GC = 0, which indicates no current response in the right lead to the
bias voltage applied to the left lead.
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Figure 3. (Color online) The zero temperature local conductance (black-solid line) and the cross
conductance (black-dotted line) vs. the proximity coupling Γs for the system with a bare dot level at
the particle-hole symmetric point, εd = −U/2 = −5 in the case of normal leads (p = 0). The three
parts of the conductance are also plotted for illustration purposes.

Secondly, in Figure 4, we investigate the cross conductance GC as a function of the bare energy
level εd of the QD at different proximity couplings Γs in the AP configuration with a large spin
polarization p = 0.5. In the AP configuration, similar with the case of zero spin polarization p = 0,
electrons with up-spin and down-spin are equally available in the whole system, favoring the formation
of the Kondo-correlated state within a wide dot level range centered at εd = −U/2 = −5. Meanwhile,
since there is no splitting of the renormalized dot levels, εd + λ2

σ, for different spins, the usual tunneling
and charging peaks, around εd = 0 and −U, respectively, are relatively narrow. The local conductance
GL vs. εd curves show a similar behavior as the case of zero spin polarization even in the presence
of superconducting coupling Γs. Furthermore, since no spin-flip scattering exists in the tunneling
processes, in the AP configuration, the majority-spin (e.g., up-spin) states in the left lead increase but
the available up-spin (minority-spin) states in the right lead decrease with increasing spin polarization
strength, and as a consequence, the transfer of the majority-spin (up-spin) electrons through the QD is
suppressed, such that the local conductance goes down and eventually vanishes at p = 1 as expected.
On the contrary, the available down-spin states in the right lead increase in the AP configuration, which
just facilitates the occurrence of the CAR process [30]. Therefore, one can observe that GC becomes
negative in almost the whole region of dot levels, from the mixed-valence regime to the empty orbital
regime, even when Γs < 1, and nearly arrives at a considerably bigger negative value, GC ' −G0/5,
at the Kondo regime at p = 0.5. It is interesting to consider the extreme case of p = 1. As mentioned
above, in the AP configuration electrons with up-spin and down-spin are identical to each other,
preferring the formation of the Kondo-correlated state for all values of p. However, since the up-spin
states are almost unavailable in the right lead in the case of large polarization, the ET process for the
left lead to the right lead is completely damaged (implying an exactly vanishing conductance in the
usual QD system), but the CAR process survives here as a unique tunneling mechanism, exclusively
making a contribution to electronic tunneling. It is anticipated that in this case, GET = GDAR = 0 and
GL = −GC = GCAR = G0/2 (this is the unitary limit of conductance of the single channel).
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Figure 4. (Colour online) (a) The local conductance and (b) the cross conductance versus the bare dot
level εd for different proximity-coupling strengths Γs in the AP configuration with p = 0.5.

The situation is quite different in the case of the P configuration, as demonstrated in Figure 5,
in which the two conductances are plotted as functions of bare dot level with spin polarization
p = 0.5. In the P configuration, finite spin polarization splits the dot level for up- and down-spins
and thus broadens the usual resonance peaks around εd = 0 and εd = −U [32–36]. On one hand,
since minority-spin electrons are still available in the two electrodes to build the Kondo screening
correlation to a certain degree, the central Kondo peak can still be reached at the unitary limit G0 at
the large polarization p = 0.5 in the case of Γs = 0. On the other hand, the number of minority-spin
electrons is too small to construct the Kondo-correlated state at p = 0.5, and thus Kondo-induced
conductance enhancement disappears rapidly when the QD moves away from the particle-hole
symmetric point εd = −U/2. These two factors cause the appearance of kinks or splitting peaks in
both conductance vs. εd curves. Besides, it can be observed from Figure 5a that the central Kondo peak
in the local conductance is progressively splitting with increasing proximity coupling Γs ≥ 1.0 in this
P configuration. Furthermore, a decrease in minority-spin states in both leads in the P configuration
hinders the emergence of AR processes, which leads to weakly negative cross conductance in the
Kondo regime, e.g., GC ≥ −0.1G0, and even causes CAR to totally vanish, thus GC ' GL at the
two usual resonance peaks, as shown in Figure 5b. This states that strong ferromagnetism destroys
proximitized superconductivity in this three-terminal hybrid nanosystem.
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Figure 5. (Color online) (a) The local conductance and (b) the cross conductance vs. the bare dot level
εd with U = 10 at zero temperature for different proximity-coupling strengths Γs in the P configuration
with p = 0.5.

3.2. Nonlinear Local and Cross Conductances

Now, we turn to the investigation of nonlinear tunneling, since the nonlinear differential
conductance dIL/dV is believed to be a very useful tool in experiments aimed at detecting the
formation of the Kondo-correlated state due to its proportionality to the transmission spectrum,
supposing that the total transmission is unchanged subject to the external bias voltage. In the present
three-terminal hybrid device, one can define the local and cross differential conductances, gL = ∂IL/∂V
and gC = ∂IR/∂V, if the bias voltage V is applied to the left lead and while the superconducting and
the right leads are kept grounded. From the Equations (26)–(29), we can obtain that the two diffenertial
conductances are both proportional to the normal transmission spectrum TN(ω) and the AR spectrum
TA(ω) at ω = V at zero temperature, gL ∝ TN(V) + aTA(V) and gC ∝ TN(V) − bTA(V) (a and b
are constants).

Figure 6 shows the local and cross differential conductances as functions of bias voltage at various
proximity couplings Γs for the system with a single dot level εd = −5 (TK ' 0.03) at the Kondo
regime. These curves for weak proximity coupling Γs < 1.0 present a single zero-bias anomaly, which
is the signature of the Kondo effect. Nevertheless, there appears non-zero-bias peak with increasing
proximity coupling Γs ≥ 1.0. It is announced that the Kondo correlation enhances not only the normal
ET, but also the AR; nonetheless. the increasing superconducting proximity coupling induces splitting
of the Kondo peaks in the normal transmission spectrum as well as the AR spectrum. This peak
splitting is the reason that the three parts of the linear conductance are all suppressed when Γs > 1.0,
as shown in Figure 3. Finally, one can observe that the negative cross differential conductance becomes
positive in the case of large bias voltage. External bias voltage plays a role in dissipation so as to
destroy not only the Kondo correlation but the negative nonlocal current response as well.
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Figure 6. (Color online) The zero-temperature local (a) and cross (b) differential conductances vs. bias
voltage V for various couplings Γs for the system with bare dot level εd = −5 and U = 10 in the case
of normal leads (p = 0).

4. Conclusion

We have theoretically investigated the subgap transport properties of a hybrid nanosystem
consisting of an interacting QD connected to one superconducting lead and two ferromagnetic leads.
On the basis of the finite-U slave boson mean field approach and the NGF method, we find markedly
rich transport features ascribed to the competition among the Kondo correlation, superconducting
proximity effect, and spin polarization of electrodes. In the case of weak superconducting proximity
coupling, the Kondo-correlated state can still be built, leading to a single zero-bias peak in the
voltage-dependent differential conductance. However, the peak height drops down gradually with
increasing Γs, and when Γs ≥ 1.0, a non-zero peak appears. Such strong proximity coupling induces
linear cross conductance which is negative in the Kondo region. Spin polarization can further
enhance the opposite current response in the right lead (more negative cross conductance) in the
AP configuration, because such a configuration is advantageous to the emergence of CAR. In contrast,
in the P configuration, the rising spin polarization p blocks the CAR process and also splits the Kondo
peak, such that the linear local conductance exhibits four peaks when Γs ≥ 1.0, and the linear cross
conductance reduces to the normal positive conductance more rapidly.
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Appendix A

In this appendix, we briefly show how to obtain the effective Hamiltonian Equation (7). Within the
formulation of the finite-U slave boson approach, the original QD electron operators are replaced by
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the new varibales as follows: n1n2 → d†d, cdσ → zσ fdσ, and c†
dσcdσ → f †

dσ fdσ. The additional degrees
of freedom simplify the Coulomb interaction Un1n2 as Ud†d, but introduce vectors not describing
physically real states. Then, two constraint conditions have to be imposed to eliminate the unphysical
part of the enlarged Hilbert space |Φ〉

(∑
σ

p†
σ pσ + e†e + d†d− 1)|Φ〉 = 0,

( f †
dσ fdσ − p†

σ pσ − d†d)|Φ〉 = 0.
(A1)

Therefore, the subspace of the enlarged Hilbert space defined by Equation (A1) is equivalent to the
original Hilbert space. Applying Dirac’s formulation of constrained dynamics, one should then
introduce two q-number Lagrange multipliers λ1 and λ2

σ, corresponding to the two constraints in
Equation (A1), to the Heisenberg equation of motion with respect to the effective Hamiltonian

H̃ ≡ H + λ1

(
∑
σ

p†
σ pσ + e†e + d†d− 1

)
+ ∑

σ

λ2
σ( f †

dσ fdσ − p†
σ pσ − d†d), (A2)

and consequently any dynamical observable Â satisfies the standard equation of motion as a
state equation

ih̄
dÂ
dt
|Φ〉 = [Â, H̃]|Φ〉. (A3)

The next key point of the SBMF approach is to replace all the slave-boson operators and the
Lagrange multipliers by their average values according to nonequilibrium steady states (NESS), which
can be still expressed in this paper by e, pσ, d, λ1, and λ2

σ. As a result, we can indeed obtain the
mean-field expression of the effective Hamiltonian Equation (7) (please note that we still use the
notation cdσ instead of fdσ in the effective Hamiltonian in the main text for the sake of convenience).

Appendix B

It is easily noticed that there are seven averages in total to be determined within the SBMF
approach, and the constraints provide three conditions: Equations (13) and (14). Hence, four more
conditions are necessary. Originally, Kotliar and Ruckenstein [46] derived them by the saddle-point
approximation for the equilibrium free energy, but this approach cannot be applied in this paper, since
we are dealing with the NESS. Instead, herein, we can derive those conditions from the equations of
motion of the four slave boson fields according to Equation (A3). For instance, the empty boson field e
obeys the equation of motion:

ih̄
de
dt

= Γs

(
[e, z†

1z†
2]c

†
d1c†

d2 + [e, z1z2]cd2cd1

)
+ ∑

ηkσ

Vηk

(
c†

ηkσcdσ[e, zσ] + c†
dσcηkσ[e, z†

σ]
)
+ λ1e. (A4)

By replacing the slave-boson operators and Lagrange multipliers to their mean values and evaluating
NESS averages of the fermionic operators, one obtains, in the condition of steady state,

ih̄
〈

de
dt

〉
= Γs

(
∂z∗1 z∗2

∂e∗ 〈c
†
d1c†

d2〉+
∂z1z2
∂e∗ 〈cd2cd1〉

)
+ ∑ηkσ Vηk

(
∂zσ
∂e∗ 〈c

†
ηkσcdσ〉+

∂z∗σ
∂e∗ 〈c

†
dσcηkσ〉

)
+ λ1e = 0. (A5)

Here the commutators of the boson fields are evaluated as [e, zσ] = ∂zσ/∂e† and [e, z1z2] = ∂z1z2/∂e†,
according to the Dirac’s quantum algebraic scheme.

Now, we turn to discuss the averages of fermionic operators which are evaluated at a NESS with
respect to the fermionic part of the effective Hamiltonian Equation (7). Since we discuss quantum
transport through a nanodevice in this paper, a NESS can be defined as being when all electrodes are
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at equilibrium with their own temperatures 1/βη and chemical potentials µη , and thus the statistical
operator can be introduced as

$0 =
1
Ξ

e−βL(HL−µL NL)e−βR(HR−µR NR). (A6)

In the above, Ξ is the normalization constant, Hη and Nη are the Hamiltonian and the total number of
particles in the lead η, respectively. According to the nonequilibrium statistical theory, the average of
an observable Â with respect to such a NESS can then be evaluated as 〈Â〉 = Tr(Â$0). Thereby, we
can evaluate the averages of fermionic operators with the help of the NGF technique, for example,
the operators of occupation number on the dot, K1 and K2 (Equations (15) and (16)), and the order
parameter R in Equation (17). Moreover, we can define

Q1η = ∑
k

Vηk

〈
c†

d1cηk1

〉
= ∑

k
Vηk

∫ dω

2πi

〈〈
cηk1; c†

d1

〉〉<
(ω) = ∑

k
Vηk

∫ dω

2πi
G<

ηk,d;11(ω), (A7)

and

Q2η = ∑
k

Vηk

〈
c†

ηk2cd2

〉
= ∑

k
Vηk

∫ dω

2πi

〈〈
c†

ηk2; cd2

〉〉<
(ω) = ∑

k
Vηk

∫ dω

2πi
G<

ηk,d;22(ω). (A8)

Here, the hybrid NGFs, G<
ηk,d(ω) are the matrix elements of the 2 × 2 hybrid contour-order GF

matrix Gγ
ηk,d(ω) = 〈〈Lηk; φ†〉〉γ (γ = R, A,<,>) with the Nambu representation in the lead Lηk =

(cηk1, c†
ηk2)

T . Applying the Langreth theorem, we obtain

G<
ηk,d(ω) = gR

ηk(ω)V̂ηkG<
d (ω) + g<ηk(ω)V̂ηkGA

d (ω), (A9)

where gγ
ηk is the decoupled NGF of the lead η defined as gγ

ηk(ω) = 〈〈Lηk;L†
ηk〉〉

γ and

V̂ηk =

(
z1Vηk 0

0 −z2V∗ηk

)
. (A10)

Subsequently, we have

∑
k

V̂ηkG<
ηk,d(ω) =∑

k
V̂ηkgR

ηk(ω)V̂ηkG<
d (ω) + V̂ηkg<ηk(ω)V̂ηkGA

d (ω),

=ΣR
η (ω)G<

d (ω) + Σ<
η (ω)GA

d (ω),
(A11)

with

Σγ
η (ω) = ∑

k
V̂∗ηkgγ

ηk(ω)V̂ηk =

(
∑k |Vηk|2gγ

ηk;11(ω) 0
0 ∑k |Vηk|2gγ

ηk;22(ω)

)
. (A12)

Noticing the retarded and advanced self energies in the wide band limit,

ΣR(A)
η = ± i

2

(
Γ̃η1 0
0 Γ̃η2

)
, (A13)

and Equations (21)–(24), we can further obtain an explicit expression of Equation (A11) and insert
this expression into Equations (A7) and (A8) to yield Equations (18) and (19). Finally, we obtain the
self-consistent equation Equation (9).
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Similarly, from the equations of motion of pσ and d,

ih̄
dpσ

dt
=Γs

(
[pσ, z†

1z†
2]c

†
d1c†

d2 + [pσ, z1z2]cd2cd1

)
+ ∑

ηkσ′
Vηk

(
c†

ηkσ′cdσ′ [pσ, z′σ] + c†
dσ′cηkσ′ [pσ, z′†σ ]

)
+ (λ1 − λ2

σ)pσ,

(A14)

ih̄
dd
dt

=Γs

(
[d, z†

1z†
2]c

†
d1c†

d2 + [d, z1z2]cd2cd1

)
+ ∑

ηkσ

Vηk

(
c†

ηkσcdσ[d, zσ] + c†
dσcηkσ[d, z†

σ]
)

+(U + λ1 − Σσλ2
σ)d,

(A15)

we can get self-consistent equations, Equations (10)–(12).
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